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Abstract 

Statistical models used in mathematics education are often linear and latent variables are often assumed to be 

normally distributed. The present paper argues that by relaxing these constraints one may use models that fit 

the data better than linear ones and provide more insight into the domain. It combines research on statistical 

methodology with research on the competence structure within algebra. The methodological innovation is that 

models with latent variables from the unit interval are considered which allows to model relations by means of 

fuzzy logic. Estimation techniques for such models are discussed to the extend necessary for the present study. 

To assess the benefit of this modelling technique data from an algebra test is re-analyzed. It is shown that non-

linear models have greater explanatory power and give interesting didactical insights. Moreover, model 

comparison allows to differentiate between different theoretical constructs related to algebraic understanding. 

Finally, a research program is outlined that aims at the development of a universal algebra competence model 

that can be applied to test data from various algebra tests.  

Keywords: Competence model; Non-linear Model; Algebraic competences; Estimation technique. 

Introduction  

It is potentially beneficial for teaching to have an evidence-based understanding of the different component of 

algebraic competency. There are many theoretical constructs that aim at structuring school algebra:  Usiskin 

(1988) defined four conceptions of algebra, Kieran (2004) has distinguished generational activities, 

transformational activities, and global/meta-level activities. Even more specific are many classifications of what 

variables are and how they are used. Küchemann (1979) has describe six ways to treat letters in algebraic 

formulas, Arcavi (1994) has related the understanding of variables and expressions, Epp (2011) has investigated 

the usefulness of different understanding of variables and (Oldenburg, 2019) is a classification approach for 

variables. The same holds true for other algebraic concepts, e.g. Bardini et al. (2013) distinguish different uses, 

and thus different understandings, of the equal sign, Mason and Sutherland (2002) introduce key aspects of 

school algebra. This list could easily be prolonged much more but this should suffice to give support for the 

following observations: There are many conceptual approaches to structure algebraic competencies, but 

statistical models are usually restricted to special cases, i.e. tests are constructed to explore the constructs of a 

special conception and it is usually not possible to apply one model to data from other tests. For example, an 

item that was designed to measure a latent construct from one theory may load on two latent constructs or 

even their combination from another theory. The present paper is the first in a planned series that aims at 

improving the situation by enhancing the flexibility of modelling. The full program will be outlined at the end of 

this paper. 

Many statistical models used in algebra education research come from the class of structural equation models 

(SEM, see Hoyle 2012). Traditionally, these models haven been linear and non-linear versions gain only slowly 

support and are often restricted to very special model classes (Dijkstra & Schermelleh-Engel, 2014; Kelava et al., 

2011; Umbach et al., 2017). The key innovation of the present paper is to use a more flexible estimation technique 

that allows to fit models even to data sets that provide no perfect measurement models for the constructs. The 

paper first describes this method, then the context from algebra education and finally applies the method to a 

test data set. The purpose is twofold: First, the algebraic test data are a benchmark to judge the usefulness of 

the estimation method on real world data. Second, the outcomes from fitting the model allow some conclusions 

that are of interest for algebra education. To this end, data from an algebra test is re-evaluated.  

Hence, the research questions are the following: 

• RQ1: Does a non-linear model fit the data from the algebra test better than a linear model? 

https://doi.org/10.24297/ijrem.v13i.9198
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• RQ2: Does the non-linear model give interesting and plausible insights for the understanding of 

algebraic thinking?  

• RQ3: Can non-linear cross-loading rich models be used to analyze tests that don’t fit the model well?  

 

Materials and Methods 

This section describes the new method that will be applied to algebra test data in later sections. The motivation 

is to have the greatest possible flexibility in modelling. Especially, linear structural models or their non-linear 

extensions are not capable of describing the models that will be applied here. 

This section first describes the general model class (further details are given in Oldenburg (2020), and in 

Oldenburg (2021)) and comments a bit on model estimation and fit evaluation. 

While most latent variable models use techniques to eliminate the values of latent variables for individual cases, 

the approach taken here is a weighted least square method that estimates values of parameters such as path 

loadings together with values of latent variables for each case. This approach is computationally demanding but 

feasible even for relatively large data sets.  

