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[1] We perform a systematic study of all cities in Europe
to assess the Urban Heat Island (UHI) intensity by means
of remotely sensed land surface temperature data. Defining
cities as spatial clusters of urban land cover, we investigate
the relationships of the UHI intensity, with the cluster size
and the temperature of the surroundings. Our results show
that in Europe, the UHI intensity in summer has a strong
correlation with the cluster size, which can be well fitted by
an empirical sigmoid model. Furthermore, we find a novel
seasonality of the UHI intensity for individual clusters in
the form of hysteresis-like curves. We characterize the shape
and identify apparent regional patterns. Citation: Zhou,
B., D. Rybski, and J. P. Kropp (2013), On the statistics of
urban heat island intensity, Geophys. Res. Lett., 40, 5486-5491,
doi:10.1002/2013GL057320.

1. Introduction

[2] The Urban Heat Island (UHI) is a phenomenon, where
urban areas experience elevated temperatures relative to the
surrounding hinterland [Oke, 1987]. Most studies addressing
the UHI effect can roughly be categorized into approaches of
(i) numerical modeling the physical processes and (ii) empir-
ical analysis, whereas the latter is either based on (a) air
temperature records from weather stations or (b) land surface
temperatures (LST) from remote sensing.

[3] In the last decades, causative factors of the UHI
effect given by Oke [1982] have been confirmed and further
broadened through a variety of studies around the world.
Compared to nonbuilt surroundings, built-up areas of cities
differ considerably in albedo, thermal capacity, roughness,
etc. which can significantly modify the surface energy bud-
get [Arnfield, 2003]. A number of studies suggest that
the intensity of UHI could be increased by anthropogenic
heating (including contributions from vehicles, building
sector, and human metabolism) [Sailor and Lu, 2004] as
well as CO, and pollutants emissions [McCarthy et al.,
2010; Taha, 1997].

[4] In terms of methodology, physically based numeri-
cal models simulate urban energy balance fluxes through
the parameterization of urban surface processes (for an
overview, we refer to Masson [2005]; Grimmond et al.
[2010]). Empirical approaches, based on either air temper-
ature or LST, attempt to reveal the linkage between the
UHI intensity and various descriptive indicators of cities,
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spanning from biophysical properties (e.g., vegetation,
imperviousness) to socioeconomic indices (e.g., population
density) [Holderness et al., 2013; Weng et al., 2011]. For
a long time, UHI studies suffered from inconsistency and
instability with regard to the urban-rural definition, hin-
dering the intercomparison between results. Schwarz et al.
[2011] compare indicators for quantifying the surface UHI
with different urban-rural definitions and report weak corre-
lations among the indicators.

[5] In any case, only individual, few, or up to hundreds
of cities have been studied. We overcome this limitation in
the number of considered cities by automatically quantify-
ing the effect for all cities in Europe. Therefore, we apply a
three-step approach. First, we identify cities in the form of
spatial clusters of urban land cover. Second, for each cluster
we determine a boundary around the urban cluster of approx-
imately equal area to the cluster area. Third, we calculate
LST means of both, cluster and boundary, and define the
UHI intensity as the difference between both mean temper-
atures. Applying this procedure for the entirety of Europe
(constrained by the CORINE data, see section 2), we are able
to quantify the UHI intensity for ~130,000 clusters in total
from which there are almost 2000 larger than 13 km?.

[6] We analyze two types of correlations. First, we inves-
tigate the UHI intensity of all clusters as a function of the
cluster size. We find a characteristic increase with cluster
area which we describe by a sigmoid curve. The UHI inten-
sity is seasonally dependent and the saturation is maximal
in summer (mean up to 3°C) and considerably smaller in
winter. Second, we study the UHI intensity of individual
clusters as a function of the boundary temperature. Two find-
ings are striking. On the one hand, not all clusters exhibit
increasing UHI intensities with increasing boundary temper-
atures. For several, the opposite is found, i.e., decreasing
cluster temperature with increasing boundary temperature
(inverse UHI effect). On the other hand, we find seasonal
differences. For the same boundary temperature, different
UHI intensities are measured in spring and fall—a pro-
nounced seasonality is found for many clusters, reflecting
a characteristic signature and regional heterogeneity due to
climate conditions.

