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Foreword

Correlated Fermi Systems are at the forefront of present
day research in condensed matter physics. The following
nine lectures are intended as an introduction to the
problems involved. They do not employ advanced theoretical
methods but are rather conceived to stress the basic ideas
and models. Part I discusses the effect of disorder on the
properties of electrons in metals. Part II introduces
Landau’s Fermi liquid theory and microscopic models for the
description of correlation effects in normal state systems.
Part III then concentrates on superconductivity/fluidity in
pair correlated Fermi systems and also gives an
introduction to the current theoretical problems involved

in understanding high-T_, superconductivity.

I thank Professor P. Erdds for inviting me to present
these lectures within the "Troisiéme Cycle de la Physique"
and I gratefully acknowledge the hospitality extened to me
in Lausanne. I also thank Dr. P. van Dongen as well as
Dipl.-Phys. W. Metzner and Dipl.-Phys. F. Gebhard for
useful discussions about the matter. My special thanks go
to Frau G. Kramp-Salecker for the impeccable typing of the

manuscript.

Dieter Vollhardt

Lausanne, February 1988



Introduction

During the last 15 years condensed matter physics
has made particularly important, new contributions to our
understanding of physics. There have been numerous
discoveries which go far beyond mere quantitative
improvements of earlier measurements and which, in fact,
concern the fundamental concepts of physics. They have led
to significant new insight into the basic properties of
many-particle systems.

Below we list some of the most influencial papers on
topics in condensed matter physics, which appeared during
the last one-and-a-half decades. Each one of them triggered
an explosive, new development in condensed matter physics
and led to an avalange of hundreds or more papers:

1972: Superfluidity in 3Hg by Osheroff, Richardson and Lee [1]

1979: (i) Anderson Localization, Metal-Insulator Transition by

Abrahams, Anderson,Licciardello and Ramakrishnan [2]

(ii) Interaction effects in disorderd metals by Aronov

and Altshuler [3]

(iii)Heavy Fermion Superconductivity by Steglich, Aarts,

Bredl, Lieke, Meschede, Franz and Schafer [4]
1980: (Integer) OQuantum Hall Effect by v. Klitzing, Dorda and
Pepper [5]
1982: Fractional Quantum Hall Effect by Tsui, Stérmer and
Gossard [6]

1986: High-T . Superconductivity by Bednorz and Mualler [7]




The relevance of these papers is best illustrated by the number
of Nobel prizes connected with them. While Anderson, Mott and
van Vleck had already received the Nobel prize in 1977 for work
to which the paper by Abrahams et al. [2] relates, the work by
v. Klitzing, and that of Bednorz and Miller was an "instant
success" - they received their Nobel prizes in 1985 and 1987,
respectively.

Browsing through these new discoveries it is obvious
that the largest part involves disordered and/or correlated
Fermi systems - in particular, of course, electronic systems.
This is not so surprising since condensed matter physics itself
is préaominantly "electron-physics" by nature. However, there
are other correlatd Fermi systems, i.e. nuclear matter and
neutron stars and - most importantly - liquid 3He, where new
discoveries were made, which subsequently enriched our view of
the possible states of condensed matter considerably.

Of the four Fermi systems mentioned above, nuclear
matter is not really a "many-particle system" (where we usually

023 particles) although it sometimes

imply of the order of 1
comes quite close. In fact, in the case of heavy nuclei, the
possibility of superfluidity is currently being debated. A
neutron star, on the other hand, is a true many-body system and
the corresponding techniques of statistical physics do apply
very well.The trouble is that direct experimental investigations

are difficult for obvious reasons. Therefore not so much is yet

known about the details of these super-high-density Fermi



systems, although a lot of information has already been inferred
room radiation measurements. This is also a lively area of
research ([8] .

So we mostly concentrate on electrons and the quantum-
(Fermi) liquid 3He. In many respects electrons in metals also
behave as a quantum liquid, so that liquid 3He and electrons
have a lot in common. This is why in the following we will
frequently compare their properties. -

These lectures are thought to present an introduction to
the physics of disordered and correlated Fermi systems. We will
aim at the discussion of present state-of-art problems in this
field and are thus facing the frontiers of physics. Clearly, it
is completely impossible to discuss all the relevant topics
here. We can only attempt to address some of the problems
mentioned above. Besides that, I cannot expect the mathematical
techniquesto be generally know, which are necessary to deal with
the problems under consideration. Therefore I have to do without
them. So I will try to introduce the relevant questions without
much mathematics, hoping to create a feeling for the physics
behind it. To this end I expect that the audience is familiar
with the material from lectures on thermodynamics and
statistical mechanics, quantum mechanics (I) and some solid
state physics. Second quantization will be needed later and will

be recapitulated at the appropriate time.



In these nine lectures three main topics will be

discussed
i Disordered Electronic Systems
II. Correlations in interacting, normal-state Fermi systems

III. Superconductivity/fluidity of Electrons and 3He

We will see that these seemingly disparate topics have a lot
in common and that there are many fundamental connections. Many
of these links have only been discovered in the last 10 years or
so. The development in our understanding of correlated Fermi
systems and the discovery of unifying concepts is a particularly

exciting and gratifying feature of present day condensed matter

physics.
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Introduction

A metal-insulator transition separates two
physical regions, which fundamentally differ in their
electrical dc-conductivity o(w=0): while a metal has
a finite dc-conductivity (o(0) >0), an insulator is
characterized by o(0) =0.

Such a transition does not only occur in
disordered systems. In fact, it can also take place in
very clean, purely crystalline materials, in which the
particles that are responsible for the current, interact
via a Coulomb-interaction. 1In such systems an overlap
of energy bands can lead to a metal-insulator transition.
Yet another cause for a transition may be due to a
structural change of a crystal leading to a new lattice
periodicity. 1Indeed there exist completely different
physical reasons for the occurrence of a metal-insulator
transition [9]. We will here confine ourselves to the

metal-insulator transition in disordered systems, i.e.

where the "disorder" is ultimately responsible for the
transition. By "disorder" we mean, e.g. the disturbance
of a strict lattice periodicity due to impurities or
defects. Our understanding of the physics of disordered
systems, in particular of their transport properties

and the metal-insulator transition, has greatly changed
and substantially deepened since 1978/79[10,11]. These de-
velopments especially concern disordered systems in two

and three dimensions. The situation in one-dimensional



disordered systems is somewhat special and has its own long
historyl[12].
In the first two lectures of part I we will con-

centrate on the behavior on non-interacting,quantum mecha-

nical particles in a disordered environment. In the last
lecture we will also take into account the effects of a

mutual interaction between the particles.

Non-Interacting, Quantum Mechanical Particles in

Disordered Systems

Of three-dimensional systems (i.e. those with
space dimension d= 3) we know, that at temperatures
T=0 there exist neither lattice vibrations (phonons)
nor any inelastic processes. In fact, in an unbounded,
perfect lattice (Fig. la) no scattering occurs at all.
This is a consequence of quantum mechanics. Consequently
such a system has an infinite dc-conductivity. One may
equally well say, that the characteristic collision
time 1 of the particles due to scattering off defects
etc. is infinitely long (t=«). In the case of Fermions
(and those we only consider here) it follows, that the

mean free path £ = v_1 of the particles is also infinite

F
(L ==); here Ve is the Fermi-velocity. The wavefunction
of a particle is then characterized by a strict spatial
phase coherence.

