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We introduce a topological quantum number—coined dynamical topological order parameter (DTOP)—that is
dynamically defined in the real-time evolution of a quantum many-body system and represented by a momentum
space winding number of the Pancharatnam geometric phase. Our construction goes conceptually beyond the
standard notion of topological invariants characterizing the wave function of a system, which are constants of
motion under coherent time evolution. In particular, we show that the DTOP can change its integer value at discrete
times where so called dynamical quantum phase transitions occur, thus serving as a dynamical analog of an order
parameter. Interestingly, studying quantum quenches in one-dimensional two-banded Bogoliubov–de Gennes
models, we find that the DTOP is capable of resolving if the topology of the system Hamiltonian has changed
over the quench. Furthermore, we investigate the relation of the DTOP to the dynamics of the string order
parameter that characterizes the topology of such systems in thermal equilibrium.
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I. INTRODUCTION

In the theory of phase transitions [1,2], the phases separated
by a transition can be qualitatively distinguished in terms
of order parameters which can either be local, following
the conventional Ginzburg-Landau paradigm, or can be of
topological nature. Regarding the latter, a complete clas-
sification for the ground states of gapped fermionic band
structures in terms of global topological invariants has been
achieved [3–5]. Out of thermal equilibrium, however, the
current understanding of such systems is much less systematic.
In particular, standard topological invariants [3–5] associated
with the instantaneous wave function are constants of motion
within unitary time evolution and can therefore not capture
genuine nonequilibrium effects. In a nonequilibrium context,
several recent studies [6–9] have discussed modifications to
the bulk-boundary correspondence in nonequilibrium settings,
indicating that the dynamical formation of edge states follows
the instantaneous Hamiltonian and the single particle Green’s
function, respectively.

In this work we construct a bulk topological quan-
tum number—coined dynamical topological order parameter
(DTOP)—which is dynamically defined: Going conceptually
beyond the classification of topological phases in thermal
equilibrium, it characterizes topological properties of the
real-time dynamics rather than of the instantaneous wave
function or the instantaneous Hamiltonian. In particular, we
show in what sense the DTOP, somewhat analogous to order
parameters at conventional phase transitions, distinguishes two
phases separated by a nonequilibrium transition occurring in
the coherent time evolution of a quantum system. Specifically,
we find that the DTOP changes its value at a dynamical
quantum phase transition (DQPT) [10] which appears as
a nonanalytic behavior at critical times of the Loschmidt
amplitude

G(t) = 〈ψ |ψ(t)〉 = 〈ψ |e−iH t |ψ〉, (1)

where |ψ〉 denotes the initial state and H is the Hamiltonian
governing the nonequilibrium quantum real-time evolution.
Intriguing properties of DQPTs have been identified in a vari-

ety of different systems [10–23]. While Loschmidt amplitudes
bear a formal similarity to equilibrium partition functions [10],
a dynamical analog of an order parameter that physically
distinguishes the time intervals separated by a DQPT has not
yet been identified. Here we show how to construct such a
dynamical analog for DQPTs by studying quantum quenches
in two-banded Bogoliubov–de Gennes models such as the
Kitaev chain [24]. Notice that notions of dynamical transitions
occurring out of equilibrium have also been introduced in
different contexts [25]. In the following, however, we will
be referring to the definition made in Ref. [10] in terms of
Loschmidt amplitudes [see Eq. (1)].

DQPTs occur whenever the time-evolved state |ψ(t)〉
becomes orthogonal to the initial state vector |ψ〉. This can
be formally understood from the concept of partition function
zeros [1,26,27], which occur as so called Fisher zeros in the
context of Loschmidt amplitudes [10]. Concerning the quest
to identify dynamical order parameters for DQPTs, this direct
relation between DQPTs and wave function orthogonalities
guides our intuition towards looking for an observable quantity
that is smoothly defined for nonorthogonal state vectors
and thus only allowed to behave discontinuously at critical
times. The Pancharatnam geometrical phase (PGP) [28,29] is
precisely such a quantity. It was originally introduced [28] to
define a relative phase for light beams with nonorthogonal
polarization and has later been generalized to extend the
notion of Berry’s geometric phase [30,31] to general time
evolution with nonorthogonal initial and final states, in
particular allowing for nonadiabatic [32] and noncyclic [29]
dynamics. The geometric background of this construction is
that a noncyclic evolution can be augmented to a cyclic path
in a unique way only if the two end states are nonorthogonal,
namely by going back from the final to the initial state along a
geodesic in projective Hilbert space.

