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One necessary criterion for the thermalization of a nonequilibrium quantum many-particle system is
ergodicity. It is, however, not sufficient in cases where the asymptotic long-time state lies in a symmetry-
broken phase but the initial state of nonequilibrium time evolution is fully symmetric with respect to this
symmetry. In equilibrium, one particular symmetry-broken state is chosen as a result of an infinitesimal
symmetry-breaking perturbation. From a dynamical point of view the question is: Can such an infinitesimal
perturbation be sufficient for the system to establish a nonvanishing order during quantum real-time
evolution? We study this question analytically for a minimal model system that can be associated with
symmetry breaking, the ferromagnetic Kondo model. We show that after a quantum quench from a
completely symmetric state the system is able to break its symmetry dynamically and discuss how these
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features can be observed experimentally.
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Introduction.—At the heart of thermodynamics lies the
assumption that realistic macroscopic physical systems
exhibit one particular state—thermal equilibrium—that is
always approached irrespective of the initial condition.
From a fundamental point of view the important question,
however, which microscopic conditions are necessary or
sufficient for the thermalization of a closed quantum
system, is still largely unanswered [1]. This is of particular
importance especially because there exists a specific class
of isolated quantum systems termed integrable for which
equilibration is hindered by the presence of special con-
servation laws, as demonstrated experimentally in the
quantum version of Newton’s cradle [2]. Generally, it is
believed that nonintegrable systems can thermalize because
they are complex enough in order to be ergodic [1].

Ergodicity, however, is not always sufficient for thermal-
ization even though the system under study may be
nonintegrable. This is the case whenever the asymptotic
long-time state lies in a symmetry-broken phase, but the
initial state is fully symmetric. As the Hamiltonian con-
serves this symmetry by construction, the system can never
break this symmetry by itself, but rather requires some
symmetry-breaking perturbation from the exterior. Recall
that an equilibrium system in a symmetry-broken phase
displays nonvanishing order as a consequence of an
infinitesimal symmetry-breaking perturbation that favors
one of the symmetry-broken sectors. From a theoretical
point of view, this infinite sensitivity can be associated
with the noncommutativity of two limits: lim;,_,qlim; _,, #
lim; _,lim;_,, where h refers to the strength of the
symmetry-breaking perturbation (e.g., a magnetic field)
and L to the system size.
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In this Letter we focus on the dynamical perspective of
spontaneous symmetry breaking: Consider a quantum
system, with parameters placing it in a symmetry-broken
phase, which is initialized in a symmetric state with
vanishing order parameter. How can quantum real-time
evolution break a symmetry dynamically? More specifi-
cally, can an infinitesimal symmetry-breaking perturbation
h establish order during nonequilibrium real-time evolu-
tion? It is the aim of this work to address this fundamental
question. Clearly, in a case where the order parameter M
itself is a constant of motion, dynamic symmetry breaking
is impossible. Here we demonstrate that, for the opposite
case, symmetry breaking can indeed occur dynamically.
Given that M(¢, h) is a continuous function of time and
field with M(r =0,h) =0 and that M(¢,h — 0) can be
expected to vanish at any finite ¢, the limit 4 — 0 has to be
combined with the long-time limit # — oco. In analogy to
the equilibrium case we propose the following criterion to
detect the dynamical breaking of a symmetry: the non-
commutativity of two limits limy,_,olim,_, o, # lim,_, lim;_,
(and system size L — oo by default). This criterion translates
the infinite sensitivity against a symmetry-breaking pertur-
bation into the dynamical context.

In classical systems, the buildup of ordered structures
out of metastable disordered states, e.g., crystallization of
undercooled liquids, has been studied extensively [3].
These metastable states may either develop instabilities,
such as in the context of spinodal decomposition, or decay
into the respective stable thermodynamic equilibria via the
formation of droplets in case of nucleation. Classical
nucleation is driven by thermal fluctuations induced by a
surrounding bath, but the transition from metastable to
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stable states may also be induced by quantum fluctuations
overcoming the potential barrier between the two states via
quantum tunneling [4]. Here, we will be interested in the
buildup of order during unitary real-time evolution in a
minimal quantum magnet far beyond equilibrium where no
notion of metastable states in free-energy landscapes exists.
Recently, the buildup of antiferromagnetic order in the
Hubbard model has been investigated for cases where the
symmetry-breaking perturbation acts over finite time inter-
vals [5]. Moreover, for the Lieb-Mattis model it has been
shown that the symmetry-breaking perturbation is not
capable of inducing nonzero order except at a periodic
sequence of singular points in time [6].