In a lattice, which is weakly disturbed by

impurities or defects (Fig. 1lb), the situation is different:
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Fig. 1l : (a) perfect lattice, (b) imperfect lattice
(presence of defects, impurities etc.)

the scattering of the particles off the defects implies
a finite collision time 1 and thereby a finite mean free
path & . The dc-conductivity is therefore also finite

and is given by

en
CO == =T (2

where e and m are the charge and the mass of the
particles (e.g. electrons), respectively and n is the
density. The quantity o, is often called "Boltzmann -

conductivity", because (1) is a direct result of the



Boltzmann transport theory.
The scattering of the particles leads to
diffusion (Fig. 2), i.e. to a diffusive motion. The

phase coherence of the wave functions is thereby limited;

Fig. 2 : Diffusion of a particle in a disordered system

nevertheless the wavefunction \P(?) of the particle

is still extended, i.e. one has

w (V@ | %0 (2)

¥ e

When the disorder is increased (e.g. by choosing a
higher impurity concentration) it may happen that the

wave function becomes localized, such that
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where £ is the so-called "localization length". However,
it is not a priori clear how to quantify this vague
statement. To gain insight, we therefore want to discuss
the one-dimensional case (d=1) first [9].

As a model we consider a generalized Kronig-
Penney model, namely a chain of §-function potentials

(Fig. 3) at locations x; with strength V. and

Fig. 3 : One-dimensional model of a disordered system

separations qa; . The potential is then given by
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and the Schrddinger equation reads
(9 240 x) -1 ] b 0

e
where k= (2wE/# )’ is the momentum. We first
concentrate on a single §-function at the origin (x=0)
The wave functions \b'.t w) for X% 0

are then given by

\ : 1kx ~ikx
“‘V,t &) = A-,t e + By e (5)

The boundary conditions at K=o for the wave functions
and their spatial derivative are given by

b, 0« V_(0) and Ve = Yo+ Vo Vo) . We
are now searching for a periodicity in \IJ , such that
b, @ V= Ll for an arbitrary value of

Xt G . In other words we look for the property

V. o - et b ) for arbitrary a and k .

This leads to the condition

Cm'io.-ceokaa-y:—/h‘uka (6)
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from which k and o can be obtained as functions of k .
For a chain of potentials we may conclude from (6) that

a wave function will only be periodic (and the state
extended) if the separations a; between the potentials
are all equal (&;=cx) and if, at the same time, all
potentials V; also have the same strength (V;=V) :
Otherwise all physically sensible wave functions fall

off exponentially, i.e. represent localized states. This
means that even an arbitrarily small statistical spread
of the values of q; and V; leads to localized solutions
of the Schrddinger equation only.

The first quantitative definition of "localiza-

tion" dates back to Anderson in 1958 ([13]. He investigated
a three-dimensional model, namely a regular point lattice,
where on each lattice site i an atom with an energy V;
was located (Fig. 4). Now one considers a quantum mechanical
particle (e.g. an electron), which (i) hops from one site
to the next neighbor site (kinetic energy) and (ii)
experiences the potential Vi on site i (potential
energy). The question is, how the particles are influenced
by these potentials. In the special case that all V;
are equal (V;: V) one of course obtains a sharply
bounded energy band, whose width we characterize by an
energy B. This situation is changed when the V; are
statistically distributed (Fig. 5) , e.g. with a rectangular
distribution

;5- ) lbﬁl < %é

P{V;}' | (7)
L 0 else
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Fig. 4 : Disorder model due to Anderson
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Fig. 5 : Example of the energy distribution of the atoms
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For an unbounded system one may now ask: How large is
the probability P for a particle to return to a parti-
cular lattice site in the limit of long times G-»oO) @
In the case P=0 the particle has "disappeared" in the
system; hence it will be characterized by an extended
state. In the case P> 0, i.e. finite return probability,
we speak of "localization", i.e. the particle is described
by a localized state.

The answer to the above question depends on
the ratio of the maximal energy difference of the atoms,
W, to the band width B of the undisturbed system, i.e.
on W/B. This number (!) is a measure of the strength of
energy fluctuations in the system, i.e. a measure of the
disorder. The quantitative answer [13] is, that for
W/B <S one finds P=0 while for W/8 %S
one obtains P> 0. In between there is a sharp transition,
the "Anderson transition". In other words: if the energy
E of the particle lies below a certain critical energy
E, (which is determined by the strength of the disorder,
(W/B), =% ) , it is localized, while for E> E_ the
energy fluctuations of the system will not be able to
dominate the particle such that it is described by an
extended state. In the first case one deals with an
insulator, in the second one with a metal. Since
electrons in a metal have a characteristic energy EF
(Fermi energy), the Anderson transition may be induced

by changing EF 5



What does the transition actually look like?
According to Mott [14] it originally was supposed to be

discontinuous. This expectation was based on the follow-

ing arguments. The dc-conductivity o (€ ) of a
y 0

d-dimensional system can be written as

1 ) 0
e o £ [
oe(f) & s
where we made use of &L= Ve T , Ver= hke /[

and where the density of a Fermi gas has been expressed
as n = Ofd (here kg is the Fermi wave number
which is connected with a , the average distance of
the particles, by kf =w/a ) . The conductivity

O is an essentially universal quantity — it is
independent of the disorder in the system. The disorder-
dependence only enters via the mean free path 2, i.e.
the ratio #/a . When the disorder increases, % and
hence OQ, decrease. On the other hand, (1) and (8)

have been derived within the Boltzmann transport theory.
So, for these equations to be valid at all, % always has
to be greater than the average particle distance -a
(Ioffe-Regel criterion); shorter £ makes no sense. Mott
therefore postulated a "minimal metallic conductivity”
o_._, which is essentially given by O (more precisely,

min

Coiw = C O , Where C~008-0.% is a nonuniversal
N [ )

constant which is due to a reduction of the density of
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states of the electrons at the Fermi surface compared

to the Fermi gas). He argued that — as the metal-insulator
transition was approached from the metallic side — the
conductivity 00 would decrease proportional to & and
then, at {=a , would drop discontinuously from

L to zero (Fig. 6). However, already at this point

>
La

disorder

Fig. 6: Possible shape of the conductivity curve as
a function of the disorder.

we should like to mention that this concept does not
hold — in spite of many experimental results which
appeared to support it for a long period of time. 1Indeed,

low temperature experiments have now
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measured metallic conductivities much below Omin and have
thereby falsified the concept of a minimal metallic
conductivity [15]. We will later come back to that

problem.

Theoretical Description of Disorder

In the model originally discussed by Anderson,
a particle moves on a regular lattice, the energy of the

lattice points being statistically distributed (Fig. 7a).

Fig. 7: Disorder and motion of a particle in the model
of (a) Anderson, (b) Edwards.

