
R E S E A R CH AR T I C L E

“Surface,” “satellite” or “simulation”: Mapping intra-urban
microclimate variability in a desert city

Bin Zhou1,4 | Shai Kaplan1 | Aviva Peeters2 | Itai Kloog3 | Evyatar Erell1,3

1The Jacob Blaustein Institutes for Desert
Research, Ben-Gurion University of the
Negev, Sde Boqer Campus, Israel
2TerraVision Lab, Beersheba, Israel
3Department of Geography and
Environmental Development, Ben-Gurion
University of the Negev, Beer Sheva, Israel
4Potsdam Institute for Climate Impact
Research (PIK), Member of the Leibniz
Association, Potsdam, Germany

Correspondence
Bin Zhou, The Jacob Blaustein Institutes
for Desert Research, Ben-Gurion
University of the Negev, Sde Boqer
Campus, 8499000, Israel.
Email: zhoub@post.bgu.ac.il

Funding information
Israel Ministry of Science, Technology and
Space, Grant/Award Number: 63365;
Jewish National Fund; Kreitman School
for Advanced Graduate Studies of the Ben-
Gurion University of the Negev and the
PBC Fellowship Program; Jacob Blaustein
Center for Scientific Cooperation

Abstract

Mapping spatial and temporal variability of urban microclimate is pivotal for an

accurate estimation of the ever-increasing exposure of urbanized humanity to

global warming. This particularly concerns cities in arid/semi-arid regions which

cover two fifths of the global land area and are home to more than one third of

the world's population. Focusing on the desert city of Be'er Sheva Israel, we inves-

tigate the spatial and temporal patterns of urban–rural and intra-urban tempera-

ture variability by means of satellite observation, vehicular traverse measurement,

and computer simulation. Our study reveals a well-developed nocturnal canopy

layer urban heat island in Be'er Sheva, particularly in the winter, but a weak diur-

nal cool island in the mid-morning. Near surface air temperature exhibits weak

urban–rural and intra-urban differences during the daytime (<1�C), despite pro-

nounced urban surface cool islands observed in satellite images. This phenome-

non, also recorded in some other desert cities, is explained by the rapid increase

in surface skin temperature of exposed desert soils (in the absence of vegetation or

moisture) after sunrise, while urban surfaces are heated more slowly. The study

highlights differences among the three methods used for describing urban temper-

ature variability, each of which may have different applications in fields such as

urban planning, climate change mitigation, and epidemiological research.

1 | INTRODUCTION

The world is becoming increasingly urbanized, with more
than half of its population living in cities for the first time in
history (UN, 2015). As one of the most evident anthropogenic
modifications of the Earth's natural landscape, urbanization
encompasses two principal concerns facing our era: popula-
tion growth and climate change. The far-reaching conse-
quences of urbanization on both climate and society are
manifested in the urban heat island (UHI)—a phenomenon
where urban areas experience a higher temperature relative
to their rural surroundings, especially at night (Oke, 1987).

The causes for the UHI have been well studied (Oke,
1981, 1982) and documented globally (Arnfield, 2003). The
spatial and temporal dynamics of the UHI have also been
studied extensively and been shown to be subject to numer-
ous factors, such as the overarching meteorological condi-
tions, underlying land use, and land cover heterogeneity
(Pielke, 2001; Weaver and Avissar, 2001; Lookingbill and
Urban, 2003; Erell and Williamson, 2007; Georgescu et al.,
2012; Loridan and Grimmond, 2012), and 3D geometry
(Kaplan et al., 2016). These factors result in substantial
intra-urban differences in climate, generating a need for a
classification system of Local Climate Zones (LCZ) (Stewart
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and Oke, 2012). However, microclimates may differ sub-
stantially even within LCZs, and methods of studying and
documenting conditions within cities should be able to
resolve these variations at appropriate spatial and temporal
scales (Georgescu et al., 2015). The three most common
methodologies—in-situ measurements (transects or point
measurements), remote sensing, and model simulations—
are summarized in Table 1 and described in brief below.

1.1 | Field measurements

In-situ measurements may provide accurate data but have
several limitations. Point measurements can provide continu-
ous data but are limited by the number of locations moni-
tored simultaneously, especially if long-term data are
required, for example, as the basis for generating Typical
Meteorological Years (TMYs) for building design. Regression
and geo-statistical models can interpolate data to create a
continuous spatial map (Szymanowski and Kryza, 2012;
Ivajnšič et al., 2014; Oyler et al., 2015), yet they are site-
specific and highly dependent on the interpolation parame-
ters/techniques applied. Mobile transects provide high accu-
racy data with the additional advantage of continuity in the
spatial domain. However, like point measurements, they rep-
resent only the time of measurements and are highly
influenced by the methodological design (e.g., route selection,
movement of measurement platform), and platforms where
measuring instruments are mounted (e.g., vehicles, bicycles).
In addition, in-situ methodologies are expensive, labour
intensive, time-consuming, and thus not always feasible.

1.2 | Thermal remote sensing

Remote sensing measures surface skin temperature, also
known as land surface temperature (LST). LST refers to
the ground radiometric temperature seen from above and
is a measure of the energy emitted and reflected from the
surface. Hence, LST represents the effects of surface radi-
ative properties, thermodynamics, and near-surface
atmosphere processes (Mirzaei and Haghighat, 2010).
This energy in turn affects air temperature (Ta) along
with other variables such as wind, moisture, and turbu-
lent mixing. Thermal remote sensing is capable of quanti-
fying and monitoring surface skin temperature over large
areas at relatively high spatial resolution. Depending on
the satellite sensor, the spatial resolution of thermal
remote sensing varies from tens of meters (e.g., from
Landsat series) to several kilometres (e.g., for geo-
stationary satellites). However, the thermal remote sens-
ing is limited to clear-sky conditions. Subject to orbit and
revisit period, most satellites cannot provide a continuous
record at short time intervals (e.g., hourly) and thus are
insufficient to monitor and model the nocturnal UHI
(Yang et al., 2013). Nevertheless, several studies have
demonstrated good correlation between radiant tempera-
ture and canopy level air temperature (Kloog et al., 2012,
2017; Pelta et al., 2016; Rosenfeld et al., 2017), and the
technique has been applied in research on the effect of
heatwaves on mortality (Laaidi et al., 2011). However,
the complex linkage between surface- and air-
temperatures hampers our endeavours in estimating one
temperature from the other. In particular, the 3D nature

