
J. Chem. Phys. 148, 074504 (2018); https://doi.org/10.1063/1.5017694 148, 074504

© 2018 Author(s).

Force fields for monovalent and divalent
metal cations in TIP3P water based on
thermodynamic and kinetic properties
Cite as: J. Chem. Phys. 148, 074504 (2018); https://doi.org/10.1063/1.5017694
Submitted: 29 November 2017 • Accepted: 31 January 2018 • Published Online: 21 February 2018

Shavkat Mamatkulov and Nadine Schwierz

ARTICLES YOU MAY BE INTERESTED IN

Comparison of simple potential functions for simulating liquid water
The Journal of Chemical Physics 79, 926 (1983); https://doi.org/10.1063/1.445869

Force fields for divalent cations based on single-ion and ion-pair properties
The Journal of Chemical Physics 138, 024505 (2013); https://doi.org/10.1063/1.4772808

A force field of Li+, Na+, K+, Mg2+, Ca2+, Cl−, and  in aqueous solution based on the
TIP4P/2005 water model and scaled charges for the ions
The Journal of Chemical Physics 151, 134504 (2019); https://doi.org/10.1063/1.5121392

https://images.scitation.org/redirect.spark?MID=176720&plid=1735782&setID=378408&channelID=0&CID=634322&banID=520620674&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=9ef36e982c8c81bdfc9703d75224adb1dd2af5d5&location=
https://doi.org/10.1063/1.5017694
https://doi.org/10.1063/1.5017694
https://aip.scitation.org/author/Mamatkulov%2C+Shavkat
https://aip.scitation.org/author/Schwierz%2C+Nadine
https://doi.org/10.1063/1.5017694
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5017694
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5017694&domain=aip.scitation.org&date_stamp=2018-02-21
https://aip.scitation.org/doi/10.1063/1.445869
https://doi.org/10.1063/1.445869
https://aip.scitation.org/doi/10.1063/1.4772808
https://doi.org/10.1063/1.4772808
https://aip.scitation.org/doi/10.1063/1.5121392
https://aip.scitation.org/doi/10.1063/1.5121392
https://doi.org/10.1063/1.5121392


THE JOURNAL OF CHEMICAL PHYSICS 148, 074504 (2018)

Force fields for monovalent and divalent metal cations in TIP3P water
based on thermodynamic and kinetic properties

Shavkat Mamatkulov1 and Nadine Schwierz2,a)
1Department of Physics, The Centre of Higher Technologies, Tashkent, Uzbekistan
2Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany

(Received 29 November 2017; accepted 31 January 2018; published online 21 February 2018)

Metal cations are essential in many vital processes. In order to capture the role of different cations
in all-atom molecular dynamics simulations of biological processes, an accurate parametrization is
crucial. Here, we develop force field parameters for the metal cations Li+, Na+, K+, Cs+, Mg2+, Ca2+,
Sr2+, and Ba2+ in combination with the TIP3P water model that is frequently used in biomolecular
simulations. In progressing toward improved force fields, the approach presented here is an extension
of previous efforts and allows us to simultaneously reproduce thermodynamic and kinetic properties
of aqueous solutions. We systematically derive the parameters of the 12-6 Lennard-Jones potential
which accurately reproduces the experimental solvation free energy, the activity derivative, and the
characteristics of water exchange from the first hydration shell of the metal cations. In order to
reproduce all experimental properties, a modification of the Lorentz-Berthelot combination rule is
required for Mg2+. Using a balanced set of solution properties, the optimized force field parameters
aim to capture the fine differences between distinct metal cations including specific ion binding
affinities and the kinetics of cation binding to biologically important anionic groups. Published by
AIP Publishing. https://doi.org/10.1063/1.5017694

