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In this Letter it is shown that dynamical quantum phase transitions in Loschmidt echos control the
nonequilibrium dynamics of the order parameter after particular quantum quenches in systems with
broken-symmetry phases. A direct connection between Loschmidt echos and the order parameter dynamics
is established which links nonequilibrium microscopic probabilities to the system’s macroscopic dynamical
properties. These concepts are illustrated numerically using exact diagonalization for quantum quenches in
the XXZ chain with initial Néel states. An outlook is given on how to explore these predictions
experimentally with ultracold gases in optical lattices.
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Introduction.—In equilibrium thermodynamic phase
transitions are accompanied by nonanalyticities in thermo-
dynamic potentials, leading to abrupt changes in the macro-
scopic physical properties. Recently, broad evidence
has been provided for a potential generalization of this
fundamental concept to nonequilibrium quantum real-time
evolution: the relaxational dynamics of observables can
exhibit abrupt changes by varying external control param-
eters, suggesting the possibility of different dynamical
phases [1–15]. While the observed phenomenology is to
a large extent compatible with a dynamical analogue, the
underlying principles are unclear and a framework allowing
us to address fundamental questions such as universality
is missing. It is the purpose of this Letter to link these
observations to a recently introduced concept of a dynami-
cal quantum phase transition (DQPT) [12] for systems
with broken-symmetry phases, thereby opening a path to
dynamical criticality on general grounds.
Systems with broken-symmetry phases in equilibrium

constitute one subclass of models in which the possibility
of dynamical phase transitions has been suggested
[3,11,12,14,15]. This is due to a generic feature observed
in the nonequilibrium dynamics when the system is initially
prepared in the broken-symmetry phase. As a consequence
of the sudden switching of an external parameter λ—a
so-called quantum quench—beyond a critical value λc, the
decay of the equilibrium order parameter has been found to
show an abrupt change from monotonic to oscillatory.
In this Letter a link between this sharp appearance of the

order parameter oscillations and DQPTs is established. In
Ref. [12] it has been shown that the nonequilibrium real-
time evolution after a quantum quench can generate non-
analyticities as a function of time in Loschmidt amplitudes:

GðtÞ ¼ hψ0je−iHtjψ0i; ð1Þ
where jψ0i is the initial state (typically the ground state of a
Hamiltonian H0 at λ0) and H the Hamiltonian at the final

value λ of the switched parameter. In the meantime these
DQPTs at critical times have been found in a variety of
different systems [12,16–22]. Importantly, it has been
shown that these transitions are stable against weak
perturbations that preserve the symmetries of the model
[17,22]. Notice that dynamical transitions have also been
found in different contexts [23–26].
The discovery of these DQPTs opens the possibility

of studying fundamental questions such as scaling and
universality in quantum real-time evolution. Here, a
major challenge is to link the microscopic probabilities
or amplitudes GðtÞ that host the DQPTs to macroscopic
properties which are the quantities of primary interest from
an experimental perspective. Although there is numerical
evidence for such a link for particular systems [11,12,21],
the underlying mechanism is still unclear.
It is the aim of this Letter to develop a theory linking

DQPTs to the dynamics of local observables, thereby
establishing a connection between nonequilibrium micro-
scopic probabilities and macroscopic properties. It will be
shown that this link is provided by a dynamical analogue
to equilibrium critical regions in the vicinity of quantum
critical points, thereby further bridging the gap between
DQPTs and equilibrium criticality. The main concepts will
be illustrated for the XXZ chain; the underlying ideas,
however, are far more general and can also be applied
to other systems, as will be summarized at the end of this
Letter.
XXZ chain.—These concepts will be studied exempla-

rily for anisotropy quenches in the XXZ chain:

HΔ ¼ J
XN−1

l¼0

½Sxl Sxlþ1 þ Syl S
y
lþ1 þ ΔSzlS

z
lþ1�; ð2Þ

with J > 0 antiferromagnetic, N the number of lattice sites,
and Sαl , α ¼ x; y; x spin-1=2 operators. In equilibrium this
model exhibits a quantum critical point at Δ ¼ 1 separating