TABLE 1 Methods of obtaining

urban temperature
In-situ measurement
(traverse) Satellite remote sensing Simulation

Spatial
resolution
(scale)

Limited number of points
representative of micro-
scale (1–104 m2)
ambiance

Sensor-dependent, from
micro- to local-scale
(105–107 m2)

Depends on
model
settings

Temporal
resolution

Single data point for each
stop on traverse

Continuous
(geostationary) or
periodic (polar-orbiting)

Model-
dependent

Level Screen level (air
temperature at
approximately 2 m
height)

Skin level (surface skin
temperature)

No constraint

Weather
conditions

All weather Clear sky only All weather

Surface
features

Accessible (by car, bicycle
or foot)

Surfaces exposed to the
sky

Depends on
model

Applications Model validation “Backcasting,”
epidemiology

Scenario
testing,
prognostic
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of cities limits the sensor's ability to view all surfaces. In
dense high-rise cities (e.g., in New York City) LST may
represent the surface temperature of rooftops rather than
the actual street canyon. In addition, a bird's-eye view is
limited in the view angle, that is, even if it sees the street
level, it cannot measure the energy emitted from vertical
surfaces such as a building wall (Voogt and Oke, 2003).

1.3 | Simulation

In a simulation approach, models are used to represent
urban details and the governing processes of energy bal-
ance and/or fluid dynamics. Based primarily on
governing equations, spatial, and temporal resolution,
models in simulating urban climate can be classified into
three groups (Mirzaei and Haghighat, 2010): (a) Urban
Canopy Models (e.g., the Town Energy Balance model
[Masson, 2000]); (b) micro-scale Computational Fluid
Dynamics (CFD) models (e.g., ENVI-met [Bruse and
Fleer, 1998]); and (c) meso-scale CFD models (e.g., the
Weather Research and Forecasting [WRF] model coupled
with an explicit urban canopy model [Chen et al., 2011]).

The simulation approach allows researchers to predict
the intra-urban temperature variability under different sce-
narios of climate and urban morphology. However, models
often require very detailed input and substantial computa-
tional resources. They are limited in either their spatial or
temporal extent and require great expertise to implement.
Most models generate output ill-suited to planners needs
and are thus applied principally in academic research
rather than in urban planning practice (Mills et al., 2010).

In most studies only one of these three methods is
applied. This necessarily leads to limitations in
addressing the complexity that is inherent in urban
microclimate. Such studies are of course still valuable, if
their limitations are recognized explicitly and interpreta-
tion of results is constrained to the appropriate spatial
and temporal framework. However, this is not always the
case. For example, tools that were developed for detailed
micro-scale modelling of plant-atmosphere interactions
in limited spatial confines in the built environment, such
as ENVI-met, cannot generate TMY files required for
building energy modelling. Conversely, methods cur-
rently employed for building energy modelling cannot
yet account for the full complexity of urban vegetation.
Yet both approaches are routinely applied (separately) in
studies that seek to establish the effects of vegetation on
building energy demand, and are used to generate recom-
mendations for mitigating the UHI—despite their inher-
ent limitations. Different methods may also lead to
different results. For example, Sheng et al. (2017)
acknowledged explicitly that although LST drives near

surface air temperature, they displayed opposite seasonal
trends, so that LST-based UHI is greater in summer than
in winter, the air temperature UHI is greater in winter.
Hartz et al. (2006) found that the use of thermal remote
sensing to derive night time air temperature could
describe surface heterogeneity well, but that daytime
ranking of the same neighbourhoods by temperature
based on thermal imaging was inconsistent with ground
measurements.

Implementation of all of the aforementioned methods
may also suffer from inadvertent bias, because they have
mostly been carried out in temperate climates, despite
the fact that arid or semi-arid regions cover over 40% of
the global land and are home to over one third of the
world's population (Pearlmutter et al., 2007; Koohafkan
and Stewart, 2008). The assumption, often left unstated,
is almost always that cities are drier than their rural sur-
roundings, and that LST in the city is higher. Yet as Oke
et al. (1998) demonstrated, this may not be the case. So
while there has been an increase in studies of urban
microclimate in tropical and wet subtropical areas (see
review in Roth, 2007) the only desert city where microcli-
mate has been studied extensively is Phoenix, Arizona
(e.g., Baker et al., 2002; Brazel and Hedquist, 2006;
Guhathakurta and Gober, 2010; Svoma and Brazel, 2010;
Middel et al., 2012, 2014). This is despite the fact that sev-
eral studies have found important differences between
desert cities and temperate ones (Brazel et al., 2000;
Lazzarini et al., 2015).

The objectives of this study are thus twofold: (a) to
compare and contrast the three different methods for
evaluating the thermal dynamics/behaviour of a complex
urban environment, and (b) to add to the relatively small
sample of studies on the microclimate of desert cities.
Taking the city of Be'er Sheva, Israel, as a case study, we
investigate the spatio-temporal pattern of intra-urban
temperature variations by means of mobile traverse mea-
surements, computer simulation of near-surface air tem-
perature, and LST from satellite remote sensing. The
juxtaposition of results obtained by these methods illus-
trates their relative advantages and drawbacks.

2 | DATA AND METHODS

The methodologies employed in this study attempt to
capture the phenomenon of the UHI and of intra-urban
temperature differences at both skin (land surface) and
screen (air) levels. These levels may differ in terms of
the media sensed and the predominant physical pro-
cesses (Arnfield, 2003), so investigating the UHI from
seemingly divergent perspectives may provide additional
insights.
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2.1 | Study area

Located on the fringes of the Negev Desert, Be'er Sheva
(31�1503200N, 34�4705900E, 260 m MSL) is the largest city in
southern Israel, with a population of approximately 210,000
and covering an area of 54 km2 (Figure 1). The climate is
hot semi-arid/arid (Bsh/Bwh according to the Köppen clas-
sification) with an average annual rainfall of 195 mm. The
maximum daily average temperature is 16.7�C during win-
ter (January) and 32.7�C summer (July). The minimum
daily average temperature ranges from 6.0 to 18.5�C in win-
ter and summer, respectively (Bitan and Rubin, 1994).

