
        
                                                 

Measuring multipartite entanglement through
dynamic susceptibilities
Philipp Hauke1,2*, Markus Heyl1,2,3, Luca Tagliacozzo4,5 and Peter Zoller1,2

Entanglement is considered an essential resource in quantum technologies, and central to the understanding of quantummany-
body physics. Developing protocols to detect and quantify the entanglement of many-particle quantum states is thus a key
challenge for present experiments. Here, we show that the quantum Fisher information, a witness for genuinely multipartite
entanglement, becomes measurable for thermal ensembles by means of the dynamic susceptibility—that is, with resources
readily available in present cold atomic-gas and condensed-matter experiments. This establishes a connection between
multipartite entanglement and many-body correlations contained in response functions, with immediate implications close
to quantum phase transitions, where the quantum Fisher information becomes universal, allowing us to identify strongly
entangled phase transitions with a divergent multipartite entanglement. We illustrate our framework using paradigmatic
quantum Ising models, and point out potential signatures in optical-lattice experiments and strongly correlated materials.

A lthough entanglement is central to our understanding of
quantum many-body physics1, its direct measurement in
an actual experiment to characterize quantum phases and

phase transitions has remained elusive. In a few-body quantum
system, in particular in a quantum information context involving
few qubits, entanglement can be measured and quantified through
tomography of the density matrix2–5. In experiments with few
atoms in optical lattices, such as engineered Bose– or Fermi–
Hubbard models, entanglement entropy and purity of quantum
states become measurable with protocols based on preparing
copies of the quantum system in combination with the unique
tools of atomic physics, including single-site manipulation and
observation6,7. However, an intrinsic feature of these protocols is an
exponential scaling of resources, and thus an a priori limit to small
system sizes.

In contrast, we will be interested below in quantifying multipar-
tite entanglement for large system size, while still being accessible
with experimentally realistic tools and resources. Our approach is
based on measurement of the quantum Fisher information (QFI) as
a witness of m-particle entanglement8–10, as familiar from quantum
metrology11–13. As our main result, we will show that the QFI for
thermodynamic equilibrium is directly related to measurement of
dynamic susceptibilities (Fig. 1). To illustrate detection of entan-
glement by means of the QFI, we study several examples of quan-
tum phase transitions (QPTs). We are able to identify a class of
strongly entangled QPTs with divergent multipartite entanglement
by studying the universal scaling of the QFI (refs 14–17), also at
non-zero temperatures (see also refs 18–20 for scaling of related
quantum metrics). The entanglement quantified through the QFI
is not only a resource for quantum metrology8,9, it also permits the
characterization of exotic quantum effects such asmany-body local-
ization21. Although the outstanding feature of the presented protocol
is its experimental simplicity, we will also discuss that the QFI as
entanglement witness will be blind to non-local entanglement22,23,
such as, for example, in topological systems.

Background on the quantum Fisher information
Originally a concept from quantum metrology, the quantum Fisher
information, FQ, quantifies the maximal precision with which a
parameter (a phase) ϑ can be estimated using a given quantum
stateρ (refs 11–13). ForM independentmeasurements, the variance
of ϑ is bounded by (∆ϑ)2 ≥ 1/(MFQ), the so-called quantum
Cramér–Rao bound11. A better precision—that is, a smaller
right-hand side—can be reached if the state ρ is more sensitive
towards a unitary transformation generated by the Hermitian
operator Ô associated with ϑ . In other words, the QFI quantifies
the distinguishability of ρ from ρ ′=e−iϑÔρ eiϑÔ , for infinitesimal ϑ
(without loss of generality, we set the mean value of ϑ to 0).