The DTOP introduced in this work is a momentum-space
winding number of the PGP which serves as a dynamical
analog of a topological order parameter in two-banded
Bogoliubov–de Gennes models undergoing a DQPT after a
quantum quench, i.e., a sudden change in the band structure
parameters. We show that the integer-valued DTOP can
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change its value only at DQPTs and, moreover, that this
allows us to dynamically resolve how the topology of the
underlying Hamiltonian has changed during the quench. Our
construction relies on the presence of a so-called particle hole
symmetry (PHS), i.e., a spectral constraint imposed by an
antiunitary operator C,C2 = 1 which anticommutes with the
system Hamiltonian. In Bogoliubov–de Gennes models, such
a constraint is naturally imposed by the fermionic algebra to
the Nambu spinor representation of the Hamiltonian [33]. We
illustrate our construction by studying quenches in several
models including, e.g., the Kitaev chain [24].

Outline.The remainder of this article is organized as
follows. Section II is devoted to the definition of our model
system as well as the general analysis of its quench dynamics,
in particular the occurrence of DQPTs. In Sec. III we
construct the DTOP which is at the heart of this study and
discuss its basic properties. Thereafter, in Sec. IV, we present
benchmark simulations, showing how the DTOP characterizes
the dynamics of several one-dimensional (1D) Bogoliubov–
de Gennes models. The relation to the familiar string order
parameter which hallmarks different phases in equilibrium is
investigated in Sec. V. Finally, in Sec. VI, we outline how the
physics discussed in this paper, in particular the DTOP, could
be experimentally observed, and put our present work into
a broader context by discussing its relation complementary
approaches.

II. MODEL AND DYNAMICS

A. Underlying Hamiltonian

The dynamical properties we are concerned with here are
generated by gapped free fermionic two-banded Bogoliubov–
de Gennes models in 1D without requiring further symmetries,
i.e., in symmetry class D [33]. We denote the Nambu
pseudospin by τ and choose the convention C = τ1K for the
PHS operation, where K denotes the complex conjugation.
Assuming a unit lattice constant, the first Brillouin zone is
the circle resulting from the interval [−π,π ] by identification
of its end points. The Bloch Hamiltonian is then of the
form

H (k) = �d(k) · �τ =
3∑

j=1

dj (k)τj (2)

and satisfies the spectral PHS constraint

τ1H (k)τ1 = −H ∗(−k). (3)

As a consequence of Eq. (3), d1(k) and d2(k) must be odd
functions of the lattice momentum k, while d3(k) must be
even. Equation (3) is local in momentum at the two real lattice
momenta kR = 0,π which satisfy k = −k(mod2π ) and where
both d1 and d2 need to vanish such that

H (kR) = d3(kR)τ3, kR ∈ {0,π}. (4)

With the unit vector d̂(k) = �d(k)/| �d(k)|, the geometrical
interpretation of Eq. (4) is that d̂ is pinned to the poles of
the Bloch sphere at the real momenta which plays a crucial

role in the following. There are two topologically inequivalent
classes of such Hamiltonians [24], here simply distinguished
by the sign of d3(0)d3(π ) which becomes negative for the
nontrivial topological phase.

B. Quench dynamics and DQPTs

We study nonequilibrium quantum real-time evolution
and DQPTs induced by a quantum quench. The system is
prepared in the ground state |ψ〉 of an initial Hamiltonian
Hi(k) = �di(k) · �τ . At time t = 0, a parameter will be switched
suddenly within the set of models in Eq. (2) resulting in a
sudden change �di(k) �→ �df (k). We assume that the system
initially occupies the lower Bloch band of Hi . The associated
lower Bloch states are denoted by |ui−

k 〉 such that the initial
state |ψ〉 is a Slater determinant of all lower band Bloch states.
Since lattice translation invariance is maintained at all times,
the dynamics of the system can be considered separately for
every lattice momentum k. Explicitly, we get

|ψk(t)〉 = eiε
f

k tgk

∣∣uf −
k

〉 + e−iε
f

k tek

∣∣uf +
k

〉
, (5)

where ±ε
f

k = ±| �df (k)| denotes the energy eigenvalues of
Hf (k),|uf ±

k 〉 its Bloch states, and gk = 〈uf −
k |ui−

k 〉,ek =
〈uf +

k |ui−
k 〉 with |gk|2 = 1

2 [1 + d̂i(k) · d̂f (k)],|ek|2 = 1
2 [1 −

d̂i(k) · d̂f (k)] are expansion coefficients of the initial lower
Bloch state in the new Bloch states after the quench. For the
geometric interpretation of our later results, it is helpful to
consider the vector d̂i(k) as a reference direction, say pointing
to the south pole of a Bloch sphere defined at every momentum,
and to consider the direction of d̂f (k) relative to this reference.
We refer to this construction as the relative Bloch sphere in
the following.