The "disorder" is then exclusively due to the energy
state of the lattice sites. An alternative model goes

back to Edwards [16]. In his model particles of identical



energy are scattered off randomly distributed scattering
centers of equal potential (Fig. 7b). The disorder is
then due to the spatial distribution of the scatterers.
While the first model starts from the localized regime,
the starting point of the Edwards model is the regime of
extended states (weak scattering). The latter model is
particularly suitable for the formulation of a systematic
perturbation theory which starts from the undisturbed,
metallic regime and then includes a small impurity
concentration, i.e. weak disorder. The following
investigations are based on the Edwards model. For this
we consider (i) non-interacting particles, which (ii)

are scattered by pointlike, randomly distributed scatter-
ing centers of equal strength. We are interested in the
conductivity ¢ or the diffusion coefficient D of such
a disordered system. The two quantities are actually

related by the Einstein relation

0"—‘6"NF-D (9)

where No is the density of states at the Fermi surface.

We will measure the disorder by a dimensionless
parameter A with A< HJV: , i.e. A is essentially
given by the impurity concentration nh; and the scatter-
ing strength V: of the scatterers. The parameter

is often called "coupling constant".
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In the case d=1 we saw that even arbitrarily
weak disorder A-»0 leads to localization. The
"critical" value of the disorder, A, , above which one
finds localization is therefore given by A =0
On the other hand, in the case d=3 A¢ 1s different
from zero (‘k°>o) . For )(‘Rc one finds metallic
behavior, which is described by a finite dc-conductivity
o (or diffusion constant Do). For 72> Ac one deals
with an insulator. Here G, =0 ; instead, an insulator
has a finite polarizability, i.e. dielectric constant €, .
At = A¢ the Anderson transition is located.

Apparently, the case d=2 (very thin films)
marks a marginal dimension. The question is now, whether
there is an Anderson transition or not in two dimensions,
i.e. whether MN\c=0 or <N¢>0 . 1In other words, one
may ask an almost trivially sounding question: "Is there
metallic conductivity in very thin films at T=© 2" oOr
is there, for example, a minimal metallic conductivity?
The answer to this seemingly simple question has only
been found in recent years. It led to unexpected insights
into the physics of disordered systems and their trénsport

properties.

The "Weakly" Localized Regime

We first consider the case of very weak disorder
(AN«1) . Therefore the starting point is the metallic

regime. We want to understand how a small concentration
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of impurities affects the metallic behavior. Since we

are far away from the actual Anderson transition itself,

these effects can be treated by means of a perturbation theory
in the disorder parameter A«| . Weak disorder means

that the mean free path £ is much greater than the

-1
average particle distance Q.z'kp , i.e. kel >|
or, equivalently, EFT 2d) . We will therefore
choose
|
A — (10)
2w BT

as our (small) perturbation parameter. Starting from
the metallic regime we want to consider the precursor
effects of localization, i.e. the corrections R!‘ to the
metallic conductivity

T 0ot s e | « &% (11)
These perturbational effects are commonly called "weak
localization". Our aim is to calculate &G“f (L,&h'ﬁ H)
as a function of several external parameters like the

system's size L , the frequency ® , the temperature T

or the magnetic field H .
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Diffusion of Classical and Quantum Mechanical Particles

As mentioned before, the conductivity o, ,(1)

Go X (12)

1
A
is a result of the Boltzmann transport theory. In this
theory consecutive collisions of particles are assumed
to be independent of each other, i.e. collisions are
uncorrelated. This implies that multiple scattering
of a particle at a particular scattering center is not
taken into account. Consequently, if there is a finite
probability for the repeated occurrence of such multiple
scatterings, the basic assumption of the independence of
scattering events breaks down and the validity of the
result for S in (1) becomes, at least, questionable.
To investigate this fundamental point we
consider the diffusive behavior of a particle in a d-
dimensional disordered system. Let the particle be
located at Yo at time t=0 (Fig. 8a). Due to its
diffusive motion the particle moves away from ?: .
At some later time t we will only be able to make a
probability statement about its position: it will be
located within some smooth volume (Fig. 8b) whose size is
determined by the probability distribution FP(¥,t) ,

which is the solution of the diffusion equation

el _DGV“P =0 (13)



t=0 tox
. T,
(@) (&)

Fig. 8: Probability distribution of a diffusing
particle: (a) t-=o0 , (b) +4>e0 .

The diffusion constant Do is given by Do~ Vg‘c/d '
where Vg 1is the characteristic velocity of the
particles. The explicit solution of (13) is given by

_ -4t
LA
A

B (Un Dot )2 .

At times t »x the exponential in (l4) is unimportant,

so that
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!
-d l
PF ) <= = { = , d=2 (15)
VA;H —bot
!
- (Dot ) ! "

We observe that Vyp = Cbg{)djz is the d-dimensional

volume into which the particle has diffused after time t &
These considerations are purely classical. To

understand the differences in the diffusive behavior of

classical and quantum mechanical particles, we take a

look at the path of a particle diffusing from point A

to point B (Fig. 2) , following the'discussion by

Khmelnitskii [17].

Fig. 9: Possible paths of a particle diffusing from A to B.
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This transport can take place via different trajectories
(in Fig. 9 four examples are shown). The trajectories,

or "tubes", have a typical width given by the Fermi

wavelength
k
[ 4 S —

Ay o . (16)
In the classical case (t-O) these paths are arbitrar-
ily sharp ( % *0) — in the quantum mechanical case,

-1
however, one has 3\, ~ ke > Q , 1.e. the tubes have

a finite diameter. We now assume that (i) the disorder A\
is very small ( Rell = N « I) and that (ii) the
temperature is low enough such that inelastic processes,
characterized by an inelastic scattering time T}n F
occur only very rarely (T, »T).

Since the transport from A to B may take place
along different trajectories, there is a probability
amplitude A; connected to every path v . The total
probability W to reach point B from A is then given by

the square of the magnitude of the sum of all amplitudes:

2

W= |2 A (17a)

. Z'lAil"4 3 A;A; (17b)

i¥)

The first term in (17b) describes separate, i.e. non-



- 24 -

interfering paths — this is the classical case, in
which the tubes are infinitely sharp. On the other

hand, the second term represents the contribution due

to interference of the path-amplitudes,which is therefore
an exclusively quantum mechanical effect. In the
Boltzmann theory these interference terms had been
neglected. In most cases this is in fact justified:
since the trajectories have different lengths the
amplitudes A; carry different phases. On the average

this leads to destructive interference. Hence the

quantum mechanical interferences in Fig. 9 are generally
unimportant.
There is, however, one particular exception to

this conclusion, namely if point A and B coincide (Fig. 10):!

A=3

Fig. 10: Return of a particle to its starting point.
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In this case starting-point and end-point are identical,
such that the path in between can be traversed in two
opposite directions: forward and backward. The
probability W to go from A to B is then nothing but
the return-probability to the starting-point. Since
paths 1 and 2 in Fig. 10 are equal, the Amplitudes A,
and A, have a coherent phase relation. This leads to

constructive interference, such that the quantum mechanical

contribution to W becomes very important. Eq.(17b)

then tells us that for A= A = A the classical
return probability (due to the neglect of the interference
terms) is given by Wcms = Z|P§]t , while the quantum
mechanical case yields N‘u < 21A1T 4 2AIAL = W IAlY,

Hence one obtains

U,’... = 2 Woags (18)

The probability for a quantum mechanical particle to
return to some starting point is hence seen to be

twice that of a classical particle. One might say
"quantum-diffusion” is slower than classical diffusion
because in the first case there exists a more effective
back scattering effect. In other words: quantum
mechanical particles in a disordered medium are (at low
temperatures) less mobile than classical particles.
This in turn leads to a correspondingly lower conduc-

tivity ¢ .