INTRODUCTION

Metal cations play an essential role in numerous physio-
logical processes. In nature, the most abundant metal cations
Na+, K+, Ca2+, and Mg2+ have a significant effect on the
structure, stability, and function of nucleic acids and proteins
as well as in the regulation of important biomolecular pro-
cesses.1–3 Metal cations are essential since they screen the
electrostatic interaction between charged biomolecules. Even
more importantly, binding of metal cations to the catalytic
core of metalloproteins and ribozymes allows them to execute
chemical reactions that would not be possible from the basic
building blocks alone.4 Providing a quantitative description
of the interaction between metal cations and biomolecules to
resolve their role in transport and function is a challenging task
for computer simulations.5,6 On the one hand, ab initio quan-
tum mechanical approaches could provide unbiased insight
into processes involving metal cations but are limited to small
systems due to high computational costs. On the other hand,
classical all-atom simulations are computationally less expen-
sive and allow us to treat larger spatial and temporal scales.
However, successful molecular modeling requires accurate
force fields for metal ions. Ideally, by carefully optimiz-
ing the two adjustable Lennard-Jones (LJ) parameters based
on thermodynamic experimental properties, non-polarizable
force fields implicitly take polarizability effects into account.
At the moment, non-polarizable force fields are still more

a)Author to whom correspondence should be addressed: nadine.schwierz@
biophys.mpg.de

widely used and quite successful in predicting binding affini-
ties.7 In addition, their use can be justified further by work
showing that accounting for polarizability effects is not strictly
required for mono- and divalent cations since their first hydra-
tion shell is not significantly polarized compared to bulk.8

Moreover, several recent advances in the computation of salt
solubilities, activity coefficients, and chemical potentials9–13

and advanced parameterization schemes14 have enhanced
the development of accurate models of aqueous electrolyte
solutions.15

In the simulation of an aqueous system, the selection of the
water model is the first step. Out of a large number of rigid, non-
polarizable water models,16,17 the most popular water models
are the simple point charge SPC18 or the transferable inter-
molecular potential TIP3P.19 It should be noted that other water
models are superior in capturing the properties of pure water.17

Yet, the amber force fields for proteins and nucleic acids have
been optimized in combination with TIP3P water explaining its
widespread use in biomolecular simulations and the selection
of TIP3P in our current work.

Many parameter sets for the simulation of solvated ions
are available in the literature. These parameter sets are quite
different since they were not chosen systematically. Rather,
different optimization schemes targeting to reproduce vari-
ous experimental reference data were used (see Table I and
Refs. 20–22 for an overview). For instance, amber force
fields formerly used amber-adapted Åqvist parameters23 for
the cations and the chloride parameters were developed by
Dang.24 The optimization of Åqvist’s parameters was based
on reproducing the solvation free energies. Yet, these param-
eters are lacking a balance between ion-water and ion-ion
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TABLE I. Selected metal cation parameter sets from the literature. Amber-adapted Åqvist parameters from Ref. 23, Joung-Cheatham parameters from Ref. 22,
Fyta-Netz parameters from Ref. 31, Horinek-Netz parameter set 2 (medium-ε -set) from Ref. 55, parameters from the standard amber database from Ref. 56,
Mamatkulov-Netz parameters from Ref. 20, Allnér-Villa parameters from Ref. 50, and Li-Merz parameter set 1 (∆Gsolv-set) from Ref. 32. The properties used
in the optimization of the individual sets include ∆Gsolv (solvation free energy), ∆Ssolv (solvation entropy), R1 (first maximum of the ion-water oxygen radial
distribution function), LE (lattice energy), LC (lattice constant), acc (activity derivative), and τ (water residence time). For each set, the water model and the
ion-water LJ parameters (σiO and ε iO) are listed (rounded values). The amber-adapted Åqvist parameters are obtained from the original parameters A and B via
σii = (0.2/21/6)·((2·762.89A/24.309B)1/6

� 1.768).

