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Abstract
We study the rates at which optimal estimators in the sample average approximation
approach converge to their deterministic counterparts in the almost sure sense and in
mean. To be able to quantify these rates, we consider the law of the iterated logarithm
in a Banach space setting and first establish under relatively mild assumptions almost
sure convergence rates for the approximating objective functions, which can then
be transferred to the estimators for optimal values and solutions of the approximated
problem.By exploiting a characterisation of the law of the iterated logarithm inBanach
spaces, we are further able to derive under the same assumptions that the estimators
also converge in mean, at a rate which essentially coincides with the one in the almost
sure sense. This, in turn, allows to quantify the asymptotic bias of optimal estimators
as well as to draw conclusive insights on their mean squared error and on the estimators
for the optimality gap. Finally, we address the notion of convergence in probability
to derive rates in probability for the deviation of optimal estimators and (weak) rates
of error probabilities without imposing strong conditions on exponential moments.
We discuss the possibility to construct confidence sets for the optimal values and
solutions from our obtained results and provide a numerical illustration of the most
relevant findings.
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1 Introduction

Let (Ω,F ,P) be a complete probability space on which we consider the stochastic
programming problem

min
x∈X

{
f (x) := EP[h(x, ξ)]

}
, (1)

where X ⊂ R
n denotes a nonempty finite-dimensional compact set with the usual

(Euclidean) metric, ξ a random vector whose distribution P
ξ is supported on a set

Ξ ⊂ R
m , and h : X × Ξ → R a function depending on some parameter x ∈ X

and the random vector ξ . For f to be well-defined, we assume for every x ∈ X that
h(x, ·) is measurable with respect to the Borel σ -algebras B(Ξ) and B(R), and that
it is Pξ -integrable.

The stochastic problem (1) may arise in various applications from a broad range
of areas, such as finance and engineering, where deterministic approaches turn out
to be unsuitable for formulating the actual problem. Quite frequently, the problem is
encountered as a first-stage problem of a two-stage stochastic program where h(x, ξ)

describes the optimal value of a subordinate second-stage problem, see e.g., Shapiro
et al. [43]. Naturally, problem (1) may also be viewed as a self-contained problem, in
which h directly results from modelling a stochastic quantity.

Unfortunately, in many situations, the distribution of the random function h( · , ξ)

is not known exactly, such that the expected value in (1) cannot be evaluated readily
and therefore needs to be approximated in someway. UsingMonte Carlo simulation, a
common approach (see e.g., Homem-de-Mello andBayraksan [19] for a recent survey)
consists of drawing a sample of i.i.d. random vectors ξ1, . . . , ξN , N ∈ N, from the
same distribution as ξ , and considering the sample average approximation (SAA)
problem

min
x∈X

{
f̂N (x) := 1

N

N∑
i=1

h(x, ξi )

}
(2)

as an approximation to the original stochastic programming problem (1). Since the
SAA problem (2) depends on the set of random vectors ξ1, . . . , ξN , its optimal value
f̂ ∗
N is an estimator of the optimal value f ∗ of the original problem (1), and a solution

x̂∗
N from the set of optimal solutions X̂ ∗

N := argminx∈X f̂N (x) is an estimator of a
solution x∗ from the set of optimal solutions X ∗ of the original problem (1). For a
particular realisation of the random sample, the approximating problem (2) represents
a deterministic problem instance, which can then be solved by adequate optimisation
algorithms. For this purpose, one usually assumes that the set X is described by
(deterministic) equality and inequality constraints.

An appealing feature of the SAA approach is its sound convergence properties,
which have been discussed in a variety of publications. Considering the consistency
of SAA estimators, which is typically deemed to be a minimal requirement for any
good estimator, Dupac̆ová andWets [11] show in a rather generalway that the sequence
of approximating objective function { f̂N } epi-converges to the true objective f , which
allows to infer the strong consistency of optimal values and of sets of optimal solutions
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[35]. A similar approach to consistency based on the concept of epi-convergence has
been pursued by Robinson [34], whereas Bates and White [4] (cf. also Shapiro et
al. [43], Chapter 5) take an alternative approach and derive the strong consistency of
the optimal estimators by first establishing the almost sure uniform convergence of
{ f̂N } to f . Clearly, the strong consistency of optimal estimators implies their weak
consistency.

Given consistency, it is reasonable to further investigate the rates of convergence at
which the SAA estimators approach their original counterparts as N tends to infinity.
In this regard, Shapiro [37–39] and King and Rockafellar [21], among others, provide
necessary and sufficient conditions for a characterisation of the asymptotic distribution
of the estimators (inter alia, uniqueness of x∗ is assumed in the case of optimal solu-
tions), from which it immediately follows that { f̂ ∗

N } and {x̂∗
N } converge in distribution

to their deterministic counterparts at a rate of 1/
√

N . In particular, the findings of the
former author are essentially based on the central limit theorem in Banach spaces, to
which the delta method with a first and second order expansion of the minimum value
function is then applied, while the latter use a generalised implicit function theorem
to achieve these results.

Rates of convergence have also been studied for the convergence in probability with
respect to different purposes. Especially, once having obtained rates of convergence
in distribution, it is easy to see that the normalising sequences {√N ( f̂ ∗

N − f ∗)} and
{√N (x̂∗

N − x∗)} stay bounded in probability as N → ∞, thus providing insights on
the inner deviation rate for optimal estimators, cf. Pflug [31]. Moreover, the rates of
error probabilities, i.e. the deviation probabilities between the optimal estimators and
their corresponding unknown true values, have been quantified, due to their practical
relevance. This has been addressed, for instance, by Vogel [47,48] who uses a large
deviation approach to estimate the probability that the solution set of an approximating
problem is not contained in an ε-neighbourhood of the original solution set in a stan-
dard stochastic programme and to estimate the probability of particular events of both
solution sets in amultiobjective programming framework, respectively. Further results
concerning rates of error probabilities have also been provided by Kaniovski et al. [20]
and Dai et al. [7], where exponential bounds for the error probabilities of optimal val-
ues and solutions are derived by means of the theory of large deviations. To obtain
these results the authors have to make the rather strong but unavoidable assumption of
an existing moment generating function with a finite value in a neighbourhood of zero.
However, this assumption then allows to derive conservative estimates for the sam-
ple size required to solve the original problem to a given accuracy with overwhelming
probability, see e.g., Shapiro [41] or Shapiro et al. [43], Sections 5.3 and 7.2.10, for fur-
ther details. Further results on exponential rates of convergence are obtained byShapiro
andHomem-de-Mello [42] in the setting of a convex, piecewise smooth function h and
a discrete distributionPξ , and by Homem-de-Mello [18] in case the underlying sample
of random vectors is non-i.i.d.. Eventually, Vogel [51] considers approximations of
solution sets in probability with (inner) rate of convergence and (outer) tail behaviour
function within a general multiobjective framework. These results then serve as a
prerequisite to construct universal confidence sets for the optimal value and optimal
solutions, see e.g., Pflug [31] and Vogel [50]. However, universal confidence sets usu-
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Table 1 Convergence results for
the SAA framework for the
objective functions, optimal
values, and solutions, under
different assumptions on h

Convergence Rate of convergence

Almost surely ✓ ✗

In mean (L1) ✓ ✗

In probability ✓ ✓

In distribution ✓ ✓

ally rely on some explicit knowledge of the random variables involved, see e.g., Vogel
[49]. Therefore, in situations with less information available, approximate confidence
sets are often considered by invoking some central limit theorem. Especially estima-
tors for the optimality gap (cf. Mak et al. [30]) have gained practical interest, see also
Homem-de-Mello and Bayraksan [19] for a detailed discussion.

Accordingly, all rates of convergence which have been established so far in the
SAA context consider convergence in distribution or convergence in probability, cf.
Table 1 for a brief overview. To the best of our knowledge, rates of convergence that
hold almost surely and thus complement the strong consistency of optimal estimators
with its corresponding rate have not yet been considered in the SAA framework,
with very few exceptions using particular assumptions. Convergence in mean can
be derived in a straightforward manner from convergence in probability and some
uniform integrability condition (e.g. a finite second moment and almost sure Lipschitz
continuity of h in x). However, no rates for this type of convergence seem to have been
established, as far aswe are aware of. This is an important issue, as convergence inmean
is the main basis to derive meaningful statements on the size of the bias of estimators.
The most notable related work on almost sure rates of convergence is Homem-de-
Mello [17], which used the slightly different setting of a variable SAA (VSAA), where
in each iteration k the objective function is approximated by an estimator f̂Nk with a
newly drawn random sample of (potentially) different size Nk . In particular, the author
derives for any x ∈ X pointwise sample path bounds on the error | f̂Nk (x) − f (x)|,
which in turn allows to infer almost sure rates of convergence for objective functions.
Yet, as the obtained rates hold pointwise, they only apply to finite feasible sets X and
cannot be generalised to universal compact sets that we consider here. Further related
results outside the SAA framework can be found, for instance, in He andWang [16] in
the context of M-estimators. Their approach, however, differs considerable from ours
in that the obtained results are based on necessary and sufficient first order optimality
conditions assuming a sufficiently smooth convex objective and no constraints. Also,
theirmain result is that an optimal estimator satisfies the lawof the iterated logarithm—
a statement which actually excludes faster rates of convergence in the almost sure
sense.

In this paper, we aim at closing the gaps described above, providing rates of conver-
gence in the almost sure sense and in mean, where possible. As it has to be expected,
rates of convergence that hold almost surely may be derived by means of the law of
the iterated logarithm (LIL), which characterises the extreme fluctuations occurring
in a sequence of averages and thus complements the strong law of large numbers and
the central limit theorem (CLT). In particular, by applying the LIL in a Banach space
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setting, we are able to obtain rates for objective function values, optimal values, and
solutions, similar to the technique that has already been applied in the form of the
functional CLT to obtain asymptotic distributions of the respective quantities, see e.g.,
Shapiro [39]. Moreover, we also obtain convergence in mean of the approximating
objective functions and of the optimal estimators, including their associated rates of
convergence. This appears to be one advantage of using the LIL in Banach spaces.
The rates essentially coincide with the almost sure rates of convergence and may be
used to quantify the asymptotic bias of the optimal estimators. Further, it is possible to
show that the mean squared errors of optimal estimators converge to zero with known
rates of convergence, which again may be used in the particular case of optimal values
to show that the size of the confidence set for the optimality gap of f ∗ converges to
zero at a known rate. As the LIL in Banach spaces also provides an interesting impli-
cation on convergence in probability, we discuss rates of convergence of this kind as
well. We derive rates of convergence in probability (i.e. ‘inside the probability’) for
the deviation of optimal values and solutions, and weak rates of error probabilities
(i.e. ‘outside the probability’) by which we are able to decrease the gap between rates
obtained from first or second moments and rates obtained via exponential moments.
At last, we exploit the inferred rates of convergence in probability to define confidence
sets for the optimal values and solutions, albeit without known coverage probability.

The remainder of this paper is organised as follows. In Sect. 2, we set the stage for
later results and briefly review basic concepts of random variables with values in a
Banach space, as well as the CLT and the LIL in Banach spaces. To better compare
our findings, Sect. 3 first outlines known results on the convergence in distribution of
the SAA estimators and its corresponding rates. In analogy to these results, we then
derive within the same setting by virtue of the LIL rates of convergence for the SAA
estimators that hold almost surely and in mean. In Sect. 4, we establish immediate
consequences of the obtained rates of convergence in the almost sure sense and in
mean, providing an improved analysis of the estimator for the optimality gap and the
construction of confidence sets. In Sect. 5, we illustrate some selected results by a
numerical simulation, while Sect. 6 contains our conclusions.