For a pure quantum stateρ=|ψ〉〈ψ |, such as the ground state of a
givenHamiltonian, the QFI assumes the simple form of a connected
correlation function, which can be easily computed or measured,

FQ=4∆(Ô)2=4(〈ψ |ÔÔ|ψ〉−〈ψ |Ô|ψ〉2) (1)

Matters become much more complicated in a mixed state, such
as a thermal ensemble ρ =

∑
λ pλ|λ〉〈λ|, where |λ〉 is the energy

eigenbasis with occupation probabilities pλ=exp (−Eλ/T )/Z , with
Z the partition function. In such a case, the QFI takes the
considerably more complex structure

FQ=2
∑
λ,λ′

(pλ−pλ′)2

pλ+pλ′
|〈λ|Ô|λ′〉|2 (2)

(where the sum includes only terms with pλ+pλ′>0).
Importantly, the quantum Cramér–Rao bound can fall below

classical limits if ρ describes an entangled state of N >1 particles13.
Consider a local generator Ô=

∑N
l=1 Ôl , where Ôl has a spectrum

of unit width (see Methods). If ρ achieves a sufficiently large QFI to
break classical bounds,

fQ≡FQ/N >m (3)
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Figure 1 | Measurement prescription for the quantum Fisher information (QFI), a witness for multipartite entanglement. a, A quantum many-body
system is prepared in a thermal state at temperature T. The example shows an Ising spin chain (top), equation (8), describing solid-state samples32,33 and
optical-lattice experiments (bottom)31. The concept applies also to fermions and bosons, and in any spatial dimension. b, Standard tools, such as inelastic
Bragg or neutron scattering, measure the imaginary part of the dynamic susceptibility χ ′′(ω,T) as a function of frequency exchange ω [green line,
computed using equation (11)]. The integral FQ(T)=(4/π)

∫
∞

0 dω tanh((ω/2T))χ ′′(ω,T) gives the QFI (shaded areas). c, This procedure allows the QFI to
be mapped out as a function of temperature and transverse field, parametrized by γ (exact data for N=64). Low-temperature states (circle) can host
entanglement, but it is lost at higher temperatures (cross). The quantum Ising chain has divergent entanglement close to the quantum critical point, and a
robust entangled region extending to finite temperatures (enclosed by the dashed line).

with fQ the QFI density andm a divisor ofN , then ρ must bem+1-
partite entangled8,9.

Recently, in a remarkable atomic-gas experiment10, it has been
demonstrated that a lower bound on the QFI can be measured by
studying the behaviour of an observable’s probability distribution
under the unitary transformation eiϑÔ . This could then be used
to demonstrate the presence of bipartite entanglement. Here, we
show how the QFI can be measured directly and efficiently for any
quantum many-body system in a thermal state at any temperature.

Main result
As the major result of this work, we rigorously relate the QFI to a
Kubo response function,

FQ(T )=
4
π

∫
∞

0
dω tanh

ω

2T
χ ′′(ω,T ) (4)

where χ ′′(ω,T )==(χ(ω,T )) is the imaginary, dissipative part of
the dynamic susceptibility in the stateρ with respect to Ô—the same
thermal state and generator for which theQFI is evaluated. A similar
connection has already been noted for the related geometric tensor
in the ground state18,19, and response functions in imaginary time
are being used to make the geometric tensor calculable in quantum
Monte Carlo computations (see, for example, ref. 24). Equation (4)
relates the QFI to response functions at non-zero temperatures and
in real time, thus providing a tool tomeasure it directly in laboratory
experiments.

Proof: The proof of equation (4) is straightforward. It requires
only the minimal assumption of thermal equilibrium. Setting
~=1=kB, the dynamic susceptibility is defined as

χ(ω,T )= i
∫
∞

0
dt eiωt tr ρ

[
Ô(t),Ô

])
(5)

where Ô(t)= eiHtÔe−iHt . It is convenient to work in the Lehmann
representation, that is, the energy eigenbasis, where

χ ′′(ω)=
∑
λ,λ′
(pλ−pλ′)|〈λ|Ô|λ′〉|2πδ(ω−Eλ′+Eλ) (6)

Exploiting that for a thermal state
∫
∞

−∞
dω tanh (ω/2T ) δ(ω −

Eλ′ + Eλ)= tanh ((Eλ′−Eλ)/2T )= (pλ − pλ′)/(pλ + pλ′), using the

asymmetry of χ ′′(ω,T ), and correcting for prefactors, we directly
obtain equation (4). This proof can be straightforwardly extended to
the QFI matrix and, through the fluctuation–dissipation theorem,
to the dynamic structure factor S(ω). Equation (4) also presents
some direct corollaries, such as a sum rule which we discuss in the
Supplementary Methods.