The model consists of a set of equations 𝑔𝑙 = 0, 𝑙 = 1 … 𝑚 that are fitted to a data matrix 𝐴𝑖,𝑗 ∈ ℝ, 𝑖 = 1. . 𝑛, 𝑗 =

1. . 𝑘 of values for case 𝑖 and item 𝑗. The columns of 𝐴 are thus seen as 𝑛 realizations of manifest random variables 

𝑥𝑗 . The model assumes that latent variables 𝜂𝑞 , 𝑞 = 1. . 𝑄 (which take on values for each case) and model 

parameters 𝑝𝑠, 𝑠 = 1. . 𝑆, exist such that the equations 𝑔𝑙({𝑥𝑗}, {𝜂𝑞}, {𝑝𝑠}) = 0 hold. Due to measurement error the 

equations for the actual data  𝑔𝑙({𝐴}, {𝑍}, {𝑝𝑠}) =: 𝜖𝑙 ≈ 0 hold only approximately. Here 𝑍 is the matrix of the 

values of the latent variables in case 𝑖 for 𝜂𝑞, i.e. 𝑍𝑖,𝑞 ∈ ℝ .  

A weighted least square approach is then used to minimize the objective function involving weights 𝑤𝑙 >

0, ∑ 𝑤𝑙𝑙 = 1: 

 𝐹𝑤({𝑍𝑖,𝑞}, {𝑝𝑠}): = ∑ 𝑤𝑙
𝑚
𝑙=1 ⋅  ∑ 𝜖𝑖,𝑙

2𝑛
𝑖=1  

This minimization problem may be restricted by constraints on parameters and/or latent variables. The minimizer 

of this function gives estimates both for the latent variables as well as the model parameters.  

There are several strategies to choose the weights in the above objective function. If one knew the error 

variances 𝜎(𝜖𝑙)
2,  it would be sensible to set 𝑤𝑙: = 1/𝜎(𝜖𝑙)

2 , because this allows together with some more 

assumptions to prove that the estimate is the maximum likelihood estimation (see Oldenburg, 2021).   

The following strategies have been investigated elsewhere (Oldenburg, 2021):  

𝑊1: This is unweighted least squares, i.e.  𝑤𝑙 =
1

𝑚
  are chosen to be the same for all equations.  

𝑊2 : This is a two-step-strategy: After a first estimation round with strategy 𝑊1 one has values of 𝜖𝑖,𝑙 and they 

give estimates of the error variances that can be used in a second round.  

𝑊𝑜: This is a self-consistency strategy: The weights 𝑤 with constraints 𝑤𝑙 > 0, ∑ 𝑤𝑙
𝑚
𝑙=1 = 1 and a proportionality 

factor 𝐾 > 0 are included into the parameters to be estimated from minimizing 

 𝐹𝑜({𝑍, 𝑝, 𝑤, 𝐾}): =
𝐹𝑤({𝑍𝑖,𝑞},{𝑝𝑠})

(∏ 𝑤𝑙⋅(1−𝑤𝑙)𝑚
𝑙=1 )

1/𝑚 + 𝑃 ⋅ ∑ (𝑤𝑙 −
𝐾

𝜖𝑙
2)

2
𝑚
𝑙=1  

Here 𝑃 is some large penalty number.   

𝑊𝑎 : Again, this is a self-consistent strategy but with a different algorithm. The weights are not part of the 

optimization process but are viewed as parameters. Starting from the uniform weight vector 𝑤(0) = (
1

𝑚
, … . ,

1

𝑚
) 

the target function is minimized and a-posteriori error variance estimates 𝜎(𝜖𝑙
(0)

)
2

 are obtained. It the weights 

are optimal, then the sequence 𝑤𝑙
(0)

⋅  𝜎(𝜖𝑙
(0)

)
2
, 𝑙 = 1. . 𝑚,  will have minimal variance. Hence, for the next iterative 

step, 𝑤(1) is obtained from 𝑤(0) by changing the weights in the direction indicated by the deviation of 𝑤𝑙
(0)

⋅
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 𝜎(𝜖𝑙
(0)

)
2
 from its mean value. This gives a new weight vector 𝑤(1) and in another minimization step new 

estimates are calculated. The process then iterates until no reduction of variance can be found.  