2 Probability in Banach spaces

We first introduce some basic concepts of Banach space valued random variables and
corresponding results of limit theorems in Banach spaces to be used throughout this
paper. For a more detailed discussion on these subjects and further references, let us
refer to the excellent monograph of Ledoux and Talagrand [27].

2.1 Banach space valued random variables

Let B denote a separable Banach space, i.e. a vector space over the field of real
numbers equipped with a norm ‖·‖ with which the space is complete and which
contains a countable dense subset. Its topological dual is denoted by B ′ and duality is
given by g(y) = 〈g, y〉 for g ∈ B ′, y ∈ B. The dual norm of g ∈ B ′ is also denoted
by ‖g‖ for convenience.
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A random variable X on B, or B-valued random variable in short, is a measurable
mapping from the probability space (Ω,F ,P) into B equipped with its Borel σ -
algebra B(B) generated by the open sets of B. Thus, for every Borel set U ∈ B, we
have X−1(U ) ∈ F . A B-valued random variable X is said to be strongly (or Bochner)
integrable if the real-valued random variable ‖X‖ is integrable, i.e. EP[‖X‖] < ∞.
The variable is said to be weakly (or Pettis) integrable if for any g ∈ B ′ the real-valued
random variable g(X) is integrable and there exists a unique element y ∈ B such that
g(y) = EP[g(X)] = ∫

g(X)dP. If this is the case, then the element y is denoted by
EP[X ] and called the expected value of X . A sufficient condition for its existence is
that EP[‖X‖] < ∞. Given that EP[g(X)] = 0 and EP[g2(X)] < ∞ for all g ∈ B ′,
the covariance function of X is defined by (Cov X)(g1, g2) := EP[g1(X)g2(X)],
g1, g2 ∈ B ′, which is a nonnegative symmetric bilinear form on B ′.

The familiar notions of convergence of random variables on the real line extend
in a straightforward manner to Banach spaces. As such, a sequence {X N } of random
variables with values in B converges in distribution (or weakly) to a random variable

X , denoted by X N
d−→ X , if for any bounded and continuous function ψ : B → R,

EP[ψ(X N )] → EP[ψ(X)] as N → ∞.Moreover, {X N } converges in probability to X ,

in brief X N
p−→ X , if for each ε > 0, limN→∞ P(‖X N − X‖ > ε) = 0. The sequence

is said to be bounded in probability if, for each ε > 0, there exists Mε > 0 such that
supN P(‖X N ‖ > Mε) < ε. Similarly, {X N } is said to converge P-almost surely to a
B-valued random variable X if P(limN→∞ X N = X) = 1, and it is P-almost surely
bounded if P(supN ‖X N ‖ < ∞) = 1. Finally, denoting by L1(B) = L1(Ω,F ,P; B)

the space of all B-valued random variables X on (Ω,F ,P) such that EP[‖X‖] < ∞,
we say that the sequence {X N } converges to X in L1(B) if X N , X are in L1(B) and
EP[‖X N − X‖] → 0 as N → ∞.

For a sequence {X N } of i.i.d. B-valued random variables with the same distribution
as X , we define SN := ∑N

i=1 Xi for N ∈ N. We write Log(x) to denote the function
max{1, log x}, x ≥ 0, and let LLog(x) stand for Log(Log(x)). Further, we set for
N ∈ N,

aN := √
2N LLog(N ) and bN := aN

N
=

√
2 LLog(N )√

N
.

2.2 Basic limit theorems

Based on the notions of convergence of random variables, the CLT and the LIL on the
real line can be extended subject to minor modifications to random variables taking
values in a separable Banach space. However, the necessary and sufficient conditions
for these limit theorems to hold in the Banach case are fundamentally different from
those for the real line.

For the sake of generality, the following discussion is phrased in terms of a
generic separable Banach space B. However, to establish rates of convergence for
the SAA setup, we will from Sect. 3 onwards only work in the separable Banach
space C(X ) of continuous functions ψ : X → R, endowed with the supremum norm
‖ψ‖∞ = supx∈X |ψ(x)|, and in the separable Banach space C1(X ) of continuously
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differentiable functions ψ , defined on an open neighbourhood of the compact set X
and equipped with the norm

‖ψ‖1,∞ = sup
x∈X

|ψ(x)| + sup
x∈X

‖∇ψ(x)‖,

where ∇ψ(x) denotes the gradient of the function ψ ∈ C1(X ) at the point x . Instead
of the generic B-valued random variables X and the i.i.d. copies Xi , i = 1, . . . , N ,
we will then consider the random variables X̃ := h( · , ξ) − EP[h( · , ξ)] and X̃i :=
h( · , ξi ) − EP[h( · , ξi )], respectively, to which the limit theorems in the particular
Banach spaces are applied.

2.2.1 The central limit theorem

A random variable X with values in B is said to satisfy the CLT if for i.i.d. B-valued
random variables {X N } with the same distribution as X , there exists a mean zero
Gaussian random variable Z with values in B such that

SN√
N

d−→ Z , as N → ∞.

Here, by definition, a B-valued random variable Z is Gaussian if for any g ∈ B ′, g(Z)

is a real-valued Gaussian random variable. In particular, note that all weakmoments of
Z thus exist for any g ∈ B ′, and it follows fromFernique’s theorem (see Fernique [13])
that Z also has finite strong moments of all orders, i.e. EP[‖Z‖p] < ∞ for p > 0.
If X satisfies the CLT in B, then for any g ∈ B ′ the real-valued random variable
g(X) satisfies the CLT with limiting Gaussian distribution of variance EP[g2(X)] <

∞. Hence, the sequence {SN /
√

N } converges in distribution to a Gaussian random
variable Z with the same covariance function as X , i.e. for g1, g2 ∈ B ′, we have
(Cov X)(g1, g2) = (Cov Z)(g1, g2).

For general Banach spaces, no necessary and sufficient conditions such that a ran-
dom variable X satisfies the CLT seem to be known. In particular, as mentioned e.g.,
by Kuelbs [22], the moment conditions EP[X ] = 0 and EP[‖X‖2] < ∞ are neither
necessary nor sufficient for the CLT, as opposed to real-valued random variables. (See
Strassen [46] for the equivalence.) Nevertheless, sufficient conditions can be given for
certain classes of random variables, such as for mean zero Lipschitz random variables
X with square-integrable (random) Lipschitz constant on the spacesC(X ) andC1(X ),
see Araujo and Giné [3], Chapter 7.

2.2.2 The law of the iterated logarithm

For the LIL in Banach spaces, essentially two definitions may be distinguished. The
first definition naturally arises fromHartman andWintner’sLIL for real-valued random
variables, seeHartman andWintner [15], and says that a randomvariable X satisfies the
bounded LIL if the sequence {SN /aN } isP-almost surely bounded in B, or equivalently,
if the nonrandom limit (due to Kolmogorov’s zero-one law)
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Λ(X) := lim sup
N→∞

‖SN ‖
aN

is finite, P-almost surely (cf. Ledoux and Talagrand [27], Section 8.2).
Strassen’s sharpened form of the LIL for random variables on the real line, see

Strassen [45], however, suggests a second natural definition of the LIL in Banach
spaces, which is known as the compact LIL. Accordingly, X satisfies the compact LIL
if the sequence {SN /aN } is not onlyP-almost surely bounded in B, butP-almost surely
relatively compact in B.While coinciding in finite dimensions, both definitions clearly
differ from each other in the case of infinite-dimensional Banach spaces. Kuelbs [22]
further showed that when the sequence {SN /aN } is P-almost surely relatively compact
in B, then there is a convex symmetric and necessarily compact set K in B such that

lim
N→∞ dist

(
SN

aN
, K

)
= 0, and CP

({
SN

aN

})
= K , (3)

each P-almost surely, where dist(y, K ) = inf ȳ∈K ‖y − ȳ‖ for any point y ∈ B and
CP({yN }) denotes the set of all limit points of the sequence {yN } in B. This charac-
terisation may be seen as an equivalent definition of the compact LIL (e.g., Ledoux
and Talagrand [27], Theorem 8.5). In particular, we then have Λ(X) = supy∈K ‖y‖.

The limit set K = K X in (3) is known to be the unit ball of the reproducing kernel
Hilbert space H = HX ⊂ B associated to the covariance of X , and can briefly be
described as follows, see Kuelbs [22] and Goodman et al. [14] for further details.
Assuming that for all g ∈ B ′, EP[g(X)] = 0 and EP[g2(X)] < ∞, and considering
the operator A = AX defined as A : B ′ → L2 = L2(Ω,F ,P), Ag = g(X), we have

‖A‖ = sup
‖g‖≤1

(
EP[g2(X)])1/2 =: σ(X), (4)

and by a closed graph argument that A is bounded. Moreover, the adjoint A′ = A′
X

of the operator A with A′ζ = EP[ζ X ] for ζ ∈ L2 maps L2 into B ⊂ B ′′. The space
A′(L2) ⊂ B equippedwith the scalar product 〈 · , · 〉X transferred from L2 and given by
〈A′ζ1, A′ζ2〉X = 〈ζ1, ζ2〉L2 = EP[ζ1ζ2], with ζ1, ζ2 ∈ L2, then determines a separable
Hilbert space H . Latter space reproduces the covariance structure of X in that for
g1, g2 ∈ B ′ and any element y = A′(g2(X)) ∈ H , we have g1(y) = EP[g1(X)g2(X)].
In particular, if X1 and X2 are two randomvariableswith the same covariance function,
it follows from the reproducing property that HX1 = HX2 . Eventually, the closed unit
ball K of H , i.e. K = {y ∈ B : y = EP[ζ X ], (EP[‖ζ‖2])1/2 ≤ 1}, is a bounded and
convex symmetric subset of B, and it can be shown that

sup
y∈K

‖y‖ = σ(X).

As the image of the (weakly compact) unit ball of L2 under A′, the set K is weakly
compact. It is compact when EP[‖X‖2] < ∞, as shown by Kuelbs [22], Lemma 2.1,
and if and only if the family of random variables {g2(X) : g ∈ B ′, ‖g‖ ≤ 1} is
uniformly integrable, see e.g., Ledoux and Talagrand [27], Lemma 8.4.
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While for a real-valued or, more generally, finite-dimensional random variable X
the LIL is satisfied if and only if EP[X ] = 0 and EP[‖X‖2] < ∞ (see Strassen [46]
and Pisier and Zinn [33]), the moment conditions are neither necessary nor sufficient
for a B-valued random variable to satisfy the LIL in an infinite-dimensional setting,
see Kuelbs [22]. Yet, conditions for the bounded LIL to hold were initially given by
Kuelbs [24], asserting that under the hypothesis EP[X ] = 0 and EP[‖X‖2] < ∞, the
sequence {SN /aN } is P-almost surely bounded if and only if {SN /aN } is bounded in
probability. Similarly, Kuelbs also showed under the same assumptions that {SN /aN }
is P-almost surely relatively compact in B (and thus (3) holds for the unit ball K of
the reproducing kernel Hilbert space associated to the covariance of X ) if and only if

SN /aN
p−→ 0, as N → ∞, (5)

which holds if and only if

EP

[‖SN ‖] = o(aN ). (6)

An immediate consequence of this result is that, given the moment conditions, X
satisfying the CLT implies that X also satisfies the compact LIL [32], but not vice
versa [23]. Specifically, the former statement holds since convergence in distribution
of {SN /

√
N } to a mean zero Gaussian random variable in B entails that the sequence

is bounded in probability, from which then (5) follows directly.
Considering the necessary conditions for the random variable X to satisfy the LIL

in Banach spaces, however, it turns out that the moment condition EP[‖X‖2] < ∞ is
unnecessarily restrictive in infinite dimensions and can hence be further relaxed. This
leads to the following characterisation of the LIL in Banach spaces, providing optimal
necessary and sufficient conditions, cf. Ledoux and Talagrand [26], Theorems 1.1
and 1.2. In this regard, note that since the boundedness in probability of {SN /aN }
comprises EP[X ] = 0, cf. Ledoux and Talagrand [26], Proposition 2.3, the latter
property is already omitted in condition (i i) of both respective statements.