2.2 | Mobile traverse

The route of the traverse was designed to go through the
major urban land use categories, including a low-rise
light industrial zone, the central business district, an
urban park and several residential neighbourhoods, as
shown in Figure 1. To coincide with the overpass of the
Landsat-8 satellite, the traverse took place at 10–10:30
local standard time, on July 28, 2016.

Air temperature was measured with two fine
(American Wire Gauge [AWG] 34) thermo-couples (type
T). Accuracy after calibration in the laboratory was better
than ±0.1�C. The thermocouples were placed in a
mechanically aspirated shield, constructed from a 10 cm
plastic tube wrapped with aluminium foil to protect the

thermocouples from direct radiation. The shield was
mounted approximately 30 cm above the rooftop of a car
(Figure 2). A CR23X Campbell Scientific data logger was
used to collect the data at 1 s intervals from which 5-s
averages were calculated. The location of each measure-
ment was recorded and time-stamped by Global Position-
ing System (GPS).

Although an attempt was made to maintain a con-
stant driving speed, we could not avoid fluctuations cau-
sed by traffic, stoplights, etc., which were later shown to
result in an increase in temperature due to air stagnation
and heat from cars nearby. To estimate the magnitude of
air temperature variations data were compared to co-
temporal data from the Be'er Sheva Israel Meteorological
Service (IMS) station.

2.3 | CAT simulation

An updated version of the Canyon Air Temperature (CAT)
model (Erell and Williamson, 2006) incorporating effects of
soil moisture on the surface energy balance (SEB) (Leaf
and Erell, 2017) was used to generate urbanized descriptors
of meteorological conditions, primarily air temperature, in
Be'er Sheva. The model, which is described at the scale of
street canyons, uses urban canyon 3D geometry (height
and width), land cover (fractions of vegetation and water
within a 1 km source area), and data from a reference sta-
tion under similar meso-scale weather to calculate a repre-
sentative meso-scale base temperature, which is used in
turn to calculate the evolution of air temperature at the
urban street canyon taking into account the site-specific
energy balance. The CAT inputs describing an urban site,
and the methods used to estimate them are summarized in
Table S1 in the Supplementary Information.

The CAT model was forced using data from the IMS
weather station in Nevatim, about 13 km southwest of the
city. Data for direct and diffuse radiation, which are not
measured at the IMS station, were taken from a weather
station at Ben-Gurion University.

To support model application to a city scale, a method
was required to automate data acquisition for multiple
locations, each representing one cell in a grid. The
method, integrating geographical information system
(GIS) data sets and remote sensing images, was demon-
strated by Kaplan et al. (2016), and is extended and
improved in the present implementation.

2.3.1 | Urban geometric variables

The CAT simulation requires a description of the geometry
of urban street canyon, that is, building height, street

FIGURE 1 Location of Be'er Sheva in Israel (inset), the

weather station of the Israeli Meteorological Service (IMS) within

Be'er Sheva, and the mobile traverse route on July 28, 2016, with

initial (I), turning (T), and end (E) points marked
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width, and orientation. We estimated those variables based
on a database of building footprints, using the R software
(R Core Team, 2014), and ArcGIS 10.6 (Esri, 2018).

Street width
Street width is defined by the space between building
facades on opposite sides of the street, and can be estimated

using GIS-based methodology (Kaplan et al., 2016). How-
ever, as road pavements are not bound to lie in the centre
of urban street canyons, the method applied in Kaplan et al.
(2016), which relies on street centrelines is prone to under-
estimate the street width. Given that an urban street canyon
(defined for the purpose of microclimatic analysis) can be
formed even if there are no discernible pavements between

FIGURE 2 Two type T thermo-couples mounted on the rooftop of a car at about 2 m height (a) and the thermo-couples shielded in a

mechanically aspirated 10 cm plastic tube (b)

FIGURE 3 Schematic diagram of generating street network based on a geo-database of building footprint/height and the procedure to

derive urban geometric parameters required as input in the CAT
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adjacent building blocks, we refined the method to identify
street canyons relying only on detailed inputs of building
footprints (see Figure 3).

Small low-rise buildings such as kiosks (the criteria
being footprint area < 50 m2 and H < 10 m) that do not
contribute to the definition of urban street canyons were
filtered out. The remaining buildings within a 15 m
radius to each other are iteratively aggregated into con-
tinuous building blocks that we regard as the basic ele-
ments of an urban street canyon.

Using the building blocks layer as input, the Euclidean
Distance Tool in ArcGIS 10.6 (Esri, 2018) was implemented
to generate a 1 × 1 m2 resolution grid, which gives the dis-
tance from each raster cell to the closest building block.
The distance raster reaches its local maxima along the cen-
treline between any two adjacent building blocks. The set
of local maxima constitutes the de facto urban streets.

To identify these local maxima, we proposed a
Voronoi-diagram based street network generator which is
realized using the R sf package (Pebesma, 2018). The algo-
rithm partitions the entire area of interest (Be'er Sheva)
into collectively exhaustive and mutually exclusive regions
centred at each building block (Okabe et al., 2000). Each
region is a collection of points closest to the centred build-
ing block, whereas adjacent regions overlap only on their
boundaries, forming a tessellation. In our case, the bound-
aries coincide with the local maxima and thus represent
the street network. The resulting street network is

subsequently superimposed with the distance grid gener-
ated beforehand to compute the street width (see
Figure 4).

As the distance from the centreline represents only
half of the street, the real street width is double the local
maxima. Taking into account site-specific street charac-
teristics, we introduced a minimum threshold of 10 m,
that is, only linear spaces wider than 10 m are regarded
as streets in Be'er Sheva. If a grid cell has more than one
street, CAT uses a street width equal to the average of all
streets within it. A street canyon is thus defined as an
“edge” consisting of a straight segment of the network of
linear urban spaces between two adjacent nodes.