It shouldbe stressed that the factor of 2 in (18)is simply

a consequence of constructive wave interference of the two
time reversed paths in Fig.10. In the case of electrons its
origin is gquantum mechanical only because the wave nature

of electrons is an inherently quantum mechanical effect.

In general, any wave propagation in a disoruﬁered medium
will lead to a qualitatively identical result. Any wave

will do. For example, shouting into a forest( we assume a
naturally grown forest, where trees are irregqularly spaced ...)
will yield the same kind of enhancement ("echo") into the
backward direction as will result from shining light into
white paint [18]. Localization involving classical wave pro-
pagation has been discussed by Anderson [18], who also gave

a number of examples for related electromagnetic and acoustic
phenomena.

Indeed, inspired by the weak localization effects
known from disordered elctronic system, it was convincingly
shown that coherent backscattering equally applies to the
propagation of light in a disordered medium[19,20]. Shining
light into a highly concentrated aqueous suspension of sub-
micron size polystyrene spheres, the scattered intensity
was measured and a striking enhancement in the backscattering
direction within a narrow cone was found. This enhancement
comes from the constructive interference of light-waves

travelling on closed, time-reversed
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paths just as explained in the case of weak localization.
Note that the explicit condition of static disorder necessary
for weak localization is fulfilled even in these experiments,
since the thermal motion in the liquid is much slower than the
propagation of the light wave along any relevant closed path
in the medium. Ideally, i.e. assuming isotropic scattering
and scalar waves, the backscattered intensity should be en-
hanced by the factor of 2 in(18) relative to the incoherent
background. This would require that the starting and end-
point of the loops really coincide (A = B in Fig. 10). Other-
wise interference cannot be complete, resulting in a reduced
enhancement. A theoretical calculation of the intensity of
the reflected relation to the incident light[21,22], which
takes all these effects into account, has found a truely re-
markable quantitative agreement with the experimental results.
The localization of light, sound and other kinds of
wave-like entities in disordered media has also been studied;

for a discussion see ref.[23].
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Estimate of the Correction to the Conductivity

To estimate the size -of the interference effects on ¢,we

consider the changegr relative to the metallic conductivity 6%,

i.e. EW'/GB . Because of the expected lowering of ¢ ,
the sign of KW/GB will be negative. Furthermore,

the change will be proportional to the probability that
during diffusion a closed path as in Fig. 10 occurs at
all. (This is the probability to find a particle in a
closed tube, i.e. the probability for the trajectory to
intersect itself during the diffusion.) Let us therefore
have a look at a d-dimensional tube (Fig. 1l1l) with dia-

e . . o G-1 .
meter ‘A, , i.e. cross-section ¢ . During

d-1

cross seehon A~ 3

Fig. 1ll: Enlarged section of a quantum mechanical
trajectory.

the time interval dt the particle moves a distance

de = v; dt , such that the corresponding volume-
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element of the tube is given by dV = v;dt '7\:‘4

On the other hand, the maximally attainable volume for
the diffusing particle is given by (15), i.e. by

\/d;“ = (]).{)d'?' . The above mentioned probability

for a particle to be in a closed tube is therefore given

by the ratio of these two volumes. We find

Tin ‘?u :
oV ol d
) Vi ) Rt (19)

where we have integrated over all times T <t €T,
T is the microscopic time for a single elastic
collision (shorter times are not sensible), while T,

is the shortest inelastic relaxation time in the system.

It determines the maximal time during which coherent

interference of the path-amplitudes is possible.

Because of D¢x I|/A and %e o< we obtain
= - Hy
T )
'-c" ) d-'-',
Ve -
28 o¢ = AX Lin ” (20)
S t’ ‘&“t) i Bk
L ('Ei:.)""', dx3
- T
If we assume, that for T =20 the inelastic relaxation
rate vanishes with some power of T , i.e. \/'C;,‘ o TP 3

where P is a constant, (20) is given by
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T‘PIZ ) d=/

X .
8¢ o -« *tg&({g) ) dal (21)

Lt\- -r"Z ) d=3

We observe the following: (i) the conductivity
decreases for decreasing temperature, (ii) the relative
correction BG”IUW is linear in the disorder para-
meter A %I (lowest order in N\ ), (iii) except
for d=1, these corrections are of quantum mechanical
origin, i.e. they disappéar for B=>0 . (In the case
d=1 the "tube" in Fig. 11 has no finite diameter —
just as in the classical situation; furthermore, since
in d=1 there is only forward and backward scattering
all paths are trivially "closed".)

In d= 2 one therefore obtains a logarithmic

temperature dependence of the conductivity correction
VS . we note that the elastic scattering due to the
disorder in principle leads to a divergent temperature
behayior of 8§ in A€ 2 . For the initial
assumption |t81 & 6% to remain valid, the results
in (21) for ©<£2 may therefore not be used at too low
temperatures. In particular, (21) does not allow to draw
conclusions about is at exactly T=0 :

Finally, it should be pointed out that the

results in (21) have been derived with a tacit assumption:
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namely that the path-amplitudes A, and A; in Fig. 9

were perfectly coherent (A, s A\,) . So we actually
took for granted that particle states with momentum ?
and *i. are equivalent. Such a "time reversal invariance"
is given if there are no external magnetic fields and if
the impurities are non-magnetic. Otherwise a new situa-
tion arises which we will discuss later.

We should like to stress once more, that (20)
and (21) are based on the explicit consideration of
backscattering effects, i.e. multiple scattering and
the correlation of consecutive collisions. Thus they
cannot be obtained within the framework of the Boltzmann
transport theory. Also CPA ("coherent potential approx-
imation" [24), an almost classical approximation method
in problems involving disorder, is not able to obtain

these results because it makes similar assumptions as

the Boltzmann theory ("single site approximation”", etc.).

Systematic Calculation of Corrections to the Conductivity

The arguments leading to (21) already contain
the essential physics. They enabled us to understand
the temperature dependence of 8¢ . oOn the other hand,
we cannot deduce more than proportionality relations
from them. For example, the precise prefactors in (20)
can therehy not be determined. Furthermore, the pertur-

bation theory cannot be extended beyond first order in A .
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For this we need a systematic approach. This involves
calculational methods which can only be formulated
within a certain mathematical framework which we cannot
discuss here. To obtain a precise calculation of

we will therefore "use" methods without really explain-
ing their theoretical background. The necessary concepts
and terms will thus only be mentioned by appealing to
their plausibility.

