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1. Introduction

ABSTRACT

Studies of personal solar ultraviolet radiation (pUVR) exposure are important to identify populations at-risk of
excess and insufficient exposure given the negative and positive health impacts, respectively, of time spent in the
sun. Electronic UVR dosimeters measure personal solar UVR exposure at high frequency intervals generating
large datasets. Sophisticated methods are needed to analyze these data. Previously, wavelet transform (WT)
analysis was applied to high-frequency personal recordings collected by electronic UVR dosimeters. Those
findings showed scaling behavior in the datasets that changed from uncorrelated to long-range correlated with
increasing duration of time spent in the sun. We hypothesized that the WT slope would be influenced by the
duration of time that a person spends in continuum outside. In this study, we address this hypothesis by using an
experimental study approach. We aimed to corroborate this hypothesis and to characterize the extent and nature
of influence time a person spends outside has on the shape of statistical functions that we used to analyze
individual UVR exposure patterns. Detrended fluctuation analysis (DFA) was applied to personal sun exposure
data. We analyzed sun exposure recordings from skiers (on snow) and hikers in Europe, golfers in New Zealand
and outdoor workers in South Africa. Results confirmed validity of the DFA superposition rule for assessment of
pUVR data and showed that pUVR scaling is determined by personal patterns of exposure on lower scales. We
also showed that this dominance ends at the range of time scales comparable to the maximal duration of con-
tinuous exposure to solar UVR during the day; in this way the superposition rule can be used to quantify be-
havioral patterns, particularly accurate if it is determined on WT curves. These findings confirm a novel way in
which large datasets of personal UVR data may be analyzed to inform messaging regarding safe sun exposure for
human health.

(Gallagher and Lee, 2006). The global burden of disease attributable to
solar UVR exposure is estimated to cause an annual loss of 1.6 million

Some sun exposure, specifically exposure to solar ultraviolet ra-
diation (UVR) has health benefits, such as for vitamin D production
(Baggerly et al., 2015). Excess sun exposure, that can lead to sunburn, is
associated with melanoma etiology as well as the development of ker-
atinocytic cancers, skin photoaging and certain types of cataract
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Disability-Adjusted Life Years or 0.1% of the total global disease burden
(Lucas et al., 2008). While UVR exposure is considered a minor con-
tributor to the world's disease burden, a large portion of the morbidity
and mortality associated with personal solar UVR exposure could be
avoided. Sun exposure is a modifiable risk factor in relation to skin
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cancer that can be reduced or eliminated by practicing safe sun beha-
viours and using sun protection in outdoor occupational and recrea-
tional settings (Islami et al., 2017).

To develop sun awareness campaigns and to craft messages to assist
the public to protect themselves against the adverse effects of excess
personal solar UVR exposure, several studies have measured personal
exposure to identify at risk groups exposed to high levels of solar UVR
(Xiang et al., 2015; Cust et al., 2018; Hacker et al., 2018). Studies have
measured personal solar UVR exposure during most types of outdoor
activities (O'Riordan et al., 2008; Fernandez-Morano et al., 2017) as
well as in various occupational settings (Hammond et al., 2009;
Wittlich et al., 2016). Several studies have measured personal exposure
using personal dosimeters which vary in type and precision, among
other factors, and require an appropriate configuration to answer a
particular research question (King et al., 2015). In the instance of
personal dosimeters, the dosimeters are attached to an individual or to
several individuals (depending on the size of the study) and typically
measure solar UV-A, UV-B and/or erythemal UV-B radiation. Personal
exposures to solar UVR recorded in this way differ from the static
ambient UVR data, typically measured on a horizontal surface. Personal
UVR data are, in other words, taken on body sites that change in or-
ientation and position with movement, and thus reflect information on
individual daily exposure behavior. A major challenge of large personal
exposure studies using electronic dosimeters (most commonly used
nowadays) is the amount of data acquired and deciding upon the most
cost-effective and time-sensitive way to prepare and analyze the data
for meaningful interpretation.