For fit comparison, the mean error residual 𝑅 per case and per equation 𝑅 ≔
𝐹𝑚𝑖𝑛

𝑛⋅𝑚
 can be used. A second, similar 

measure is the data fit measure 𝐷 which is calculated in the following way: After having calculated all estimates 

for parameters and latent variables these are plugged into the model equations and from this the data are 

prognosed as if they were unknown. Then, the Euclidean distance between the data vector and the prognosed 

data vector is calculated and averaged. The resulting number should be as close as possible to 0. 

Now, this general estimation framework will be specialized to the situation needed in this paper. The latent 

variables in this model are certain algebraic competences 𝜂𝑞 , 𝑞 = 1. . 𝑄,  e.g. 𝜂1 be the ability to perform 

substitutions and 𝜂2 the ability to transform algebraic expressions correctly. The values of all latent variables are 

constraint to the unit interval, i.e. 𝜂𝑞 ∈ [0,1] for each case. This allows to write down model equations e.g. of the 

following kind: 𝑥1 = 𝑏1 + 𝑐1 ⋅ 𝜂1 + 𝑐2 ⋅ 𝜂1 ⋅ 𝜂2 + 𝜖1, 𝑥1 = 𝑏2 + 𝑐3 ⋅ 𝜂2 + 𝑐4 ⋅ 𝜂2
2 + 𝜖2. Here 𝑥1 ∈ [0,1] is an observed 

variable. The parameters 𝑏𝑖 , 𝑐𝑖 ∈ ℝ have the following interpretations: 𝑏𝑖 are the offsets, i.e. the expected score 

on item 𝑥 without having any competence described by the following variables and averaging over all latent 

variables not in the equation. Hence, 𝑏1 ≠ 𝑏2 can occur, but experience shows that in most cases they differ only 

slightly. 𝑐1 is the path coefficient that measures the influence of competence 𝜂1 on 𝑥 – this is the same 

interpretation as in linear SEM. Given that the latent variable values are from the unit interval their product 𝜂1 ⋅

𝜂2 can be interpreted in the sense of fuzzy logic (Zahdeh, 1965) as a measure for having both competences and 

𝑐2 is the path weight of the influence of this combination. Similarly,  𝜂2
2 can be interpreted as a measure for 

having a particular strong competence 𝜂2 and 𝑐4 is its corresponding path weight. In the models estimated 

below all path coefficients are restricted to be non-negative, i.e.  𝑐𝑖 ≥ 0, 𝑖 ≥ 1. This reflects the idea that having 

a competence should not have negative effects. A further pragmatic reason is that these constraints eliminate 

certain special cases of under-determined systems. A similar argument could be made for offsets too, but on 

the other hand, allowing negative offsets 𝑏𝑖 gives the freedom for situations in which a little bit of a competence 

𝜂 is actually not enough to predict any chance for solving the item but in which some higher value is needed to 

make the estimate larger than 0.  

For better interpretation of path coefficients, one may normalize them by rescaling with the standard deviations 

of the involved variables. In the above example e.g., one has standardized coefficients �̂�3 ≔
𝜎(𝜂1⋅𝜂2)

𝜎(𝑥1)
⋅ 𝑐3. 

Standardized variables �̂� =
𝑥

𝜎(𝑥)
 will also be used, so that 𝑥 = 𝑐 ⋅ 𝜂 is equivalent to �̂� = �̂� ⋅ �̂�. 