2. Data

[71 Our work makes use of two major data sets, (i) land
cover information and (ii) land surface temperature (LST).

[8] We base the identification of the urban clusters on the
CORINE land cover data of the year 2006 at 250 m spatial
resolution, covering 38 European Environmental Agency
member states and cooperating countries except Greece,
with a total area of 5.8 Mkm? [Biittner et al., 2007]. The
44 distinguished land use classes are subordinated into five
main groups: (a) artificial surface, (b) agricultural areas,
(c) forest and semi-natural areas, (d) wetlands, and (e¢) water
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Figure 1. Example of a city cluster and a temperature pattern. (a) Urban cluster identified by CCA (red) and boundary
(green hashed) for the Greater London Area with / = 500 m. The urban area of other clusters (pink) are excluded from the
identified boundary area. (b) LST for the same area as in Figure 1a captured by the MODIS Aqua at ~13:30 local time from
2 June 2006 to 9 June 2006. The urban cluster and the urban heat distribution are in agreement.

bodies. Subsequently, the land cover data is reclassified into
urban and non-urban ones as described in [Simon et al.,
2010], i.e., binary data.

[9] The LST data sets include the MYDI1A2 Version
5 data from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) on the NASA Aqua platform, providing
8 day-mean LST with a spatial resolution of ~1,000 m, at
around 13:30 and 1:30 local time, respectively. We assessed
in this paper the LST daytime data from 2006 to 2011. The
validation of LST V5 data with in situ measurements indi-
cated that the accuracy of LST data is better than 1°C in
most cases [Wan, 2008].

3. Method

[10] We define the UHI intensity of a city cluster (labeled
with index i), as the difference between the temperature
in the cluster and that of the surroundings, i.e., AT® =
T g) -T };), where T, g) and 7, j;) are mean temperatures of
the cluster and the boundary, respectively. This definition
involves three steps:

[11] 1. Since administrative city boundaries differ from
the actual extent, we define cities as clusters of urban
land cover. Accordingly, to identify the European cities, we
apply the City Clustering Algorithm (CCA) as proposed by
Rozenfeld et al. [2008] to land cover rather than to pop-
ulation data, since fine-grained population census data are
mostly unavailable. CCA involves a clustering parame-
ter / determining up to which distance urban cells are
connected with each other, i.e., urban cells within that
distance are assigned to the same cluster. We specify
[=500 m, i.e., double the resolution of the CORINE
data. We denote the cluster size as S(C') The highly pop-
ulated region of Belgium, the so-called Flemish Diamond
(Brussels-Antwerp-Ghent-Leuven, see supporting informa-
tion) becomes the largest urban cluster under this initial-
ization. Paris, the second largest urban agglomeration, is
followed by London and Milan.

[12] 2. Analogously, we designate the surroundings of a
cluster as the approximate equal-sized boundary area devoid
of urban cells of other clusters and sea waters. The bound-
ary is built by consequently forming layers of cell size
width around the city cluster (see supporting information

for details). Consistently, we denote the boundary size as
Sg). A similar UHI intensity calculation has been conducted
by Peng et al. [2012], suggesting minor influence of the
boundary size, i.e., 50%, and 100%, 150% of the cluster size.

[13] 3. Since LST data are based on clear-sky conditions,
we define a coverage threshold, i.e., the UHI intensity is
regarded as valid only if the LST values are available for
at least 50 % of the cluster and boundary cells. Moreover,
quality control data are supplied with each MODIS pixel,
classified into four levels (i.e., < 1°C, < 2°C, < 3°C,
> 3°C) which we denote as €. While calculating mean tem-
peratures of clusters and boundaries, we use € for weighting.
First, the pixels with a mean LST error € > 3°C are filtered
out. Then, the weights are assigned inversely proportional to
€2, 1.e., W= 1/€%. The cluster temperature ](C’ is therefore a
W-weighted arithmetic mean of grid cell temperatures. Anal-
ogously, ]g) denotes the boundary temperature, considered
as a measure for the background temperature. Finally, we
calculate AT® = 79 — 7%,

[14] Figure la shows an example of a cluster identified
by CCA and its boundary for the Greater London Area.
As can be seen in Figure 1b, the urban heat pattern mostly
matches with the identified cluster, i.e., the city cluster
exhibits elevated temperatures. The analogous figure for
mean summer temperatures can be found in the supporting
information.