PRL 113, 205701 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

14 NOVEMBER 2014

0031-9007=14=113(20)=205701(5) 205701-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.205701
http://dx.doi.org/10.1103/PhysRevLett.113.205701
http://dx.doi.org/10.1103/PhysRevLett.113.205701
http://dx.doi.org/10.1103/PhysRevLett.113.205701


a gapless (Δ < 1) from a gapped phase (Δ > 1) with
antiferromagnetic order. The order parameter of this tran-
sition is the staggered magnetization

Ms ¼
1

N

XN−1

l¼0

ð−1ÞlSzl : ð3Þ

Nonequilibrium dynamics will be generated via a quantum
quench [27]. The system is initialized in a Néel state:

jψ0i ¼ j↑↓i ¼ j↑↓↑↓…i; ð4Þ
which is equivalent to preparing the system in the ground
state of the XXZ chain at initial anisotropy Δ0 → ∞.
The quantum real-time evolution is driven by the final
Hamiltonian H ¼ HΔ at anisotropy Δ < ∞. The numerical
results are obtained using exact diagonalization (ED) based
on a Lanczos tridiagonalization of the Hamiltonian with
full reorthogonalization [28]. For the numerical calcula-
tions, periodic boundary conditions have been chosen.
For initial Néel states the staggered magnetization shows

a transition from a monotonic longtime decay to an
oscillatory one as soon as Δ < 1 crosses the equilibrium
phase boundary [3,7]. Within an intermediate regime
1 < Δ≲ 2, the longtime behavior is monotonic; on tran-
sient time scales, however, oscillatory behavior can be
found [3]. In Fig. 1, ED data illustrates the oscillatory decay
for quenches to a final Δ ¼ 0.6 and the transition
to monotonic decay by increasing the anisotropy.
Moreover, analytical and numerical results show that the
model also exhibits real-time nonanalyticities in Loschmidt
amplitudes and thus DQPTs [18,19].
Spectral decomposition.—If the initial Hamiltonian and

the order parameter commute, both observables can be

measured simultaneously as in the case of the initial Néel
state in the XXZ chain, where ½HΔ0

;Ms� ¼ 0 at Δ0 → ∞.
It is, therefore, possible to decompose the order parameter,
e.g., the staggered magnetization Ms for the XXZ chain,
spectrally during its dynamical evolution:

hMsðtÞi ¼
Z

dεMsðε; tÞPðε; tÞ: ð5Þ

Here, Pðε; tÞ is the probability distribution that the system
has energy density ε at time t (with energies measured by
HΔ0

), and Msðε; tÞ is the contribution to the full expect-
ation value hMsðtÞi from energy density ε. The energy
density distribution Pðε; tÞ is defined by

Pðε; tÞ ¼
X
ν

jhEνjψ0ðtÞij2δðEν=N − εÞ; ð6Þ

with jψ0ðtÞi ¼ e−iHtjψ0i being the time evolved initial
state and jEνi a complete set of eigenstates of the initial
Hamiltonian HΔ0

with the respective energies Eν. For
technical details, see below. The zero of energy is chosen
such that the ground state of HΔ0

has vanishing energy.
It is important to emphasize that in the context of Eq. (5)

energies are not measured with the final Hamiltonian,
but rather with the initial one. Thereby, an “exclusive”
perspective [30] is chosen in which the perturbation which
generates the dynamics is not included in the system’s
internal energy. This choice is based on the observation that
all properties addressed in this work—the staggered mag-
netization as the order parameter for the antiferromagnetic
phase and the Loschmidt amplitude as a ground state to
ground state overlap—are connected to the initial rather
than the final Hamiltonian.
Dynamical phase transitions.—In the following, it

will be shown that Pðε → 0; tÞ ¼ LðtÞ is a Loschmidt
echo L ¼ jGðtÞj2 and as such inherits the DQPT. Most
importantly, dynamical transitions in Pð0; tÞ directly result
in real-time nonanalyticities ofMsð0; tÞ. These zero energy
transitions in Msð0; tÞ, although smoothed, extend their
influence to nonzero energies Msðε > 0; tÞ, leading to an
oscillatory decay of the full expectation value hMsðtÞi.
This connection directly generalizes to other systems with
broken-symmetry phases.
Because of the twofold degeneracy of the ground state

manifold in Z2 broken-symmetry phases, the zero energy
density ε → 0 limit of the energy distribution contains two
contributions, which in the present XXZ chain are