Monovalent cations Li+ Na+ K+ Cs+

σiO ε iO σiO ε iO σiO ε iO σiO ε iO

Reference Water Properties (nm) (kJ/mol) (nm) (kJ/mol) (nm) (kJ/mol) (nm) (kJ/mol)

Åqvist TIP3P ∆Gsolv 0.2590 0.2207 0.3241 0.0859 0.3945 0.0295 0.4603 0.0147

Joung-Cheatham TIP3P ∆Gsolv, LE, LC 0.2488 0.2731 0.2795 0.4827 0.3094 0.7184 0.3336 1.0408

Fyta-Netz SPC/E ∆Gsolv, acc 0.2270 1.0000 0.2876 0.5160 0.2930 1.2600 0.3330 0.5000

Horinek-Netz SPC/E ∆Gsolv, ∆Ssolv, R1 0.2320 0.6500 0.2700 0.6500 0.3030 0.6500 0.3300 0.6500

Current work TIP3P ∆Gsolv, acc, τ 0.2334 0.6200 0.2879 0.2700 0.3070 0.6200 0.3350 0.6200

Divalent cations Mg2+ Ca2+ Sr2+ Ba2+

Åqvist TIP3P ∆Gsolv 0.2278 1.5269 0.2758 1.0946 0.3129 0.5613 0.3470 0.3542

Amber TIP3P ∆Gsolv 0.2281 1.5435 0.3102 1.1065 . . . . . . . . . . . .

Mamatkulov-Netz SPC/E ∆Gsolv, acc 0.2400 0.6200 0.2790 0.7800 0.3130 0.4000 0.3500 0.2200

Allnér-Villa mTIP3P τ 0.2960 0.0887 . . . . . . . . . . . . . . . . . .

Li-Merz ∆Gsolv 0.2719 0.1027 0.2937 0.3593 0.3065 0.5653 0.3216 0.8132

Current work TIP3P ∆Gsolv, acc, τ 0.2385 0.6200 0.2708 1.2200 0.2987 0.8200 0.3348 0.4200

interactions leading to spontaneous crystallization at low salt
concentrations and artifacts, for instance, in the simulation of
DNA.22,25 In order to overcome these shortcomings, Joung
and Cheatham optimized the force fields for monovalent
alkali cations based on solvation free energies, lattice ener-
gies, and inter-ionic distances of the alkali-halide crystals.22

The Joung-Cheatham parameters for monovalent cations are
now the default in amber force fields. However, for divalent
metal cations, the amber-adapted Åqvist parameters are still
commonly used even though they fail to reproduce thermo-
dynamic or ion specific effects at finite concentrations.26–28

By contrast, for Mg2+, a large variety of different param-
eter sets exist due to its distinct role in physiological pro-
cesses such as nucleic acid folding and catalytic activity (see
Ref. 29 for a detailed overview over the different Mg2+ param-
eter sets). However, focusing on a single cation alone does
not allow one to simulate biological processes at physio-
logical salt composition or to identify the role of different
metal cations in computer simulations of complex biological
systems.

A particularly successful systematic optimization strategy
has been pushed forward by Netz and co-workers for the devel-
opment of ionic force fields in combination with the simple
point charge-extended (SPC/E) water model.20,21,30,31 Their
optimization is based on single-ion and ion-pair properties and
allows them to simultaneously reproduce several thermody-
namic properties of an ionic solution at finite concentrations.
In progressing toward improved force fields, the aim of our
current work is to simultaneously reproduce thermodynamic
and kinetic properties of aqueous salt solutions. The approach
presented here is an extension of previous efforts with the aim
to provide improved force fields for the metal cations Li+,
Na+, K+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+ for biomolecular

simulations in combination with the TIP3P water model. We
systematically derive the parameters to reproduce the exper-
imental solvation free energies, the activity derivatives, and
the characteristics of water exchange from the first hydration
shell. Targeting these experimental properties, the force field
is expected to correctly capture the following quantities in the
best possible way: (i) ion-water interactions in particular ion
hydration, (ii) ion-paring properties which are integral to quan-
tify cation binding affinities to anionic biological groups, and
(iii) the characteristics of water exchange which is important
for cation binding kinetics.