4. Analysis

[15] We systematically analyze the UHI intensities, A7,
for all city clusters identified from the CORINE data by two
means, (i) correlations with the cluster size and (ii) corre-
lations with the boundary temperature. In the first case, the
AT of all clusters are related to the corresponding cluster
sizes at one observation (AT versus S¢ for a fixed date),
and in the second case, the AT of one cluster are related
to the corresponding boundary temperatures at a// available
observations (AT versus T for a fixed cluster).

4.1. UHI Intensity and City Size

[16] It is commonly believed that the UHI effect corre-
lates with cluster size [Oke, 1973], but the characteristics of
this correlation are poorly understood. Thus, we investigate
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Figure 2. Urban Heat Island intensity as a function of
cluster size and seasonal variability. Typical dependence for
(a) summer days (4 July 2007 to 11 July 2007) and (b) winter
days (2 February 2008 to 9 February 2008) at ~13:30 local
time. Blue dots denote the mean of each bin with the data
of individual clusters (grey dots) underlaid. The summer
fitting curve exhibits a larger slope and asymptote. 95%
confidence intervals of the fitting based on binned data are
shown by dashed-dotted lines. The standard deviations o
around the fits are shown by green dashed curves. (c) Time
series of the parameter a which the fitting curve saturates
at (see equation (1)). The grey bars indicate the 95% confi-
dence intervals, suggesting a naturally larger uncertainty in
parameter estimation in winter.

how the UHI intensity depends on cluster size by plotting
AT as a function of the cluster size for all clusters and two
observations in Figures 2a and 2b. Various features can be
observed. For large clusters, the typical intensity reaches
maximum values of ~ 2°C in July (Figure 2a) and ~ 1°C
in February (Figure 2b). There is considerable spreading of
~=32°C, possibly reflecting local conditions.

[17] In order to characterize the correlations, we perform
a binning procedure. Choosing the number of bins and the
number of clusters in the first bin (largest clusters), the
number of clusters in subsequent lower bins increases expo-
nentially. After identifying the bin limits, the cluster sizes
and UHI intensities are averaged in each bin. This binning is
motivated by the power-law size distribution of cities [e.g.,
Rozenfeld et al., 2011]. The binned values in Figures 2(a)
and 2(b) suggest a sigmoid relation on a logarithmic scale of
cluster size. We employ the empirical function

T=— (M
1+ (Sc/b)<
where ¢ is the maximum value at which the fitting curve
saturates and b and ¢ determine the inflection and steepness
of the curve, respectively. Nonlinear least square optimiza-
tion is used for fitting equation (1) to the binned values.
We find very good agreement between the fitted curves and
the empirical values. However, individual city clusters can
exhibit UHI intensities considerably above or below the fit-
ting curve. Thus, the fit only characterizes typical behavior.

[18] All parameters are studied time-dependently. In
Figure 2c¢ the parameter a, i.e., the saturation value, is plotted
versus time for all available observations. The seasonal vari-
ability is reflected in the typical saturation UHI intensity
with maximum values of up to 3°C in summer (Jun—Aug)
and down to 0.5°C in winter (Dec—Feb). The other param-
eters exhibit seasonal variability as well. In the supporting
information, we compare exemplarily LST with 2m air
temperature and find correlations between the temperature
records but no correlations between the UHI intensities.

[19] Despite good fitting performance, we need to
mention that the analysis does not provide insights into
whether there is actual saturation or not, since such a conclu-
sion is restricted by the small number of large cities (as also
seen in the power law city size distribution). Nevertheless,
it is apparent that the increase of UHI intensity with cluster
size decelerates among larger city clusters.

4.2. UHI Intensity and Surrounding Temperature

[20] Since in the previous analysis much information
has been averaged out by considering the ensemble of all
clusters, next we study individual clusters. We select a
cluster and plot the corresponding UHI intensity values of
all observations versus the associated boundary tempera-
ture, in order to study AT given a certain temperature in
the surroundings.