Recently, DQPTs in topological systems satisfying Eq. (2)
as well as in related spin chains have been identified [10,17,21].
DQPTs are caused by Fisher zeros [10] where for a momentum
kc the overlap 〈ui−

kc
|ψkc

(tc)〉 = 0 vanishes at a time tc. Here this
can only happen if

|gkc
|2 = ∣∣ekc

∣∣2
and tc,n = (2n − 1)π

2ε
f

kc

, n ∈ N. (6)

Fisher zeros and DQPTs hence occur at momenta where the
initial lower Bloch state is an equal weight superposition of
the final Bloch states, i.e., at d̂i(kc) · d̂f (kc) = 0 marking the
equator of the relative Bloch sphere, whereas the critical time
is determined by the spectrum ε

f

k of the final Hamiltonian.

III. CONSTRUCTION OF A DYNAMICAL TOPOLOGICAL
QUANTUM NUMBER

A. Pancharatnam geometric phase

In order to define the PGP at lattice momentum k, let us
decompose the Loschmidt amplitude G(t) = ∏

k>0 Gk(t) with

Gk(t) = 〈
ui−

k

∣∣ψk(t)
〉 = rk(t)eiφk(t) (7)

and rk(t),φk(t) its polar coordinates. The phase φk(t) contains
a purely geometric and gauge-invariant component

φG
k (t) = φk(t) − φ

dyn
k (t), (8)
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obtained by subtracting the dynamical phase φ
dyn
k (t) =

− ∫ t

0 ds〈ψk(s)|Hf |ψk(s)〉 = εkt(|gk|2 − |ek|2). φG
k is the

aforementioned PGP [29] that will be the central building
block for the DTOP introduced in this work. We stress that
this definition of the PGP becomes singular at Fisher zeros as
the total phase φk(t) in Eq. (7) is ill defined at critical times.

B. Definition of the DTOP

Equation (4) implies that either |ek|2 = 0 and |gk|2 = 1 or
vice versa at the real momenta kR = 0,π . From Eq. (5) we
directly conclude that φkR(t) = φ

dyn
kR

(t), i.e., that the PGP is
pinned to zero at these special momenta. Thus, as far as the
PGP is concerned, the interval [0,π ] between the real momenta
can be endowed with the topology of the unit circle S1 by
identifying its end points. We refer to this periodic structure as
the effective Brillouin zone (EBZ). We are now ready to define
a DTOP in terms of the PGP as

νD(t) = 1

2π

∮ π

0

∂φG
k (t)

∂k
. (9)

νD(t) is the integer-quantized winding number of the PGP over
the EBZ and is smoothly defined as a function of time in the
absence of Fisher zeros. More formally, νD(t) is a topological
invariant distinguishing homotopically inequivalent mappings
EBZ → U (1),k �→ eiφG

k (t) from the unit circle S1 to itself.
The definition of νD(t) in Eq. (9) and its subsequent further
interpretation are the main results of our present work.

Since DQPTs can only occur at points in time where Fisher
zeros are present, νD(t) must be constant in time intervals
between DQPTs as it cannot smoothly change its integer value.
But does νD change its value at every DQPT? We answer this
question in the affirmative implying that νD(t) can serve as
an order parameter for the studied DQPTs. We find that, quite
remarkably, the change in the DTOP 	νD(tc) in the vicinity of

a critical time tc can be directly related to the sign of the slope
skc

= (∂k|ek|2)|kc
at the critical momentum as

	νD(tc) = lim
τ→0

[νD(tc + τ ) − νD(tc − τ )] = sgn
(
skc

)
,

(10)

which loosely resembles an index theorem. This result affords
an intuitive geometric interpretation: As pointed out before,
critical momenta are located on the equator of the relative
Bloch sphere. 	νD(tc) is then directly related to whether d̂f (k)
traverses the equator of the relative Bloch sphere from the
northern to the southern hemisphere [sgn(skc

) = −1] or from
the southern to the northern hemisphere [sgn(skc

) = 1] at the
critical momentum.