Theorem 1 [26] Let X be a random variable with values in a separable Banach space.

(a) The sequence {SN /aN } is P-almost surely bounded if and only if (i) EP[‖X‖2/
LLog(‖X‖)] < ∞, (i i) for each g ∈ B ′, EP[g2(X)] < ∞, and (i i i) {SN /aN } is
bounded in probability.

(b) The sequence {SN /aN } is P-almost surely relatively compact if and only if (i)
EP[‖X‖2/LLog(‖X‖)] < ∞, (i i) {g2(X) : g ∈ B ′, ‖g‖ ≤ 1} is uniformly

integrable, and (i i i) SN /aN
p−→ 0 as N → ∞.

To highlight the relation between the CLT and the compact LIL in Banach spaces
by means of Theorem 1, note that if the CLT holds, then condition (iii) of assertion (b)
is fulfilled, as described above. Also, condition (ii) follows from the CLT, as the
limiting Gaussian random variable Z with the same covariance as X has a strong
secondmoment, due to the integrability properties of Gaussian random variables. This
implies that K , the unit ball of the reproducing kernel Hilbert space associated to X ,
is compact and that the family {g2(X) : g ∈ B ′, ‖g‖ ≤ 1} is uniformly integrable, as
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remarked previously. Hence, necessary and sufficient conditions for the compact LIL
in the presence of the CLT reduce to condition (i) of Theorem 1(b), cf. Ledoux and
Talagrand [26], Corollary 1.3.

In the subsequent analysis, we will use the compact LIL to derive almost sure
convergence rates, even though the bounded LIL, guaranteeing the P-almost sure
finiteness of Λ(X), would be sufficient to establish most of our results. However,
by working with the compact LIL, we find ourselves in the same setup in which the
CLT and thus convergence rates in distribution have already been established. Another
advantage of using the compact LIL in our setup is the ability to describe the set of limit
points K by the P-almost sure relation Λ(X) = supy∈K ‖y‖ = σ(X), allowing for a
better interpretation. Finally, the compact LIL also leads to slightly better convergence
rates in probability.

3 Rates of convergence

In this section, we establish rates of convergence in the almost sure sense and in mean
for the SAA setting introduced in Sect. 1. Since our results are closely related to
rates of convergence in distribution, which have mainly been investigated within the
asymptotic analysis of optimal values and solutions byShapiro [37–39],wefirst review
the main results of these studies in Sect. 3.1. By use of the compact LIL in the Banach
spaces C(X ) and C1(X ), we then provide in Sect. 3.2 our main findings on almost
sure rates of convergence for estimators of optimal values and solutions. Eventually, in
Sect. 3.3, we infer from a characterisation of the compact LIL that these quantities also
convergence in mean and derive the corresponding rates of convergence. In particular,
these rates can be used to quantify the asymptotic bias of optimal estimators, and to
obtain quantitative estimates of the bias without the additional (strong) assumption of
uniform integrability.

3.1 Rates of convergence in distribution

On the space C(X ), we initially make the following assumptions with respect to the
random function h:

(A1) For some x0 ∈ X we have EP

[
h2(x0, ξ)

]
< ∞.

(A2) There exists a measurable function G : Ξ → R+ such that EP[G2(ξ)] < ∞
and

|h(x1, ξ) − h(x2, ξ)| ≤ G(ξ)‖x1 − x2‖, ∀x1, x2 ∈ X ,

P-almost surely.

Assumptions (A1) and (A2) imply that EP[h(x, ξ)] and EP[h2(x, ξ)] are finite-
valued for all x ∈ X . Moreover, assumption (A2) provides that f is Lipschitz
continuous on X and, as X is assumed to be compact, thus guarantees that the set
of minimisersX ∗ of the original problem (1) is nonempty. Further, it follows from the
compactness of X and assumption (A2) that f̂ ∗

N and X̂ ∗
N are measurable and that the
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latter set is nonempty, P-almost surely, cf. Aliprantis and Border [2], Theorem 18.19.
Above all, a particular solution x̂∗

N of the SAA problem (2) may thus be viewed as
a measurable selection x̂∗

N ∈ X̂ ∗
N . Eventually, both assumptions (A1) and (A2) also

imply that the variance of h(x, ξ) compared to that of h(x0, ξ) can only grow as fast
as the quadratic distance between x and x0.

Note that assumptions (A1) and (A2) cover the following important special cases: (i)
non-smooth convex optimisation over a convex compact set, (ii) smooth convex opti-
misation over a convex compact set, and finally (iii) smooth global optimisation over
an arbitrary compact set. However, the treatment of unbounded domains is beyond our
framework. In such a setting it would be more beneficial to directly analyse the neces-
sary first order conditions. Further, methods like stochastic gradient methods are also
not covered by our setting and, as we require Lipschitz continuity of h in x , indicator
functions cannot be used as h either. Finally, note that in the specific case of a two-stage
stochastic program with subordinate linear second-stage, (A1) and (A2) are typically
satisfied if the second stage problem has a feasible set which is P-almost surely con-
tained in a sufficiently large compact set, see e.g., Shapiro et al. [43], Chapter 2.

Most notably, assumptions (A1) and (A2) are sufficient to ensure that the C(X )-
valued random variable X̃ = h( · , ξ) − EP[h( · , ξ)] satisfies the CLT in this Banach
space, see Araujo and Giné [3], Corollary 7.17. It thus holds

√
N ( f̂N − f )

d−→ Z̃ , as N → ∞, (7)

where Z̃ denotes a C(X )-valued mean zero Gaussian random variable which is com-
pletely defined by the covariance of X̃ , that is by (Cov X̃)(g1, g2) = EP[g1(X̃)g2(X̃)]
for g1, g2 ∈ C(X )′. Note that assertion (7) implies that { f̂N } converges in distri-
bution to f , at a rate of 1/

√
N . In particular, for any fixed x ∈ X , we have that

{√N ( f̂N (x) − f (x))} converges in distribution to a real-valued normal distributed
random variable Z̃(x) with mean zero and variance EP[h2(x, ξ)] − EP[h(x, ξ)]2.

3.1.1 Rate of convergence of optimal values

Provided that {√N ( f̂N − f )} converges in distribution to a randomvariable Z̃ with val-
ues inC(X ), the convergence in distribution of {√N ( f̂ ∗

N − f ∗)} can be assessed using
a first order expansion of the optimal value function, see Shapiro [39]. To this end, let
the minimum value function ϑ : C(X ) → R be defined by ϑ(ψ) := inf x∈X ψ(x), i.e.
f̂ ∗
N = ϑ( f̂N ) and f ∗ = ϑ( f ). Since X is compact, the mapping ϑ is continuous and

hence measurable with respect to the Borel σ -algebrasB(C(X )) andB(R). Moreover,
ϑ is Lipschitz continuous with constant one, i.e. |ϑ(ψ1) − ϑ(ψ2)| ≤ ‖ψ1 − ψ2‖∞
for any ψ1, ψ2 ∈ C(X ), and it can be shown that ϑ is directionally differentiable at
f with

ϑ ′
f (ψ) = inf

x∈X ∗( f )
ψ(x), ψ ∈ C(X ), (8)

where X ∗( f ) = X ∗ = argminx∈X f (x), see Danskin’s theorem (e.g., Danskin [8]).
For a general definition of directional differentiability and related notions as used
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hereinafter, we refer to Shapiro et al. [43], Section 7.2.8. By the Lipschitz continuity
anddirectional differentiability, it then follows thatϑ is also directionally differentiable
at f in the Hadamard sense, see e.g., Shapiro et al. [43], Proposition 7.65. Hence, an
application of the first order delta method for Banach spaces with ϑ to (7) yields the
following result, cf. Shapiro [39], Theorem 3.2.

Theorem 2 [39] Suppose that assumptions (A1)–(A2) hold. Then,

√
N ( f̂ ∗

N − f ∗) d−→ ϑ ′
f (Z̃), as N → ∞, (9)

where Z̃ denotes the C(X )-valued mean zero Gaussian random variable as obtained
by (7) in C(X ), and ϑ ′

f is given by (8). In particular, if X ∗( f ) = {x∗} is a singleton,
then

√
N ( f̂ ∗

N − f ∗) d−→ Z̃(x∗), as N → ∞. (10)

Formulas (9) and (10) specify the asymptotic distribution of {√N ( f̂ ∗
N − f ∗)}, which

is asymptotically normal if uniqueness of a minimiser x∗ is assumed. Moreover, both
formulas allow to deduce that the speed of convergence in distribution of { f̂ ∗

N } to f ∗
can be quantified by the rate 1/

√
N .

3.1.2 Rate of convergence of optimal solutions

Under more restrictive assumptions, it is possible to specify the rate of convergence of
optimal solutions as well. The derivation of this result is essentially based on the CLT
in the Banach space C1(X ), to which the delta method with a second order expansion
of the optimal value function ϑ is applied. This then provides a first order expansion
for optimal solutions of the SAA problem.

For keeping our exposition on convergence of optimal solutions in this and the
related Sect. 3.2.2 as comprehensive as possible, we follow the general approach of
Shapiro [40]. In particular,wemake the following additional assumptions on the under-
lying random function h and its gradient ∇x h, facilitating convergence in distribution
in C1(X ):

(A3) The function h( · , ξ) is continuously differentiable on X , P-almost surely.

and

(A1’) For some x0 ∈ X we have EP

[‖∇x h(x0, ξ)‖2] < ∞.

(A2’) The gradient ∇x h( · , ξ) is Lipschitz continuous with constant G∇(ξ) on X ,
P-almost surely, and EP[G2

∇(ξ)] < ∞.

Assumption (A3) implies that f̂N is a random variable with values in C1(X ), and
assumptions (A1)–(A3) together imply that f is continuously differentiable onX and
that ∇ f (x) = EP[∇x h(x, ξ)] for x ∈ X (e.g., Shapiro et al. [43], Theorems 7.49
and 7.53). Moreover, all assumptions (A1)–(A3) and (A1’)–(A2’) entail that X̃ =
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h( · , ξ)−EP[h( · , ξ)] also satisfies the CLT in the Banach space C1(X ), such that (7)
holds for a C1(X )-valued mean zero Gaussian random variable Z̃ .

Note that by considering the class C1(X ) of continuously differentiable functions
and assumptions (A1’)–(A2’), we implicitly assume that the objective functions f
and f̂N and their gradients are sufficiently well-behaved. This presents a reasonable
regularity condition in order to derive general rates of convergence. If an objective
function does not meet these criteria, a similar deduction becomes considerably more
difficult.

Aside from conditions on h and∇x h, let us further consider the following regularity
assumptions for the original problem (1):

(B1) The problem (1) has a unique optimal solution x∗ ∈ X .
(B2) The function f satisfies the second-order growth condition at x∗, i.e. there

exists α > 0 and a neighbourhood V of x∗ such that

f (x) ≥ f (x∗) + α‖x − x∗‖2, ∀x ∈ X ∩ V .

(B3) The set X is second order regular at x∗.
(B4) The function f is twice continuously differentiable in a neighbourhood of the

point x∗.
Assumptions (B1)–(B4) represent standard second order optimality conditions to

be found in common literature on perturbation analysis of optimisation problems, see
e.g., Bonnans and Shapiro [6]. While assumptions (B1) and (B4) are self-explanatory,
the growth condition in assumption (B2) involves that x∗ is locally optimal and that f
increases at least quadratically near x∗. This condition can be ensured to hold in several
ways by assuming second order sufficient conditions, as given, for instance, in Sect. 3.3
of Bonnans and Shapiro [6]. Finally, the second order regularity ofX in (B3) concerns
the tangent set T 2

X (x∗, d) toX at x∗ in direction d and guarantees that it is a sufficient
good second order approximation to X in direction d. In the context of two-stage
stochastic problems as mentioned in the introduction, note that sufficient conditions
for assumptions (B1) and (B2) are rather problem-specific, while (B3) and (B4) are
not often satisfied.