In spite of all quantum mechanical effects the
functional form of theresults expressed in (21) are due
to the diffusive behavior of the particles. Their
probability distribution P(F t) , (14), is deter-
mined by the diffusion equation (13). Fourier-transforming
(13), or P(¥,t) , leads to P(F,w) . Using (13)
plus proper boundary conditions one can easily convince

oneself that one finds

|
-iw+ Do %"

P(§,w)

(22)

This is called a "diffusion pole”, because ?(q,u)
diverges for (€|,53‘3C> . Its origin is exclusively
due to particle conservation during the diffusion.
The knowledge of P(r,¢) , which is a
local quantity describing a density distribution, or
-
of ?(%,m) is not sufficient, however, if we want to

know a dynamical quantity like the conductivity
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or the diffusion coefficient D(§,8) . For this one
needs a more general function, e.g. the so-called
"density-density correlation function" 'X(?,t) . It
describes the dependence of a density distribution at
one point in space and time on that at some other point
in space and time. Its Fourier transform

has the general structure [25]

DR, ¢

-1 * 3)('{,“}\ (.‘L

K(3,0) (23)

% (5,1 =

i.e. it also has a diffusion pole, where 'b(i‘u)

is now a q and W -dependent diffusion coefficient.
Once we know 'K({,u) we of course also know }(a,u) .
This quantity is therefore of fundamental importance

for a systematic calculation of corrections Ec) X'l

to Ge, Ds  due to the impurity scattering. It can be
derived within a perturbation theory using a diagrammatic
"sign language" (Feynman diagrams) [26]. 1In this way
themicroscopic scattering processes are described
graphically: (i) the motion of a particle is characterized
by a line with an arrow ("propagator"), while (ii) the
scattering at an impurity is symbolized by a dashed line
with a cross. An example is shown in Fig. 12. The

upper line, pointing to the right, describes a "particle"
with energy FE+® and momentum p+ i— ,

while the lower line, pointing to the left, describes
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Fig. 12: Particle-hole ladder diagrams describing
diffusion.

a "hole" with energy E; and momentum F~§ i
In this way the density-density correlation of a
particle-hole pair due to the usual diffusion (namely
a sequence of independent collisions) is described by
means of intuitively appealing diagrams. It should be
pointed out that the dashed line describes only a

correlation and not an interaction (which so far has

not been considered at all) between particle and hole.
The arrows carry the initial and final momenta of the

particle and the hole.
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The diagrams in Fig. 12 can easily be summed

up. In the case of small energy - and momentum differences

between particles and holes (i.e. 'k[.) & EF 4 \{Ié Pe =JR||.;)

one finds

M, (o)« —=

s X 24
re’ d (AR 2 bb%" el

where Vo is the potential energy of the scatterers.
So, as expected, we have obtained a diffusion pole.

To understand the properties of the correlation
leading to (24) wenote that a particle-hole pair with
small energy - and momentum difference can be graphically

represented in momentum space as shown in Fig. 13.

particle (E*N, F‘.ih)

hole (E) .i;“hv)

Fig. 13: Particle-hole excitation at the Fermi surface
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The partners of such a pair always propagate in the
same direction, experience the same collisions and are
hence correlated for all time. This is a consequence
of particle number conservation and this is the reason
why the diffusion pole (24) always exists — even in the
case of inelastic processes.

in the presence of time reversal invariance
(which, by the way, does not refer to a global invariance
of the whole system but to that of single-particle
states!), particle states with momenta E and -k
are equivalent. It means that we may invert the momentum
of one of the arrows ("propagators"), i.e. replace L
by -t , Without changing anything. To understand its
consequences we now consider the particle-hole ladder
in Fig. 11: we first turn around all the lower
propagators and at the same time invert all the momenta
as mentioned (?-—-i- ~5 —-(;*-S:L ) o}c.) . In this way
(Fig. 14) we again arrive at a diagrammatic ladder but
this time both arrows point into the same direction
("particle-particle ladder"). To obtain the usual
particle-hole picture we merely have to turn around the
total lower half of all diagrams, thereby arriving at
strangely looking, seemingly complicated, "maximally
crossed”, i.e. fan-like, diagrams [27]. Their contri-
bution [ 28] is easily obtained once we remember that
they originated from a particle-hole ladder (24) in

which, howeyer, the momentum transfer is now given by
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Fig. 14: Application of time reversal invariance for
: calculating the "maximally crossed" diagram.

- o
(F*'jz")- (-P'*%) =T"+F" instead of § [291].

©
Their sum A?F' (Q, bJ) is then found to be

Vot
e (25)
~iLe Do (F47")

A'ﬁ'f (%lu) *
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The essential difference to the particle-hole diffusion
pole in (24) is, that the diffusion pole in (25) is no
longer due to particle number conservation. This implies
that, for example, inelastic processes (during which
particles change their energy state) will destroy
("cut off") the pole structure in (25). This property
will later become very important.

The contribution to the conductivity due to
the scattering processes described by the diagrams in
Fig. 14 is given by the "Kubo-formula" [26], i.e. by

an integral over (25); more precisely by

—0."

85‘&. Sd’?Sd?' ‘ p-t
ETENTNTE

(26)

(Note, that the particle-hole diffusion pole, (24),

when integrated over as in (26), does not contribute

=j

because the integrand is then odd in ? and P -
The main contribution of the integrand in (26) comes
=

from the region Fﬂ?" ~Q , i.e. P =- P

and is hence due to backscattering. The contribution

considered here is in fact identical to one previously
discussed, which we had obtained by calculating the
return probability of a particle to its starting point.
Clearly, a pronounced back scattering will favor
localization. Since all scattering processes take place

very close to the Fermi-surface (!;\ ~ kg )
L3 I 7
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backscattering means that one deals with a momentum
change of 2kRg . One therefore often speaks of
"ZkF- scattering”. Here we encounter an essential
similarity with Cooper pairing in superconductors, where
particles with momenta -\;. and -\: couple, i.e. where
one also has a particle correlation across the whole
Fermi sphere. For this reason the particle-particle
diffusion pole in (25) is often called "Cooper-pole" or
"Cooperon", while the particle-hole diffusion pole in
(24) is simply referred to as "diffuson".

Taking into account all prefactors in (26) and

using the substitution F‘?"i one obtains a

frequency dependent correction to the conductivity [30]

ife
2-d a1
Vo (w) | _ ke (c\h : (27)
6o ™ Jo -iu+ Dok?

The negative sign, indicating a lowering of the
S . : 3 . - =)
conductivity, is due to the minus sign in P == P +k .

i.e. is due to the back scattering. 1In de2 one finds

3¢ (W) = - &, (e’b) B 2= (28)

2mt &,

For W20 the conductivity indeed decreases.
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Equations (27) and (28) are valid for an
unbounded system at T=0 . 1In the case of a finite
system (e.g. a d-dimensional hyper-cube of side length
L) the integration in (27) must be cut off from below
at momenta k= l/L , because smaller momenta do not
exist. In that case the frequency K can be put to

zero [28 ] and one obtains a length dependent conductivity

correction:
d-2
e // T
b (L) = -(;) e [I'(e) J (29a)
where (4= (?./'lr) S.\ /(2W)d and Sd is the surface of

the d-dimensional sphere. In d=2 we have
v
. ) L
d¢ (L) = v‘(t) Q‘(e) (29b)

We note, that the prefactor of the logarithm in (28)
and (29b) is given by a universal constant, where
(E.\'/t)-' > bl ) is a universal resistance. Using
T = Go + Yo Wwe also recognize that (28) and (29Db)

are indeed the lowest-order corrections to . in A:

d d . (L2
S = Oo { = M‘lre)z a2 l"(%) ]} (30a)

and in d=1
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g= O, [ - 22 ?M("E)] (30b)

i.e. the correction %r/u‘. is linear in A%]
and has a negative sign. The conductivity thus
decreases when the system's size is increased — this
is the precursor effect of localization.