Street orientation
The street orientation (azimuth) is determined based on
the de facto urban streets delineated above. Each segment
connecting two adjacent junctions is projected onto the
cardinal directions, with the north having a value of 0�

(see Figure 5a,b). Due to the symmetry of the street orien-
tation, we restricted the orientation angle to 0–180�. The
street orientation of a grid cell is determined by the vec-
tor mean of street vectors within it (see Figure 5c).

Building height
The database of building footprints provides the height of
each building as well. For each grid cell, the mean build-
ing height is calculated by averaging heights of buildings,

FIGURE 4 Satellite image

from Esri. WorldImagery (Esri,

2019) for a selected urban quarter

in Be'er Sheva (a) and the

OpenStreetMap layer

(OpenStreetMap contributors,

2017) presenting various

geographic entities for the same

region (b). (c) Building blocks

consisting of buildings standing

close (<15 m) to each other and

the generated Voronoi tessellation

representing the street network.

(d) The street network

superimposed on the 1 × 1 m2

distance grid to derive street width
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weighted by their façade wall areas (building footprint
circumference × height). For grid cells free of buildings,
that is, open space, we set the building height to a mini-
mum value of 3 m and the street width to a maximum of
150 m, which corresponds to a sky view factor of 0.99.

2.3.2 | Anthropogenic heat

The urban SEB includes anthropogenic heat, primarily
heat emitted from buildings and from vehicle traffic. In
early versions of CAT, this component of the SEB was
derived from estimates obtained in other cities by a vari-
ety of methods, either top-down or bottom-up. Values
used were monthly city-wide averages, included in the
CAT input files, which were then processed to generate a
typical diurnal profile at hourly time steps. This method
was satisfactory for simulations in one urban site, pro-
vided an appropriate estimate of the urban average
anthropogenic heat was available. The method is not
capable, however, of describing intra-urban variations of
heat emissions.

Here we propose a methodology to account for differ-
ences in emissions among neighbourhoods of different
density, at hourly time steps. It uses building height to
estimate heat losses by conduction through facades,
employing typical thermal properties of walls and win-
dows. To simplify the calculation procedure, conduction
at each time step is assumed to be proportional to the dif-
ference in air temperature between the building interior
(25�C in summer [June–September], 18�C in winter
[December–February], and 22�C in transitional seasons
[March–April, October–November]) and exterior. Heat
transfer by convection is estimated assuming a fixed
number of air changes per hour between the interior and
the exterior, again based on the difference between inter-
nal and external air temperature. The building volume is
estimated from its height and assuming a fixed depth
(measured from the street façade) of 10 m. The number
of air changes per hour is fixed at 1.5, an estimate that is
based on the construction quality and airtightness of

fenestration in Israel. In summer, heat ejected by air con-
ditioners is assumed to be proportional to the difference
in air temperature between the interior and exterior.

Heat emitted by automobiles is estimated as the prod-
uct of the heat emitted by an average car—3,795 J/m
(Sailor and Lu, 2004)—and the number of vehicles travel-
ling down the street. As the latter number is very difficult
to obtain, we simply assigned automobile traffic to the
street in a given location based on street width (broad
streets have higher traffic) and time of day. The diurnal
hourly profile accounts for a minimum load at night,
maximum load during the morning and afternoon peak
hours, and intermediate loads at other times.

For more details on the estimate of the total anthro-
pogenic heat, we refer to Section S2 (Tables S1–S2,
Equations S1–S4) in the Supplementary Information.
Specifically, Figures S1 and S2 illustrate the diurnal pro-
file of the traffic-related ant the total anthropogenic heat,
respectively. Figure S3 shows the gridded total anthropo-
genic heat for Be'er Sheva in summer and winter.

2.3.3 | Land use and land cover fraction

The CAT model requires a spatially explicit description of
vegetation and water fractions in each grid cell and its
vicinity. These fractions account for the advection of mois-
ture from source areas that are defined by wind direction
and stability (Erell et al., 2009, 2010). The vegetation frac-
tion was estimated from Sentinel-2 images at 20 m resolu-
tion using an unsupervised maximum likelihood classifier.
Initialized with 50 land use/land cover classes, the identi-
fied classes are later collapsed into four types: pavement,
buildings, desert (exposed soil), and vegetation. The city of
Be'er Sheva has no significant water bodies. The classifica-
tion achieves an overall accuracy of 0.916 and a coefficient
of agreement (Kappa) of 0.839 (for more details see
Table S4 in the Supplementary Information).

Following the methodology described in Erell et al.
(2009) and Kaplan et al. (2016), the vegetated fraction of
each wedge is calculated based on the gridded land

FIGURE 5 Illustration of the derivation of street orientation within a grid cell. (a) and (b) Segments of streets are projected onto the

cardinal directions, with the north having a value of 0�. (c) The street orientation of a grid cell is determined by the vector mean of street

vectors within it
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use/land cover map generated above. Figure 6 illustrates
the configuration of wedges for selected zones in Be'er
Sheva which are distinguished from each other in terms
of land use, built-up density, and vegetation fraction.

2.3.4 | Surface albedo

A Landsat 8 image on July 28, 2016 was used to estimate
albedo with an empirical formula previously developed
for the Landsat Thematic Mapper/Enhanced Thematic
Mapper Plus (TM/ETM+) sensor (Liang, 2001):

α=0:356*b2+0:13*b4+0:373*b5+0:085*b6

+0:072*b7−0:0018,

where b2, b3, b4, b5, b6, and b7 correspond to the reflec-
tance in Landsat-8 spectral bands 2 (0.45–0.515 μm),
3 (0.525–0. 60 μm), 4 (0.63–0.68 μm), 5 (0.845–0.885 μm),
6 (1.560–1.660 μm), and 7 (2.1–2.3 μm), respectively. The
building footprints are then masked, and the mean gro-
und surface albedo for each grid cell is calculated and
incorporated into the CAT model. The average albedo
values of each 90 m grid cell were found to range from
0.11 to 0.53.