Our optimization procedure is done in three consecutive
steps: In the first step, the ion-water interactions are optimized
by selecting combinations of LJ parameters that reproduce
the experimental solvation free energy. The first peak in the
ion-water radial distribution function (rdf) and the number
of water molecules in the first hydration shell are used to
gain further insight into the structural properties of single
ions in water. In the second step, we optimize the ion-ion
interactions by selecting parameter combination that simul-
taneously match experimental activity derivatives. For Mg2+,
simultaneous matching of single-ion and ion-pair properties
is only possible by rescaling the effective cation-anion radius,
using a modification of the standard Lorentz-Berthelot com-
bination rule similar as in Ref. 20. For Ca2+ and Sr2+, we
find degenerate parameter sets that describe the experimental
data equally well. Therefore, in the last step of our optimiza-
tion, we account for the kinetics of water exchange from the
first hydration shell of the metal cations. For the monovalent
cations, the experimental trends are reproduced without any
further adjustments, while for the divalent cations, experimen-
tal water exchange rates unambiguously determine the final
set.
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METHODS
Molecular dynamics (MD) simulations

The most common form of the pairwise potential is the LJ
potential with a repulsive r�12 and an attractive r�6 term. Other
potential forms have been introduced in the literature.29,32 Yet,
our motivation to use 12-6 potentials are their simple form,
computational efficiency, and transferability. Here, the pair
interaction potentials U ij has the following form:

Uij(rij) =
qiqj

4πε0rij
+ 4εij



(
σij

rij

)12

−

(
σij

rij

)6
, (1)

where qi, qj are the charges of the atoms i, j and rij is the
distance between these atoms. The Coulomb term is free from
adjustable parameters while the LJ parameters εij, the LJ inter-
action strength, and σij, the corresponding LJ diameter, are
free to be optimized to reproduce certain physical proper-
ties as discussed in the following. In addition, we use the
Lorentz-Berthelot combination rules

εij =
√
εiεj; σij =

σi + σj

2
, (2)

where i, j correspond to the index of the ions. We employ the
TIP3P water model. The TIP3P water model assigns partial
charges of �0.834 and 0.417 to oxygen and hydrogen and LJ
parameters of σOW = 3.150 61 Å and εOW = 0.6364 kJ/mol.19

The geometry is fixed at a bond length of 0.9572 Å and a bond
angle of 104.52◦ using the SHAKE algorithm.

All simulations are performed using GROMACS 5.1.2
with periodic boundary conditions in all three directions and
particle mesh Ewald summation with tin foil boundary condi-
tions and a Fourier spacing of 0.12 nm and a grid interpolation
up to order 4 to handle long-range electrostatic forces and the
electroneutrality condition. Close Coulomb real space interac-
tions are cut off at 1.2 nm and LJ interactions are cut off after
1.2 nm, respectively. Long-range dispersion corrections for
energy and pressure are applied to account for errors stemming
from truncated LJ interactions.

Initial energy minimization is performed with the steep-
est descent algorithm. For each free energy perturbation (FEP)
or continuous simulation, a NVT and a NPT equilibration
is done for 1 ns, controlling the temperature at 300 K with
the Berendsen thermostat and the pressure at 1 bar with the
Berendsen barostat. During NVT and NPT equilibration, we
apply position restraints to all ions in the simulation box to
avoid ion-pair formation before an appropriate hydration shell
has been developed. All production runs are performed at a
temperature of 300 K using the velocity rescaling thermostat,
a pressure of 1 bar using the Parrinello Rahman barostat, and
a time step of 2 fs. All parameters used in the MD simulations
have been previously checked to lead to consistent results for
the systems under study.30,31

Free energy perturbation simulations

The solvation free energies of the ions are calculated using
free energy perturbation (FEP) simulations, evaluated with the
Bennett acceptance ratio (FEP/BAR) method. The simulations
are performed by placing a single ion in a cubic simulation box
cubic box (L = 25 Å) and adding 506 TIP3P water molecules.