How can one check these results experimentally?
Well, we first have to bear in mind that all experiments
are performed at finite temperatures. So, besides the
elastic impurity scattering, one will also always have

inelastic processes, which are described by some

inelastic scattering time Ui, and for which we again
= -1 1—' .
assume that Liw = . In this way a new energy

scale 'k/‘t';. enters the problem. As a consequence the
energy -i& in (27) is replaced by ~ild+ ti:‘

The particle-particle diffusion pole is then cut off,
such that W=>90 does not lead to a divergence
anymore. In turn, the frequency dependence in (28),

Qb (1/wWT) is replaced by P (Tin/t) = L. (t/hTT))
i.e. by a temperature dependence just as in (20), (21).
Alternatively one may say, that the inelastic processes
introduce a new length scale, an "inelastic diffusion
length", L - (-'bo'c-‘u)'h, the so-called "Thouless-
length" [31].It provides the length scale on which a

particle suffers an inelastic process and is scattered
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out of its energy state. For Lj. < L  the size of the
system is quite irrelevant: a particle will then only
experience L;w as the relevant length. 1In this way L
has to be replaced by in (29), (30) which leads to
exactly the same temperature dependence of 3¢ as in
(20),(21).
A decrease of the conductivity (V< 0)

is equivalent to an increase of the resistance (ERH>0J
The corresponding logarithmic temperature dependence of
the resistance of very thin films (G'L) , as shown in

Fig. 15, has been found in numerous experiments (for a

Ru(SI(F 2043n/0

1.0z |-

Fig. 15: Logarithmic temperature dependence of the
resistivity of a thin palladium film[32].

review see [33]).
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The preceding discussion was limited to the
so-called "normal" scattering, i.e. scattering by non-
magnetic impurities. Therefore the spin of the
particles was unimportant. However, in the case that the
impurities carry a magnetic moment, spin scattering will
occur, causing the spin of the particles to flip. There-
fore the particles experience something similar to a
fluctuating magnetic field. The time reversal invariance
is then lifted so that the Cooperon (25) does not diverge
any longer (the pole is cut off by a constant term \/[Tg ,
where T¢ 1is a characteristic collision time for spin
scattering [34]). Field theoretical investigations
[35,36], which we cannot discuss here in spite of their
fundamental importance [37], have shown, that nevertheless
even in this new situation one finds a logarithmic
correction in d=2 just as in (30b). However, now
the prefactor goes like N . instead of A e
the correction is even smaller than in the case of normal
scattering. Since Cooperons no longer yield a divergent
contribution, these logarithmic corrections must be due
to diffusons only, i.e. due to the usual diffusion
process. It has not yet been possible to understand
this result by means of the simple probability arguments
used before in the case of normal scattering.

Impurities with a heavy nucleus lead to yet
another type of scattering, namely to spin-orbit scattering

of the particles. Theoretical investigations [36,38]
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have again predicted a logarithmic correction for

as in (30b) — but this time with a positive sign. The
conductivity therefore increases with decreasing
temperature! A simple quantum mechanical explanation,
and experimental results fully supporting these findings,

can be found in [ 33].

The Influence of a Magnetic Field on Localization

In the case of normal impurity scattering the
localization effects originate from the quantum coherence
of paths 1 and 2 in Fig. 10, i.e. from their ability to
interfere. Therefore they are very sensitive to any kind
of disturbance of time reversal invariance of the
momentum states E and JE . Such a perturbation is,
for example, caused by a magnetic field. 1In its presence
a state is no longer characterized by a momentum I .
but rather by the electromagnetic momentum E- Zex i
Here, R' is the vector potential and the factor 2e
(instead of simply € ) is due to the correlation of two
particles just as in superconductivity. If we now let
i go into -k , the momentum states, i.e. the paths 1
and 2 in Fig. 1Q, are no longer equivalent. Mathematically

speaking this is a consequence of the fact, that now the

amplitudes A; and A: carry field dependent phase factors
[17].
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it §at.A
A, > A e
= A e ? = 2r -é—
¥

The phases are given by the line integral over the
vector potential A, i.e. by the magnetic flux &=H-S ,
where H is the magnetic field and S is the area of the
closed path in Fig. 10 ( C = velocity of light). Since
the motion of the particles is diffusive, S is given
by S+t . The return probability U“ of a particle

to its starting point in the presence of a magnetic

field is again given by (17). One therefore obtains

Wy s 20817 [ 14 e (B HDet)] (32)

I1f MW=  we find the old result Wy, = 4 1A% .
The conductivity correction in the presence of a
magnetic field, V& (W) , is again determined by

the return probability UH . The total change of the

conductivity due to a magnetic field, As(H) =
80-(“) -3 s (©) , therefore depends on the prob-
ability difference AW = Wy - Wy '

such that
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Tiw
1 di - ow[2 1D, ]
AU‘U") = g Ve 'AF o ,_)aﬂ [I w(‘”’ WD l.) (33)
T .-
In dr=2 (33) can be written as Ag®)- e F(x) .
where K = ‘zc'&;l-\'.b. T, . The function Fw)

has the limits

[ x x «|

F(K) B (34)

(v'&»* 1§ Y

)

For weak magnetic fields (X¢! ) one therefore
finds
=
oL :

while stronger fields (x>!) () give rise to a

logarithmic field dependence

Acs (H) = e (W) (36)

In any case, Ag¢ is always positive (AR < 0) y
so the resistance decreases with increasing magnetic

field ("anomalous magnetoresistance")[36]. The reason
lies in the disturbance of the phase coherence by the

magnetic field, leading to a weakening of the localization
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effects. The "critical" field Hc , determined by

%=1 , at which the change from the HY to the fA.H
behavior occurs, depends on T;, and thus on temperature.
At temperatures commonly used in experiments, Hc is
of the order Re =@ 100~ S00 Gamss ( = loe-SowmT ) ’
This should be contrasted with the classical result
As(W/oe = --((,,:»,»t).z , which is not only many orders
of magnitude smaller but also has a different sign (0,
is the Larmor frequency):! So we see that even very

small magnetic fields have a drastic influence on

localization.

Oscillation effects

As first observed by Altshuler et al [39] the
phase dependence of the electron wave function leads to a
novel kind of quantum oscillation in the magnetoresistance
of a multiply connected geometry, e.g. a torus made by
wrapping up a thin, disordered metallic film (Fig. 16).
The total change in phase, A(Ploc' of the two oppositely
traversed paths in the cylinder (Fig.17(b)), is given by

(see (31))

e

Fig. 16: Geometry used for detecting quantum oscillations in
the magnetoresistance with period hc/2e.



(a) (b)

Fig. 17: Paths of interfering waves around screend magnetic
field(®); (a) Usual Aharonov-Bohm effect, (b) geo-
metry of Altshuler et al [39].

A(f) = le « 2% é_ (37)

Loc §°

where §°= hc/2e is the flux quantum known from superconduc-
tivity (although we are here in a normal-conducting situa-

tion!). The weak localization correction to the conductivi-

ty is thus given by a straightforward extension of Eq. (33),

i.e. [17]
Tia
(
AG’(H)= ’]ou'[wo*zzu“(lv)&s (Zlﬂ\%—;)] (38)
T

where the wn are the return-probabilities for an electron
after having traversed the loop n times. Clearly, Asis an
oscillatory function of the flux with periodicity §°.