By imposing (B1)–(B4), a second order expansion of the minimal value func-
tion ϑ , now mapping C1(X ) into R, can be calculated, along with a first order
expansion of the associated optimal solution function κ : C1(X ) → R

n , where
κ(ψ) ∈ argminx∈X ψ(x), ψ ∈ C1(X ). More precisely, under (B1)–(B4), ϑ is
shown to be first and second order Hadamard directionally differentiable at f , with
ϑ ′

f (ψ) = ψ(x∗) and

ϑ ′′
f (ψ) = inf

d∈Cx∗

{
2d�∇ψ(x∗) + d�∇2 f (x∗)d + inf

w∈T 2
X (x∗,d)

w�∇ f (x∗)
}
, (11)

for ψ ∈ C1(X ), and where Cx∗ is the critical cone of problem (1), ∇2 f (x∗) the
Hessian matrix of f at x∗, and T 2

X (x∗, d) denotes the second order tangent set to X
at x∗ in direction d (see e.g., Shapiro [40], Theorem 4.1). Moreover, if the problem
on the right-hand side of (11) admits a unique solution d∗(ψ), then the mapping κ is
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also Hadamard directionally differentiable at f , and κ ′
f (ψ) = d∗(ψ) holds. Hence,

using a second order delta method for ϑ on the convergence (7) in C1(X ) provides
the following asymptotic results for { f̂ ∗

N } and {x̂∗
N }, cf. Shapiro [40], Theorems 4.2

and 4.3. Note that {x̂∗
N } denotes any sequence of measurable selections x̂∗

N from the
sets of optimal solutions X̂ ∗

N , respectively.

Theorem 3 [40] Suppose that assumptions (A1)–(A3), (A1’)–(A2’) and (B1)–(B4)
hold. Then,

N
(

f̂ ∗
N − f̂N (x∗)

) d−→ 1
2ϑ

′′
f (Z̃), as N → ∞,

where Z̃ denotes the C1(X )-valued mean zero Gaussian random variable as obtained
by (7) in C1(X ), and ϑ ′′

f is given by (11). Further, suppose that for any ψ ∈ C1(X ),
the problem on the right-hand side of (11) has a unique solution d∗(ψ). Then,

√
N (x̂∗

N − x∗) d−→ d∗(Z̃), as N → ∞. (12)

Remark 1 It has to be noted that assertion (12) yields the usual convergence rate for
an optimal solution in distribution. This, however, does not directly imply any result
on convergence in mean, nor on the bias. Although the expectation of the right-hand
side is finite, this is not necessarily the case for the limit of the expectations of the
upscaled difference of the optimal solutions on the left. The limit of the expectations
of the left-hand side only exists and equals the expectation of the right-hand side
if and only if the upscaled sequence is uniformly integrable, see e.g., Serfling [36],
Theorem 1.4A. However, making such an assumption for {√N (x̂∗

N − x∗)} is actually
already equivalent to imposing a convergence order of O(1/

√
N ) for {x̂∗

N − x∗} to
zero in the L1-sense.

3.2 Almost sure rates of convergence

We now turn to almost sure convergence and first observe that in the specific case of
C(X )-valued random variables, the compact LIL is satisfied under exactly the same
assumptions as the CLT in the Banach space setting, see Kuelbs [22], Theorem 4.4.
In this context, note that the compactness of the feasible set X is crucial. Given
assumptions (A1) and (A2), we thus have for the C(X )-valued random variable X̃ =
h( · , ξ) − EP[h( · , ξ)] and the related sequence of i.i.d. copies {X̃i } that

lim
N→∞ dist

(
f̂N − f

bN
, K X̃

)
= 0, and CP

({
f̂N − f

bN

})
= K X̃ ,

eachP-almost surely, where K X̃ denotes the unit ball of the reproducing kernel Hilbert
space HX̃ associated to the covariance of X̃ and K X̃ is compact. In line with Sect. 2,
it follows from this result that
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Λ(X̃) = lim sup
N→∞

‖ f̂N − f ‖∞
bN

= σ(X̃), (13)

P-almost surely, where σ(X̃) = sup‖g‖≤1(EP[g2(X̃)])1/2, g ∈ C(X )′. Now, by virtue
of Riesz’s representation theorem (e.g., Albiac and Kalton [1], Theorem 4.1.1), the
dual spaceC(X )′ can be identifiedwith the space M(X ) of all finite Borel measures on
the compact spaceX , with total variation norm ‖μ‖ = |μ|(X ),μ ∈ M(X ). Moreover,
for μ ∈ M(X ), the extreme points of the subset defined by ‖μ‖ ≤ 1 are the Dirac
measuresμ = ±δx , where δx (X̃) = X̃(x) for aC(X )-valued random variable X̃ (e.g.,
Albiac and Kalton [1], Remark 8.2.6) and x ∈ X . Hence,

σ(X̃) = sup
x∈X

(
EP

[
X̃2(x)

])1/2
, (14)

which is finite-valued by assumption.
By definition of the limit superior, Eq. (13) implies the following observation,

specifying the speed of convergence of the approximating objective function in the
almost sure sense.

Lemma 1 Suppose that assumptions (A1)–(A2) hold. Then, for any ε > 0, there exists
a finite random variable N∗ = N∗(ε) ∈ N such that

∀N ≥ N∗ : ‖ f̂N − f ‖∞ ≤ (1 + ε)bN σ(X̃), (15)

P-almost surely. Here, σ(X̃) is given by (14) for the C(X )-valued random variable
X̃ .

In particular, inequality (15) reveals that the almost sure convergence of { f̂N } to f
occurs at a rate of O(bN ), bN = √

2 LLog(N )/
√

N , which is only marginally slower
than the rate 1/

√
N obtained from convergence in distribution. To get an idea for the

scale involved, note that
√
log(log(1099)) ≈ 2.33. Yet, unlike the rate 1/

√
N , the rate

bN holds P-almost surely, which is a different notion of convergence than convergence
in distribution. Although not explicitly stated in Lemma 1, let us emphasise that as the
compact LIL holds, we also know that the almost sure rate of convergence of { f̂N } to
f is exactly bN and cannot be faster.

Remark 2 Note that it is not possible to exactly determine the value of the finite random
time

N∗(ε) := inf
{
n ∈ N | ∀k ≥ n : ‖ f̂k − f ‖∞ ≤ (1 + ε)bkσ(X̃)

}

or the related last exit time

τ ∗(ε) := sup
{
n ∈ N | ‖ f̂n − f ‖∞ > (1 + ε)bnσ(X̃)

}

(if f̂1 and f̂2 are not identical to f , then N∗(ε) = τ ∗(ε) + 1), as this depends on the
particular realisation of the underlying random sequence {ξi }. Yet, the last exit time
τ ∗(ε) may be linked to the counting variable
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J ∗(ε) := ∣∣{n ∈ N : ‖ f̂n − f ‖∞ > (1 + ε)bnσ(X̃)
}∣∣

by τ ∗(ε) ≥ J ∗(ε), of which we know that EP[(J ∗)λ] = ∞ for any λ > 0 if f is a
real-valued object, cf. Slivka [44]. This might be taken as a strong indication that a
similar result also holds in the Banach space case, telling us that the asymptotic rate
only holds for very large N .

3.2.1 Rate of convergence of optimal values

Once having assertion (15), the rate of convergence of the optimal value { f̂ ∗
N } to f ∗

is easily obtained by recalling the Lipschitz continuity of the continuous minimum
value function ϑ(ψ) = infx∈X ψ(x), with f̂ ∗

N = ϑ( f̂N ) and f ∗ = ϑ( f ). We thus
have the following result, in analogy to Theorem 2.

Theorem 4 Suppose that assumptions (A1)–(A2) hold. Then,

∀N ∈ N : | f̂ ∗
N − f ∗| ≤ ‖ f̂N − f ‖∞.

In particular, it holds that { f̂ ∗
N } converges to f ∗, P-almost surely, at a rate of O(bN ).

3.2.2 Rate of convergence of optimal solutions

Next, we proceed with analysing the rate of convergence of optimal solutions in the
almost sure sense. Considering the space C(X ) of continuous functions onX , we note
first of all that if the random function h only satisfies the moment and Lipschitz condi-
tions (A1) and (A2), respectively, then a slower rate of almost sure convergence can be
obtained under the regularity conditions (B1) and (B2), as the following proposition
shows.

Proposition 1 Suppose that assumptions (A1)–(A2) and (B1)–(B2) hold. Then, there
exists a finite random variable N∗ ∈ N such that

∀N ≥ N∗ : ‖x̂∗
N − x∗‖2 ≤ 2

α
‖ f̂N − f ‖∞, (16)

P-almost surely. In particular, it holds that {x̂∗
N } converges to x∗, P-almost surely, at

a rate of O(
√

bN ).

Proof By assumptions (A1)–(A2) and (B1), {x̂∗
N } converges to x∗, P-almost surely,

for N → ∞ (e.g., Shapiro et al. [43], Theorems 5.3 and 7.53). This implies that
x̂∗

N ∈ V holds P-almost surely for N ≥ N∗, for some finite random N∗ ∈ N. Hence,
the second-order growth condition (B2) at x∗ with α > 0 yields

‖x̂∗
N − x∗‖2 ≤ 1

α

(
f (x̂∗

N ) − f (x∗)
)

≤ 1

α

(
f (x̂∗

N ) − f̂N (x̂∗
N ) + f̂N (x̂∗

N ) − f (x∗)
)
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≤ 1

α

(
f (x̂∗

N ) − f̂N (x̂∗
N ) + f̂N (x∗) − f (x∗)

)

≤ 1

α

(| f̂N (x̂∗
N ) − f (x̂∗

N )| + | f̂N (x∗) − f (x∗)|)

≤ 2

α
‖ f̂N − f ‖∞,

where f̂N (x̂∗
N ) has been added and subtracted from the first line to the second and

f̂N (x̂∗
N ) ≤ f̂N (x∗) has been used from the second line to the third. This proves (16),

and the remaining assertion then follows from Lemma 1. ��
To achieve a faster rate of almost sure convergence, stronger assumptions on h and

the gradient ∇x h in the subspace C1(X ) are required, as described in Sect. 3.1.2 for
convergence in distribution. Specifically, if, in addition to assumptions (A1) and (A2),
we assume that h is also continuously differentiable onX , i.e. assumption (A3) holds,
then f is an element of the Banach space C1(X ) and f̂N is C1(X )-valued. Conse-
quently, on condition that the moment and Lipschitz assumptions of ∇x h in (A1’)
and (A2’), respectively, are also fulfilled, X̃ satisfies the compact LIL in C1(X ) and
we can state the following, cf. Lemma 1.

Lemma 2 Suppose that assumptions (A1)–(A3) and (A1’)–(A2’) hold. Then, for any
ε > 0, there exists a finite random variable N∗ = N∗(ε) ∈ N such that

∀N ≥ N∗ : ‖ f̂N − f ‖1,∞ ≤ (1 + ε)bN σ(X̃),

P-almost surely. Here, σ(X̃) is given in general form by (4) for the C1(X )-valued
random variable X̃ .

Moreover, we further consider the regularity assumptions (B1) and (B2) on the
original problem (1), where we marginally strengthen the latter according to:

(B2’) The function f satisfies the second-order growth condition at x∗, i.e. there
exists α > 0 and a neighbourhood V of x∗ such that

f (x) ≥ f (x∗) + α‖x − x∗‖2, ∀x ∈ X ∩ V .