Ferromagnetic Kondo model.—We will demonstrate the
anticipated ideas for a minimal model system, the ferro-
magnetic Kondo model. By a quantum-classical mapping
this model is equivalent to the one-dimensional 1/r2-Ising
chain [7], which hosts a symmetry-broken phase at low
temperatures with a nonzero magnetization [8] that is
triggered by an infinitesimal magnetic field. We study the
dynamics of symmetry breaking for the quantum system
where the symmetry breaking is associated with a boundary
quantum phase transition [9] with the expectation that the
main features observed are of generic relevance beyond the
chosen model system. The ferromagnetic Kondo model
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describes a local spin-1/2 degree of freedom coupled via
a ferromagnetic (J < 0) exchange to a fermionic bath. For
the following it is suitable to introduce the dimensionless
coupling constant g = pJ with p the noninteracting con-
duction band density of states that can be chosen constant
within a band [-D, D] for the universal properties of the
model [10].

In equilibrium, the spin-1/2 becomes asymptotically
free at low energies. Under a perturbative renormalization
group (RG) transformation, the dimensionless coupling
constant obeys the following scaling equation at low
energies [10]:
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The reduction of the UV-cutoff A well below the electronic
bandwidth D leads to a logarithmic decay of g. The fixed
point is thus a free theory of an isolated spin decoupled
from the fermionic bath. The free spin shares a rotational
symmetry that is broken by any infinitesimal local mag-
netic field at zero temperature forcing an alignment along
the magnetic field direction. This yields a local magneti-
zation equal to [11]
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FIG. 1 (color online). Dynamics of symmetry breaking in the
ferromagnetic Kondo model. The proposed setup is composed
out of three elementary components. The system spin and the
fermionic reservoir, coupled via a ferromagnetic exchange J, are
supposed to realize the ferromagnetic Kondo model. During the
dynamics of symmetry breaking in the presence of an infinitesi-
mal local magnetic field & the system spin develops a local
magnetization. The antiferromagnetic coupling J,; to the initial-
izer spin generates an initially rotationally symmetric spin singlet.
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for a small bare coupling g. Notice that the low-energy
properties of the antiferromagnetic Kondo model with
J > 0 differ on a fundamental level. The system flows
to strong instead of weak coupling, leading to a Kondo
singlet ground state [10] which does not exhibit symmetry
breaking. In order to align the local spin in this case, the
magnetic field has to be sufficiently strong to overcome the
binding energy of the Kondo singlet.

We develop a dynamical theory for symmetry breaking
in the ferromagnetic Kondo model. Our setup is illus-
trated in Fig. 1. It consists of two antiferromagnetically
coupled magnetic moments of spin 1/2; one of them we
call the initializer spin, the other the system spin.
Additionally, the system spin is also coupled to an
electronic environment through a ferromagnetic exchange
interaction implementing the Hamiltonian in Eq. (1).
Such a ferromagnetic exchange can be realized in specific
designs of triple quantum dot systems where it has been
shown that it is possible to obtain effective ferromagnetic
Kondo models, either anisotropic [12—14] or isotropic
[15]. Notice that the initializer spin is not coupled to the
electronic reservoir.

We initialize a rotationally symmetric state by decou-
pling the system spin from the electronic reservoir in the
presence of the antiferromagnetic coupling leading to a
spin singlet of the two local magnetic moments. This can be
achieved by choosing J,; as the largest energy scale in the
problem. After this initialization procedure, we switch off
the antiferromagnetic coupling, inducing nonequilibrium
real-time dynamics for the system spin according to the
Hamiltonian in Eq. (1) while the initializer spin is
decoupled from the dynamics.

We add a (infinitesimally) small magnetic field & to the
system spin as the symmetry-breaking perturbation. This
yields as the full Hamiltonian
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Both the Bohr magneton and the magnetic moment’s
g-factor have been absorbed into the definition of the
magnetic field /4. In the weak-coupling limit |g| < D, our
setup possesses the following hierarchy of energy scales:
|h| < lg| < D. In the following we will always choose
h > 0 for simplicity.