The identification given by equation (4) has several conceptual
implications.

First, it makes the QFI, a witness for multipartite entanglement, a
straightforwardly measurable quantity. Dynamic susceptibilities are
routinely measured in many-body systems using well-established
techniques such as Bragg spectroscopy25,26 or neutron scattering27.

Second, the central equation (4) has also theoretical implications.
As one example, the dynamical susceptibility measures quantum
fluctuations. Because fluctuations determine the sensitivity of a state
towards external perturbations, the existence of a relation to theQFI
is intuitive, which now becomes rigorous using equation (4). From
a different point of view, the QFI extracts the entanglement content
of the quantum correlations contained in χ ′′(ω,T ).

Third, the connection provided by equation (4) has direct
quantitative consequences near continuous QPTs when choosing
for Ô a relevant operator in the renormalization-group sense,
such as the order parameter. Then, known universal scaling laws
for χ ′′(ω, T ) translate directly into universal scaling for FQ. In
magnetic materials, for example, experiments have observed the
scaling χ ′′(ω, T )∼ (T/J )−sφ(ω/T ), with φ a universal function
and s a scaling exponent (see, for example, refs 28,29). Integrating
this, one directly obtains the scaling fQ∼(T/J )1−s. Universal scaling
has already been observed theoretically for the QFI in ground
states of many-body models14–17, and has been characterized for the
geometric tensor in the ground state18,19, as well as thermal states20.
In the following, we discuss the general scaling behaviour of the QFI
in the experimentally relevant regime of non-zero temperatures.

Universal scaling of multipartite entanglement
Consider a local generator Ô=

∑N
l=1 Ôl , in a d-dimensional system

with linear size L, lattice spacing a = 1, and N = Ld sites. As
explained in the Supplementary Methods, the universal behaviour
of fQ, following standard scaling arguments, is

fQ(T/J ,L−1, h̃)=λ∆QφQ(λ
zT/J ,λL−1,λ1/ν h̃) (7)
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Figure 2 | Universal scaling of the quantum Fisher information density,
fQ=FQ/N, calculated for the order parameter in the quantum Ising chain.
Exact data at the critical point and for N=8,16,32,64,96, 128. At low
temperatures, the universal scaling laws produce an excellent data collapse.
In a range of intermediate temperatures, the scaling approaches analytic
predictions for the thermal critical regime in the thermodynamic limit34

(solid line). The strong divergence at small temperatures of fQ∼N3/4

(dashed line) implies a diverging multipartiteness of entanglement.

Here, z is the dynamical and ν the correlation-length critical
exponent. λ is the cutoff scale determined by the relevant
perturbations L−1, T , and the normalized distance from the critical
point h̃. The scaling dimension of fQ is ∆Q=d−2∆α , with ∆α the
scaling dimension of Ôl .

Because fQ bounds the number of entangled particles according
to equation (3), its scaling behaviour allows us to identify a
class of strongly entangled QPTs—that is, QPTs with a divergent
multipartiteness of entanglement. These are those transitions with
∆Q>0. The scaling behaviour also implies a length scale lent (ref. 30)
overwhichmultipartite entanglement asmeasured by theQFI exists,
lent∼ f 1/dQ ∼λ

1−2∆α/d (see Supplementary Methods).
The framework described up to now is completely general. To

illustrate its viability for understanding entanglement in quantum
many-body systems, we now turn to specific examples. We focus
on a paradigmatic class of model systems exhibiting a QPT, namely
Ising models in a transverse field, which are realizable in quantum-
optical10,31 as well as solid-state systems32–34,

H
J
=−cos(γ )

N∑
l ,j=1

Jljσ
x
l σ

x
j + sin(γ )

N∑
l=1

σ z
l (8)

Here, σ αl , α=x ,y,z , is the Pauli matrix on lattice site l . Depending
on the interactions Jlj, this Hamiltonian exhibits a quantum critical
point at some critical field strength γc. The order parameter for the
transition is

∑
l〈σ

x
l 〉/N . Its strong critical fluctuations make the

generator Ô=
∑

l σ
x
l /2 an ideal candidate for testing the scaling

behaviour of the QFI.
We first focus on the simplest case, the one-dimensional nearest-

neighbour Ising chain, Jlj= δj,l+1, where the scaling exponents are
known analytically, z = 1 and ∆α= 1/8 (ref. 34). This gives ∆Q=

3/4; that is, the nearest-neighbour quantum Ising chain lies in
the class of strongly entangled phase transitions with divergent
multipartite entanglement. Indeed, fQ for the order parameter
exhibits a strong peak around the critical point γc=π/4 (see Fig. 1c).
The entanglement radiates out from the peak, generating a broad
entangled region also at non-zero T (refs 35,36).