Further, V can be chosen such that X ∩ V is star-shaped with center x∗.
We are then able to derive the following result on the speed of convergence of opti-

mal solutions of the SAA problem. Note that this result holds in parallel to Theorem 3
in the almost sure case.

Theorem 5 Suppose that assumptions (A1)–(A3), (A1’)–(A2’), (B1) and (B2’) hold.
Then, there exists a finite random variable N∗ ∈ N such that

∀N ≥ N∗ : ‖x̂∗
N − x∗‖ ≤ 1

α
‖ f̂N − f ‖1,∞. (17)

P-almost surely. In particular, it holds that {x̂∗
N } converges to x∗, P-almost surely, at

a rate of O(bN ).
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Proof Again, by assumptions (A1)–(A2) and (B1), {x̂∗
N } converges to x∗, P-almost

surely, for N → ∞. This implies that x̂∗
N ∈ V holds P-almost surely for N ≥ N∗,

for some finite random N∗ ∈ N. Hence, the second-order growth condition (B2’) at
x∗ with α > 0 yields

‖x̂∗
N − x∗‖2 ≤ 1

α

(
f (x̂∗

N ) − f (x∗)
)

≤ 1

α

(
f (x̂∗

N ) − f̂N (x̂∗
N ) + f̂N (x̂∗

N ) − f (x∗)
)

≤ 1

α

(
f (x̂∗

N ) − f̂N (x̂∗
N ) + f̂N (x∗) − f (x∗)

)

≤ 1

α

(
f (x̂∗

N ) − f̂N (x̂∗
N ) − (

f (x∗) − f̂N (x∗)
))

,

and therefore

‖x̂∗
N − x∗‖ ≤ | f (x̂∗

N ) − f̂N (x̂∗
N ) − (

f (x∗) − f̂N (x∗)
)|

α‖x̂∗
N − x∗‖ .

Since ( f − f̂N ) is assumed to be differentiable on X , P-almost surely, and X ∩ V is
star-shapedwith centre x∗, it further holds by themean value theorem (e.g., Dieudonné
[10], Theorem 8.5.4) that

| f (x̂∗
N ) − f̂N (x̂∗

N ) − (
f (x∗) − f̂N (x∗)

)|
α‖x̂∗

N − x∗‖
≤ 1

α
sup

0≤t≤1
‖∇(

f (x̂∗
N + t(x∗ − x̂∗

N )) − f̂N (x̂∗
N + t(x∗ − x̂∗

N ))
)‖

≤ 1

α
sup

x∈X∩V
‖∇(

f (x) − f̂N (x)
)‖.

Thus, by definition of the norm ‖·‖1,∞, the latter then provides inequality (17), and
applying Lemma 2 yields the statement on the rate of convergence. ��

Note that the results established in Proposition 1 and Theorem 5 require fewer
assumptions on the objective function f than the corresponding Theorem 3 on conver-
gence in distribution, while providing almost sure convergence instead of convergence
in distribution. This becomes most notable in that the former results are able to dis-
pense with assumptions (B3) and (B4), while these are necessary for the second order
Hadamard directional derivative ϑ ′′

f in the latter. In particular, we are thus able to deal
with an optimal solution on the boundary of the feasible set X without requiring any
regularity condition for X .

It is to be expected from the above analysis that improved almost sure convergence
rates for the difference of the optimal values might be obtained in a similar manner
as for convergence in distribution by the second order delta method under analogous
assumptions. We leave this question for future research, and instead focus on rates of
convergence in mean in the following.
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3.3 Rates of convergence inmean

By recalling that the C(X )-valued random variable X̃ = h( · , ξ) − EP[h( · , ξ)] sat-
isfies the compact LIL under assumptions (A1) and (A2), we can apply Kuelbs’s
equivalence (6) (cf. also Kuelbs [24], Theorem 4.1) to obtain

EP

[∥∥∥∥∥
N∑

i=1

X̃i

∥∥∥∥∥
∞

]
= o(aN ).

This, in turn, directly leads to the following proposition.

Proposition 2 Suppose that assumptions (A1)–(A2) hold. Then,

lim
N→∞ EP

[‖ f̂N − f ‖∞
bN

]
= 0, (18)

i.e. EP[‖ f̂N − f ‖∞] = o(bN ), and in particular { f̂N } converges to f in L1(C(X ))

at a rate of o(bN ).

Let us emphasise that Proposition 2 constitutes an important and novel result
which can be directly obtained from the compact LIL without any further techni-
calities. To the best of our knowledge, only the convergence in mean of { f̂N } to f ,
i.e. EP[‖ f̂N − f ‖∞] → 0 as N → ∞, was known thus far, albeit without specifying
any rate. Such a result may be obtained, for instance, by convergence in distribution
of { f̂N } to f and additional assumptions like (A1) and (A2), yielding uniform integra-
bility of the sequence { f̂N }. Deducing uniform integrability for an upscaled sequence
like {( f̂N − f )/bN }, however, is not possible in such a way, which renders the above
result (18) and its implication even more noteworthy.

3.3.1 Rate of convergence of optimal values and biasedness

By the Lipschitz continuity of the minimum value function ϑ(ψ) = infx∈X ψ(x),
ψ ∈ C(X ), and Proposition 2, we immediately arrive at the corresponding result for
the convergence of optimal values.

Theorem 6 Suppose that assumptions (A1)–(A2) hold. Then, { f̂ ∗
N } converges to f ∗ in

L1, and EP[| f̂ ∗
N − f ∗|] = o(bN ). In particular, one has that the bias of f̂ ∗

N vanishes

at the same rate, i.e. |EP[ f̂ ∗
N ] − f ∗| = o(bN ).

As we have seen, Theorem 6 states that f̂ ∗
N is an asymptotically unbiased estimator

of f ∗ and that the bias E[ f̂ ∗
N ] − f ∗ is of order o(bN ). In contrast to classical results,

cf. Shapiro et al. [43], p. 185, these results on the bias do not need the additional strong
assumption of uniform integrability of the sequence {√N ( f̂ ∗

N − f ∗)}. Instead, one
deduces here directly that {√N/

√
2 LLog(N )( f̂ ∗

N − f ∗)} is uniformly integrable (as
it is convergent in L1, see e.g., Bauer [5], Theorem 21.4).
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We also want to stress the fact that Theorem 6 puts non-technical discussions about
the asymptotic bias of the optimal value on a sound theoretical basis, cf. Homem-de-
Mello and Bayraksan [19], and especially their discussion following Example 8 in
Sect. 2.2.

Remark 3 The well-known fact that EP[ f̂ ∗
N ] ≤ EP[ f̂ ∗

N+1] ≤ f ∗ for any N ∈ N, cf.
Mak et al. [30], can be combined with the above proposition to obtain that for any
ε > 0, there exists an N∗ = N∗(ε) such that

∀N ≥ N∗ : EP

[
f̂ ∗
N

] ≤ EP

[
f̂ ∗
N+1

] ≤ f ∗ ≤ EP

[
f̂ ∗
N

] + εbN , (19)

which brackets the unknown optimal value f ∗ in a interval of known size.

Remark 4 Under the additional assumption that f ∗ > 0, one can obtain further insight
into the speed at which EP[ f̂ ∗

N ] approaches f ∗. For this purpose, let us first observe
that

f̂ ∗
N+1 ≤ f̂N+1(x̂∗

N ) = 1

N + 1

N+1∑
i=1

h(x̂∗
N , ξi )

= N

N + 1
f̂ ∗
N + 1

N + 1
h(x̂∗

N , ξN+1).

Taking expectations on both sides and using the fact that EP[ f̂ ∗
N ] > 0 for sufficiently

large N (as f ∗ > 0), we then arrive at

EP

[
f̂ ∗
N+1

] ≤ EP

[
f̂ ∗
N

] + c1
N + 1

,

with the constant c1 := EP[‖h( · , ξN )‖∞]. In summary, we thus have derived an upper
bound for the difference of subsequent expected minimum function values, showing
that these expected values grow at most at a logarithmic speed.

It is also of importance to consider the second moment of f̂ ∗
N , e.g., for constructing

confidence intervals for f ∗ or for bounding the optimality gap, cf. Mak et al. [30],
Section 3. To obtain such results, a version of the CLT is usually invoked to estimate
EP[ f̂ ∗

N ], which is only valid under the assumption that EP[( f̂ ∗
N )2] < ∞. However,

while the latter is often (implicitly) assumed and not treated explicitly, e.g. Mak et
al. [30], formula (6), only Homem-de-Mello and Bayraksan [19], Section 4.1, seems
to carefully consider the finiteness of the second moment of f̂ ∗

N . To the best of our

knowledge, there is no result known on the asymptotic behaviour of E[( f̂ ∗
N )2]. The

following proposition closes this gap by providing an asymptotic rate on the standard
deviation std( f̂ ∗

N ) of f̂ ∗
N .

Proposition 3 Suppose that assumptions (A1)–(A2) hold. Then

std
(

f̂ ∗
N

) ≤ ‖ f̂ ∗
N ‖L2

< ∞. (20)
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Further, if in addition assumptions (B1)–(B2) are satisfied and if there exists γδ :=
EP[G(ξ)2+δ] < ∞ for some δ > 0, then, with p = 2 + 4/δ, it holds

std
(

f̂ ∗
N

) = o
(
b1/p

N

)
. (21)

Proof Let us start by considering the inequality

‖ f̂ ∗
N ‖L2

≤ ‖ f̂N (x̂∗
N ) − f̂N (x∗)‖L2

+ ‖ f̂N (x∗)‖L2
.

Using the Lipschitz continuity of h, we have for the first term on the right-hand side
that

‖ f̂N (x̂∗
N ) − f̂N (x∗)‖L2

≤ ‖ 1

N

N∑
i=1

G(ξi ) ‖x̂∗
N − x∗‖‖L2

≤ diam(X ) ‖ 1

N

N∑
i=1

G(ξi )‖L2
,

where diam(X ) := sup{‖x1 − x2‖ : x1, x2 ∈ X } denotes the finite diameter of X .
For the second term, we easily get

‖ f̂N (x∗)‖2L2
= Var

(
f̂N (x∗)

) + EP

[
f̂N (x∗)

]2 = 1

N
Var

(
h(x∗, ξ)

) + ( f ∗)2,

such that we obtain assertion (20) under the respective assumptions (A1)–(A2).
To prove (21), we use the subadditivity of the standard deviation to get

std
(

f̂ ∗
N

) ≤ std
(

f̂N (x̂∗
N ) − f̂N (x∗)

) + std
(

f̂N (x∗)
)
. (22)

For the first term on the right-hand side of inequality (22) we proceed as above, but
eventually apply the generalised Hölder inequality to obtain

std
(

f̂N (x̂∗
N ) − f̂N (x∗)

) ≤ ‖ f̂N (x̂∗
N ) − f̂N (x∗)‖L2

≤
∥∥∥∥∥
1

N

N∑
i=1

G(ξi ) ‖x̂∗
N − x∗‖

∥∥∥∥∥
L2

≤
∥∥∥∥∥
1

N

N∑
i=1

G(ξi )

∥∥∥∥∥
L2+δ

‖‖x̂∗
N − x∗‖‖L p

.

Thefirst factor of the latter expression can then be bounded according to the assumption
by

∥∥∥∥∥
1

N

N∑
i=1

G(ξi )

∥∥∥∥∥
2+δ

L2+δ

≤ γδ,
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while for the second factor it holds ‖‖x̂∗
N − x∗‖‖L p

= o(b1/p
N ), due to Theorem 7 (as

proved independently in the next subsection). For the second term on the right-hand
side of inequality (22), it holds std( f̂N (x∗)) = 1/

√
N std(h(x∗, ξ)), as seen above.