We study the time evolution of the local magnetization
(S. (1)) driven by the Hamiltonian H. First, we will focus on
the zero-temperature limit that hosts the symmetry-broken
phase of the model. Later we will also discuss the nonzero-
temperature case which is of particular importance for any
experimental realization. According to the anticipated
protocol, the initial state p, = pg @ pp factorizes into
the singlet pg = |S)(S| of initializer and system spin and
the Fermi sea pp of the electronic reservoir.

Results.—We study the real-time dynamics analytically
using the flow-equation technique [16] that has been
proven to provide a very accurate description for the
out-of-equilibrium dynamics in the ferromagnetic Kondo
model. As has been shown in comparison to numerically
exact time-dependent numerical renormalization group
data, the flow-equation technique becomes asymptotically
exact in the weak-coupling limit with well-controlled
corrections for larger couplings [17].

We find that an infinitesimally small magnetic field
establishes a time scale for dynamical symmetry breaking

*
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that differs from a perturbative guess A~' by a large
logarithmic factor indicating its nonperturbative influence
onto the system’s properties. For times ¢ < ¢*, the dynamics
resembles the symmetric limit with 7 = 0 up to perturbative
corrections that vanish in the zero-field limit. For times
t > t* the local moment develops a magnetization

>t 1
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whose magnitude is independent of the field strength .
The infinitesimal magnetic field & breaks the rotational
symmetry and forces the system to develop a nonvanishing
magnetization. Consequently, the limits lim,_,, and lim;,_,
do not commute demonstrating dynamical symmetry break-
ing in a quantum many-body system. Notice that the
asymptotic magnetization is not thermal; compare Eq. (3)
and Refs. [17-19]. It is important to note, however, that
thermalization is not relevant for dynamical symmetry
breaking that only relies on the noncommutativity of the
limits lim,_,, and lim,_,,.

Zero temperature—The flow equation approach is an RG
scheme under whose RG flow the Hamiltonian becomes
more and more energy diagonal successively [16]. This is

done by constructing explicitly a unitary transformation
U(B) = T gexpl JE dBn(B)] as a B-ordered exponential of
its generator 77(B) and an associated family of Hamiltonians
H(B) = U(B)HU(B). For B = 0 one recovers the initial
Hamiltonian while for B — oo the Hamiltonian becomes
diagonal in energy and exactly solvable.

For the calculation of the magnetization we introduce a
novel scheme for evaluating observables within the flow
equation framework that avoids the separate solution of
an additional set of scaling equations for the respective
observables at the same level of accuracy (see the
Supplemental Material [20]). Instead, we utilize explicitly
the exponential structure of the diagonalizing unitary
transformation U(B) by performing an operator cumulant
expansion [21] as has been done in the case of the
Loschmidt echo [22]. This yields for the magnetization [20]

(5.(0)) = 5[0 — 0] )

with  f,(1) = [dede T ,N.s(0){1 — cos[(¢ + h*)i]},
Tew = [ dBg(B)[e + h(B)le P+ and N,y (o) =
Ne_ge (1 — gy e ) With n, the Fermi-Dirac distribution and
o = =+1/2 for 6 = 1, |. Under the RG transformation, by
increasing the flow parameter B the magnetic field /(B)
renormalizes yielding a B dependence and asymptotically
for B — oo reaches a final value h* = h(B — o). The
dimensionless couplings g develop an energy dependence
under the flow and the presence of a magnetic field
additionally introduces an anisotropy [20,23]. For the
magnetization only the renormalized spin flip coupling
g+ (B) enters. In Fig. 2 the results for the dynamics of the
magnetization at zero temperature are shown and compared
to the analytical estimates that will be presented below.

On intermediate time scales D~! <t < h~!, the two
spin contributions f4(f) = f|(¢) = f, are identical such
that (S%(¢)) = 0 up to perturbative corrections. Thus, the
symmetry-breaking perturbation is not capable of inducing
a local spin polarization in this regime. On these inter-
mediate time scales we obtain the analytical estimate
fo=g{3 +2log(h/D)/[1 + glog(h/D)]}/2 (see the
Supplemental Material [20]) for & > De'/9 and f, =g
for h < D'/9 which are continuously connected. In Fig. 2
we compare these analytical predictions to the numerically
exact solution of the one-loop flow equations showing
perfect agreement. Notice that for a fully polarized local
initial state without rotational symmetry we would have
(S.(1)) = e/*/2 =[1 + g+ O(g*)]/2 which is precisely
the result obtained in previous works [17-19], confirming
the accuracy of the current calculation.