2.4 | Thermal remote sensing

Contiguous LST data can be derived from remotely
sensed thermal infrared satellite images. In order to com-
pare and contrast the mobile traverse measurements, we
used a Landsat-8 scene acquired at 08:11 UTC (about
10:11 local standard time) on July 28, 2016. Landsat
8 thermal band 10 (10.6–11.2 μm), which is registered
and resampled to 30 m resolution using a cubic convolu-
tion from the original 100 m collection, was used to esti-
mate LST following USGS (2016):

TB=
K2

ln K1
Lλ+1

� � ,

where TB is the Top of Atmosphere (TOA) Brightness
Temperature in Kelvin; K1 and K2 are band-specific ther-
mal conversion constants from the metadata. For Landsat-
8 band 10, K1 and K2 are 774.8853 and 1,321.0789, respec-
tively. Lλ denoting the TOA spectral radiance in
W�m−2�sr−1�μm−1, is converted from pixel digital numbers
from band 10 using Lλ = MLDN + AL, where ML and AL

represent the band-specific multiplicative and additive
rescaling factors from the metadata (for Landsat-8 band
10,ML and AL are 3.3420E-04 and 0.1, respectively).

FIGURE 6 Configuration of wedges (a) and satellite images from Google Earth (I-th panel of b–d) for selected grid cells in Be'er Sheva:

(b) a residential area with a relatively high fraction of vegetation, (c) the densely built old city quarter, and (d) the sparsely vegetated light

industry zone. As Be'er Sheva has scarcely any surface water, the availability of moisture for the centred cell is mostly restricted by the

vegetation fraction of the wedges windward, and their values (III-th panel of b–d) are derived from the land cover map (II-th panel of b–d)
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To account for emissivity (ε) of different land covers,
we corrected the brightness temperature to obtain LST
following Weng et al. (2004):

LST=
TB

1+λ T
ρ lnε

,

where λ is the wavelength of emitted radiance (10.9 μm
for band 10), ρ = hσ/s (1.4388E−02 m�K), σ = Boltzmann
constant (1.38E−23 J�K−1), h = Planck's constant
(6.626E−34 J�s), and c = velocity of light (2.998E−08
m�s−1). The values of surface emissivity (Table 2) are
empirically estimated based on the land use and land
cover classification generated previously (Qin et al., 2005;
Yu et al., 2014).

As the UHI is found to be more pronounced at night
(Oke, 1987; Runnalls and Oke, 2000) and the Landsat-8
does not provide night-time images, we also used images
from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) satellite sensor. With a
90 m resolution, the ASTER surface kinetic temperature
(AST_08) product (NASA LP DAAC 2001) provides high
resolution images for LST night-time analysis. Given image
availability, quality, and cloud coverage, we used an image
acquired on July 30, 2012 for analysis. For both day- and
night-time images, pixel values were converted from
kinetic temperature in Kelvin to degrees Celsius. All data
were downloaded from the United States Geological Survey
(USGS) website at https://espa.cr.usgs.gov/ordering/new/.

The surface UHI (SUHI) is referred to as the differ-
ence of LST between the urban area and its surrounding
natural environment. The SUHI was calculated by sub-
tracting the average LST of all desert pixels outside the
city border within a region of interest which matches
approximately the extent of Figure 1. Mean desert LST
when the satellite was overhead (at 10:00 local time on
July 28, 2016, the date of the traverse) was estimated
at 41.1�C.

3 | RESULTS

3.1 | Land use classification

The city of Be'er Sheva and its vicinity were divided into a
total of 10,400 (100 × 104) grid cells of 90 × 90 m2. The
land use and land cover in Be'er Sheva is characterized as

bare, sparsely vegetated open space, which constitutes 39%
of the urban administrative area (Figure 7). The shares of
buildings, paved roads, and vegetation are 37, 11, and 13%,
respectively. The scattered fragments of vegetation within
the city and the larger green patches at the city's western
periphery are drip-irrigated urban greening and jojoba
fields at Kibbutz Hazerim, respectively.

3.2 | Urban geometric parameters

The linear spaces (“streets”) identified using the method-
ology described above are aggregated at the grid cell level
to derive the average street width and orientation, which
are shown in Figure 8b,c. As shown in Figure 8a, Be'er
Sheva is dominated by low-rise to mid-rise buildings with
a height of less than 30 m. Some medium- to high-rise
residential buildings are found in the south-western part
of the city. Except in the old city and several old urban
quarters, streets are often wide (median of 42 m,
irrespective of open spaces).

The relatively low building height alongside the large
street width results in a generally low aspect ratio (H/W)
of urban street canyons. Of 3,325 urban cells, 78.6% have
an aspect ratio smaller than 0.5 (avenue canyon), while
only 13 cells have a value larger than 2 (deep canyon).
Be'er Sheva has an irregular grid of streets with a pre-
dominance of east-oriented streets at the grid cell level.

TABLE 2 Land surface emissivity

estimated empirically for each land

cover class

Roads Built-up Desert (sand) Vegetation (grass)

Emissivity (ε) 0.94 0.94 0.95 0.98

FIGURE 7 Land use and land cover map for Be'er Sheva

using an unsupervised maximum likelihood classifier
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3.3 | Evaluation of CAT simulation

Model performance was assessed by comparing the
predicted and observed values of an Israel Meteorological
Service weather station located inside the urban area
(31.251433 N, 34.799420 E, 280 m mean sea level [MSL]).
As shown in Figure 9, the land cover within the station is
bare soil, and it is surrounded by vegetation and small
low-rise buildings.

Since CAT performs a modification of the regional air
temperature to estimate a local value, the temperature
from the reference station may itself be a fairly good
approximation of the object of the simulation (Figure 10).
The model may thus only be considered useful if the simu-
lation output is closer to the observed value than this input.
Model performance was estimated using the Williamson
Degree of Confirmation—DoC (Williamson, 1995). In

addition, standard measures such as the root mean square
error (RMSE) as well as more sophisticated ones rec-
ommended by Moriasi et al. (2007), Willmott (1981, 1982)
and Willmott et al. (1985) were used for model evaluation.