Pð0; tÞ ¼ L↑↓ðtÞ þ L↓↑ðtÞ; ð7Þ
with LηðtÞ ¼ jhηjψ0ðtÞij2 and η ¼ ↑↓;↓↑ labeling the two
degenerate ground states of HΔ0

. For large systems N ≫ 1,
each of the microscopic probabilities LηðtÞ obeys a large
deviation scaling [31] LηðtÞ ¼ exp½−NληðtÞ� with ληðtÞ
intensive [12,32,33]. As a consequence, one of the two
overlaps will always dominate:

(a) (b)

FIG. 1 (color online). (a) Oscillatory decay of the staggered
magnetization in the XXZ chain for initial Néel states and final
anisotropies Δ ¼ 0.6 obtained using exact diagonalization (ED)
for different system sizes N. Up to times Jt ¼ 10 the ED data
for N ¼ 24 matches the thermodynamic limit result from time-
evolving block decimation (TEBD) obtained using the ALPS
libraries [29]. (b) Increasing the anisotropy from Δ ¼ 0.5 to
Δ ¼ 2 (for N ¼ 24), the decay of the staggered magnetization
changes from oscillatory to monotonic; see also Ref. [3].
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Pð0; tÞ ¼ e−NλðtÞ; λðtÞ ¼ min
η
ληðtÞ; ð8Þ

up to exponentially small corrections. In Fig. 2 plots of the
rate functions ληðtÞ are shown at Δ ¼ 0.6 for different
system sizes N. At each N the two rate functions ληðtÞ cross
at a time t�ðNÞ, yielding a kink in λðtÞ because of the
sudden switching between the two broken-symmetry sec-
tors. The location of the intersection point in the thermo-
dynamic limit can be found by finite-size scaling, which
yields t� ≈ 1.40=J; see Fig. 2. In the context of its
definition from Ref. [12], the system exhibits a dynamical
quantum phase transition at t�. It is important to emphasize
that in this way it is possible to detect a DQPT occurring
only in the thermodynamic limit [12] from finite-size ED
data with high accuracy.
Energy-resolved staggered magnetization.—As Ms and

HΔ0
commute at Δ0 → ∞, both observables can be

measured simultaneously, such that

hMsðtÞi ¼
Z

dε
Z

dmmPðε; m; tÞ; ð9Þ

with Pðε; m; tÞ being the joint distribution function that the
system has energy density ε and staggered magnetization
density m at time t. Equation (9) reflects the potential to
perform the following measurement sequence: first, a
projective energy measurement onto the eigenstate jEi

with energy density ε ¼ E=N, followed by a measurement
of the staggered magnetization.
For N ≫ 1 the distribution Pðε; m; tÞ satisfies a central-

limit theorem [34], such that at a given ε only a narrow
region (vanishingly small in the thermodynamic limit)
contributes dominantly in the vicinity of m ¼ Msðε; tÞ,
where Pðε; m; tÞ becomes maximal. This yields the
desired result in Eq. (5), with the identification
Pðε; tÞ ¼ R

dmPðε; m; tÞ. Using large-deviation theory
[31], one can compute Msðε; tÞ as the expectation
value Msðε; tÞ ¼ hψ0ðt; sÞjMsjψ0ðt; sÞi in the state
jψ0ðt; sÞi ¼ ½N ðs; tÞ�−1=2e−HΔ0 s=2jψ0ðtÞi, with N ðs; tÞ ¼
hψ0ðtÞje−HΔ0 sjψ0ðtÞi and s ¼ sðε; tÞ given by the solution
of the equation ε ¼ N−1hψ0ðt; sÞjHΔ0

jψ0ðt; sÞi [34].
In Fig. 3 a false-color plot ofMsðε; tÞ obtained via ED is

shown in the ε-t plane. Additionally, a finite-size scaling
of the staggered magnetization at zero energy is included,
revealing for times t < t� thatMsð0; tÞ → 1=2, whereas for
t > t� thatMsð0; tÞ → −1=2. At t ≈ t� there is a crossover
which becomes sharper for increasing system sizes. In the
thermodynamic limit, this yields a jump because from
Fig. 2 one can directly infer that at t ¼ t� the dominant
contribution in the zero energy sector switches from
η ¼ ↑↓ with staggered magnetization þ1=2 to η ¼ ↓↑
with staggered magnetization −1=2. Thus, the DQPT in the