For times 7 > t*, compare Eq. (5), the spin-1 component
f1(t) = f. = const. is frozen while the spin-| component
f(t) = —t/t), shows a linear divergence. Thus, asymptoti-
cally for large times the local spin develops a magnetization
exponentially fast (see the Supplemental Material [20])
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FIG. 2 (color online). (a) Dynamics of the local magnetization
in the ferromagnetic Kondo model for different magnetic field
strengths obtained from the numerically exact solution of the
one-loop flow equations for g = 1072 For times ¢ < ¢* the local
magnetization only acquires perturbative corrections in the
presence of a small magnetic field. Beyond the time scale r*,
the magnetic field induces a local magnetic moment that saturates
to a value independent of the magnetic field in the asymptotic
long-time limit up to corrections that vanish in the zero field limit.
(b) Asymptotic long-time value of the local magnetization
(S.(t > o)) = (1 + f,)/2. Comparison of the full numerically
exact result for f, based on the one-loop flow equations (points)
to the analytical estimate f,/g*> =3/2+log(h/D)/[1 +
glog(h/D)] (line) demonstrating the accuracy of both the
numerical as well as the analytical result.

<Sz(,)>ﬁ;% 1+ f.] —%[1 + f.le7!/n, (8)

with a relaxation time

th =1\/— .
g 7 g h

8[1+ glog(h/D)]?1

- ©
In the zero-field limit, one obtains to leading order t, —
\/8/xt, yielding the desired result in Eq. (5). Notice the
relation to the linear-response spin relaxation rate I’ «
71 [24].

Nonzero temperatures.—In equilibrium, the local mag-
netization in the ferromagnetic Kondo model is nonvanish-
ing only at zero temperature. This poses a severe challenge
onto the possibility to observe the anticipated dynamical
symmetry breaking in experiments that necessarily operate
at nonzero temperatures. We will demonstrate below that
although any nonzero temperature will eventually lead to a
completely symmetric state with vanishing magnetization,
this will happen only beyond a time scale #7. On inter-
mediate times ¢ < t; it is possible to observe dynamical
symmetry breaking provided temperature is sufficiently
small such that ¢t Z ¢,,; see Eq. (9). Notice that temperature
also influences the preparation of the initial local singlet
such that it is necessary to ensure that J,; > 7.

While to leading order any nonzero temperature will
not influence the properties of f(¢), its influence onto the
spin-1 component f4(¢) is substantial for times 7 > 7 with
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FIG. 3 (color online). Influence of temperature onto dynamical
symmetry breaking in the ferromagnetic Kondo model. Dynam-
ics of the local magnetization for different temperatures with g =
1072 and h/D = 10~*. For small times ¢ < tr, see Eq. (10); the
real-time evolution of the magnetization is equivalent to the zero-
temperature limit demonstrating the observability of dynamical
symmetry breaking in the ferromagnetic Kondo model at nonzero
temperatures. Increasing temperature such that 77 < 7, destroys
the signatures of symmetry breaking eventually leading to a
complete suppression in the limit 7 > h.

1 + glog(h/D)]?eMT -1
= , 10
p= | - (10)
where f4(t) = —t/ty such that temperature induces an

exponential decay of the magnetization

>t 1

(S.(0)—5 1 +f]e, (11)

reestablishing a completely symmetric state. For 7 > T we
have that t; ~ ¢"/7 yielding a symmetry-broken magneti-
zation plateau which becomes stabilized to exponentially
long times. This changes as soon as & < T where t; ~ T~!
and fr <t preventing the buildup of a substantial mag-
netization plateau. In Fig. (3), the real-time evolution of the
magnetization and its dependence on temperature is shown,
confirming the analytical arguments.

Conclusion.—We have discussed the possibility of
symmetry breaking induced by unitary quantum real-time
evolution and its implication for fundamental concepts such
as quantum ergodicity. For a minimal quantum magnet,
described by the ferromagnetic Kondo model, we have
demonstrated that symmetries can be broken dynamically.
Based on the analytical solution of the quantum real-time
evolution we showed that the system develops a nonzero
local magnetization even in the limit where the symmetry-
breaking magnetic field 4 is infinitesimally small. This
implies the noncommutativity of the two limits 2 — 0 and
time ¢ — oo which we have identified as a general dynami-
cal criterion for symmetry breaking.
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