To establish Eq. (10), we first identify a fundamental
dynamical symmetry of Gk(t) [see Eq. (7)] at critical momenta
kc: From Eqs. (5) and (6), we conclude that Gkc

(t) ∈ R.
Furthermore, the dynamical phase is zero due to |gkc

|2 = |ekc
|2

such that eiφG
kc

(t) = sgn[cos(εf

kc
t)], i.e., the PGP is pinned to

the real values 0,π at the critical momenta at all times. When
passing through critical times, marked by cos(εf

kc
tc) = 0, the

sign of cos(εf

kc
t) changes and the PGP jumps by π . Expanding

∂kφ
G
k (t) around kc and tc to leading order, it is straightforward

to prove Eq. (10). We note that the connection between Fisher
zeros and π jumps of the PGP is generally valid beyond the
scope of the present DTOP: When a complex function (the
Loschmidt amplitude) goes through zero as function of a real
parameter (time), its phase jumps by π . Since the dynamical
phase is always continuous in time, this jump can only occur
in the PGP.

IV. BENCHMARKS SIMULATIONS

We further investigate and illustrate the DTOP νD(t)
with two benchmark examples. First, we study the Kitaev

FIG. 1. Left panel: Color plot of the Pancharatnam geometric phase φG
k (t), see Eq. (8), for chemical-potential quenches μ = 0 → μ = 3 in

the Kitaev chain as a function of lattice momentum and time. Time is measured in units of the critical time tc where the first dynamical quantum
phase transition (DQPT) occurs. The critical momentum kc at which nonanalyticities occur is marked with a black dotted line. Right panel:
Rate function g(t) = −N−1Re log[|G(t)|2] of the Loschmidt echo L(t) = |G(t)|2, see Eq. (1), and the dynamical topological order parameter
νD(t), see Eq. (9), as a function of time. The real-time nonanalyticities in g(t), occurring at odd multiples of tc (red dashed lines), define the
DQPTs. νD(t) changes its value only at the DQPTs thus serving as a dynamical order parameter.
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FIG. 2. Left panel: Color plot of the PGP φG
k (t) as a function of lattice momentum and time for λ = 1.3. Time is measured in units of the

first critical time t (1)
c = π/2. The critical momenta k(1)

c and k(2)
c at which DQPTs appear as discontinuities in the PGP is marked with black

dotted lines. Right panel: Rate function g(t) and DTOP νD(t) as a function of time for λ = 1.3. The DQPTs occur at odd multiples of the
critical times t (1)

c and t (2)
c .

chain [24], a toy model for a proximity induced p-wave
superconductor. The model Hamiltonian is of the form
(2) with d1(k) = 0,d2(k) = sin(k),d3(k) = μ − cos(k), where
physically the cos(k) term represents the kinetic energy and the
sin(k) term represents the p-wave pairing. Here we simulate
a quench in the chemical potential from μ = 0 in the initial
Hamiltonian Hi to μ = 3 in the final Hamiltonian Hf . At
the real momentum k = 0 the d3 component switches sign
over the quench while at k = π it does not, meaning that the
topological phase of the Hamiltonian [24] changes during the
quench. Hence, |e0|2 = 1 while |eπ |2 = 0. Due to continuity,
there must be a critical momentum kc in the interior of the
EBZ where |ekc

|2 = |gkc
|2 = 1

2 in agreement with Ref. [21].
According to Eq. (6), this implies that DQPTs will occur
at times tc,n = (2n − 1)π/(2εkc

) = (2n − 1)tc,n ∈ N. More
specifically we find kc = arccos(1/3), tc = π/(4

√
2), and

skc
= −1, i.e., d̂f (k) crosses the equator of the relative Bloch

sphere in the southern direction, corresponding to a change
	(tc,n) = −1 in the DTOP [see Eq. (10)] at the critical times
tc,n = (2n − 1)tc. In Fig. 1 we show a color plot of the PGP
as a function of k and t from which the critical times and
the associated changes in the phase winding number νD

representing our DTOP become visually clear (left panel).
Moreover, Fig. 1 displays the time dependence of both the
DTOP νD(t) and the rate function g(t) = −N−1 log[|G(t)|2] =
−π−1Re(log

∫ π

0 dk [|gk|2 + e−2iε
f

k t |ek|2]) which plays the role
of a thermodynamic potential here and whose points of
nonanalytic behavior define the DQPTs [10] (right panel). The
DTOP indeed changes its value at every DQPT and uniquely
characterizes the dynamical phase in between two DQPTs.