Statistical measures of model performance are shown
in Table 3. The model has a root mean square error of
0.89�C and a DoC of 0.232, indicating that the CAT
model has an overall good performance and is able to
estimate urbanized air temperature better than simply
using temperature measurement from a rural reference
under similar meso-scale weather conditions.

Moriasi et al. (2007) also suggest that “In general,
model simulation can be judged as satisfactory if Nash–
Sutcliffe efficiency index (NSE) >0.50 and RMSE-observed
standard deviation ratio (RSR) <0.70…” and in addition
that model bias should be below certain thresholds that
are determined based on the uncertainty of the measured

FIGURE 8 Spatial distributions of selected CAT-parameters in 90 × 90 m2 grids: (a) building height, (b) street width, (c) street

orientation, (d) albedo, and (e) vegetation fraction. The parameters in the upper panels (a)–(c) are derived from a building footprint

geodatabase. Therefore, values are only calculated for grid cells containing buildings
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data. The model in this study achieved an NSE of 0.987
and an RSR of 0.113, exceeding the suggested values of a
satisfactory model.

Figure 11 illustrates model performance for two
periods of several days each in January and July, respec-
tively. The upper panel shows a winter period beginning
with overcast weather followed by a rainy day on 25th
January and in the mid-morning of 26th January. Changes
in soil moisture and the latent flux following the rain are
reflected in model output, as the surface temperature over
the subsequent days is substantially lower than in the pre-
ceding period. However, during strong wind spells (mar-
ked with grey dashed rectangle) and in the initial phase of

rain events (with blue dashed rectangle), the CAT model is
prone to underestimate air temperature for the urban sta-
tion. We hypothesize that this divergence could be associ-
ated with two factors: (a) rain events in the desert are
often observed localized over a relatively small region,
which may put into question the basic assumption of CAT
that similar meso-scale weather exists between urban and
rural stations; and (b) the increased roughness of urban
built-ups results in reduced wind speed in cities. The CAT
model is able to account for the wind effect on air temper-
ature at low wind speeds but becomes less capable during
strong wind gust.

3.4 | Spatio-temporal pattern of intra-
urban temperature variability

Figure 12 shows the spatio-temporal pattern of modelled
UHI in Be'er Sheva at 6 hr intervals on a typical winter day

FIGURE 9 The site of the urban

weather station (a) with a Stevenson

screen (b) in the centre of Be'er Sheva

operated by the Israeli Meteorological

Service (IMS)

FIGURE 10 Scatterplot showing hourly modelled (TCAT)

and observed near-surface air temperature (T observed) for 2016

(8,784 hourly values). There is a good agreement overall with a

best-fit regression line having a slope of unity and a negligible

offset

TABLE 3 Statistical evaluation of the predicted surface air

temperature

Total number of hours 8,784

Mean error 0.04

SD of error 0.89

Maximum error 4.36

Minimum error −5.89

Root mean square error 0.89

Systematic root mean square error 0.05

Unsystematic root mean square error 0.89

Willmott index of agreement 0.99

Williamson degree of confirmation (DoC) 0.232

Nash–Sutcliffe efficiency index (NSE) 0.987

Percent bias (PBIAS) 0.19

RMSE-observed SD ratio (RSR) 0.113
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(January 20, 2016) and a summer day (July 28, 2016). In
this study, the UHI intensity is defined as the temperature
difference of each urban cell relative to measurement from
the rural reference station in Nevatim. For both winter and
summer days, Be'er Sheva exhibits a more pronounced
UHI during night-time than daytime. The maximum noc-
turnal UHI reached about 4�C in the winter and dimin-
ished to about 2�C in the summer, while the daytime UHI
was usually less than 1�C. However, a weak cool island,
that is, urban cells are cooler than the rural reference,
could appear in the mid-morning shortly after the sunrise,
as exposed desert surfaces heat more rapidly than urban
surfaces of higher thermal mass.

To check whether the cool island is also present in
other periods of the year, we calculated hourly mean
UHI by averaging the UHI of all urban cells at each hour.
As shown in Figure 13, the urban cool island was also
widely present based on the modelled surface air temper-
ature throughout the year, predominantly in the period
between sunrise and noon.

3.5 | Comparison between traverse
measurement and CAT simulation

Figure 14 compares surface air temperature modelled by
CAT and measurements recorded by the vehicular

FIGURE 11 Time series of observed (urban station in points

and rural reference in Nevatim) and CAT-simulated near-surface

air temperature of the urban station for two periods in January

(a) and July (b). (a) A strong wind spell and the initial phase of a

whole-day rain event, in which CAT underestimated surface air

temperature, are marked with dashed rectangles

FIGURE 12 Spatio-temporal pattern of modelled surface air temperature at 6 hr intervals on a typical winter day (January 20, 2016)

and summer day (July 28, 2016), grouped in daytime (LT1000 and 1,600) and night-time (LT2200 and 0400). The UHI intensity is defined as

the temperature difference relative to the rural reference measurement
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traverse in the mid-morning of July 28, 2016. At first
glance, the CAT model seems to underestimate surface
air temperature in urban street canyons. However, we
have to highlight several sources of model error which
may account for the discrepancy. Firstly, the attempt to
maintain a constant driving speed during traverse mea-
surement often fails in urban settings due to complex
traffic conditions, for example, stops at traffic lights, traf-
fic jams. As a consequence, heat may accumulate during
stops at junctions, resulting in abnormally high tempera-
ture measurement. This could explain the two outlier
measurements in Figure 14.

Secondly, the CAT model incorporates an incomplete
description of processes happening simultaneously in cities.
As described in Section 2.3.2, traffic-related heat is esti-
mated using a simplified approach rather than taking into
account real-time traffic counts. Thirdly, systematic errors
resulting from measuring instruments (e.g., sensors, instal-
lation of shields) could also introduce bias to the
measurement.