(a)

(b)

FIG. 2 (color online). Dynamical quantum phase transition
(DQPT) from ED. (a) The two overlap rate functions ληðtÞ with
η ¼ ↑↓;↓↑, each for two different system sizes N ¼ 16 (lines)
and N ¼ 24 (dots) at anisotropy Δ ¼ 0.6. At each N the ληðtÞ
cross each other, indicating a DQPT in λðtÞ ¼ minηληðtÞ. While
the λ↑↓ðtÞ component shows no appreciable finite-size scaling,
the curve of λ↓↑ðtÞ shifts to larger times for increasing N.
The location of the DQPT in the thermodynamic limit can be
estimated by studying the system size dependence of the
intersection point t�ðNÞ of λ↑↓ðtÞ and λ↓↑ðtÞ (see inset). A fit
to data gives a DQPT at t� ≈ 1.40=J. In (b) the behavior of λðtÞ
is shown for different anisotropies Δ at N ¼ 24, indicating that
for increasing Δ the DQPT is shifted to larger times, eventually
moving beyond Jt ¼ 2. For times Jt > 2 (not shown), finite-
size effects in the overlaps—but not the staggered magnetization
(see Fig. 1)—become substantial in preventing a detailed analysis
in this regime.

FIG. 3 (color online). (Upper false-color plot) Energy-resolved
staggered magnetizationMsðε; tÞ in the ε-t plane for quenches to
a final anisotropy Δ ¼ 0.6 with N ¼ 20. The DQPT at ε ¼ 0 gets
smeared at nonzero energies but its influence, a change in sign of
the staggered magnetization, extends to ε > 0. The dominant
contribution to hMsðtÞi comes from a narrow interval in the
vicinity of ε ¼ εavðtÞ (see main text); the dotted line depicts its
dynamics. (Lower plot) Zero-energy limit Msð0; tÞ for different
system sizes N. For increasing N, the change in staggered
magnetization becomes sharper, eventually yielding a jump,
as one can directly infer from Fig. 2. As in Fig. 2, one
can see that the point t�ðNÞ where Msð0; tÞ becomes zero
[where λ↑↓ðtÞ ¼ λ↓↑ðtÞ] shifts to larger times for larger N.
A close inspection shows that there is a point t ≈ 1.40=J in
time (indicated by a dashed line) where Msð0; tÞ for all N
considered intersect each other, which yields the location of the
DQPT estimated in Fig. 2.
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Loschmidt amplitude directly translates into a real-time
nonanalyticity in the zero energy limit Msð0; tÞ of the
order parameter.
How does this nonanalyticity at zero energy influence

the dynamics of the full expectation value hMsðtÞi of the
staggered magnetization? In the thermodynamic limit, the
dominant contribution to hMsðtÞi comes from a narrow
interval in the vicinity of ε ¼ εavðtÞ ¼ N−1hH0ðtÞi because
of the central limit theorem, such that hMsðtÞi →
Ms(εavðtÞ; t) for N → ∞. In order to assess the influence
of the DQPT onto hMsðtÞi, it is, therefore, necessary to
study the link between Msð0; tÞ and Ms(εavðtÞ; t).
As one can see from Fig. 3, the real-time nonanalyticity

gets smeared at nonzero energies. Its influence, however,
extends to ε > 0 as a matter of continuity: the change in
sign ofMsðε > 0; tÞ is not abrupt anymore, but spans over
a time interval of nonzero length. The larger the energy
density, the larger the region in the ε-t plane which is
controlled by the zero energy real-time nonanalyticity. This
extends up to energy densities εavðtÞ, demonstrating that
DQPTs control the sign change of the order parameter and,
as a consequence, its oscillatory decay. Notice the strong
similarity to critical regions at equilibrium quantum phase
transitions by associating energy density with temperature
and time with the control parameter.
It is important to emphasize that, although there is an

apparent similarity between Fig. 3 and equilibrium critical
regions, it is not clear whether universality and scaling
apply for the DQPT in the concrete case studied here.
On the one hand, the DQPT due to a switching between the
two broken-symmetry sectors is reminiscent of first-order
ground state phase transitions as a consequence of a level
crossing. On the other hand, jumps in derivatives of
thermodynamic potentials can also appear for continuous
phase transitions such as those in the specific heat of the
superconducting-normal state transition in BCS theory.
Addressing these general questions of scaling and univer-
sality as well as a potential classification scheme for the
DQPTs constitutes an interesting and important further
step. This, however, requires some further detailed analysis,
which is left for future work.
The results obtained here for the XXZ chain naturally