As a second benchmark, we consider a quench from
�di(k) = (0,0,1) to �df (k) = (0, sin(k),1 + cos(2k) + λ cos(k)).
This model is similar to the Kitaev chain studied before, but
also includes a next-to-nearest neighbor hopping. For 0 < λ <

2, this quench does not change the topological phase of the
Hamiltonian since d̂i(kR) = d̂f (kR). Still, from Eq. (6) we
find two critical momenta k(1)

c = π/2,k(2)
c = arccos(−λ/2).

At k(1)
c ,d̂f (k) enters the northern hemisphere of the relative

Bloch sphere and returns to the southern hemisphere at k(2)
c ,

i.e., d̂i(k) · d̂f (k) < 0 for k(1)
c < k < k(2)

c . As a consequence,
sgn(s

k
(1)
c

) = −sgn(s
k

(2)
c

) = 1 and, from Eq. (10), we see that
the change in the DTOP is opposite at the two critical
momenta. In Fig. 2 we show a color plot of the PGP for
this quench (left panel) as well as the time dependence of
the rate function g(t) and the DTOP νD(t) (right panel). The
DTOP changes at every DQPT, however, due to the competing
	(t (i)

c,n) = (−1)i+1,i = 1,2, its behavior is not monotonous as
opposed to the first quench example.

V. RELATION TO STRING ORDER PARAMETER

It is natural to ask how the DTOP defined in Eq. (9)
is connected to the underlying equilibrium topology of the
system. In this context we show in the following numerical
evidence that the dynamics of the DTOP can be linked to the
decay of string order parameters. In thermal equilibrium, the
string order parameter directly reflects the bulk topological
properties. Focusing on the continuation of such bulk proper-
ties to nonequilibrium systems, our present study complements
previous work reporting deviations from the bulk-boundary
correspondence out of thermal equilibrium [6–9]. There,
surface states have been shown to develop dynamically even
if the conventional bulk topological quantum numbers remain
trivial [9].

Rather than exhibiting local order, topological phases are
typically characterized by nonlocal properties. The topological
phase in the Kitaev chain [24] (see also first benchmark in
Sec. IV) is associated with a nonvanishing expectation value
of the so called string order parameter

Olm = (cl + c
†
l )eiπ

∑m−1
j=l c

†
j cj (cm + c†m). (11)

Here cl with l = 1, . . . ,N denotes the fermionic annihilation
operator in its real-space representation. In Fig. 3 we show
numerically obtained dynamics O(t) = lim|l−m|→∞〈Olm(t)〉
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FIG. 3. Decay of the string order parameter for the same chemical
potential quench as in Fig. 1 but for a model also including a next-to-
nearest neighbor hopping with amplitude j . The time axis is rescaled
by t∗ where DQPTs occur and the DTOP changes its quantized value.
The inset shows a comparison of the low-energy time scale tgap(j ) =
	(j )−1 with 	(j ) the gap, and tc(j ). The simulations are done for a
lattice system with up to N = 100 sites, where we find that the data
are converged with respect to system size.

for the string order parameter in the Kitaev chain for the
same set of parameters as in Fig. 1, but for a slightly
more general model including also a next-to-nearest neighbor
hopping with strength j , i.e., d3(k) = μ − cos(k) − j cos(2k).
We have calculated the dynamics of O using the mapping
onto Pfaffians [34] which can be evaluated numerically
very efficiently. For j = 0 where the Kitaev chain can be
mapped onto a transverse-field Ising model, the string order
parameter maps to the spin-spin correlation function of the
Ising order parameter whose dynamics has been studied
previously [10,35].