The production run is done for 1 ns discarding the first 200
ps for equilibration. The solvation pathway is split into two
separate processes: first, a neutral LJ particle is created, then
the charge is increased in a second step. Along the solvation
pathway, a transformation parameter λ is used with 20 evenly
spaced replicas for applying the LJ interaction potential. For
the Coulomb potential, 10 replicas are used for the monovalent
cations and 20 replicas are used for the divalent cations. To
improve convergence, soft-core potentials are applied for LJ
potentials with α = 0.3, linear lambda scaling, and a radius
power of 6.

Self-diffusion coefficient of a single ion in water

For the final set of LJ parameters, the self-diffusion coef-
ficient is calculated from an additional 50 ns NVT simulation
of the single ions using 3 different sizes of the cubic simula-
tion box (L = 25 Å, L = 30 Å, L = 35 Å). The NVT ensemble
is chosen since the results are expected to be very close to
the NVE ensemble in which diffusion coefficients should be
calculated ideally.29 All simulations are pre-equilibrated in
the NPT ensemble before fixing the box size. Self-diffusion
coefficients are calculated from the slope of the mean-square
displacement. After a brief initial period of about 1 ps, the
mean-square displacement grows linearly and the diffusion
coefficient is estimated from a straight line fit. The diffusion
coefficient corrected for system size effects reads33

D0 = Dpbc(L) +
kBT ξewα

6πηL
, (3)

where L is the box length, Dpbc is the computed self-
diffusion coefficient, D0 is the diffusion coefficient for infi-
nite non-periodic systems, kB is the Boltzmann constant, T
is the absolute temperature, η is the solvent viscosity, and
ξew = 2.837 297 is the self-term for a cubic lattice. The empiri-
cal parameter α accounts for deviations from the Oseen point-
particle limit. In the following, we use α = 1.0 for all cations.
To correct for the low viscosity of TIP3P water compared to
the measured water viscosity, we report the scaled diffusion
coefficients,

D =
ηtip3p

ηwater
D0 (4)

with the viscosity of TIP3P water ηtip3p = 3.13 × 10�4 kg m�1

s�1 and the experimentally measured water viscosity ηwater

= 8.91 × 10�4 kg m�1 s�1.17 Errors of the self-diffusion
coefficient correspond to the standard deviation of the three
independent simulations with different box sizes.

Finite concentration simulations

The initial configurations of the electrolyte solutions are
generated from a cubic box (L = 40 Å) of 2180 TIP3P
water molecules by randomly replacing water by ions until
the required concentration is attained. After the replacements,
there are 19 divalent cations or 38 monovalent cations and 38
anions in the box, corresponding to a molality of about 0.5M
or 1M. A few simulations are performed at higher concen-
trations. The simulations are done for 150 ns and trajectories
are recorded every 0.2 ps to gather better statistics. The radial



074504-4 S. Mamatkulov and N. Schwierz J. Chem. Phys. 148, 074504 (2018)

distribution functions (rdfs) of the salt solutions are obtained
using GROMACS, neglecting the first 1 ns for equilibration.
The number of water molecules in the first hydration shell is
calculated by counting the water molecules within a cutoff dis-
tance rcut defined by the first minimum in the ion-water radial
distribution function. Specifically, the following values for rcut

were used: 0.3 nm (Mg2+), 0.33 nm (Ca2+), 0.34 nm (Sr2+),
0.36 nm (Ba2+), 0.28 nm (Li+), 0.32 nm (Na+), 0.35 nm (K+),
0.387 nm (Cs+).