Hence, in summary, we obtain std( f̂ ∗
N ) = o(b1/p

N ), which proves (21). ��
An immediate consequence of this proposition is the important insight that the

standard deviation of f̂ ∗
N converges to zero for N to infinity. This implies that the mean

squared error of f̂ ∗
N converges to zero at a known rate, thus implying L2-convergence

of { f̂ ∗
N } to f ∗.

A further implication of the above proposition is related to the optimality gap: the
upper bound of the usual confidence set to bound the optimality gap converges to zero
for sufficiently large N , see Sect. 4.2.1 for more details.

3.3.2 Rate of convergence of optimal solutions

Finally, if assumptions (A1)–(A2) are met together with (B1)–(B2), then convergence
of optimal solutions {x̂∗

N } to x∗ in any L p, 1 ≤ p < ∞, is easily obtained.

Proposition 4 Suppose that assumptions (A1)–(A2) and (B1)–(B2) hold. Then, {x̂∗
N }

converges to x∗ in L p, 1 ≤ p < ∞, i.e.

EP

[‖x̂∗
N − x∗‖p] → 0, as N → ∞.

In particular, this implies that x̂∗
N is an asymptotically unbiased estimator for x∗ and

that the mean squared error EP[‖x̂∗
N − x∗‖2] vanishes asymptotically.

Proof From Proposition 1, we know that {x̂∗
N } converges to x∗, P-almost surely, i.e.

for each 1 ≤ p < ∞, we have ‖x̂∗
N − x∗‖p → 0, P-almost surely. Further, due

to compactness of X , we have ‖x̂∗
N − x∗‖p ≤ diam(X )p. The main statement now

follows directly from Lebesgue’s dominated convergence theorem (e.g., Serfling [36],
Theorem 1.3.7). The remaining statements are easy consequences. ��
Remark 5 The above proposition relies on the initially made assumption that the setX
is compact. Considering unbounded X , it is quite easy to construct a counterexample
to the above result. More specifically, one can construct a uniformly convex quadratic
objective function, where optimal solutions still converge almost surely but not in
mean.

To further derive the corresponding rates for the convergence of {x̂∗
N } to x∗ in L p,

we additionally require the following lemma. It quantifies the probability that x̂∗
N lies

outside the set V of the second-order growth condition (B2), in terms of the rate bN .

Lemma 3 Suppose that assumptions (A1)–(A2) and (B1)–(B2) hold. Then, there exists
a δ > 0 (depending on V ), such that for all x ∈ X ,

f (x) < f (x∗) + δ ⇒ x ∈ V .
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Further, it holds

P(x̂∗
N /∈ V ) = o(bN ).

Proof We prove the first statement by contradiction, assuming that there exists no such
δ. Then we can find a sequence {δN } which converges monotonically to 0, together
with a sequence {xN } ∈ X \V with f (xN ) < f (x∗) + δN . As X \V is compact, the
sequence has a least one cluster point x̄ �= x∗ with f (x̄) ≤ f (x∗). This, however,
yields the contradiction to the uniqueness of x∗, as assumed by (B1).

Now, let us consider the following chain of inequalities

P(x̂∗
N /∈ V ) ≤ P

(
f (x̂∗

N ) − f (x∗) ≥ δ
)

= P
(

f (x̂∗
N ) − f̂N (x̂∗

N ) + f̂N (x̂∗
N ) − f (x∗) ≥ δ

)

≤ P
(| f (x̂∗

N ) − f̂N (x̂∗
N )| + | f̂N (x∗) − f (x∗)| ≥ δ

)

≤ P
(
2‖ f − f̂N ‖∞ ≥ δ

)

≤ 2EP

[‖ f − f̂N ‖∞
]

δ
,

where we have used Markov’s inequality in the last step. Proposition 2 now yields the
claim. ��

Finally, we are now in position to state the following result on rates of convergence
in L p for optimal solutions.

Theorem 7 Suppose that assumptions (A1)–(A2) and (B1)–(B2) hold. Then, {x̂∗
N } con-

verges to x∗ in L1 at a rate of o(
√

bN ) and in L p, 2 ≤ p < ∞, at a rate of o(bN ),
i.e.

EP

[‖x̂∗
N − x∗‖√

bN

]
→ 0, and EP

[‖x̂∗
N − x∗‖p

bN

]
→ 0,

respectively, as N → ∞.
Moreover, if assumptions (A1)–(A3), (A1’)–(A2’), (B1) and (B2’) are satisfied, then

the rate for convergence in L1 is o(bN ).

Proof Under the assumptions (A1)–(A2) and (B1)–(B2), we only need to prove the
statement for p = 2. The case p > 2 follows from the case p = 2 using ‖x̂∗

N − x∗‖ ≤
diam(X ); the case p = 1 follows directly from Hölder’s inequality. Accordingly, in
analogy to the proof of Proposition 1, we have

EP

[
‖x̂∗

N − x∗‖2
bN

]
= EP

[
‖x̂∗

N − x∗‖2
bN

1{x̂∗
N ∈V }

]
+ EP

[
‖x̂∗

N − x∗‖2
bN

1{x̂∗
N /∈V }

]

≤ 2

α
EP

[
‖ f̂N − f ‖∞

bN
1{x̂∗

N ∈V }

]
+ EP

[
‖x̂∗

N − x∗‖2
bN

1{x̂∗
N /∈V }

]
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≤ 2

α
EP

[
‖ f̂N − f ‖∞

bN

]
+ EP

[
‖x̂∗

N − x∗‖2
bN

1{x̂∗
N /∈V }

]
.

The first term of the latter expression already shows the proposed rate according to
Proposition 2. For the second term, we use

EP

[
‖x̂∗

N − x∗‖2
bN

1{x̂∗
N /∈V }

]
≤ diam(X )2

P(x̂∗
N /∈ V )

bN

which, together with Lemma 3, shows the claim for convergence in L2.
Finally, assuming (A1)–(A3), (A1’)–(A2’), (B1) and (B2’), the stronger rate of

o(bN ) can be obtained analogously for convergence in L1, cf. Theorem 5. ��

4 Further implications

In addition to the previous section on rates of convergence that hold almost surely
and in mean, we now derive some further results from our analysis of the LIL in
Banach spaces. Specifically, by exploiting the obtained rates of convergence in mean,
we first infer in Sect. 4.1 rates of convergence in probability for the sequences of opti-
mal estimators as well as (slow) rates of error probabilities under considerably mild
conditions. This is opposed to other approaches yielding (fast) exponential rates of
convergence but relying on a strong exponential moment condition (or boundedness
condition). In Sect. 4.2, we then provide novel insights into the size of the optimality
gap and show, most importantly, that the confidence set for the optimality gap ulti-
mately converges to zero at a known rate in the almost sure sense. We also reconsider
more traditional confidence sets for the optimal value and the optimal solution, and
discuss their validity and potential to form universal confidence sets.

4.1 Convergence in probability

From the well-known fact that almost sure convergence implies convergence in prob-
ability, all convergence rates obtained in Sect. 3.2 also hold in probability. However,
slightly better convergence results can be obtained by making use of the rates of
convergence in mean (or equivalently, by equivalence (5) of the compact LIL), see
Sect. 4.1.1. By referring to related results from the literature on the LIL in Banach
spaces, Sect. 4.1.2 provides some further insights into the asymptotic behaviour of
error probabilities. The main difference between the first and the second subsection
is that the former considers rates for the size of the deviation corridor (i.e. inside the
probability), whereas the latter is concerned with rates of a fixed deviation probability
(i.e. outside the probability).

4.1.1 Rates of convergence in probability

Applying the results from Sect. 3.3 immediately yields the following result.
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Proposition 5 Suppose that assumptions (A1)–(A2) hold and let δ > 0 be arbitrary.
Then,

P

( | f̂ ∗
N − f ∗|

bN
> δ

)
→ 0, as N → ∞.

Further, if in addition assumptions (B1)–(B2) are satisfied, then we have

P

(‖x̂∗
N − x∗‖2

bN
> δ

)
→ 0, as N → ∞.

Finally, if assumptions (A1)–(A3), (A1’)–(A2’), (B1) and (B2’) are satisfied, then it
holds

P

(‖x̂∗
N − x∗‖

bN
> δ

)
→ 0, as N → ∞. (23)

Proof The results follow straightforwardly from Proposition 2, and Theorems 6
and 7. ��

Note that, by Theorems 2 and 3 on the asymptotic distribution of {√N ( f̂ ∗
N − f ∗)}

and {√N (x̂∗
N − x∗)}, it immediately follows under the respective assumptions that the

sequences are also bounded in probability as N tends to infinity. Also, considering
the case of optimal solutions under the assumptions (A1)–(A3), (A1’)–(A2’), (B1)
and (B2’), it is already possible to infer from assertion (23) of the above proposition
that {(x̂∗

N − x∗)/bN } is bounded in probability, thus providing a slightly weaker rate
under weaker assumptions.

Remark 6 In addition to Proposition 5, the rate of convergence in probability obtained
from the compact LIL may be further characterised in terms of sums of probabilities,
see e.g., Li [28] or Li et al. [29]. In particular, given assumptions (A1) and (A2), it
follows from Corollary 2.1 in Li [28] that the sequence {( f̂N − f )/bN } must also
satisfy for all δ > σ(X̃ ) that

∞∑
N=1

LLog(N )

N
P

(‖ f̂N − f ‖∞
bN

≥ δ

)
< ∞,

and

P

(
sup
k≥N

‖ f̂k − f ‖∞
bk

≥ δ

)
= o

(
1

LLog(N )

)
, as N → ∞,

where σ(X̃ ) is given by (14) for the C(X )-valued random variable X̃ . Under the
relevant assumptions, these characterisations of the rate of convergence may then be
transferred to the respective optimal estimators.
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Note that under strong exponential moment conditions on ‖X̃‖ and further weak
requirements, it is also possible to derive exponential rates of convergence in proba-
bility by a large deviation principle, cf. Theorem 2.3 in de Acosta [9]. For every closed
set F of C(X ), it then holds that

lim sup
N→∞

N

a2
N

logP

(
f̂N − f

bN
∈ F

)
≤ − inf

x∈F
I (x),

where I denotes the corresponding rate function of the Hilbert space HX̃ associated
to the covariance of X̃ .

4.1.2 Rates of error probabilities

Related rates of error probabilities for the difference in objective function values, in
optimal values, and in optimal solutions can also be derived from Sect. 3.3 on rates of
convergence in mean. To this end, reconsider equality (18) under assumptions (A1)–
(A2), implying that for any ε > 0 there exists a deterministic N∗ = N∗(ε) ∈ N such
that

∀N ≥ N∗ : 1

bN
EP

[
‖ f̂N − f ‖∞

]
≤ ε. (24)

In consequence of this inequality, we are then able to formulate the following
probabilistic estimates for the differences in objective function values, where we dis-
tinguish between the case when no further moment conditions on the random variable
X̃ = h( · , ξ) − EP[h( · , ξ)] are available (to apply Markov’s inequality) and the case
when higher moment conditions on X̃ are satisfied (to use an inequality by Einmahl
and Li [12]).

Theorem 8 Suppose that assumptions (A1)–(A2) hold and let δ > 0. Then, the follow-
ing statements hold:

(a) For any ε > 0, there exists an N∗ = N∗(ε) ∈ N such that

∀N ≥ N∗ : P

(
‖ f̂N − f ‖∞ ≥ δ

)
≤ ε

δ
bN . (25)

(b) If EP[‖X̃‖s] < ∞ for s > 2 then there exists an N∗ = N∗(δ) ∈ N such that for
all N ≥ N∗:

P

(
‖ f̂N − f ‖∞ ≥ δ

)
≤ exp

{
− Nδ2

12σ 2(X̃)

}
+ c2

N s−1
(

δ
2

)s EP

[
‖X̃‖s

]
, (26)

where σ(X̃) is given by (14) for the C(X )-valued random variable X̃ and c2 is a
positive constant.