Empirical input: Test and data 

A somewhat improved version of the test described in (Oldenburg, 2009) was used with 171 10th grade students 

from a German school. This is a full cross section of this school but maybe not representative for Germany as a 

whole, although the school is quite typical for Germany. The purpose of the data analysis is not to make claims 

or conjectures about the students but to test the method described above and to derive some insights into 

algebraic thinking. The test was administered by the teachers and written for diagnostic purposes. The 

anonymized data that are used for this analysis do not contain any personal data, so that the sample cannot be 

characterized by means of the data. However, one can assume equal sex distribution and average age of about 

16-17 years. By the time of the test, education on elementary algebra is completed and in the next school year 

they’ll start with (informal) calculus. The test was originally constructed with the algebra model of Oldenburg 

(2009) in mind. It contains 21 tasks, some of which have sub-items so that there is a total of 45 items. Most of 

them are encoded as incorrect/correct (0, 1) by the teachers, while some are encoded using partial credits which 

have been rescaled to the unit interval so that all observed variables are from [0,1]. There are several items 

shared with the test designed by Küchemann (1979). There are no multiple-choice items, all require a free-form 

answer but in most cases the correct answer (e.g., an expression or equation) is unambiguously defined.    

The model dimensions 

The model that will be investigated here has six latent dimensions of algebraic competencies. This model has 

also been fit successfully to other algebra test data as will be reported elsewhere.  The dimensions as well as 
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example items that load directly on the latent variables (i.e. there es an equation of the type observed = 𝑐0 +

𝑐1 ⋅ latent + 𝜖) are given in table 1. 

Table 1: The latent variables of the model 

Name & 

Shortcut 

Description Example item 

Calculation Calc Perform syntactic transformations   A14d: Simplify (𝑥 − 𝑥3) ⋅ (𝑥 + 𝑥3) 

Functions  

Fun 

Work with function graphs and 

tables 

A3: Match depicted graphs and functions 𝑓1(𝑥) =

2𝑥 − 5, 𝑓2(𝑥) = 4 − 𝑥2,  𝑓3(𝑥) =
1

𝑥
, 𝑓4(𝑥) = 5 − 𝑥, 

𝑓5(𝑥) = 4 − 4𝑥2,  𝑓6(𝑥) = √𝑥  

Reference 

Ref 

Use variables to refer to quantities Determine the circumference of a polygon given in 

a picture with sides labeled by letters 

Relations 

Rel 

Relate quantities via one equation or 

several equations 

If 𝑢 = 𝑥 + 𝑦, 𝑥 ⋅ 𝑢 = 𝑣, what can be said about 𝑣? 

(from Küchemann 1979) 

Quantification 

Quant 

Make statements about domains for 

which a statement is valid 

What is larger, 𝑛 + 2 or 2𝑛? (from Küchemann 

1979) 

Substitution 

Subs 

Perform Substitutions If 𝑓(𝑥) = 𝑥3 − 2, then what is 𝑓(𝑥 + 1)? 

 

For each of the items in the test I judged which of these six latent variables may explain individually or in 

combination success on the item. From this a model equation was generated. The set of these model equations 

is the non-linear model. By omitting all non-linear expressions from the model equations, a linear version of it 

was derived. Both models were fit using all strategies described above.  

Note that the original test was not constructed for this model, so many items are not made to measure exactly 

one of these dimensions. Hence, a lot of possible cross-loadings will be included in the model equations.   

Evaluating the estimation method 

To assess model fit, the remaining error variance per case 𝑅 as defined above was calculated. Moreover, the 

data fit measure 𝐷 was determined. All results are given in table 2. 

Table 2: Residual errors for linear and non-linear models 

Method 𝑊1 𝑊2 𝑊𝑜 𝑊𝑎 

𝑅 linear model 0.144 0.107 0.141 0.112 

𝑅 non-linear model 0.133 0.074 0.126 0.104 

𝑅 Improvement  7.8% 44.2% 12.5% 7.0% 

𝐷 linear model 0.098 0.099 0.105 0.101 

𝐷 non-linear model 0.093 0.096 0.102 0.094 

 

Results indicate that by all measures and strategies the non-linear model fits the data better than the linear 

model. Note that for a completely uninformative model, 𝑅 = 𝐷 = 0.25.  Hence, both models explain a large part 

of the data variance and the additional reduction of residual errors by more than 7% for the non-linear models 
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can be considered substantial. Also note that 𝑊2  gives very good values of 𝑅 for the non-linear model but this 

is likely to be a result of overfitting.  

In principle one can try to fit the linear model with standard SEM software like lavan. However, with the many 

cross-loadings that result from the fact that the test was not designed exactly for these constructs, none of the 

usual SEM estimation methods converge. This shows that the new method is capable of delivering sensible 

results where traditional methods are not applicable.  