In a previous attempt to search for the best methodological and
statistical approach to analyze such datasets, we applied wavelet
transform (WT) analysis, more precisely wavelet-based spectral analysis
(WTS), to high-frequency personal recordings collected by electronic
UVR dosimeters designed to measure erythemal UVR exposure (Blesi¢
et al.,, 2016). The analysis of our WTS results showed that personal
datasets can be characterized by a long-range temporal behavior, that
changed from uncorrelated to long-range correlated with increasing
duration of time spent in the sun. WT spectral peaks also suggested the
existence of characteristic times in sun exposure behavior that seemed
to be universal across the dataset at the time. It was also possible to use
WT to classify groups of records in terms of distinct individual UVR
exposure patterns previously not done using conventional statistics
(Blesi¢ et al., 2016). One aspect of the previous study that warranted
further research came about from the analysis of data from construction
site workers in New Zealand. It showed that WT slopes could still be
different for individuals who spent almost the same amount of time
outside and had very similar daily sun exposure, and thus the same or
very similar classical statistical measures of exposure behavior. We
hypothesized that the WT slope would be influenced by the duration of
time that a person spends in continuum outside. In this study, we ad-
dressed this hypothesis by using an experimental study approach. We
aimed to corroborate this hypothesis, and to assess and characterize the
extent and the nature of influence the time a person spends outside has
on the form of statistical functions that we used to analyze individual
UVR exposure patterns. To this end, we applied the detrended fluc-
tuation analysis (DFA), previously only used for ambient solar UVR
measurements (Da Silva Filho et al., 2016), to personal sun exposure
data.

2. Data and methods
2.1. Data and data collection

Data from several different activities located in different geographic
sites (see Table 1) were used in this study to provide a wide variety of
exposure patterns. At each location, participants wore the electronic
dosimeter badges while they engaged in their various activities and at
least one dosimeter badge was used to measure ambient UVR at each

Table 1

Summary of experiments of conducted using the dosimeter badges.

Number of data points per

Recording frequency
day (N)

Dosimeter positions

Number of participants (age

range in yrs)

Date (mean seasonal temperature, in

°C)

Altitude (m) Activity

GPS ()

Location

720

1 min

November 16, 2016 (19.1)

Inside/outside

simulation
Car guard

1433

—25.77, 28.21

Pretoria, South Africa

1 min 840

September 18, 2017-September 22, 8 (33-55) Wrist

2017 (14.6)

1368

—26.68, 27.08

Potchefstroom, South Africa

1440

1 min

Hard hat, glasses,

11 (12-50)
arm

January 29, 2017-February 3, 2017

0.4

2143 Skiing

45.21, 6.53

Val Cenis, France

1440

1 min

Hard hat, glasses,

arm

December 31, 2016-December 8, 2017 7 (12-50)
(0.5)

Skiing

921

43.24, 22.33

Stara Planina, Serbia

1800

8s

Wrist

3 (6-47)
1)

July 23, 2018-July 26, 2018 (21.3)

March 01, 2017 (15.6)

Hiking
Golf

1999
12

46.43, 11.55
—36.89,

174.69

Dolomites Mountains, Italy
Avondale, New Zealand

7200 (golfing) and 3600

(ambient)

2 s (golfing) and 4 s

(ambient)

Chest, wrist, head




location. The badge used to measure ambient UVR was placed on a
horizontal surface so that it would receive total exposure for the entire
day. For each experiment, the dosimeter badges used a sampling rate of
60 s except for the hiking experiment, which used an 8-s sampling in-
terval, and a golfing experiment that used 2- and 4-s sampling. The
dosimeter badges used were designed to measure erythemal exposure in
the wavelength range of 290-400 nm. A solid-state detector with a
linear response to UVR was used to measure erythemal UVR. The an-
gular response of the instrument is close to that of the cosine response
of human skin due to the weatherproof case over the detector. The same
dosimeter badges have successfully been used in previous exposure
studies; more details on specifications and functioning of the dosimeter
badges are provided elsewhere (Allen and McKenzie, 2005; Wright
et al., 2007; Seckmeyer et al., 2012). All the badges gave records in
dimensionless counts that could be converted to Ultraviolet Index (UVI)
units after a calibration against the meteorological-grade instrument
that measures UVR (please see explanation in Blesi¢ et al. (2016)and
references therein).