Proof Assertion (a) follows directly from Markov’s inequality and inequality (24).
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To show (b), we first observe that according to inequality (24), for δ > 0 and some
arbitrary but fixed 0 < η ≤ 1 there exists an N∗ = N∗(δ, η) ∈ N such that for all
N ≥ N∗,

P

(
‖ f̂N − f ‖∞ ≥ δ

)
≤ P

(
‖ f̂N − f ‖∞ ≥ (1 + η)EP

[‖ f̂N − f ‖∞
] + δ

2

)

≤ P

(
max

1≤k≤N
‖ f̂k − f ‖∞ ≥ (1 + η)EP

[‖ f̂N − f ‖∞
] + δ

2

)
,

where the second inequality follows from max1≤k≤N ‖ f̂k − f ‖ ≥ ‖ f̂N − f ‖. By
applying Theorem 4 of Einmahl and Li [12] (with δ = 1 and t = δ/2) on the C(X )-
valued random variables X̃i/N under the moment condition EP[‖X̃‖s] < ∞, we then
obtain ∀N ≥ N∗:

P

(
max

1≤k≤N
‖ f̂k − f ‖∞ ≥ (1 + η)EP[‖ f̂N − f ‖∞] + δ

2

)

≤ exp

{
− Nδ2

12σ 2(X̃)

}
+ c2

N s−1
(

δ
2

)s EP

[‖X̃‖s] ,

with the specified constants σ(X̃) and c2. ��
Interestingly, while the error probability of f̂N with respect to f in (25) has essen-

tially the usual rate bN , the rate is of order 1/N s−1 in (26) provided that s < ∞.
However, it has to be noted that in both cases the exact number N∗ needed for the
validity of both estimates is not known. Moreover, given N ≥ N∗, both inequalities
imply that for sufficiently small values δ, the condition N � 1/δ2 is sufficient to
obtain reasonably small probabilities for errors larger than δ.

Remark 7 Given Theorem 4, both estimates (25) and (26) in Theorem 8 can further be
used to infer rates in error probability for the absolute error of the optimal values, i.e.
P(| f̂ ∗

N − f ∗| ≥ δ). Moreover, Markov’s inequality can be applied to obtain similar
rates for the error probability of the optimal solutions P(‖x̂∗

N − x∗‖ ≥ δ), based on
Theorem 7.

4.2 Confidence sets for optimal values and solutions

4.2.1 Bounding the optimality gap

In what follows, we reconsider the idea of the optimality gap to derive a confidence
interval for f ∗, presumably first considered by Mak et al. [30]. Given our results of
Sect. 3.3, especially Theorem 6 and Proposition 3, we are able to improve known
results on the optimality gap and to state that the size of the corresponding confidence
set converges to zero with known rate, almost surely.

Definition 1 The optimality gaps of a point x̄ ∈ X with respect to problems (1) and
(2) are defined as
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Γ (x̄) := f (x̄) − f ∗ and Γ̂N (x̄) := f̂N (x̄) − f̂ ∗
N ,

respectively.

Based on the results of Sects. 3.2 and 3.3, some important properties of the non-
negative estimator Γ̂N (x̄) for Γ (x̄) can be derived.

Proposition 6 Suppose that assumptions (A1)–(A2) hold, and let x̄ ∈ X be fixed. Then,
it holds:

(a) Γ̂N (x̄) − Γ (x̄) = O(bN ), P-almost surely, and EP[|Γ̂N (x̄) − Γ (x̄)|] = o(bN ).
(b) 0 ≤ EP[Γ̂N (x̄)] − Γ (x̄) = o(bN ).

Further, if in addition assumptions (B1)–(B2) are satisfied and if there exists γδ :=
EP[G(ξ)2+δ] < ∞ for some δ > 0, then, with p = 2 + 4/δ, it holds

(c) std(Γ̂N (x̄)) ≤ 1√
N
std(h(x̄, ξ)) + std( f̂ ∗

N ) = o(b1/p
N ).

Proof To show the statements, let us rearrange Γ̂N (x̄) − Γ (x̄) as

Γ̂N (x̄) − Γ (x̄) = (
f̂N (x̄) − f (x̄)

) + (
f ∗ − f̂ ∗

N

)
.

By this representation, the first part of statement (a) is a direct consequence of Lemma1
and Theorem 4, and the second part follows analogously by Proposition 2 and Theo-
rem 6. The first inequality of statement (b) follows from EP[ f̂ ∗

N ] ≤ f ∗, while the rate
of the bias follows from the second part of statement (a). Finally, the last statement is
due to the subadditivity of the standard deviation and the second part of Proposition 3,
under the additionally made assumptions. ��

The main idea for bounding the optimality gap for a given candidate point x̄ was
introduced in Mak et al. [30], Section 3.2: for a given ε > 0 find a (random) upper
bound uN = uN (ε) for EP[Γ̂N (x̄)] with

P

(
uN ≥ EP

[
Γ̂N (x̄)

]) ≥ 1 − ε,

since then Proposition 6(b) implies that

P
(

f (x̄) ≤ f ∗ + uN
) ≥ 1 − ε,

providing a performance guarantee for the candidate point x̄ with high probability.
Mak et al. [30] suggest to find uN by means of the CLT: sample M i.i.d. realisations
Γ̂ j,N (x̄) of the random variable Γ̂N (x̄) by independent batches with length N each,
then estimate

μΓ̂N
:= EP

[
Γ̂N (x̄)

]
, and σΓ̂N

:= std
(
Γ̂N (x̄)

)

by the classical estimators

μ̂Γ̂N ,M := 1

M

M∑
j=1

Γ̂ j,N (x̄), and σ̂ 2
Γ̂N ,M

:= 1

M

M∑
j=1

(
Γ̂ j,N (x̄) − μ̂Γ̂N ,M

)2
,

respectively, and set
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ûN ,M := μ̂Γ̂N ,M + zε√
M

σ̂Γ̂N ,M .

Here, zε is the corresponding (1−ε)-quantile of the t-distribution with M −1 degrees
of freedom. If the CLT holds for Γ̂N (x̄) and if M is chosen large enough, the upper
bound uN can be approximately computed by asymptotic normality in a standard
manner. More formally, if the CLT holds for Γ̂N (x̄), then

∀N : P

(
ûN ,M ≥ EP

[
Γ̂N (x̄)

]) → 1 − ε, as M → ∞.

For the CLT to hold, it is required that the random variable Γ̂N (x̄) has a finite second
moment, a property which is guaranteed, for example, by Proposition 6(c).

Interestingly, concerning the asymptotic behaviour of ûN ,M , we have not been able
to identify any investigations concerning the asymptotic behaviour of ûN ,M . However,
based on the results obtained in this exposition, especially Proposition 6, we are able
to characterise the asymptotic behaviour more precisely.

Proposition 7 Suppose that assumptions (A1)–(A2) hold, and let x̄ ∈ X be fixed. Then,
for any fixed M > 1 we have

ûN ,M = Γ (x̄) + O(bN ),

P-almost surely.

Proof From Proposition 6(a), we immediately have that μ̂Γ̂N ,M = Γ (x̄) + O(bN ),
P-almost surely, as this holds for each term of the sum in the definition of μ̂Γ̂N ,M .
Similarly, let us consider

|Γ̂ j,N (x̄) − μ̂Γ̂N ,M | = |(Γ̂ j,N (x̄) − Γ (x̄)
) − (

μ̂Γ̂N ,M − Γ (x̄)
)|.

For the first term on the right-hand side, we have by Proposition 6(a) that
|Γ̂ j,N (x̄) − Γ (x̄)| = O(bN ), P-almost surely, while for the second term we have
already obtained an almost sure asymptotic rate of O(bN ). Combining these results
proves the statement. ��

This shows that even for a fixed M (as typically suggested in the SAA literature),
an arbitrarily exact upper bound ûN ,M can be found. Thus, the choice of M seems
to be mainly important for the quality of the normal approximation, but not for the
size of the uncertainty set. Nevertheless, let us remark that a more careful analysis
of the almost sure asymptotic behaviour of μ̂Γ̂N ,M will yield that the above rate can
be further improved to include rates in M as well. These kind of estimates can be
obtained, e.g., by applying a LIL in M (under some slightly stronger assumption on
the existence of fourth moments) to Γ̂ j,N (x̄) and (Γ̂ j,N (x̄) − μ̂Γ̂N ,M )2.

The above idea can be taken one step further to obtain a proper (i.e. consistent
and degenerate) confidence interval for f ∗: instead of fixing a candidate point x̄ , an
independent estimate x̄N on a further (independent) batch based on N samples could
be computed. Then, conditional on x̄N , the above analysis remains completely valid,
with the exception that now we also have to consider the asymptotic behaviour of
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Γ (x̄N ). Using Lipschitz continuity of f and the rate of the almost sure convergence
of x̄N to x∗, it holds that Γ (x̄N ) = O(b1/2N ) or Γ (x̄N ) = O(bN ), depending on the
specific assumptions made. In summary, this leads to

ûN ,M = O(b1/2N ), or ûN ,M = O(bN ),

each P-almost surely. The final step to obtain a consistent confidence set is the replace-
ment of 1/

√
M by 1/bM , which replaces the upper bound by some slightly larger upper

bound. According to previous considerations, this then leads to a 100% coverage in
the limit, see also the subsequent section for similar constructions.

4.2.2 Confidence sets

Let us briefly discuss the possibility to derive confidence sets for the optimal value f ∗
and an optimal solution x∗ (provided the latter is unique) by other methods, where
we mainly follow ideas by Lai [25], Pflug [31] and Vogel [50]. To avoid a lengthy
discussion of measurability issues, we focus on random convex compact sets. As
notation sometimes differs among authors, we first recall the following definitions to
avoid any ambiguity.

Definition 2 Let {CN } be a sequence of random convex compact subsets of Rl . For
an unknown fixed vector q ∈ R

l , the sequence {CN } of random sets is called

(i) consistent if P(q ∈ CN ) → 1 for N → ∞,
(ii) degenerate if diam(CN ) → 0, P-almost surely, as N → ∞, and
(iii) a proper confidence sequence if it is consistent and degenerate.

It is further called

(iv) an ultimate ε-level confidence sequence if

P
({∀N ∈ N : q ∈ CN }) ≥ 1 − ε, and

(v) a universal ε-level confidence sequence if

∀N ∈ N : P(q ∈ CN ) ≥ 1 − ε.

Of course, the quantities of interest in our context are the optimal value f ∗ and the
optimal solution x∗. Let us also recall in this context that it is well-known that in case
a CLT holds, the classical confidence sets on this basis must fail the condition for an
ultimate confidence if a LIL also holds. Therefore, it is reasonable to aim instead for
universal confidence sets in the sense of Pflug and Vogel.

Unfortunately, the approach followed in this paper does not seem to be able to yield
explicit estimateswhich could be exploited for the construction of universal confidence
sequences. Nevertheless, the existence of a tail behaviour function in the sense of Pflug
[31] is guaranteed by the following argumentation. According to Theorem 6 and by
applying the Markov inequality, we obtain for all δ > 0 that
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sup
N∈N

P

(
| f̂ ∗

N − f ∗|
bN

≥ δ

)
≤ 1

δ
sup
N∈N

EP

[| f̂ ∗
N − f ∗|]
bN

= 1

δ
c f ∗ ,

with unknown constant c f ∗ := supN∈N EP[| f̂ ∗
N − f ∗|]/bN < ∞. If some upper

bound on c f ∗ is known, a universal confidence set can be constructed from this inequal-
ity along the lines described by Pflug [31] and Vogel [50].

In any case, based on the results from the previous section, it is straightforward to
show that proper confidence sequences can be easily obtained.

