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A new analytic approach is discussed which allows for an exact evaluation of ground state proper-
ties of correlated fermions in terms of the Gutzwiller variational wave function in d = 1. The
results are applied to the Hubbard model. The approach may also be used to investigate higher

dimensional systems.

The problems involved in the investigation of
Fermi systems with a strong, short-range re-
pulsive interaction is complex enough to defy
analytic solutions in all but very special cases.
In the absence of simple, reliable perturbative
approaches, variational methods prove to be very
helpful. In order to study the socalled Hubbard-

model [1,2], a lattice model for itinerant fermions

with an on-site interaction Hy = U;Dj (here Dj =
nijsnjyis the number operator for dduble occupancy
of a lattice site), Gutzwiller introduced a simple
variational wave function [1]

|¢G> = 11 [l—(l—g)Di]l¢0> . (1)

Based on the non-interacting system with wave
function |y >, the prefactor in (1) is supposed
to reduce tRe amplitude of spin configurations

in |y > with too many sites on which the inter-
action takes place. Here 0 < g < 1 is a variat-
ional parameter. Although |¢G> is extremely
simple, exact evaluations of expectation values
<X> = gl X[ wg>/<bg|vg> could not be performed
until recently - not even in the case of Hyp,

to which ‘¢G> is costum-taylored, or in d = 1
dimension. Expansions [3], Gutzwiller-type
approximations [4] and numerical techniques [5-9]
had to be used instead, which altogether eluci-
dated several of the properties of |¢G>. Most
recently Metzner and Vollhardt [10] presented

a new analytic approach to calculate expectation
values with |¢6>. It applies to arbitrary dimens-
ions d and is particularly simple in d = 1, where
the shape of the Fermi "surface" is independent
of the band filling n = N/L < 1 (L = number of
lattice sites). This fact allows for exact,
analytic evaluations in d = 1, e.g. of ground
state properties [10] and correlation functions
[11] for Hubbard-type models. We illustrate the
method in the case of <HI>. Expanding (1) one
may construct expectatiof values

x = )" <D, ...D.> (2)
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in the non-interacting ground state, where all
site indices fi are different. As usual
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Wick's theorem transforms <...> into {...} y
the sum over all pairs of contractions, where
the usual term 6?"?A never occurs because

i
?i $ ?j by construction. On the other hand,
} Y= 0 for any fj = j+ Hence, on summing

over the i the restriction ?i fy may be
dropped which yields
x = 7 {D#...D2} (3)
e, Lo 10Dl
Fio.of
1 m

The x_ may be presented diagrammatically, where
lines correspond to factors <r> > and where the
disconnected diagrams cancel tK2 Borm Wglvg>.
This leaves us with x§, the connected diagrams
of (3). In the case of <Hy> for d = 1 we have

L m-1
<H.> = ULg? ) (g*-1) c,

I m=1
where c = [L(m—l)!]_l xC o nm+l; here we assumed

n, =n = n/2. Using par@icle—hole (ph) symmetry
a% n = 1 the precise form of cp is calculated
as [10]

(_n)m+l
m T T2(mel) (4)
such that (L » «)
> = B9 ) en L, 4 g2-1] (5)
1”77 Mog? o’

where G? = 1-(1-g*)n. Eq. (5) is non-analytic
in the limit g = 0, n = 1.

The momentum distribution <n?> > is more dif-
ficult, to calculate owing to the external para-
meter k. It is obtained as [10]

1 <n> > (6)

_[1_(1_a)2
< > = [l (1-g)*n_ bo’o

ko o

1 2 5 2 m (m)
+ gy L1-(-g )<r%>o]mzz(g 0" e,

where the fim) correspond to connected graphs

with m vertices (as in the case of the cp),
which now carry an external momentum k. Their
topological structure is ideptical to that of
the usual mth-order connected Green functions.
In d = 1 their actual values are given by poly-
nomials in |k| and n which are different for

k § kp. Differentiability with respect to n

and ph-symmetry at n = 1 allows one to calculate
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Fig. 1. The momentum distribution <n,> for
different correlation parameters g at
n=1.

(

the Fkg) recursively. In this way <ny s> is
obtained as shown in Fig. 1. For g > O there
is a discontinuity at kg (sharp Fermi surface)
which only vanishes at g = 0. Above and below
kg, <ni> has a slight upward cusp, i.e. the k-
dependence is opposite to what one should

expect. The size q = <nkF‘0> - <nkF+U> of the

discontinuity may be calcul(tgd from (6).
To this end the functions ka have to be
determined at k = kg * 0j where kg = mn/2.

In this special case f\M/_ « n" with different
kg0

coefficients for kp £ 0. Differentiability
with respect to n and ph-symmetry for n = 1
yields

(m) _ m (2m-1)1!
ko—O = (-n) i (7)
(m) (m)
f = f /(2m-1).
ket0 = k-0
Henee <ny g = 2 [(1-6)/(1+)]% and
cilEr

For n = 1 we find g = 4g/(1+g)?, which holds
in arbitrary dimensions d. We note that this
approximation-free result is identical to
that of the Gutzwiller-approximation [1,4]
which we find to be correct in d = ». Hence
|yg> always leads to a Fermi surface except
for g = O.

The above results may be directly applied
to diagonalize the Hubbard-model in terms
of |¢G> with an arbitrary kinetic energy €
For strong correlations and n = 1.

2 -
Eein ° 1 E e, <> =29 €,
where ¢ is the average kinetic energy for
g = 1. For next-neighbor hopping and after

minimization with respect to g the ground
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Fig. 2. The ground state energy per particle

of the d = 1 Hubbard-model for different den-
sities, as compared with the exact results
[12].

state energy of the Hubbard-model is found. For
large U

where U = U/|e_|.

LGz L
SRS e I (9)

The logarithmic term in (9)

makes E quite 8 bit higher than the exact result
[12], which has a (-t?/U)-dependence for large

u.

Its origin seems to lie in the missing cor-

relation between doubly occupied and empty sites

in |yg> [11]

- a fact, which was already realis-

ed earlier [5] on the basis of numerical cal-
culations. In Fig. 2 we show the ground state
energy per particle of the Hubbard model for

different densities as obtained with [yg> in

comparison with the exact results [12]. -
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