Water residence time and free energy profiles (PMFs)

The mean lifetime of the water molecules in the first
hydration shell around the metal cations with the exception
of Mg2+ is calculated directly by following the motion of all
water molecules. The average lifetime is obtained by averag-
ing the times that water molecules remain within the cutoff
distance defined above. The free energy profiles (PMFs) are
obtained from the ion-water oxygen rdf from Boltzmann inver-
sion. For Mg2+, the water residence time is on the order of a
microsecond34 and therefore cannot be obtained in a straight-
forward MD simulation with sufficient statistics. Instead, the
PMF is calculated from umbrella sampling. For ion-water dis-
tances between 0.2 and 0.6 nm, we use a force constant k = 100
000 kJ/(mol nm2) and a window spacing of 0.01 nm. For larger
distances between 0.5 and 1 nm, we use k = 1000 kJ/(mol nm2)
and a window spacing of 0.02 nm. The umbrella simulations
are performed for 10 ns discarding 500 ps for equilibration.
The PMF is calculated using the weighted histogram analysis
method,35 and a Jacobian correction is applied to reconstruct
the true PMF since we are using distances rather than Cartesian
coordinates,36

PMF(r) = PMFWHAM(r) + 2kBT ln(r). (5)

Solvation free energy and correction terms

The ionic solvation free energy calculated from simula-
tions is sensitive to the simulation scheme and treatment of
the electrostatic forces. Therefore, for comparison with exper-
imental data, several corrections have to be applied to the raw
simulation data. The correction term accounting for finite size
effects37 for an ion with valency z reads

∆Gfs =
z2NAe2

4πε0

[
−

ξew

2εrL
+

(
1 −

1
εr

) (2πR2
1

3L3
−

8π2R5
1

45L6

)]
, (6)

where NA is Avogadro’s number, e is the unit charge, R1 is the
effective radius of the ion, estimated as the first peak in the ion-
oxygen rdf, and εr = 83 is the relative dielectric constant of the
TIP3P water.38 The Wigner potential is ξew = �2.837 279/L,
where L is the simulation box size in nm.39,40 Experimental
values of the solvation free energies are usually given with
respect to a hypothetical transfer of ions from the ideal gas
phase of p0 = 1 atm pressure to the ideal solution under pressure
of p1 = 24.6 atm, corresponding to the density of 1 mol/l. Thus,
it is also necessary to include a correction term related to the
compression of the gas

∆Gpress = NAkBT ln(p1/p0) = 7.9 kJ/mol, (7)

where kBT is the thermal energy. In the experiments, the ions
have to pass the air-water interface in order to enter into the

aqueous phase. The corresponding free energy correction term
is

∆Gsurf = NAz × eφsurf = −z × 50.8 kJ/mol, (8)

where we choose the surface potential as φsurf = �0.527
V.41 Hence, the total single-ion solvation free energy is given
by

∆Gsolv = ∆Gsim + ∆Gfs + ∆Gsurf + ∆Gpress. (9)

Extracting single-ion solvation free energies from experimen-
tal data usually relies on the solvation free energy of the proton
∆Gsolv(H+). However, the proton solvation free energy is per-
turbed by the surface potential of water, which is not exactly
known and prone to errors. A popular estimate for ∆Gsolv(H+)
is that of Tissandier et al.42 (�1104.5 kJ/mol). This value is 50
kJ/mol lower than the other commonly used value of Marcus43

(�1056 kJ/mol).
Experimental solvation free energy data are more robust

for neutral ion-pairs, for which the water surface potential
drops out. Therefore, we use experimental data for neu-
tral ion-pairs in our optimization. As a reference ion, we
choose the chloride ion. As a starting point, we choose the
Dang-Smith parameters for Cl� using σiO = 3.78 Å and
εiO = 0.52 kJ/mol.44 The Smith-Dang parameters were opti-
mized for the SPC/E water model and give a solvation free
energy of ∆Gsolv = �306 kJ/mol,21 close to the absolute solva-
tion free energy of Cl� based on Tissandier’s estimate. The LJ
parameter εiO is then modified in TIP3P water until it repro-
duces the absolute solvation energy, given by ∆Gsolv = �304.2
kJ/mol42 (see Fig. 1). The resulting LJ parameters are listed in
Table II.