Of all the recordings, the inside-outside experiment (I0) was not
related to any specific individual behavior but was designed to simulate
personal exposure to solar ultraviolet radiation (pUVR) for 15-min, 30-
min, 1-h, and 2-h IO signals. In other words, for the IO experiment we
placed dosimeter badges successively inside and outside at 15-min, 30-
min, 1-h, and 2-h intervals on the same day. We devised this experiment
to see how this highly regular, periodic pattern of ‘behavior’ would
reflect in the statistical functions we applied.

For some of the experiments, the counts for the dosimeter badges
were converted to erythemally-weighted UVI using the following
equation:

400 nm
UVI = ko X f Ey X Ser()dA,

250 nm

where E, is the solar spectral irradiance at wavelength A in W/m?/nm,
ke, is equal to 40 W/m? and S, is the CIE reference erythemal action
spectrum. The UVI data points were then integrated over the time
period and converted to standard erythemal dose (SED) units to de-
termine the total UVR received during the day (Blesi¢ et al., 2016).

3. Methods

We characterized time series of personal exposure to solar UVR
(pUVR) by calculating the scaling (or long-range, or long-memory, or
Hurst) exponent a of the 2nd order detrended fluctuation function
(DFA2) that is a result of the detrended fluctuation analysis (DFA) with
linear trends in the data systematically removed. DFA was introduced
as an appropriate statistical approach to deal with any nonstationary
record that contains some trends of unknown form (Peng et al., 1994).
In DFA, the procedure of detrending was devised to eliminate such
trends; the resulting remarkable performance of this method, proven by
numerous systematic studies (Hu et al., 2001; Chen et al., 2002, 2005;
Xu et al., 2005; Bashan et al., 2008) and across different fields (Stanley,
2000) stems from its highly effective detrending solution.

The DFA procedure (Peng et al., 1994) for the analysis of any dis-
crete, recorded time sequence A(k) (k = 1 ... N), where N represents
the total number of data recorded, requires three consecutive steps. In
the first step, for each time series A(k), the partial sum
y(n) = ZszlA(k) — A is calculated, with A being the average value of
the recorded variable for the entire record. Next, the entire series of y
(n) is divided into a set of overlapping segments (Buldyrev et al., 1995)
of the length [ and the local trend for each segment, the linear or
polynomial least-squares fit for the segment data, is calculated. The
order m of polynomial that defines the local trend represents the order
of DFA method (DFAm) - here we used DFA2. A sliding segment of size [
produces new series of segments with the detrended sequences y,;(n)
(1 £ 1 £ (N= 1+ 1)) that are differences between original series y(n)

and the local trend. Finally, DFA2 fluctuation function is obtained as
the average of variances about the local trend for each segment, over all

segments, as F(l) = \/m Zfi‘ll“ Zi,:lyki(”)z-

This procedure design renders DFA an optimal statistical approach
to use in analysis of natural or human-made nonstationary data com-
pared to calculations of autocorrelation function (ACF) or Fourier
power spectra (PwS). Namely, a) by way of subtracting local trends at
different time window lengths I, DFA produces a time series that fluc-
tuates much less than the original, and still has the same statistical
properties (Stanley, 2005) and b) DFA is, by definition, a sum over
autocorrelations (Holl and Kantz, 2015) thus fluctuates less than the
typical autocorrelation function and is markedly more stable in data
analysis (Bunde et al., 2013).