Summarizing these observations, RQ1 can be answered affirmatively.  

Insights for algebra education 

For the detailed analysis I’ll restrict to results from two strategies, 𝑊1, 𝑊𝑎 . The reason to include uniform 

estimation in this subset is due to the fact that it reflects in a sense best what the modeler wrote down. The 

other methods adjust weights by estimated error variances and this may not be necessary here, because 

manifest and latent variables are from [0,1] so that error variances can also be expected to be in a similar range. 

Another reason for including the uniform strategy 𝑊1 is that is shows the best data fit. Among the weigh-

adjusting methods I choose 𝑊𝑎 because it also produces good data ft, and under some distributional 

assumptions can be expected to converge to the optimal value (although this conjecture is not proved but 

plausible from simulations).  

From the estimates for the six latent variables correlations can be calculated. Results are given in table 3. 

Table 3: Correlation matrices of the latent variable Subs, Quant, Ref, Rel, Fun, Calc 

Strategy Linear model Non-linear model 

𝑊1 

 

𝑊𝑎 

 

 

The results in table 3 indicate that there is a substantial difference between linear and non-linear models but 

also that the estimation methods differ to some extent.  

First, one can observe that with the linear model the latent constructs 𝑅𝑒𝑙 and 𝐶𝑎𝑙𝑐 cannot be separated, 

however, for the non-linear model they are clearly distinct (although the estimate of the correlation coefficient 

differs between both methods).  

Now let’s look at some items in detail: 

Item A13: It is known that 𝑥 = 6 is a solution of   (𝑥 + 1)3 + 𝑥 = 349. Use this to find a solution of (5𝑥 + 1)3 +

5𝑥 = 349. 

For this item the following equations were set up for the non-linear model: 

𝐴13 =  𝑏13𝑎  +  𝑐13𝑎  ⋅ 𝑆𝑢𝑏𝑠 + 𝑐13𝑏  ⋅ 𝑅𝑒𝑙 ⋅ 𝑆𝑢𝑏𝑠 + 𝜖13𝑎 

𝐴13 =  𝑏13𝑏 + 𝑐13𝑐 ⋅ 𝐶𝑎𝑙𝑐 +  𝑐13𝑑 ⋅  𝐶𝑎𝑙𝑐 ⋅  𝑆𝑢𝑏𝑠 + 𝜖13𝑏 

The equations for the linear model are obtained by omitting the last summand in each equation. Some 

explanations are in order why the equations have been set up in this manner: First, from my own expert rating, 
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I found it plausible that the latent competencies 𝑆𝑢𝑏𝑠, 𝐶𝑎𝑙𝑐, 𝑅𝑒𝑙 are most likely to explain success in this item, 

especially that a logical combination of being good in substitution and in the other two competencies would 

explain success. Hence, one could think about writing down a single combined equation like 

𝐴13 =  𝑏13𝑐  +  𝑐13𝑒  ⋅ 𝑆𝑢𝑏𝑠 + 𝑐13𝑓 ⋅ 𝐶𝑎𝑙𝑐 + 𝑐13𝑔 ⋅ 𝑅𝑒𝑙 + 𝑐13ℎ  ⋅ 𝑅𝑒𝑙 ⋅ 𝑆𝑢𝑏𝑠 + 𝑐13𝑖 ⋅  𝐶𝑎𝑙𝑐 ⋅  𝑆𝑢𝑏𝑠 + 𝜖13𝑐 

This is possible in the described modelling framework and gives interesting insights, too. However, this approach 

would give a single error estimate while having several equations allows to detect sources of large errors more 

precisely. Based on this argument one might be tempted to write down the equations   

𝐴13 =  𝑏13𝑗  +  𝑐13𝑗  ⋅ 𝑆𝑢𝑏𝑠 + 𝜖13𝑗 ,  𝐴13 =  𝑏13𝑘 + 𝑐1𝑘𝑓 ⋅ 𝐶𝑎𝑙𝑐 + 𝜖13𝑘 , 𝐴13 =  𝑏13𝑙  +  𝑐13𝑙 ⋅ 𝑅𝑒𝑙 + 𝜖13𝑙  