Lastly, the CAT model outputs hourly mean surface
air temperature of a grid cell (in this study 90 × 90 m2)
represented as a street canyon, thus takes only limited
account of the heterogeneity inside the cell. In

comparison, the mobile traverse measures real-time tem-
perature signals at a certain place and a certain time. As
the sky view factor is relatively high in urban street can-
yons in Be'er Sheva, streets are scarcely shaded and
directly exposed to the sun most of the time during the
day. This makes streets often hotspots within a cell dur-
ing daytime, exhibiting a higher temperature than the
mean of the cell where they are located.

3.6 | Surface UHI

Figure 15 demonstrates the variability of surface skin tem-
perature (Ts) in the city and its vicinity by means of night-
time ASTER (a) and daytime Landsat-8 (b) images, respec-
tively. Night-time surface skin temperature shows a SUHI
(definition see Section 2.4) of 4–5�C, in contrast to a cool
island of similar magnitude in mid-morning (approxi-
mately 10:00). The bare desert soil (loess) in the suburbs
and urban periphery has a low thermal capacity and con-
sequently exhibits large changes in temperature—cooling
down rapidly after sunset but also heating up very rapidly
after sunrise. This explains the anomalous dirunal pattern
of a paved road junction (black dashed circle) in the urban

FIGURE 13 Temporal pattern

of the mean UHI in Be'er Sheva,

modelled at hourly time steps. A

weak cool island may be observed in

Be'er Sheva from sunrise till noon

FIGURE 14 Ta simulated by

CAT versus the traverse vehicular

measurement in the mid-morning

(about 10:00 local time) on July

28, 2016. The 2 points with

abnormally high Ta were measured

during stops at red lights at the road

junction
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periphery in contrast to the desert surrounded. The
hotspot near the centre of the daytime image (white rect-
angle) is a bare soil Moslem cemetery, and thus behaves
rather like open desert. As a comparison, an agricultural
field on the western urban fringe (grey dashed rectangle)
presents a constant cold spot at both day- and night-time,
which highlights the cooling effect of irrigated vegetation
in semi-arid/arid regions.

Figure 16 compares the distribution of the modelled air
temperature at 10:00 local standard time July 28, 2016 and
the Landsat-8 Ts obtained at the same time for the same
area. The two temperatures differ remarkably from each
other in terms of conventional descriptive statistics (e.g.,
value range, mean), posing a great challenge to estimate
(usually) air temperature from surface skin temperature.

Constrained by data availability, we applied the
Temperature-Vegetation Index (TVX) approach using the
daytime Landsat-8 Ts data, to derive the corresponding
Ta. The TVX approach assumes a negative correlation
between Ts and vegetation indices such as normalized
difference vegetation index (NDVI), and that Ta is in
equilibrium with Ts of infinitely thick vegetation canopy,
that is, at a very high NDVI value (Prihodko and Goward,
1997). We applied a moving window of different size and
different maximum NDVI as summarized in Zhu
et al. (2013).

However, the method seems not to work properly in
desert conditions, as a negative correlation between Ts

and NDVI does not always hold in the morning. In bare
unvegetated areas outside the city, the correlation is
mostly positive. The regression in the TVX might

FIGURE 15 Surface kinetic temperature captured by (a) the ASTER sensor at 90 m resolution for night-time at about 22:00 local time

July 30, 2012 and (b) the Landsat-8 satellite at 30 m resolution (resampled) for daytime at about 10:00 local standard time July 28, 2016.

Night-time surface skin temperature data show a SUHI of 4–5�C, in contrast to a cool island of similar magnitude in mid-morning

(approximately 10:00). The dashed rectangle, solid rectangle, and dashed circle mark an irrigated jojoba farm, a cemetery and a road

junction, respectively, which exhibit abnormal temperature pattern in contrast to their surroundings

FIGURE 16 Histogram of Ta modelled by CAT at 10:00 local

standard time July 28, 2016 and the corresponding daytime LST for

the same area. The latter is aggregated to 90 m resolution and

consistent with the former
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generally fail for desert regions where NDVI is small in
both value (with a mean of 0.11) and range (with a SD
of 0.03).

Moreover, factors like albedo are also observed to
have an impact on the variability of Ta. Limestone bed-
rocks common in the Negev desert normally exhibit a
lower temperature than the surrounding bare soil, which
is ascribed to a higher albedo associated with the light
colour of the former.

4 | DISCUSSION

The following section first describes the limitations of
each of the three methods employed, as experienced in
this study. The implications of these limitations are then
illustrated in the context of the particular characteristics
of a desert city.

The traverse was performed by automobile and was
limited to paved roads. Thus, passing at a street adjacent
to a small urban park was not reflected in the tempera-
ture measurements, because the (assumed) cooling effect
of the park did not extend to the road. As the response
time of the thermocouples was rapid, the temperature
record captures transient turbulence manifested in tem-
perature fluctuations of as much as 1�C or more. Averag-
ing the readings over 5 s may not smooth out such
temperature fluctuation. A longer averaging period, suffi-
cient to reduce the effect of such micro-scale turbulence,
would have resulted in the loss of spatial detail: a vehicle
travelling at 50 km�hr−1 will traverse a 100 m wide park
in less than 8 s. In contrast, stopping at traffic lights for
1–2 min exposed the vehicle to exhaust fumes of adjacent
automobiles, resulting in elevated temperature readings
that were most likely very localized (they were not appar-
ent in data points recorded before the intersection or
after it) and possibly transient. The temperature data
recorded during the traverse are therefore “accurate” in a
narrow technical sense—but are they necessarily repre-
sentative of a larger spatial extent or a longer time?

At the other spatial extreme, remote sensing can quan-
tify the magnitude and spatial extent of UHI and enable
comparison of UHIs among different cities at continental
scales (Imhoff et al., 2010; Zhou et al., 2013). However, it
is still incapable of resolving micro-scale features of the
urban landscape. It is also limited to clear sky conditions.
If the objective of a study is to inform localized decision
making, the spatial averaging displayed in images derived
from the satellite infrared sensing limits their utility.