If the analyzed records are statistically long-range autocorrelated, or
long-term persistent (LTP), due to their inherent power-law data dy-
namics, DFA2 function behaves as F(n)~n%, with 0.5 < a < 1; if the
time series A(k) is short-range autocorrelated, or has no correlations at
all, « = 0.5 (Peng et al., 1994). In this way, DFA2 presents as a straight
line on log-log graphs of dependence of F(n) of the time scale n, al-
lowing for quantification of the so-called scaling, or long-range auto-
correlated character of data by the corresponding power-law exponent
a. Instances when o > 1 imply the existence of intrinsic non-stationa-
rities in autocorrelated data (Holl et al., 2016). Finally, for LTP records
the corresponding Fourier PwS decreases as a power law as well, in the
form Ep(w)~w~#, and the exponent B that can be directly related to the
DFA exponent a through the scaling relation 8 = 2a — 1 (Peng et al.,
1993).

It has been shown by other groups (see, for example, the early in-
vestigations by Mandelbrot and Wallis (1969)) and by us (Blesi¢ et al.,
2018) that a pure LTP behavior rarely occurs in natural records, and
thus the corresponding DFA2 functions, depicted on the log-log graphs,
are rarely ideal linear functions. Instead, they usually contain transient
crossovers in scaling that arise from presence of irregularities of dif-
ferent types (Mallat and Hwang, 1992; Hu et al., 2001) most commonly
the effects of mixtures of cyclic components that locally perturb DFA2
functions (Mandelbrot and Wallis, 1969). When these transient cross-
overs appear in DFA2 functions they cannot, however, be used to ac-
curately determine characteristic times, or the periods, of the cyclic
phenomena that have caused them. Numerical studies with artificially-
generated time series with added trends (Hu et al., 2001) demonstrated
that, due to the DFA design, positions and spread of any such pertur-
bation on DFA2 varies depending on the scaling exponent o and the
period and/or amplitude of the hypothetical periodic trend
(Mandelbrot and Wallis, 1969; Hu et al., 2001). For this reason, when
the effects of such irregularities are visible in DFA2 functions, we used
wavelet transform power spectral (WTS) analysis to investigate them in
detail.

The wavelet transform (WT) analysis was introduced (Morlet et al.,
1982; Grossmann and Morlet, 1984) to circumvent the uncertainty
principle problem in classical Fourier transform analysis (Stratimirovic
et al., 2018) and achieve better signal localization in both time and
frequency. In WT, the size of an examination window is adjusted to the
frequency analyzed; in this way an adequate time resolution for high
frequencies and a good frequency resolution for low frequencies is
achieved in a single transform (Braci¢ and Stefanovska, 1998). For a
detailed explanation of the WTS procedure that we used in this paper
we refer to the original articles that introduced WT and WTS, e.g.
Morlet et al. (1982) and Astaf'eva, (1996), or studies that have applied
WTS, e.g. Stratimirovi¢ et al. (2001). Here, we calculated the wavelet
power spectra Ey (n) which can be related to the corresponding Fourier
power spectra Er (w) via the formula (Perrier et al., 1995) that stipulates
that if any of the two spectra - Ey (n) or Er(w) - exhibit power-law
behavior, then the other will be of the power-law type too, with the
same power-law exponent B (Stratimirovic¢ et al., 2001). This means
that WTS can have a dual function in time series analysis - it calculates




contribution to signal energy along the scale of n in the same way as the
classical Fourier spectrum, thus providing information on cyclic influ-
ences within data, and provides the information on scaling, through the
value of 3, confirming or challenging DFA2 scaling results (that is, the
obtained values of a). We used Morlet wavelets of the 6th order and
Paul wavelets of the 4th order as wavelet bases for our analysis for they
are well adapted to accurately estimate characteristic times or periods
of local irregularities of analyzed time series (Mallat and Hwang, 1992).
They are, by definition, narrow in spectral (scale)-space, and broad in
the time-space, which results in very well localized, relatively sharp
peaks in the global WT spectra (Torrence and Compo, 1998) that may
mark appearances of periodic or non-periodic cycles, or even significant
singular events in the analyzed time series (Mallat and Hwang, 1992).