𝐴13 =  𝑏13𝑚  + 𝑐13𝑚  ⋅ 𝑅𝑒𝑙 ⋅ 𝑆𝑢𝑏𝑠 + 𝜖13𝑚 ,   𝐴13 =  𝑏13𝑛  +  𝑐13𝑛 ⋅  𝐶𝑎𝑙𝑐 ⋅  𝑆𝑢𝑏𝑠 + 𝜖13𝑛  

Again, this is a sensible approach that is possible and interesting. However, it has the disadvantage that 

comparison with the linear model is not so easy. Of course, one can restrict to the subset of linear equations as 

well, but this will imply that the linear and the non-linear model differ in the number of equations, and this 

makes model comparison tricky. Hence, the two equations given above were used. An approach with a third 

equation with 𝑅𝑒𝑙 entering linearly brought bad model fit for this additional equation and was hence discarded. 

This completes the justification why the above given equations are used. The results of the estimation process 

are given in table 4. 

Table 4: Estimates of model equations for item 13. Coefficients are rounded to two decimal places and terms 

are omitted if coefficient is rounded to 0. Error Variances are given in parentheses  

 Linear model Non-linear model 

𝑊1, non-normalized A13=0.02+0.4 Subs (0.12)  

A13=0.01+0.43 Calc (0.13)  

A13=-0.17+0.26 Subs+0.72 Rel Subs (0.10) 

A13=-0.29+0.73 Calc Subs (0.12) 

𝑊1, normalized A13=0.05 +0.32 Subs  

A13=0.03 +0.19 Calc  

A13=-0.47+0.12 Subs+0.39 Rel Subs 

A13=-0.79+0.34 Calc Subs 

𝑊𝑎 , non-normalized A13=0.02 +0.44 Subs (0.12) 

A13=0.03 +0.39 Calc (0.13) 

A13=0.06 +0.71 Rel Subs (0.11) 

A13=-0.36+0.42 Calc+0.31 Calc Subs (0.12) 

𝑊𝑎 , normalized A13=0.04 +0.33 Subs  

A13=0.09 +0.11 Calc 

A13=0.17 +0.43 Rel Subs 

A13=-0.98+0.05 Calc+0.25 Calc Subs 

 

Now for the interpretation of these results: For the linear model the normalized equations indicate that both 

competencies, 𝑆𝑢𝑏𝑠 and 𝐶𝑎𝑙𝑐 have explanatory power. However, in the linear model 𝑆𝑢𝑏𝑠 seems to be more 

important, as its normalized path coefficients is larger than the one for 𝐶𝑎𝑙𝑐. Both estimation methods give 

somewhat different estimates, but this conclusion is independent of the method. 

The results for the non-linear model emphasize the importance of 𝑆𝑢𝑏𝑠 as well, but in addition show that 

combinations of having two competencies give much stronger path coefficients than single competencies. 

Especially 𝑅𝑒𝑙 ⋅ 𝑆𝑢𝑏𝑠, i.e., being good both at substitutions and relational thinking explains success best. Again, 

this conclusion is independent of the estimation method. For 𝑊𝑎 𝐶𝑎𝑙𝑐 and for 𝑊1 𝑆𝑢𝑏𝑠 have some additional 

explanation power but the path weights are small, and in fact much smaller than that of 𝐶𝑎𝑙𝑐 ⋅ 𝑆𝑢𝑏𝑠. Hence, one 

may conclude that substitution in combination with other abilities is an important part of algebraic competency.  

Now that the formation and interpretation of model equations are explained in detail for item 13, some of the 

other items are discussed more briefly. 