This finding must be contrasted with the well-known Aharonov-
Bohm effect (Fig. 17(a)) where electrons passing a coil en-

closing a magnetic field will only acquire a phase change



- 49 =

of half the change given by Eqg. (31). This is so because in

the Aharonov-Bohm effect each electron only samples half the
flux § , because it only passes through half the loop

(Fig. 17(a)). This yields a total phase change of

Ay = 2% < 27 % (39)
leading to oscillations of the flux with period hc/e = 2 & .
While the Aharonov-Bohm effect in a cylinder geometry is
similar to Dingle-oscillations [40], the effect predicted
in [39]with period §° is reminiscent of Parks-Little oscil-
lations [41]in a superconducting geometry.

To observe the effect it is important that the

inelastic diffusion length

Lin = VDo Ty (40)

be larger than the circumference 2% R of the cylinder
(Fig. 16), because otherwise the coherence is destroyed.
(Note that both Liwand R can be much larger than the mean
free path!).

The predicted oscillations were indeed measured
[42](Fig. 18), and full agreement with theory was found.
These experiments were done on thin Mg-films; other experi-
ments used Li (where spin-orbit scattering is negligible)

and also yielded very good agreement with theory[43]. For
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a review see ref.[44].Subsequently, oscillations of the
conductance with period hc/e in very small one-dimensional
disordered metal rings when there is a magnetic flux through
the center of the ring, have also been predicted.BS, 46].
These authors used the Landauer formula[47]to connect the
transmission coefficient through such a device to its con-

ductance.

Fig. 18: Oscillations of the magnetoresistance of two dif-

ferent cylindrical Mg-films[w2].



Networks

In the attempt to reproduce the experiments of
ref.[42] other multiply-connected geometries than a single
hollow cylinder where studied. This led to the investiga-
tion of networks of loops, e.g. of samples containing about
2.7*106 identical hexagonal loops forming a regular, two-
dimensional honeycomb-network[48], or of ladders of 1000
little squares in series with 50 ladders in parallel[49].
The magnetoresistance of these new geometries were measured,
and oscillations with period §5= hc/2e were found. A de-
tailed theory of interference effects and quantum oscilla-
tions in the magnetoresistance of normal metal networks
(loops, ladders, lassos, fractal networks, etc.) was worked

out by Doucot and Rammall[50,51]lwho also found remarkable

agreement with the experiment (Fig. 19). This work is

-15 -10 -5 0 5 H(Ce) 15

Fig. 19: Comparison between the theoretical results[50,51]
and experimental datal50]for magnetoresistance
oscillations measured with a copper network with
honey comb structure.



closely related to similar investigations of superconducting
networks[52], where fascinating physics is known to occur
(frustration, fractional number of flux guanta per unit cell
of the network, fractal fine structure of the upper critical
field line due to interference effects between adjacent
loops, etc.). In contrast, static properties of normal-con-
ducting networks do not show such a fine structure because
of an inherent regularization of the otherwise complicated

spectruml 50,51].

hc/e versus hc/2e Oscillations

Both from an experimental and theoretical point of
view a single ring should be about the simplest geometry
to observe the above-mentioned oscillations in the magneto-
resistance. Experimentally, the opposite was true since,
at first, the E% -oscillations could not be found. Later,
both ZEL = hc/e and §°= hc/2e-oscillations were detected
in individual, micron size, normal metal rings[53]. The
different temperature and field dependence clearly distinguishes
between the two effects and their physical origin. At low
fields the localization induced hc/e-effect is visible. Most
recently both types of oscillations were also measured in
samples made up of N such rings in seriesl[54]. It was found
that, on averaging, the amplitude of the hc/e oscillations

showed a 1/Jﬁ decrease, while the hc/2e-effect was indepen-



dent of N. This has also been verified theoretically[55].
It clarifies the role of ensemble averaging in calculating
corrections to the conductivity. This kind of averaging is
canonically employed in the framework of weak localization
(yvielding hc/2e-oscillations) but not in the calculation
of the transmission coefficient[46]in metal rings, where
only the hc/e-effect is found. So, to obtain the hc/2e-

effect, ensemble averaging is necessary.

Mesoscopic Systems and Universal Fluctuations

As an unexpected byproduct, the investigations of
quantum oscillations in (sub-)micron structures("mesoscopic"
systems) led to the discovery of anomalously large, univer-
sal fluctuations [56-58]. These fluctuations, known from
experiment[59 ]and numerical simulations[60], are not due
to time dependent noise or finite-size effects. They only
occur if the temperature is low enough such that the inelas-
tic diffusion length l-h , (40) , exceeds the sample dimension.
In this case "pure"quantum mechanical interference of the
electronic wave function occurs. The resulting stochastic
fluctuations of the mégnetoresistance are sample-dependent,

but are reproducible for every sample and hence yield the

"magneto—fingerwprint" of a sample. As such they characte-

rize the individual impurity configuration of a sample.




This implies in particular, that these samples do not show
some kind of'average.behavior.

To understand this behavior we return to the
discussion of the probability W for going from one point
to another one by the diffusion of quantum mechanical par-
ticles (see below (17(b)). The sum Ej AiA; in (17b) is

clearly configuration dependent, but the ensemble average

is not - in fact, it vanishes. By contrast, in the case
of the paths shown in Fig. 10, this sum is configuration

independent, since it involves a priori coherent paths.

An important quantity to look at is the "conduc-

tance" G

|
6 ¢ (U] (41)
i.e. the inverse of the resistance R of a d-dimensional
system. For a d-dimensional hypercube of side length L, R

is given by
, L
ks @ & (42)

d-
with ¢ the "resistivity" and A=L the cross-section of the
conductor. Since P is the inverse of the conductivity

G (f = 1/es), the conductance is given by

d-2
@ «oc L (43)
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In the ohmic regime ¢ is independent of L . Note that one

may write
e\—
€ T % (44)

where % is a dimensionless conductance in units of Q?Ik ;
i.e. is just a number.

When one calculates the r.m.s. value of the rela-
tive variance of G for a mesoscopic system in d dimensions

at very low temperatures one obtains[56,57]

J<a"> - L&y L 3 (45a)

{&D > e Lt
| (45b)
of E;z

where {)stands for the ensemble average. This should be
contrasted with the wellknown classical, thermodynamic re-

sult 1/th ,which implies self-averaging in the system.

Obviously, the quantum mechanical result (45a) shows that

in d = 1,2 there is no longer self-averaging. Even in d = 3

the relative variance vanishes much slower than in the clas-
sical case. The second factor in (45a) represents the effect

of quantum interference in the diffusion (the exponent (d-4)/2
is due to the integral over the sqguare over the diffusion poles,

which describe the fluctuations).



The absence of self-averaging is due to spatial
correlations in the system building up during the random
walk of the quantum mechanical particle, which in d = 1,2
may visit essentially all scatterers.

d-z
The absolute variance of & is then given by ({8§><L )

J <ar- <oy o« & (46)

i.e. is found to be independent of the system's size,

implying a universal behavior! The effect depends only
weakly on dimensionality and the strength of (weak) dis-
order and is, of course, much larger than expected classi-
cally. It has clearly been observed in the experiment[61].
The quantum interference of randomly diffusing electrons,
which leads to the large fluctuations, implies an extra-
ordinarily large sensitivity of the conductance on the im-
purity configuration. Indeed, the displacement of a single
impurity by only lKF(de Broglie wave length) affects essen-
tially all quantum mechanical paths and hence changes the
conductance by a universal, i.e. sample size independent
amount [62,63]. A comprehensive discussion of the effects
of finite temperatues, interactions, and magnetic fields on
the universal conductance fluctuations, as well as of the
physical assumptions underlying the ergodic hypothesis has

been presented by Lee et al [64].