We calculated DFA2 and WTS functions for our pUVR data and
plotted them on a double logarithmic scale to estimate values of a and
by linear fits. Due to the finite sample size effects, and following re-
commendations by Hu et al. (2001), Kantelhardt et al. (2001), Bashan
et al. (2008), Ludescher et al. (2017) and Koscielny-Bunde et al. (2006),
we considered only values of DFA2 and WTS between the minimum
time scale of n = 5 for DFA2 and n = 2 for WTS and the statistically
meaningful maximum time scale of n = N/10; this defined the range of
scales available for our analyses. We recalculated scale n into time t for
presentations in graphs below; this was not done only if measurements
of different recording frequencies were presented together, in order to
avoid horizontal shift in time scale.

4. Results

We aimed to test and explain our hypothesis that, even if the
amount of total exposure to solar UVR is a factor influencing the values
of a and 3 of DFA2 and WTS slopes, it is the duration of repeated or
single patterns of continuous exposure that will result in larger a and f -
that is, in more pronounced LTP of pUVR data. First, we analyzed si-
mulated pUVR data from the IO experiment. For all the records in our
I0 sample we calculated DFA2 and WTS functions. Assuming that any
recorded pUVR signal is a superposition, or result of a combination of
the ambient solar UVR and a personal pattern of outside behavior, we
also calculated differences F, = JFoyvg — Fou and
Ew,p = Ew, puvk — Ew,ou, Where Fyyyg and Ew puyg represent DFA2
functions and WTS spectra of our recorded pUVR data, while F,,, and
Ew.oue stand for DFA2 and WTS results for the corresponding ambient
UV records. We did this following systematic assessments of effects of
trends and non-stationarities on DFA of artificially-generated time
series given in Hu et al. (2001) and Chen et al. (2002). These papers
provide a theoretical superposition rule devised to describe DFA func-
tions of data artificially constructed by mixing signals with different
scaling exponents a; superposition rule states that, for a time series
comprised of segments of mutually-independent (non-correlated) sig-
nals f(t) and g(t), the DFA function (of any order) can be calculated as
F;,, = F; + F;, where F; and F, are the DFA functions of signals
composed of only the segments f(t) or g(t)and segments of different
correlations substituted with zeros. Following relations that connect
DFA function and Fourier (and thus also WT) power spectra (Kiyono,
2015), the same superposition rule leads to relation
Ew, j+g = Ewy + Ewg. In the case of our datasets, following the premise
of the superposition rule, F, and Ey, represent DFA2 and WTS func-
tions of a ‘personal’ signal, defined solely by the pattern of individual
outside behavior.

In Fig. 1 we present recorded UVR data from our IO experiment
(Fig. 1A), together with the results of their DFA2 analysis (Fig. 1B). The
DFA2 functions of the 15-min, 30-min, 1-h, and 2-h IO signals all pre-
sent visible change in scaling behavior that transfers to larger scales
with the increase of time spent inside/outside (for clarity of display, we
have only presented the 15-min and 30-min results in Fig. 1B). In ad-
dition, the application of the superposition rule to I0 DFA2 functions

shows that the lower part of DFA2 functions is dominated by the si-
mulated pattern of outside behavior, while the upper part, in the range
of time scales after the transient crossovers in scaling, is dominated by
ambient UVR. The duration, or the range of scales, of pattern dom-
inance of outside behavior (or ‘personal’ behavior) on the pUVR DFA2
is, as expected, longer for longer continuous exposure to solar UVR,
even if the total exposure of all the analyzed records is the same. This
also seems to affect the values of a for different DFA2 functions in the
same manner — longer exposure leads to larger values of a. We cannot,
however, calculate exponents a precisely for our IO data due to the
profound dominance of periodic trends (caused by 15-min, 30-min, 1-h
and 2-h IO patterns). Hence, the accurate estimation of scaling is im-
possible unless these influences are firstly removed from records (Blesic
et al., 2018).