For the divalent cations, the solvation free energies are
always the sum of the cationic and the chloride free energy,
respectively,

Σ∆G = ∆Gsolv + z × ∆Gsolv(Cl−), (10)

where z is the valency of the cation. For the divalent cations,
we sample the LJ parameters σiO and εiO on a 21 × 7 grid.
The range σiO = 2.2 � 4.25 Å and εiO = 0.02 � 1.28 kJ/mol is
studied. For an efficient optimization of σiO and εiO, the sur-
face of the solvation free energy is fitted as linear interpolation
between σiO values for constant εiO.

FIG. 1. Solvation free energy of the reference chloride ion in TIP3P water.
Starting from the Dang-Smith parameters44 commonly used in combination
with the SPC/E water model, the LJ parameter εiO is modified. The horizontal
line is the experimental solvation free energy from Ref. 43 using Tissandier’s
estimate for the proton solvation free energy.42 The filled symbol denotes the
optimized parameter for chloride.
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TABLE II. Optimized force field parameters for Cl� for simulations with the TIP3P water model. The ion-water
and ion-ion LJ parameters (σiO, ε iO, σii, and ε ii), the solvation free energy ∆Gsolv from simulations with the
final parameter set and experiments43 using Tissandier’s estimate for the proton solvation free energy,42 and R1
are listed. The experimental value Rexp

1 is taken from the data collection from Ref. 57.

σiO ε iO σii ε ii ∆Gsolv ∆Gexp
solv R1 Rexp

1
(nm) (kJ/mol) (nm) (kJ/mol) (kJ/mol) (kJ/mol) (nm) (nm)

Cl� 0.378 0.425 0.441 0.284 �303.9 ± 0.5 �304.2 0.319 ± 0.001 0.319 ± 0.007

Kirkwood-Buff (KB) theory

We use Kirkwood-Buff (KB) theory to obtain the activ-
ity derivatives of the salt solutions, as was done before in
similar studies.45 The KB theory connects integrals over pair
distribution functions to thermodynamic quantities such as
isothermal compressibilities, partial molar volumes, and in
particular solution activity derivatives. The KB integrals are
defined as27

Gij = 4π
∫ ∞

0
(gµVT

ij (r) − 1)r2dr, (11)

where gµVT
ij (r) is the rdf between species i and j in the grand

canonical ensemble. The KB integrals are defined for systems
open to all solution components. However, since most sim-
ulations are performed in closed systems, the KB integrals
are commonly approximated by truncating the integral after a
certain distance

Gij ≈ 4π
∫ R

0
(gNpT

ij (r) − 1)r2dr, (12)

where R represents the correlation distance in which the solu-
tion composition deviates from bulk. This approximation has
been shown to be valid for large systems (L > 4 nm) and suffi-
cient sampling (>5 ns).46 With the KB integrals, we can com-
pute the derivative of the activity coefficients, acc, of electrolyte
solutions as follows:

acc =

(
∂ ln ac

∂ ln ρc

)
|p,T

= 1 +

(
∂ ln yc

∂ ln ρc

)
|p,T

=
1

1 + ρc(Gcc − Gcw)
,

(13)

where the molar activity coefficient yc is defined via ac = ρcyc,
while ρc is the cosolvent number density and ac is the activ-
ity. For monovalent ions, these equations take the following
forms:46

G(1)
cc =

1
4

[G++ + G−− + 2G+−] (14)

and

G(1)
cw = G(1)

wc =
1
2

(G+w + G−w), (15)

as given in Refs. 31 and 45. The expressions for the divalent
ions are

G(2)
cc =

1
9

[G++ + 4(G−− + G+−)], (16)