Finally, despite an overall acceptable performance of
the CAT model, we should acknowledge a limitation of
CAT, namely that the model may be applied only where
the city and the rural reference station are exposed to

similar meso-scale weather conditions. If this condition is
not satisfied, due to weather events that have significant
dynamics but very localized impacts (e.g., wind gusts or
torrential local rainfall), the model will generate biased
urbanized air temperature proximate to the rural refer-
ence (as shown in Figure 11a). The pros and cons of the
grid based approach used in this study have been dis-
cussed in detail previously in Kaplan et al. (2016): In
short, the gridded version of CAT model achieves a com-
putational efficiency in simulating the intra-urban varia-
tion of microclimate at the cost of an incomplete
description of the heterogeneity of 3D characteristics
within each urban cell. Setting a large grid cell size could
lead to an over-homogenization that fails to capture the
spatial variation of urban microclimate. Therefore, small
cell size is preferred. Meanwhile, each grid cell is con-
ceived as a unique urban street canyon that should
encompass at least a street of sufficient length. These
competing requirements demand a high level of sophisti-
cation on the configuration of a grid of appropriate cell
size—the cell should be set as small as possible, but not
smaller.

The application of the three methodologies in the
study of Be'er Sheva yielded insights which would not
have been observed individually. The existence of a mod-
est daytime cool island in dry cities has been noted in the
past through localized ground observations of air temper-
ature (Erell and Williamson, 2007) and remote sensing of
LST (Peng et al., 2012; Lazzarini et al., 2015; Shastri et al.,
2017). However, the temporal persistence and spatial
extent of the air temperature cool island modelled by
CAT (Figures 12 and 13), though not unexpected, have
not been reported in studies of the urban climate. Simi-
larly, although anthropogenic heating due to air condi-
tioning has been modelled at an urban scale using WRF
(Salamanca et al., 2014), the present study introduces a
framework to resolve anthropogenic sources at a higher
spatial resolution (see Supplementary Information for
details). Although we do not have flux measurements to
validate the predicted values, it is encouraging to see the
correlation between known “hotspots,” such as closely
built high-rise buildings, and hotspots illustrated by the
simulation. The mean annual value for the urban area
obtained by this method is approximately 22 W�m−2, sim-
ilar to values obtained by Sailor et al. (2015) for Rome,
Italy, which has similar heating and cooling require-
ments and a similar population density.

Comparison of the findings from the present study
with previous research illustrates the effect of methodol-
ogy on the findings. Time series analysis of urban air
temperature in comparison with a rural location west of
Be'er Sheva by Saaroni and Ziv, 2010 reported a persis-
tent UHI of 3.0 to 0.8�C in summer (daily minima and
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maxima, respectively), and 2.0 to 1.5�C in winter. Man-
delmilch et al. (2019), in contrast, who investigated the
characteristics of LCZs in Be'er Sheva using short term
measurements, reported that the UHI is more significant
in winter than in summer, and that the summer UHI is
larger during daytime than at night. Unlike some compu-
tational studies of desert cities (e.g., Zhao et al., 2014),
neither paper reported a daytime near surface cool island.
This may be due to the location of the measurement sites
(Saaroni and Ziv (2010) selected a reference station that
is west of Be'er Sheva and closer to the moderating influ-
ence of the Mediterranean Sea), or to the use of mini-
mum and maximum temperatures for comparison, rather
than hourly values throughout the day.

5 | CONCLUSIONS

Three different methods were applied to investigate the
intra-urban microclimate variability of a desert city at
both screen (air temperature) and skin (surface skin tem-
perature) levels, namely in-situ measurement from fixed
weather stations and vehicular traverse, computer simu-
lation, and satellite-borne remote sensing. We find that
the results obtained by different methods used for evalu-
ating the urban climate might not be consistent with each
other. Consequently, while we do not necessarily rule out
conclusions and suggestions drawn from studies based
exclusively on a single method, we suggest that such stud-
ies should be interpreted much more carefully. As our
study has demonstrated, urban–rural differences in LST
obtained by remote sensing may be substantially larger
than concurrent differences in canopy layer air tempera-
ture, at night as well as in daytime. Similarly, differences
in vegetation cover among urban neighbourhoods are
clearly visible in images of LST but may generate only
moderate differences in air temperature. Policy recom-
mendations based on the impact of vegetation on air tem-
perature alone may in this case underestimate the
benefits of green infrastructure, because air temperature
is only one of the factors that affect pedestrian thermal
comfort and building energy demand.

Computer simulation at appropriate scale may be able
to bridge the spatial gap between surface based in-situ
measurements, that are inherently local, and remote
sensing data, which cannot resolve all thermal fluxes,
despite great improvement in resolution and accuracy.
This study demonstrates an innovative GIS-based,
bottom-up approach to generating the required inputs.
The method to derive urban geometric parameters relies
on several input layers of moderate resolution, such as
land cover, albedo, and building footprints. These data
are either publicly accessible, for example, from the

Landsat or Sentinel missions, or there are open access
alternatives, for example, the Microsoft building foot-
prints data for the United States (Bing maps team, 2018).
In combination, they make the method easily applicable
in any model requiring a detailed description of urban
geometry.

Our findings contribute to the limited sample of exis-
ting studies on the temperature dynamics of cities located
in semi-arid/arid climate zones. It confirms discrepancies
reported in some other desert cities between the surface
UHI (LST) observed by remote thermal imaging and
ground-based air temperature measurements in the can-
opy layer. Thus, Be'er Sheva exhibits a daytime surface
cool island and a weak but persistent daytime cool island
at screen level, as well as the customary nocturnal heat
island.

Though different methods may sometimes result in
seemingly contrasting outcomes, they serve to comple-
ment each other, and should be used in combination to
obtain an unbiased description of the spatio-temporal
patterns of intra-urban microclimate variability. In con-
trast to a burgeoning number of studies that rely on
remote sensing, the relative paucity of spatially detailed
ground-based near-surface air temperature data in
cities—highlight the need for more urban microclimate
monitoring campaigns. Given the respective advantages
and disadvantages inherent in each method, we suggest
that a multi-method approach could provide synergistic
opportunities to enrich our understanding of the complex
land surface-atmosphere interaction.
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