To illustrate the Ansatz described by equation (7), we consider
the scaling with system size L and temperature T , at fixed h̃=0. For
L�(T/J )−1/z , the dominant cutoff scale is λ∼L=N , implying

fQ∼N 3/4 (9)

The data in Fig. 2 reproduces perfectly this strong algebraic growth,
which is remarkably close to the theoretical maximum of fQ=N .
The associated multipartite entanglement length scale is thus highly
divergent, lent∼ N 3/4.

With increasing temperature, the cutoff scale crosses over to
λ ∼ (T/J )−1/z , and the scaling becomes fQ = C(T/J )−3/4. The
constant C ≈ 0.42 can be obtained using analytical results for the
dynamic susceptibility at criticality in the thermodynamic limit34
(see Methods). In the temperature regime of validity,NT/J�1 and
T/J�1, the exact data for finite chains is consistentwith this scaling
prediction (see Fig. 2). For T� J , the system crosses over into a
generic high-temperature asymptotic behaviour fQ∼(T/J )−2.

Absence of signature at thermal phase transitions
Remarkably, scaling behaviour is observed only at quantum, but
not thermal phase transitions, because equation (4) considers
only quantum fluctuations. A simple example to demonstrate
the insensitivity towards thermal phase transitions is provided by
the fully connected transverse-field Ising model, Jlj = 1/N , ∀ l , j
(refs 15,37), similar to the model describing the experiments of
ref. 10. In contrast to its nearest-neighbour counterpart, this model
also exhibits, in addition to the QPT at γc=π/4, a thermal phase
transition38 (see Methods).

Figure 3a shows fQ for the order parameter in the temperature–
transverse-field plane. We delegate its scaling analysis to the
Supplementary Methods. More important at this point, whereas
fQ shows a divergence at the QPT, no particular feature can be
discerned at the thermal phase transition. Neither do such features
appear in derivatives of fQ (Fig. 3b).

However, it is known that the static isothermal susceptibility
χT of the order parameter diverges39. The reason why the QFI
instead remains featureless becomes clear when decomposing
χT
=χel+χvV into its two fundamental parts40, the elastic (or Curie)

contribution χel, and the quantum-mechanical vanVleck correction
χvV, which is continuously connected to the Kubo susceptibility,
χvV = limω→0 χ(ω, T ). It is χel that diverges at a thermal phase
transition. As is shown in the Supplementary Methods, χel can
be related to the Fisher information in a classical scenario41 that
has no relation to entanglement. The second term χvV, on the
other hand, remains smooth at thermal transitions. The QFI, thus,
considers only the contribution to the susceptibility that is due to
quantum fluctuations, and remains insensitive to thermal phase
transitions.

Experimental considerations
Let us finally address some practical aspects that will be
important for experiments. The measurement prescription
given by equation (4) is very flexible, as its proof did not make
any assumptions on microscopic details of the system under study
(other than thermal equilibrium). As a consequence, it applies in
any spatial dimension, for any Hermitian generator Ô, and it can
be equally used for systems of spins, bosons, or fermions. A bound
for multipartite spatial entanglement as in equation (3) is known
to exist in all cases where the generator is a sum of local operators,
Ô=

∑
l Ôl , when Ôl has a bounded spectrum13 (see Methods).