As one can see in Fig. 3, starting initially in the topological
phase and quenching into the trivial phase, the string order
parameter exhibits a damped oscillatory decay. The decay of
the string order parameter is, of course, compatible with the
topologically trivial structure of the final Hamiltonian. In the
context of the DTOP, it is, however, of particular importance
how the string order decays. Specifically, the time scale for
the oscillations on top of the exponential envelope coincides
with tc(j ) setting the critical times where DQPTs occur and the
DTOP changes dynamically. To show this, we have rescaled
the time axis by tc(j ). After an initial transient regime where
the time scale for the oscillations does not perfectly match tc(j )
yet, in the asymptotic decay regime the agreement becomes
very good. To further strengthen this suggested connection, we
have also included an inset where we compare the emergent
nonequilibrium time scale tc(j ) with the conventional time
scale tgap(j ) = 	−1(j ),	(j ), i.e., the gap of the j dependent
final Hamiltonian tc(j ) we have extracted by solving Eq. (6).
While tgap(j ) increases with increasing j , we find that tc(j )
decreases, thereby excluding the possibility of an accidental
similarity of the two scales. This gives further evidence that
the time scale associated with the string order parameter is not
set by the gap but rather by the emergent nonequilibrium time
scale tc(j ) and thus is directly connected to the dynamics of
the DTOP.

VI. CONCLUDING DISCUSSION

The DTOP νD defined here [see Eq. (9)] qualitatively
distinguishes periods of time evolution that are separated
by DQPTs. As a truly dynamical quantity, the DTOP is
fundamentally different from the conventional topological
invariants that classify ground states of gapped Hamiltonians
[3–5]. In particular, the conventional topological invariant for
the time-dependent state |ψ(t)〉 is a constant of motion in
our present nonequilibrium setting [8,9,16]. However, there
is an interesting interplay between equilibrium invariants
and the occurrence of DQPTs. In this context it has been
shown [21] that a quench between topologically inequivalent
Hamiltonians implies the presence of DQPTs, in agreement
with the situation in our first benchmark example. However,
DQPTs can also happen if the initial and the final Hamiltonian
are topologically equivalent as in our second benchmark
example. Remarkably, the structure of the DTOP is capable
of resolving these different scenarios. From Eq. (10) we see
that the DTOP behaves qualitatively different in these two
cases (see comparison of the right panels of Figs. 1 and 2): If
the Hamiltonian topology changes, there is an odd number
of critical momenta giving rise to a change of the DTOP
after one DQPT associated with each of the critical momenta.
In contrast, for quenches between equivalent Hamiltonians,
the sum over the changes of νD for all critical momenta
is zero.

The construction of the DTOP relies on the two-banded
character of the models we consider. For larger unit cells,
pertaining in particular to the modeling of disordered systems,
the change of the PGP between the real momenta is not
necessarily quantized because the spectral PHS constraint
in Eq. (3) does not enforce Eq. (4). However, in many
physical situations considering an effective model with two
bands is a physically well justified approximation and the
DTOP defined here is hence also expected to emerge in
more complex systems. Furthermore, the general observation
that Fisher zeros in real time lead to π phase jumps in the
PGP is valid beyond the specific construction of the DTOP.
This may serve as a starting point for the generalization
of our present construction to higher spatial dimensions in
future work.

The dynamical order parameter identified in this work is of
topological nature. A natural question is whether also local
dynamical order parameters can exist. Although a general
answer is beyond the scope of this work, we can provide
some intuitive insights. A dynamical analog of a diverging
correlation length, giving rise to nonanalytic behavior of
local observables in continuous equilibrium phase transitions,
cannot develop dynamically in a finite period of time. This
is due to fundamental causality constraints such as Lieb-
Robinson bounds. Hence, we do not expect direct analogs
of such phenomena at DQPTs.

We conclude by summarizing some recent experimental
progress on the building blocks of a setup where DQPTs and
the DTOP could be observed. Models similar to the Kitaev
chain [24], see our benchmark examples, can be realized
both in solid state systems [36–42] and potentially with cold
atoms in optical lattices [43,44]. Instead of actually realizing
a superfluid system described by a Bogoliubov–de Gennes
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equation, experimental studies may resort to insulating band
structures similar to the Su, Schrieffer, and Heeger model
[45] which also exhibits a formal PHS and for which the
DTOP is analogously defined. While inducing nonequilib-
rium dynamics in solid state systems is challenging, with
ultracold atoms quantum quenches have already been studied
experimentally [46,47]. Moreover, momentum-resolved phase
differences of Bloch functions, needed for the DTOP, have
recently been measured in terms of Berry phases [48–50]. In
particular, the experimental techniques employed in Ref. [50]
can be directly employed to extract the PGP and to recon-
struct the DTOP defined in the present work. Paving the

way towards the general observation of DQPTs, a measure-
ment scheme for Loschmidt echos L(t) = |G(t)|2 has been
introduced [51,52].
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