In Fig. 2 we present WTS results that we obtained for all the IO data.
The WTS fuctions present with the prominent cycles at 30-min, 60-min,
120-min and 240-min intervals, corresponding to the full periods of a
15-min, 30-min, 1-h and 2-h patterns. The application of the super-
sposition rule illustrates the dominance of personal patterns of outside
behavior in the lower scales, up until the end of cyclic peak intervals.
Finally, even if, as in DFA2, accurate estimation of scaling exponents 3
is hindered by the prominent effects of cycles, it is visible that the slopes
of WTS functions do rise with the duration of continuous exposure to
the solar UVR as predicted. Thus, results of the IO experiment, pre-
sented in Figs. 1 and 2, confirm that a) LTP of the pUVR records is more
prominent with longer repeated continuous exposure to solar UVR, and
b) durations of repeated continuous exposures in the record can cor-
rectly be extracted from the ‘personal’ DFA2 and WTS functions cal-
culated by using the superposition rule.

We further tested the validity of these findings for cases of pUVR
records obtained from the car guards, skiers, hikers and golfers mea-
surements.

Fig. 3 shows illustrative examples of the original data (panel A),
together with their DFA2 (panel B) and WTS (panel C) results, for the
car guards measurements. In Fig. 3B we give DFA2 functions for the
original pUVR records, superposition ‘personal’ DFA2 (calculated as
DFA2, = \[DFA2},, — DFA2},), and superposition ambient DFA2
(given as — DFA2,). The corresponding WT results are presented in
Fig. 3C. Fig. 3A also provides information on the total daily exposure
(given in SED units) and total daily exposure time (total time spent
outside, tt) for the illustrated measurements. As in the IO case, car
guards results with higher LTP are accompanied with a corresponding
DFA2, that covers the initial part of the curve and reaches longer time
scales. This means that, if the superposition rule stands in the pUVR
case, a longer continuous exposure to solar UVR is connected to the
larger LTP, unrelated to the amount of total exposure. The WTS graphs
(Fig. 3C) can help determine the amount of time of the longest duration
of total exposure the person had that day by searching for the last
visible cycle covered by the Ey,, curve. Due to ability of WTS to register
both periodic and non-periodic cycles and durations of significant sin-
gular events, cycles in Ey , functions can inform the duration of the
repeated exposure pattern(s), as in IO experiment, or the duration of a
singular continuous significant exposure. The form of Ey , can thus
partially explain individual patterns of outside behavior. Fig. 3C also
suggests that perhaps these cycles in WTS functions, defined by dura-
tions of continuous time spent outside, dominantly drive DFA2 and
WTS behaviors on lower time scales. Finally, Fig. 3 additionally pro-
vides values of scaling exponents a and . We provide values of 3 in a
form ag=(1+p)/2, to enable comparison of the two scaling exponents
according to their scaling relation (Peng et al., 1993). It is important to
note that for the cases presented in Fig. 3, and for the rest of the dataset,
values of a and P (that is, ag) align within the range of error which
depends on the number of data points N and here is equal to 0.04
(Bashan et al., 2008).

The skiing dataset results, presented in Fig. 4, confirm this finding.



Fig. 1. (A) Recorded UVR series from the IO experiment for the 15-min and 30-min consecutive inside-outside repositioning of UV dosimeters, together with the
ambient recording for the same time period. (B) DFA2 results of the inside/outside experiment with the dashed lines representing the superposition of the respective

result.

Fig. 2. Wavelet transformation results of the inside-outside experiment calcu-
lated with the use of Paul wavelets. Dashed lines represent superposition of the
respective result. Vertical lines at 30, 60, 120, and 240 min are given as visual
guides.