Item 10: Assume 𝑎, 𝑏 are positive real numbers. Assume that 
1

𝑎
+

1

𝑏
= 2 always holds. What can be said about 𝑎 

if 𝑏 decreases? 
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Proposed model equations are: 

𝐴10  = 𝑏10𝑎  +  𝑐10𝑎 ⋅  𝑄𝑢𝑎𝑛𝑡 + 𝑐10𝑏 ⋅  𝑄𝑢𝑎𝑛𝑡 ⋅  𝑅𝑒𝑙 + 𝜖10𝑎 

 𝐴10 =  𝑏10𝑏  +  𝑐10𝑐 ⋅ 𝑆𝑢𝑏𝑠 + 𝑐10𝑑 ⋅ 𝑄𝑢𝑎𝑛𝑡 ⋅ 𝑆𝑢𝑏𝑠 + 𝜖10𝑏      

The findings from fitting the model are contained in table 5. The interpretation is that in the linear model, 𝑄𝑢𝑎𝑛𝑡 

is the most explaining latent variable, but 𝑆𝑢𝑏𝑠 contributes as well. For the first equation, the possible 

explanation 𝑄𝑢𝑎𝑛𝑡 ⋅  𝑅𝑒𝑙 is not useful, but for the second equation 𝑄𝑢𝑎𝑛𝑡 ⋅ 𝑆𝑢𝑏𝑠 turns out to be the strongest 

predictor. The large offsets together with the large error variances indicate, however, that there may be some 

additional explanatory variable needed.  

Table 5: Estimates of model equations for item 10.  

 Linear model Non-linear model 

𝑊1, non-normalized A10=-0.66+2.52 Quant (0.18)  

A10=0.3 +0.58 Subs (0.21)  

A10=0.09 +6.37 Quant (0.14) 

A10=0.16 +7.09 Quant Subs (0.15) 

𝑊1, normalized A10=-1.37+0.48 Quant  

A10=0.63 +0.34 Subs  

A10=0.19 +0.63 Quant 

A10=0.32 +0.6 Quant Subs 

𝑊𝑎 , non-normalized A10=-0.13+1.46 Quant (0.22)  

A10=0.31 +0.63 Subs (0.21) 

A10=0.43 +2.68 Quant (0.20) 

A10=0.41 +0.09 Subs+3.02 Quant Subs (0.21) 

𝑊𝑎 , normalized A10=-0.13+1.46 Quant  

A10=0.31 +0.63 Subs  

A10=0.89 +0.37 Quant 

A10=0.84 +0.06 Subs+0.32 Quant Subs 

 

Item 16: Note that 7 ⋅ 9 = 8
2 − 1 and 11 ⋅ 13 = 12

2 − 1 . Formulate a rule and justify. 

Proposed equations:  

𝐴16  = 𝑏16𝑎  +  𝑐16𝑎 ⋅  𝑅𝑒𝑓 + 𝑐10𝑏 ⋅  𝑄𝑢𝑎𝑛𝑡 ⋅  𝑅𝑒𝑙 + 𝜖10𝑎 

 𝐴16 =  𝑏16𝑏  +  𝑐16𝑐 ⋅ 𝑅𝑒𝑙 +  𝑐10𝑑 ⋅ 𝑄𝑢𝑎𝑛𝑡 ⋅ 𝑆𝑢𝑏𝑠 + 𝜖10𝑏      

Results are given in table 6. Interpretation is straightforward: The linear model clearly shows that the 

competencies 𝑅𝑒𝑓 and 𝑅𝑒𝑙 are important but predict most strongly when in addition a strong competency in 

quantification is available.   

Table 6: Estimates of model equations for item 16.  

 Linear model Non-linear model 

𝑊1, non-normalized A16=-0.06+0.74 Ref (0.12)  

A16=-9.81+19.75 Rel (0.13)  

A16=0.08 +6.02 Quant Ref (0.10) 

A16=0.14 +7.46 Quant Rel (0.10) 

𝑊1, normalized A16=-0.14+0.43 Ref  

A16=-25.13+0.4 Rel 

A16=0.2 +0.56 Quant Ref  

A16=0.37 +0.56 Quant Rel  

𝑊𝑎 , non-normalized A16=0.04 +0.47 Ref (0.14)  

A16=-0.87+2.47 Rel (0.15) 

A16=0.22 +3.64 Quant Ref (0.12) 

A16=0.22 +0.16 Rel+3.83 Quant Rel (0.12) 

𝑊𝑎 , normalized A16=0.1 +0.32 Ref 

A16=-2.23+0.21 Rel  

A16=0.57 +0.46 Quant Ref 

A16=0.57 +0.1 Rel+0.38 Quant Rel 
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As a last example, let’s look at an item where a quadratic term in one competency gives a good estimation: 

Item 17c: Given the function 𝑓(𝑥) = 𝑥3 − 2 calculate 𝑓(𝑥 + 1). 