[21] Figure 3 displays four examples. Since the raw values
of AT versus Ty exhibit poor correlations in many cases,
we calculate monthly means which are indicated by filled
triangles and letters in Figure 3. As can be seen, there
are significant seasonal variations. In Paris (Figure 3a), the
UHI intensity differs between AT =~ 3.3°C in May and
AT =~ 1°C in September for the same boundary tempera-
ture of T ~ 22°C. A numerical simulation performed by
Georgescu et al. [2012] reported a maximum UHI intensity
during summer for the Arizona Sun Corridor. The UHI was
found to be less pronounced during spring and fall, and the
least in winter.

[22] In order to better characterize the UHI patterns, we
perform a Fourier approximation of both the time series of
boundary temperatures, 7, and UHI intensities, AT,

v
2mnt 2mnt
Ft = n +hn i + s 2
0=3 (g cos ==+ sin P) @0, @

where F(f) represents either, 7 or AT, P = 46, the number
of observations for each year, ¢ the times {t;=1,2,...276},
g, h, the Fourier coefficients, and specifically gy is referred
to as the mean of F(f). The order of the analysis, v, is
determined through the Akaike Information Criterion (AIC)
[Akaike, 1973], which makes tradeoffs between the number
of regression parameters and fitting errors. Due to small
sample size, we apply an adjusted version by Sugiura
[1978]. We find that for the majority of clusters, the bound-
ary temperature and the UHI intensity can be well described
with the second order Fourier Series (v = 2) involving five
parameters each.

[23] Examples of fitted Fourier curves are given by solid
lines in Figure 3. While in Figures 3a and 3b a positive
relation can be observed (high UHI intensity coincides with
high boundary temperature), in Figures 3¢ and 3d, the oppo-
site is found (but with smaller amplitude). This inverse UHI
effect is also known as the Oasis Effect [Oke, 1987;
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Figure 3. UHI characteristics of individual city clusters. The UHI intensity AT is plotted versus the boundary temperature
Tp. The values are drawn as small circles, while monthly means are given as red triangles together with the standard
deviations (grey error bars). The fitted curves according to equation (2) are plotted as green solid lines. (a) Paris, (b) Milan,
(¢) Madrid, and (d) Nicosia. The majority of city clusters exhibit a positive correlation between AT and T and clockwise

hysteresis-like curves.

Georgescu et al., 2011; Brazel et al., 2000], being attributed
to the arid climate and the interplay with vegetation.

[24] Beyond the positive or negative trend of UHI inten-
sity versus boundary temperature, the hysteresis-like shape
of the fitted curve for Paris (Figure 3a) is evident and
basically absent in the case of Milan (Figure 3b). As a
consequence, in the former, very different UHI intensities
can occur given the same boundary temperature, i.e., higher
UHI intensities in spring compared to fall. The directionality
is always clockwise, in this case with low UHI inten-
sity in winter, higher values in spring, highest in summer,
and vanishing intensity in fall. Depending on the location,
similar behavior is found for many European city clusters.

[25] The described seasonality in the shape of a
hysteresis-like curve represents a phase shift between the
UHI intensity and the boundary temperature. We hypoth-
esize that this phenomenon could be due to a differing
seasonality in the city and the surroundings, e.g., the tem-
perature in the city follows the astronomical seasons driven
by solar radiation and the temperature in the surroundings
follows the meteorological seasons corresponding to the
regional climate. However, our attempts to trace this claim
down to differing vegetation properties of cities with more
or less pronounced seasonality were unsuccessful. Another
explanation could be phenology, i.e., the different climate in
the city and the surroundings could lead to differing onsets of
phenological phases so that, e.g., the greening occurs sooner
or later.

[26] Last, we want to verify how the UHI patterns are
spatially distributed. Therefore, we classify the city clusters
according to their hysteresis-like features. We perform the
K-means clustering algorithm [Jain and Dubes, 1988] on
the first harmonics gy, g1, and /; (six parameters, count-
ing AT and Ty separately) of the largest 2000 clusters.
Each parameter is normalized before running the K-means
clustering, i.e., X* = (X — u)/o, where u is the mean of
each parameter and o is its standard deviation. To obtain an
appropriate number of clusters (K), we use the mean silhou-
ette § to evaluate the clustering performance as described
by Rousseeuw [1987]. We run the K-means clustering 200
times with predefined values of K to assess the nondetermin-
istic nature of the algorithm. As can be seen in Figure 4a,
for K =7, s is relatively large and exhibits the smallest vari-
ability, indicating a high clustering stability. City clusters are
grouped into the same clusters when they are given the same
cluster indices in most of the cases (more than 140 times out
of 200 runs).