Two cases are shown in Fig. 4, one of a person who spent a long time
outside continuously, and another of a person who was outside ran-
domly in short time intervals. The DFA2 results confirm previous ob-
servations of the connection between values of a and duration of con-
tinuous exposure. The WTS results confirm that the cycles that define
durations of exposure define slopes a and 3 on lower scales. In the case
of both skiers, the appearance of multiple such cycles exists that in the
case of the ‘very active’ skier even define the whole DFA2-WTS beha-
vior in the range of scales available in our analyses. For this person, we
are probably observing a combination of personal exposure patterns, in
which the ‘personal’ cycles on lower time scales (at around 10 min,
20 min, and 30 min) possibly mark repeated continuous exposure,
while the peaks at very long scales (in the range of 60-90 min) could be
derived from a single continuous significant exposure.

In Fig. 5 a combination of hikers and golfer recordings were used to
illustrate how the DFA-WTS superposition rule may be used to analyze
specific groups of outside behaviors (in this case, recreational activ-
ities). In panels A and B of Fig. 5 the original records of hiking and

golfing pUVR are shown, together with the ambient data for the re-
cording period. The recording periods cover only the period of a spe-
cific activity and are chosen to be of the same duration. During the
entire recording time, participants who wore UVR dosimeters were
constantly outside. Panels C and D present DFA2 results for the pUVR
and the ambient records in two cases, which show how the slopes a of
pUVR data are always lower than those for the corresponding ambient
records. Panels E and F depict results of DFA2-WTS comparisons of two
sets of pUVR records, with functions derived from the superposition
rule to understand personal patterns of behavior. Panel E confirms that
longer continuous exposure results in larger slopes of DFA2-WTS
functions: from the original records (given in A and B) it was apparent
that the golfer spent longer continuous periods exposed to solar UVR
which translates to larger value of a for this pUVR measurement. This is
confirmed in panel F, where a prominent cycle of about 20-25 min
dominates golfer's personal WTS, compared to 6-7 min cycle in hiker's
data. Both cycles probably suggest a repeated personal pattern of out-
side exposure. Due to the very high frequency of hiking and especially
golfing recordings (see Table 1) and the finite size effects, we were not
able to calculate DFA-WTS functions for longer time intervals and thus
examine possible appearance of WTS peaks on larger time scales in the
golfer's data that would suggest long continuous significant singular
exposure.

Finally, we investigated whether the improvement in frequency of
recording introduces changes to DFA-WTS results. We used golfer's data
for this exercise since these were measured with the highest frequency.
From these 2-s-interval data we produced 1-min averages of the original
golfing series. The results of comparison of WTS analyses for these two
sets of time series are given in Fig. 6. The change in recording frequency
does not change shapes of WTS functions for ambient or pUVR data, but
only improves (with improved frequency) the details in shape of the
WTS function derived from the superposition rule.

5. Discussion

Detrended fluctuation analysis (DFA), in combination with the
wavelet transform spectral analysis (WTS), was used to assess long-term
properties of various pUVR time series. We aimed to quantify their
overall LTP and to use the DFA superposition rule (Hu et al., 2001; Chen
et al.,, 2002) to discriminate between different behavioral patterns
within the group of records with similar total daily exposures to solar
UVR. The DFA superposition rule (Hu et al., 2001; Chen et al., 2002)
that was originally devised to describe effects of trends, including



Fig. 3. (A) Illustrative examples of the recorded pUVR series from the South
African car guards measurements, together with the ambient recording for the
same day. Values of the total daily exposure (in SED) and total exposure time
(tt) for the three cases presented are given. (B) DFA2 results of the CG pUVR
data given in (A) (solid lines), with the ‘personal’ contributions to DFA2 func-
tions extracted using the superposition rule (dotted lines) and estimated ‘am-
bient’ or ‘outside’ influences (asterisks). Values of scaling exponents a for the
three pUVR time series are given. (C) WTS results for the same sets of records,
calculated with use of Morlet wavelets. Vertical dotted lines represent WTS
estimates of the longest duration of continuous exposure for the analyzed pUVR
data. Values of WTS exponents {3 are given in a form ag= (1 +3)/2 so that those
can be directly compared with values of scaling exponents a given in (B).

periodic or aperiodic cyclical influences, on artificially generated time
series, has so far been proven valid for use in some instances of analysis
of complex signals, including meteorological data (Jun et al., 2006;
Blesi¢ et al., 2018).