The Anderson transition

We have so far calculated small corrections

to the metallic conductivity 0¢ due to the elastic
impurity scattering. These corrections are the result
of a perturbation theory and are lowest order in the
disorder parameter \ &) . On the other hand, for
&< 2 we found that, in spite of the smallness of A,
the corrections diverge in the limits (L or T=>0

or Lo . In this situation the perturbation theory
breaks down, i.e. fails because the condition

3| « 60 is no longer fulfilled. What now?
One could try to calculate higher order corrections

in 9\ , but that doesn't get us very far and is also
very complicated. Besides that, a phase transition and
the critical behavior can never be obtained by a finite
order perturbation theory. Since an exact solution of
the problem does not a priori appear to be possible, one
has to use other methods. Two such possibilities will
be discussed here: (i) a scaling theory, which is based
on renormalization group ideas and which determines

and (ii) a self-consistent approach which calculates 6(w).

Scaling Theory

A very successful scaling theory of the
Anderson localization problem was introduced in 1979
by Abrahams et al. [13]. These authors developed a

one-parameter scaling theory for the conductance g, (44),
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of a d-dimensional system and connected it to a perturbation
theory, in which the previously discussed length dependence
of the correction was calculated for the first time.

The conductance g is a number, i.e. a dimensionless

parameter, whose relevance for the localization problem

(particularly that of its length dependence) had first
been recognized and discussed by Thouless [23] in
several very important papers. In the metallic regime
where Ohm's law holds, the conductivity is by definition
length independent, so that the conductance is given by
%" L*2 . On the other hand in the insulating regime
the wave functions fall off exponentially; one would
therefore also expect an exponential length dependence

-LI%
of 6° and thus of (a , l.e. %occ'oc e

where E' is an unknown "localization length". What now
is the length dependence of g in between these limiting
cases? To answer this question, we take hypercubes

of side length L and build up a larger hypercube with
side length b-:L . Now we ask how the conductance of
the larger system, %(bL) , depends on the conductance
of the initial cube, i.e. Q(L) . 1In principle %(bL)
could be a function of %UJ b, L and also all

kinds of non-universal properties of the material

(e r hF, W etc.). The heart of the argument proposed
by Abrahams et al. now is, to assume that the old %

was in fact the only relevant parameter of the system

that would determine the new % , 1.e. to have a relation

q (bL)- { [b, qu] . (47a)
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or, equivalently,

q (L)- F [b,%‘(%)]_ @7b)

where f is some, yet unknown, function. In this way
microscopic details are assumed to be unimportant. Eq.
(47b) may be called a "scaling equation". Since the
relation is supposed to hold for any value of b, we
differentiate (47b) by b and then set b=1 . Then

we obtain

%%}F.. f[%ﬂJ] (48)

~

where ; is a function involving { . The logarithmic
derivative of % with respect to L. therefore turns out
to be a function of only % itself. To take a
logarithmic instead of the usual derivative is indeed

a convenient trick: one thereby achieves that length
scales of L (e.g. £ or§ in LJe, L/¥ ) which we
do not know anyhow, drop out! Abrahams et al. [28] now

defined a so-called "B-function"

P’! 1 i‘a_ . i.?i'i . F[%(L)] (49)
? aklL FUARE P

which is essentially given by (48) and which is also

only a function of %(L) . Its behavior under a change



_60_

of S(L) determines the conductivity behavior of the
system.

Starting from what we already know, we can
easily calculate the limiting cases of P . In the
localized regime %«I -, with %“- P:th , we

find
‘l:.' fu% (50)

while in the metallic regime ‘a»l we have
=0 Y3 , where 3¢ is given by (29a). Combining

(43) and (49) one arrives at

i&=d-2-3+0(l.,) (51)
) ]

The first term in (51), i.e. d-~1 , represents Ohm's
law (purely metallic conductivity) while the ']3
correction term follows from the perturbation theory for
the conductivity.

By means of (50),(51) which describe Q in the
limits Qéﬂ and 33>f we may try to draw conclusions
about the shape of ﬁ for all '% . This is shown in
Fig. 20, where ?(%) has been plotted versus,L~% .

The calculated limits of P for the insulating and the
"metallic" regime are shown by full curves. Note the
important fact, that for %)Dl all B-curves are

smoothly bending upward — a consequence of the negative
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Fig. 20: The B-function for d = 1,2,3 dimensions

sign of the 1/g correction in (51). So, as g becomes
smaller, the B-curves move away from the limiting value
d-2 . One may therefore make a sensible assumption
about the’” unknown region in between: namely, that also
there the B-curves have a smooth and monotonous shape
as shown by the dashed curves in Fig. 20. This figure
corresponds to a "flow diagram”, which reflects the
behavior of the system under changes of the system's

size. For d<2 this behavior is characteristically



different from the one for d>»2 : (i) dsg 2 ; in

this case B is always negative. Since [5 describes

the change of the conductance g with the system’s :

size L, this implies dg/d& L <O . An enlargement

of the system therefore always leads to a decrease of

g: _ the curves in Fig. 20 always "flow" to the left

into the insulating regime. This tells us that for

a2 and L= o a1l states are localized. The system

is always an insulator. Of the curves that always have

a negative B the case d=1 is obviously special ("marginal"):
the curve approaches B8 = 0 for %))L but never reaches
B=Q at finite g ; so even here the states of the infinite
system are always localized. This provides the answer

to our initial question about the possibility of metallic
conductivity of very thin films (d-‘—) at T = 0: we now
find that a truely metallic conductivity in d=2 is

never possible! (ii) d > 2 ; here two possibilities,

B<Q and B> 0, exist since the B-function has a zero

at %:%c . For systems with an initial value of the
conductance %(‘}o (i.e. with a disorder N> 7\:, ’
where %(?\t) z tkc ) we find P(O . Therefore an

enlargement of the system again leads to an insulating
behavior (flow of the curve to the left). However, for
an initial value %3%c (i.e. (AC 'M, ) one has ‘l‘) o,
such that increasing the size of the system drives it

to the right, i.e. into the metallic regime. The point

$(%c) =0 is called "fixed point", because g stays
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fixed when L is changed. This point represents the
Anderson transition. So we find that for d > 2 there
exists a transition at a finite %c , i.e. at a finite
value of the disorder, Ne . Depending on the disorder
(9\ £ Ne) states are either extended (metal) or
localized (insulator).

In the vicinity of the transition, P(’S):O ,

the B-function may be linearized:
P% 3-Qe (52)

where 1/v 1is the slope of B at g= 9 in Fig.20.

Eg. (52) can be integrated and yields

v
L . (‘tﬂ& (53)
Le q0-9¢c

where %ot %(Le) .
In the localized regime (%,%. < %e)

one finds

(54)

Ly
45 [1-(3)"
where ; has been introduced as a "localization
length". If we define a parameter
t = (%o'%t)/%b < (A-A)/ Ae , which measures
the disorder of the system relative to the corresponding
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