[27] As can be seen in Figures 4b—4d, the various groups
are situated in distinct geographical regions. Group 1 is
mostly located in the North-West of Europe, i.e., British Isles
and parts of the Atlantic Coasts. Cities of Group 2 are exclu-
sively found in Scandinavia and the Eastern Baltic Coast.
While Group 3 consists of Eastern European cities, Group 4
is found in Central Europe. Many large cities are assigned
to Group 6, which also covers Central Europe. Groups 5
and 7 are both situated in the Mediterranean regions but
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Figure 4. Regional patterns of UHI seasonality. (a) Boxplots of mean silhouette for varying cluster number K (200 runs
for each K-value). For K = 7, the mean silhouette reaches a local maximum with the lowest variability. (b)—(d) Spatial
distribution of the seven groups identified using K-means clustering on the first Fourier coefficients. The largest 200 cities
are marked with dots, where the size is proportional to the logarithm of the urban area. The panels include insets displaying
the frequency of each group. In general, Groups 1, 3, 4, and 6 are located in the temperate climate zone, whereas Group 2 is
in the high latitudes. Groups 5 and 7 are in the Mediterranean climate zone but differentiated into coastal and inland variants.
There is an apparent concentration of large cities in Group 6. (e)—(k) Hysteresis-like curves of the respective clusters (as in
Figure 3). The clusters, whose data-to-centroid distances are below the 25th percentile, are drawn with colors varying from
yellow (closest) to red. The remaining are set to background (grey).

split into coastal and hinterland cities. Each group repre-
sents a specific type of UHI seasonality. Groups 1, 3, 4, and
6 are located in the temperate climate zone, which includes
the majority of cities. For Group 2, the gentle rises of the
curve (see Figure 4i) at both ends could be due to additional
household heating in winter and prolonged daylight hours
with an increase in absorbed radiation in summer, respec-
tively. Groups 4 and 6 exhibit similar hysteresis-like curves
but with different magnitude (Figures 4e and 4f), which is
in line with their common geography and the large fraction
of big cities in Group 6. Similarly, Groups 5 and 7 differ
in their proximity to the coasts but the seasonality is related
(Figures 4j and 4k). At water courses, part of the surface
energy is converted into latent heat, resulting in lower mean
temperatures. Although the grouping is based on the Fourier
parameters only, the regional patterns emerge, suggesting

that the UHI seasonality is not random, but stems from local
climate conditions. Our results are consistent with earlier
findings by Imhoff et al. [2010] who suggested a clear effect
of the ecological setting (biomes) on diurnal and seasonal
UHI intensities in the continental USA.

5. Summary

[28] While most studies investigating the UHI intensity
are restricted to individual case studies or a limited number
of cities, we introduce a statistical approach for the system-
atic assessment of the UHI effect of all cities and towns
in Europe. This analysis is possible because it is entirely
based on remote sensing data (land cover and land surface
temperature) and the systematic treatment by means of the
city clustering algorithm.
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[29] We study how the UHI intensity depends on the city
cluster size. The empirical values suggest a sigmoid shape
and the employed fitting function reaches an asymptotic
constant value for large city clusters. In light of ongoing
urbanization in many parts of the world, the actual shape
of the relation between UHI intensity and city size is of
particular interest. Further analyses are necessary to clarify
if there is saturation for large city sizes or not. Individual city
clusters exhibit intensities considerably above or below the
typical size dependence, whereas the spreading is larger in
summer. The identification of further explanatory variables
of this variability is left for future studies.

[30] The analysis of the UHI intensity depending on the
boundary temperature leads to the surprising phenomenon
of intra-annual variations of the UHI effect. For many
city clusters, the same background temperature comes with
very different UHI intensities in spring and in fall. We
attribute this phenomenon to the astronomical seasonality of
cities and the meteorological seasonality of the surround-
ings (implying a phase shift). We identify 7 city cluster types
which exhibit regional separation. These findings suggest
a climatological basis for this new phenomenon. So far, it
must be left unanswered but the explanation could be an
interesting starting point for future work.
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