To test usability of the DFA superposition rule for pUVR records, 10
data were analyzed. Our results confirmed validity of the superposition
rule to assess pUVR data and showed that the pUVR scaling on lower
time scales is determined by personal patterns of exposure. We also
showed that this dominance ends at the range of time scales comparable
to the maximal duration of repeated or singular continuous exposure to
solar UVR during the day. In this way, the superposition rule can be
used to quantify behavioral patterns, particularly accurate if it is de-
termined on WTS curves. This is, to our knowledge, is the first result of
this kind.

In addition to confirming our previous findings (Blesi¢ et al., 2016)
that longer overall daily exposures are reflected in higher DFA2 or WTS
slopes, our analysis of the car guarding, skiing, hiking and golfing data
also confirmed the IO finding. There exists a difference between slopes
(that is, values of scaling exponents o or ) for the same (or very si-
milar) total daily exposures, but different durations of maximal con-
tinuous exposures during the analyzed day. In our experiments, the
maximal duration of exposure additionally raised values of a or f in-
forming on different patterns of repeated individual behavior. This
designates DFA and WTS as additional methods to the classical pUVR
analysis methods such as heuristic search algorithms, statistical data
processing and supervised/unsupervised machine learning. DFA and
WTS can be used as tools to describe and quantify personal exposure
behavior and delineate individual outside activity from meteorological
data. These methods will prove useful in environmental and behavioral
epidemiological studies and to understand more precisely the re-
lationships between pUVR and sun-related health outcomes. This is
especially important among vulnerable groups such as children, the
elderly and people with pre-existing conditions such as im-
munosuppression, photophobia and albinism.

6. Conclusions

In summary, DFA and WTS are valuable tools to apply in the in-
vestigation of pUVR measurements. Outcomes of these types of analyses
for ‘big data’ from around the world may be invaluable to understand
the present and future health risks associated with sun exposure. Future
studies may consider pooling data from multi-site, multi-country stu-
dies and using the methods described here to generate results to fine-
tune safe sun exposure public health campaigns as well as personal sun
prediction modelling tools.
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Fig. 4. DFAZ2 results, with values of total exposure in SED (left) and Morlet WT results (right) for an active skier (with dosimeter positioned on arm; blue lines) and
less active skier (dosimeter positioned on head; red lines). Dashed lines represent the superposition of the respective result. Vertical dotted lines mark positions of
cycles in pUVR data. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 5. (A) and (B) Data: original hiker and golfer pUVR measurements, together with the corresponding records of ambient UVR. Both sets of records are taken from
wrist positions. Values of the total exposure for presented recording periods (in SED) are given. (C) and (D) DFA2 results: comparison of personal and ambient DFA2,
for hiker and golfer data. Values of DFA2 exponents a are given. (E) and (F): DFA-WTS results: comparison of DFA2 (E) and WTS (F) results for hiker and golfer data,
together with functions derived from the superposition rule. DFA2 results in (E) are given as log (F(N)) vs log(n), to enable comparison of results; conversion of scale
n into time t would, due to different rate of sampling in two experiments, translate DFA2 functions horizontally. Morlet wavelets were used for calculation in (F).

Values of WTS exponents 3 in a form ag=(1+[3)/2 are given.



Fig. 6. WTS functions for the golfer's pUVR, ambient, and ‘personal’ (from
superposition) data, for the original 2-s recordings (thin lines) and averaged 1-
min series (thick lines). Records are taken from golfer's hat.

Torrence and G. Compo and is available at URL: http://atoc.colorado.
edu/research/wavelets/. We thank anonymous reviewers for stimu-
lating comments.
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