The main difficulty in this item is to do the substitution correctly. Hence, the proposed model is:   

𝐴17𝑐  = 𝑏17𝑐  +  𝑐17𝑐𝑎 ⋅  𝑆𝑢𝑏𝑠 +  𝑐17𝑐𝑏 ⋅  𝑆𝑢𝑏𝑠2 + 𝜖17𝑐 

The linear model estimated by 𝑊𝑎 gives the normalized estimate A17c=-0.08+0.53 Subs  (error variance 0.17) 

while the non-linear estimate is A17c=-0.43+0.92 Subs2 (error variance 0.04). This shows that getting this 

substitution done right requires a higher level of 𝑆𝑢𝑏𝑠 than most other tasks: Only if you are really good in 

substitution you can tackle this item (which confused many students because of the double role of x). Also note 

the substantial drop of error variance and that the linear term got almost zero loading in the nonlinear model. 

Of course, much more insights can be drawn from the fitted model but for the purpose of this publication four 

items should be sufficient to underpin the positive answer to research questions 2 and 3.  

Conclusions and Outlook 

The results given above allow to answer all three research questions affirmatively. The new estimation method 

allowed to estimate linear models with many cross-loadings that cannot be estimated by traditional SEM 

techniques. Moreover, the nonlinear model fits the data much better than the linear one and supports the 

hypothesis, that for many items the best prediction of success is given by the fuzzy logic conjunction of having 

two competencies or by having one competency to a very high degree (to a higher power). Especially, it is 

interesting to note that substitution is an important algebraic competency and that it is especially important 

when combined with abilities in other areas of algebra such as quantification, calculation and relational thinking.   

However, it must be stated clearly that the results given above must be read with caution. First, the method 

applied is new and this is the first application of it to real world data. It may be that the good performance seen 

in simulation studies may not carry over to such data. However, the fact that results are quite reasonable indicate 

that this worry may be unnecessary. Thus, several further methodological research goals are steered up: 

• Deeper theoretical underpinning of the method 

• Develop a Bayesian approach to estimating unit interval constrained latent variable models as a second 

method to increase trust in results 

• Application of the method to more data sets 

Regarding the results about algebraic competency, one additionally should consider that the data set 

was only of moderate size and that the test was not developed for the model tested. Thus, the following 

research goals arise: 

• Check other models. Especially, find if some items are best explained by products of three or even more 

latent variables  

• Check if the found importance of substation can also be supported by other data sets 

• Test other models proposed in the literature that can be translated into such a nonlinear structure  

 

Perspectives: A research program 

If the critical questions raised in the preceding section can be answered satisfactorily the following research 

possibilities opens up. As cross-loadings are less problematic compared to traditional SEM and logical 

conjunction can be modelled it is relatives easy to adapt the measurement model of the above six-dimensional 

model to the items from other existing algebra tests. The central idea of the research program is therefore to 

find a model of algebraic competency (maybe a modification of the above model) that can be fitted to the data 

from as many algebra tests as possible. The idea behind this is, of course, that the structure of algebraic 

competency should be a construct that is the same for many people educated in a similar algebraic culture. So 
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while we currently often have “one study: one model : one test” the idea is to have one general model, i.e.  

“several studies and tests: one model”. Of course, not all data sets will be useful in the end. For example, the 

PISA data set is too sparse to be estimated by my method (although full data is not required but stable numerical 

results require a certain density).  By following this research program it is hoped that a general model can be 

constructed that is supported by a great variety of data, and, vice versa, explains a large variety of data by some 

simple principles.  

Data Availability  

Data, test items (in German) and Mathematica programs to perform the analysis are available at 

https://myweb.rz.uni-augsburg.de/~oldenbre/AlgebraTestData.zip . 
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