In this context, it is important to note that the scaling analysis
overcomes a usual practical difficulty for studying the QFI, the
optimal choice for the linear generator. In the vicinity of a QPT, the
choice becomes clear: one may select any suitable, relevant operator
Ôl ; preferably the one with the largest scaling exponent ∆Q. A
good choice will often be the order parameter, as in the examples
above. The Supplementary Methods contains an example for the
Mott-insulator–superfluid transition, where universal behaviour
is extracted from an operator different from the order parameter
that is accessible by Bragg spectroscopy. Importantly, once an
appropriate generator is chosen, the complexity of measuring
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Figure 3 | Absence of features of the quantum Fisher information at thermal phase transitions, exemplified by the infinitely connected Ising model.
a, Finite entanglement is witnessed at non-zero temperatures (enclosed by the dashed line), and a divergence appears near the quantum critical point at
γ =π/4 and T=0. But, crucially, fQ shows no features at the thermal phase transition (solid line). Exact data for N= 1,000. b, Derivatives of fQ also remain
smooth at the thermal transition (vertical line). Top: fQ (dashed) and ∂fQ/∂(T/J) (solid line). Bottom, from dark to light: second to fifth derivatives. Exact
data for N= 1,600 and γ =π/8.

χ ′′(ω, T ) does not scale with system size, thus allowing for an
efficient evaluation of the QFI by means of equation (4).

Remarkably, the measurement prescription is robust against
intrinsic sources of imperfections. For example, an uncertainty in
determining the system’s temperature can be mitigated by choosing
the largest temperature estimate. Owing to the monotonicity of
the tanh(ω/2T ) as a function of frequency, this produces a lower
bound for the QFI. Another natural error source is a finite spectral
resolution. Assuming a symmetric broadening function (such as
the Gaussians commonly used in neutron spectroscopy27), the
concavity of the tanh assures that the integration again returns
a lower bound to the true QFI, with less severe consequences at
smaller temperatures. Also, the integral in equation (4) will be
limited to some frequency range (the upper integral limit represents,
as usual, a scale much larger than energies accessible by the
considered degrees of freedom). This limitation will again deliver
a lower estimate. Remarkably, none of these errors will produce
a false positive indicator for entanglement. The integration in
equation (4) thus entails a certain intrinsic robustness, as compared
to more error-prone measurements at precisely one fixed ω. What
is more, the existence of the universal scaling laws assures an
additional inherent robustness of the QFI close to a QPT. Therefore,
in contrast to some engineered highly entangled states, such as
the Greenberger–Horne–Zeilinger (GHZ) state, the entanglement
witnessed by theQFI close toQPTs is unaffected byweak symmetry-
preserving perturbations.

The dynamic susceptibility has been studied experimentally
in a wide variety of strongly correlated materials (see, for
example, refs 28,29,32,42–44). It will be worthwhile to revisit such
experiments in light of equation (4). Although it is challenging
in neutron spectroscopy to measure absolute values, they can
be obtained by appropriate normalization, for example, through
incoherent elastic or phonon scattering45, allowing neutron
scattering with current instrumentation to account for 99(8)% of
the spectral weight46. Moreover, the general scaling behaviour of
multipartite entanglement may already be estimated without such
precise normalization, and even from existing data. For example,
measurements in certain quantum-critical magnetic materials are
consistent with a scaling exponent∆Q>0 (refs 28,29), as we require
for a divergent QFI. Scaling behaviour for dynamic susceptibilities
can sometimes even be observed in the absence of QPTs, such as in
certain heavy-fermion compounds at elevated temperatures42.

Prospects
The proposed measurement procedure is scalable to large particle
numbers, and is thus complementary to exponentially expensive
approaches such as refs 6,7. Whereas the latter can in principle
access non-local entanglement, as characterizes, for example,
topological phases22,23, physical susceptibilities are related to local
operators. Hence, although the QFI does exhibit scaling behaviour
at topological transitions, it does not identify topological phases,
as we illustrate in the Supplementary Methods using the example
of the Kitaev wire. It shares this fate with other entanglement
witnesses1,47 (for some recent applications to quantum many-body
experiments, see refs 48–51). A remaining challenge is the question
whether non-local extensions of the proposed protocol permit the
characterization of topological entanglement23 and exotic quantum
phases22,43.