generalize to other models, as long as the following two
requirements are satisfied: First, the initial Hamiltonian has
to exhibit a ground state degeneracy, e.g., a system in a
broken-symmetry phase, such that Pð0; tÞ is a sum over the
individual probabilities to be in the one of the respective
ground states [see Eq. (7)]. Second, the initial Hamiltonian
has to exhibit one point in parameter space where it
commutes with the order parameter allowing for the
spectral decomposition in Eq. (5). This includes a wide
range of systems, such as Ising models at vanishing
transverse field and Bose- or fermionic Hubbard models
at vanishing tunneling in the charge-density wave limit,
regardless of dimensionality. Systems with topological

order are also accessible, such as the Kitaev chain, which
is equivalent to a one-dimensional Ising chain through an
exact mapping.
The connection between DQPTs and macroscopic

dynamical properties is a priori not limited to the order
parameter alone. For any observable whose expectation
value differs in the two broken-symmetry ground states,
DQPTs in Loschmidt echos potentially impose real-time
nonanalyticities in the ground state manifold as for the zero
energy limit of the order parameter (see Fig. 3).
Experiments.—The considered nonequilibrium scenario

can be realized in systems of ultracold atoms in optical
lattices [35]. In the hard-core limit, a one-dimensional
system of bosonic particles can be mapped onto an XXZ
chain Hexp ¼ Jxy

P
l½Sxl Sxlþ1 þ Syl S

y
lþ1� þ Jz

P
lS

z
lS

z
lþ1 tak-

ing into account nearest-neighbor interactions [36].
Contrary to the Hamiltonian in Eq. (2), the coupling
Jxy is ferromagnetic instead of antiferromagnetic, which
can be compensated for by a unitary transformation U ¼
exp½iðπ=2ÞPN=2−1

l¼0 σz2l�mappingHexp ontoH. Importantly,
both the initial state and the observables under study
are invariant under U, such that the dynamics by Hexp
and H are identical. The initial Néel state corresponds
to a characteristic pattern of particles where even sites are
occupied by one boson and odd sites are empty. These
states can be generated experimentally with high accuracy
[37]. The staggered magnetization can be measured via the
bosonic density using quantum gas microscopy [38,39].
For each experimental image obtained by the quantum
gas microscope, one can determine the staggered magneti-
zation as well as the energy corresponding to the initial
Hamiltonian, such that one can build up the full energy-
resolved Msðε; tÞ successively. Loschmidt echos can
be obtained experimentally using a recently proposed
measurement scheme [40,41].
Although the spectral decomposition in Eq. (5) requires

fine-tuning of the system, it will now be argued that the
consequences of a nonideal experimental implementation
are, in principle, controllable. As already emphasized in the
Introduction, weak perturbations to the final Hamiltonian
do not influence the DQPTs qualitatively [17,22]. Nonzero-
temperature effects can be eliminated using postselection
[42]. Although for initial states perturbed by weak initial
Jxy > 0 the dynamics does not change qualitatively [7],
order parameter and initial Hamiltonian do not commute.
From a single image of the quantum gas microscope,
however, one can still compute the energy of this single
experimental realization for the ideal initial XXZ chain at
Jxy ¼ 0 that commutes with the order parameter. In this
way, one can measure Msðε; tÞ as in the ideal case and the
errors made are reduced to the initial state preparation
solely, but not the initial Hamiltonian itself.
Conclusions.—In this Letter it has been shown that

dynamical quantum phase transitions in Loschmidt echos
are directly connected to the order parameter dynamics in
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systems with broken-symmetry phases. Thereby, a link is
established between microscopic probabilities and macro-
scopic dynamical properties. These concepts have been
illustrated using exact diagonalization for the XXZ chain
for initial Néel states but also generalize to other observ-
ables and other systems. A potential implementation in
systems of ultracold atoms has been outlined that allows
us to explore the predictions experimentally.
The ED algorithm uses the Armadillo linear algebra

libraries [43].
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