Corollary 1 Suppose that assumptions (A1)–(A2) hold and let δ > 0 be arbitrary.
Then,

CN = {
z ∈ R : |z − f̂ ∗

N | ≤ δbN
}

yields a proper confidence sequence for f ∗.

Proof This follows directly from the first statement of Proposition 5. ��
Twomain comments are in order. First, a similarly sized proper confidence sequence

can be easily obtained from the CLT approach under the same assumptions; for the
above corollary though, the CLT has not been used. Second, in contrast to the approach
via the CLT, here no approximate estimate of the coverage probability of CN is avail-
able, while after all no kind of variance estimate is necessary for its construction.

Corollary 2 Suppose that assumptions (A1)–(A2) and (B1)–(B2) hold and let δ > 0
be arbitrary. Then,

CN = {
z ∈ R

n : ‖z − x̂∗
N ‖ ≤ √

δbN
}

(27)

yields a proper confidence sequence for x∗. Under the assumptions (A1)–(A3), (A1’)–
(A2’), (B1) and (B2’), it further holds that

CN = {
z ∈ R

n : ‖z − x̂∗
N ‖ ≤ δbN

}
(28)

also yields a proper confidence sequence for x∗.

Proof Again, this follows directly from the second and the third statement of Propo-
sition 5. ��

Note that, for sufficiently large N , the confidence set (28) is much smaller than the
set (27), as δbN <

√
δbN for N large enough.

The main novelty of the latter results lies in the fact that they allow to derive a
proper confidence sequence for the optimal solution x∗ under quite weak assump-
tions. These assumptions are indeed weaker than those which lead to confidence sets
of x∗ via asymptotic normality, cf. Theorem 3. Again, let us point out that although
under asymptotic normality approximate coverage probabilities are available, no exact
knowledge of the coverage probability is available here in either case.
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Remark 8 Suppose δ is chosen such that δ > σ(X̃) for f ∗ or δ > 2
α
σ (X̃) for x∗,

where α > 0 denotes the constant of either the second-order growth condition (B2)
or of (B2’). Then, ultimately, on each sample path, the confidence set CN covers f ∗
or x∗ from some random N∗ onwards, see e.g., Serfling [36], Section 1.10, for a dis-
cussion. These upper estimate for σ(X̃) might be derived, for instance, via (14) or
from the boundedness of h. As already pointed out above, this behaviour of the confi-
dence sequence is in contrast to the classical confidence sets provided by asymptotic
normality; here, the quantities f ∗ or x∗ drop out of the confidence interval infinitely
often on each sample path.

In summary, we thus have seen that the approach followed here is not able to
yield universal confidence sets (for instance, by deriving explicit tail behaviour of the
estimators), but is able to provide proper confidence sequences.

5 Numerical illustration

In this sectionwe illustrate themain results of our analysis bymeans of thewell-known
newsvendor problem. To this end, we consider the problem in its most simple version:

min
x∈[0,xu ] EP

[
cx − r min(x, ξ)

]
, (29)

where ξ denotes the random demand for a certain good (newspaper), c the costs
associated with keeping the good in stock, r the price at which the good can be sold,
and xu themaximum amount of goods that can be stored. The objective functionwhich
is to be minimised represents the expected negative revenues from deciding to keep x
goods in stock. For a more detailed treatment of the newsvendor problem including
several visualisations, we refer to the thorough review by Mello and Bayraksan [19]
and the references therein.

For our numerical experiments, we set the parameters as c = 2, r = 5, and
xu = 100, and assume that ξ is distributed according to a lognormal distribution
with parameters μL N = 0 and σL N = 1, that is ξ ∼ L N (0, 1). The optimal solution
to (29) is then given by the 60%-quantile of the lognormal distribution, i.e. by x∗ =
F−1

L N (0,1)(0.6) ≈ 1.288330 with optimal value f ∗ ≈ −3.753092 (which can also be
calculated analytically in our specific case). To approximatively solve problem (29) by
the SAA approach, we choose N = 1, 2, 4, 8, . . . , Nmax with Nmax = 224, and set the
number of batches (independent repetitions to solve the SAA problem) to M = 215.

5.1 Illustrations on the CLT and the LIL

5.1.1 Convergence in distribution

Let us start with an illustration of the asymptotic distribution of the sequences
{√N ( f̂ ∗

N − f ∗)} and {√N (x̂∗
N −x∗)}, for whichwe have plotted in Fig. 1 the quantities√

N ( f̂ ∗
N − f ∗) and

√
N (x̂∗

N − x∗) for a small and a large N each.
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Fig. 1 Distribution of
√

N ( f̂ ∗
N − f ∗) (upper half) and of

√
N (x̂∗

N − x∗) (lower half) for N = 32 (left) and
N = Nmax (right). Note that in the considered example approximate normality can already be obtained for
small N
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Fig. 2 Distribution of N ( f̂ ∗
N − f̂N (x∗)) for N = 32 (left) and N = Nmax (right). Note that convergence

in distribution to a non-normal distribution can be observed empirically

As expected by Theorems 2 and 3, it can be observed from Fig. 1 that the distribu-
tions of

√
N ( f̂ ∗

N − f ∗) and
√

N (x̂∗
N − x∗) look already quite normal for small N and

very close to normal for large N . By contrast, however, as f̂ ∗
N ≤ f̂N (x∗), Theorem 3

also tells us that we cannot expect that {N ( f̂ ∗
N − f̂N (x∗))} converges in distribution

to a normal distribution, cf. Fig. 2.

5.1.2 Almost sure convergence

Next, we illustrate the behaviour of { f̂ ∗
N } and {x̂∗

N } in the almost sure sense. To this
end, we have plotted in Fig. 3 the first 500 sample paths (out of M) of the upscaled
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Fig. 3 Plots of the first 500 sample paths of ( f̂ ∗
N − f ∗)/bN (top) and (x̂∗

N − x∗)/bN (bottom) for the
different sample sizes N (in log2-scale). Note that for f ∗ the standard deviation of h(x∗, ξ) may be used
as a good upper bound, while no such estimate is readily available for x∗, due to the unknown α in the
second-order growth condition (B2’). Therefore, a conservative estimate of α = 2 has been used

quantities ( f̂ ∗
N − f ∗)/bN and (x̂∗

N − x∗)/bN for the grid of different sample sizes N .
Note that the remaining paths behave very similarly.

In accordance with theory, cf. Theorems 4 and 5, it can indeed be observed from
Fig. 3 that most upscaled sample paths remain within a band of width equal to the
standard deviation. Note that for the case of f̂ ∗

N , we have been able to use the standard
deviation of h(x∗, ξ) as an upper bound, cf. Theorem 4 and Remark 8. However, as the
positive constant α in the second-order growth condition (B2’) is usually not known
in the case of x̂∗

N (and no readily available estimate is available), we have taken an

estimate of α corresponding to function f̂N , leading to α ≈ 2. Considering Fig. 3,
we note that the almost-sure speed of convergence is of course already implied by the
fact that the upscaled sequences stay bounded. By closer inspection, we can further
observe that we cannot expect a better convergence rate as the confidence band is
almost completely covered by each path.

Finally, in accordance with the construction of the confidence sets in Sect. 4.2.2
and Remark 8, we can see from Fig. 4 that the probability of falling outside these
confidence bands drops to zero.

5.1.3 Convergence in mean

We illustrate the convergence in mean of the sequences { f̂ ∗
N } and {x̂∗

N } by considering
the average of f̂ ∗

N and x̂∗
N for the different sample sizes N over the M batches and
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Fig. 4 Plots of P(( f̂ ∗
N − f ∗)/bN /∈ C f ) (left) and P((x̂∗

N − x∗)/bN /∈ Cx ) (right) for the different sample

sizes N (in log2-scale), where the fixed confidence bands C f and Cx are constructed according to Fig. 3.
Note that these probabilities converge to zero as N → ∞, as expected
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Fig. 5 Plots of the averages of f̂ ∗
N (top) and x̂∗

N (bottom) over M batches, centred at f ∗ and x∗, respectively,
and upscaled by 1/bN , for the different sample sizes N (in log2-scale). The dashed lines represent the
corresponding sample standard deviations, again upscaled by 1/bN . Note that the negative bias of f̂ ∗

N is
clearly visible but vanishes asymptotically, as suggested by its order o(bN )

together with the standard error of the corresponding estimator. The results obtained
are presented in Fig. 5, where we again have plotted the upscaled quantities for better
visibility.

From Fig. 5, a few interesting insights can be gained. First, the negative bias of f̂ ∗
N

can be visually identified in the top panel. Second, in full accordance with Theorems 6
and 7, we observe that the upscaled sequences {( f̂ ∗

N − f ∗)/bN } and {(x̂∗
N − x∗)/bN }

still converge to zero, confirming the convergence order o(bN ). Third, it seems that
the corresponding standard deviations of both estimators, upscaled by 1/bN , remain
at least bounded—amuch better behaviour than could be expected from assertion (21)
(where a scale of 1/b1/p

N is considered).
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Fig. 6 Plots of P(| f̂ ∗
N − f ∗|/bN > δ) (top) and P(‖x̂∗

N − x∗‖/bN > δ) (bottom) for the different sample
sizes N (in log2-scale) and δ ∈ {1/2, 1, 2}. Note that the convergence of these probabilities to zero is in
accordance with Proposition 5

5.2 Further illustrations

5.2.1 Convergence in probability

Considering the last mode of convergence to be discussed, convergence in probability,
Fig. 6 depicts how fast the deviation probabilities in Proposition 5 converge to zero.

It can clearly be observed thatP(| f̂ ∗
N − f ∗|/bN > δ) → 0 andP(‖x̂∗

N − x∗‖/bN >

δ) → 0 holds in accordance with Proposition 5.

5.2.2 Estimation of the optimality gap

As a final illustration and application of our results, let us investigate the behaviour of
the optimality gap. For this purpose, Fig. 7 illustrates the behaviour of μΓ̂N

, σΓ̂N
and

ûN ,M for different sample sizes N .
First, we can observe that the upscaled sequences {μΓ̂N

/bN } and {σΓ̂N
/bN } appear

to converge to zero at a rate of at least o(bN ), as indicated by Proposition 6(b). Second,
for the example considered, it can further be observed that the scale of σΓ̂N

is compa-
rable to the one of μΓ̂N

. For already small M , we thus have ûN ,M ≈ μ̂ΓN . In general,
if M is chosen large enough, it is expected that this is always the case, i.e. it generally
holds that ûN ,M ≈ μ̂ΓN , as the second term in the definition of ûN ,M vanishes.

6 Conclusion

In this paper, we have derived rates of convergence almost surely and in mean for
optimal estimators in the SAA approach, a matter which has not been investigated so
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Fig. 7 Plots of μΓ̂N
/bN (top), σΓ̂N

/bN (middle) and ûN ,M/bN (bottom) (in log10-scale) for different
sample sizes N (in log2-scale), obtained by averaging over M batches. Note that all upscaled sequences
converge to zero in our specific example, as expected

far. Both rates can essentially be quantified as
√
LLog(N )/

√
N and may be inferred

under rather mild assumptions by applying a version of the LIL in Banach spaces,
similar to the case of the functional CLT that allows to derive asymptotic distributions
and related convergence rates for the optimal estimators. On the basis of the obtained
convergence results in mean, we have been able to quantify the asymptotic bias and the
mean squared errors of the optimal estimators.Moreover, from the rates of convergence
in mean, we have derived convergence in probability for the deviation of the optimal
estimators from their respective counterparts and rates of error probabilities that are
rather weak but do not rely on the strong exponential moment conditions as in other
approaches.We have also analysed the idea of constructing confidence sets for optimal
values and solutions by bounding the optimality gap and by more traditional methods.
Finally, we have provided a numerical illustration of our results by considering the
well-known newsvendor problem.
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