The multipartite entanglement that the QFI detects has an
immediate interpretation as a resource for quantum metrology8,9.
Further potential applications range from quantifying the
entanglement in quantum simulators of many-body problems52–54
to the characterization of strongly correlated systems. For example,
a natural question is whether entanglement influences such
striking material properties as high-temperature superconductivity,
where scaling behaviour has already been observed in the optical
conductivity55. Specifically, an underlying antiferromagnetic critical
point44 will show quantum-critical scaling of entanglement, which
may also be tested in cold atomic-gas experiments56,57.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Relationship of the QFI to multipartite entanglement. The QFI has a deep
connection with multipartite entanglement8,9. Consider a system of N spins with
length S=1/2, and a linear observable Ô=(1/2)

∑
l nl ·σ l , where

σ l=
(
σ x
l ,σ

y
l ,σ z

l

)
is a vector containing the Pauli matrices σ αl associated with spin l ,

and nl=(nx
l ,n

y
l ,nz

l ) is a unit vector on the Bloch sphere. Then the system hosts at
leastm+1-partite entanglement if the QFI associated with Ô fulfils8

FQ>
N
m

m2
+ N −

N
m

m
2

(10)

where bXc is the largest integer smaller than or equal to X . Form a divisor of N ,
the condition in equation (10) attains the simple form of equation (3) when
expressed through the QFI density fQ≡FQ/N . Note that, typically, response
functions that measure linear operators (at fixed wavevector transfer q) contain a
factor of 1/N relative to our definition, equation (5), so they will observe fQ directly
rather than FQ.

The proof of ref. 8 for bounding the multipartite entanglement with
equation (10) can be directly translated to degrees of freedom other than spin 1/2,
as long as Ô represents a sum of local operators with a bounded spectrum13. If hmax

and hmin denote the largest, respectively smallest, eigenvalue of Ô, then the
right-hand side of equation (10) acquires the prefactor (hmax−hmin)

2. Therefore, the
QFI can also witness spatial entanglement in systems other than spin 1/2, such as
larger spins. Note that the relation of the QFI to response functions, equation (4), is
independent of any such microscopic details of the underlying quantum
many-body system or the Hermitian operator Ô, which may even be non-local or
unbounded.

Solvability of the considered models. All models used in this article for
illustrating the main concepts are exactly solvable (throughout we set
~=kB=a=1, with a the lattice spacing). The one-dimensional Ising chain in a
transverse field [equation (8) with Jlj=δj,l+1] can be mapped to a free-fermion
problem34. Dynamical susceptibilities for finite systems can then be calculated by
means of Wick’s decomposition of expectation values59, and the Pfaffians appearing
in the resulting expressions can be evaluated efficiently using the algorithm

described in ref. 58. Exact results for finite systems with the order parameter as
generator are shown in Figs 1c and 2.

Moreover, for the transverse Ising chain in the thermodynamic limit, analytical
results exist for the order-parameter dynamic susceptibility in the quantum-critical
region34. For wavevector transfer k=0, at non-zero temperatures above the critical
point (h̃=0) the dynamic susceptibility reads

lim
N→∞

χ(ω)

N
=c

J 3/4

T 7/4

0
(

1
16 − i

ω

4πT

0
(

15
16 − i

ω

4πT

)2

(11)

where c≈3.81×10−3 and 0 denotes the Gamma function. Performing the
ω-integral in equation (4), one immediately obtains the QFI,

fQ(T )=C (J/T )3/4 (12)

with C≈0.42. Data based on these equations is presented in Fig. 1b, and as one
limiting case in Fig. 2.

The infinite-range Ising Hamiltonian [equation (8) with Jlj=1/N ] commutes
with both S2

=(Sx)2+(Sy)2+(Sz )2 and Sz , where Sα=
∑

l σ
α
l /2, α=x ,y ,z . As a

consequence, the Hamiltonian decomposes into disconnected blocks when
represented in the common eigenbasis of S2 and Sz . Each block grows linearly with
particle number N , and can be diagonalized efficiently, allowing one to compute
the dynamical susceptibility exactly, even for large systems. Here, we consider the
largest of these blocks, with dimension N +1. Figure 3 presents corresponding
exact data. The infinite-range Ising model has a thermal phase transition for
γ <π/4, with critical temperature38

Tc

J
=

sin(γ )
log[(1+ tan(γ ))/(1− tan(γ ))]

(13)
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