G(2)
cw = G(2)

wc =
1
3

G+w +
2
3

G−w . (17)

Errors of the activity derivatives are estimated through block
averaging of the MD data with a total time of 150 ns in blocks
of 45 ns duration. The rdfs are directly obtained from the

MD simulation trajectories as discussed earlier. In order to
achieve accurate results, finite size effects need to be taken
into account. Of particular importance is the condition that the
rdf reaches unity at large distances. We introduce a correct-
ing factor such that the rdf used in the calculations of the KB
integrals is written as gij(r ′ρ) = f (ρ)gsim

ij (r) with a prefactor
f (ρ) that is adjusted to ensure the correct asymptotic behav-
ior at large distances.47 Note that the convergence of the usual
KB integrals used here can be improved by extrapolating exact
expressions for volume centered integrals.48,49

RESULTS AND DISCUSSION

In the following, we present the results of our optimiza-
tion procedure. The optimization is done in three consecutive
steps and is designed to simultaneously reproduce the experi-
mental solvation free energy, ion-pairing properties measured
by activity derivatives, and water exchange kinetics of cations
in aqueous solutions. The optimized parameters are given in
Tables II and III. A comparison of all properties calculated with
the optimized parameters and experimental reference data is
given in Tables IV and V including solvation free energies,
coordination numbers, positions of the first maximum of the
ion-water oxygen radial distribution function, activity deriva-
tives, water residence times in the first hydration shell, and
self-diffusion coefficients.

Solvation free energy

The solvation of the monovalent and divalent cations is
a very favorable process with a free energy gain of several
hundred kJ/mol. Figure 2 shows the simulation results for
the solvation free energy, ∆Gsolv, as a function of the LJ

TABLE III. Optimized force field parameters for monovalent and divalent
metal cations for simulations with the TIP3P water model. The ion-water and
ion-ion LJ parameters (σiO, ε iO, σii, and ε ii) are listed. The results for the
final parameter set for all single-ion, ion-pair, and kinetic properties are shown
in Tables IV and V.

σiO (nm) ε iO (kJ/mol) σii (nm) ε ii (kJ/mol)

Li+ 0.233 437 0.62 0.151 813 0.604 036
Na+ 0.287 89 0.27 0.260 719 0.114 553
K+ 0.306 95 0.62 0.298 839 0.604 036
Cs+ 0.334 988 0.62 0.354 915 0.604 036

Mg2+ 0.238 50 0.62 0.161 939 0.604 036
Ca2+ 0.270 773 1.22 0.226 453 2.338 83
Sr2+ 0.298 723 0.82 0.282 385 1.056 59
Ba2+ 0.334 838 0.42 0.354 615 0.277 19
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TABLE IV. Results for single-ion properties for the optimized parameters in direct comparison with experimen-
tal results. Solvation free energy of neutral cation-chloride pairs Σ∆G, maximum of the ion-water oxygen rdf
R1, and coordination number n1 from simulations for 1M (monovalent cations) or 0.5M (divalent cations) salt
concentration.

Ion Σ∆G (kJ/mol) Σ
exp
∆G

a (kJ/mol) n1 nexp
1

b R1 (nm) Rexp
1

b (nm)

Li+ �826.6 �828 4.19 ± 0.02 4-6 (4) 0.197 ± 0.001 0.208 ± 0.006

Na+
�720.7 �722 5.53 ± 0.02 4-8 (6) 0.233 ± 0.001 0.236 ± 0.006

K+
�649.2 �651 6.49 ± 0.01 6-8 0.267 ± 0.001 0.280 ± 0.008

Cs+
�603.5 �605 7.77 ± 0.01 7-8 0.297 ± 0.001 0.314 ± 0.008

Mg2+
�2531.1 �2532 6 6 0.195 ± 0.001 0.209 ± 0.004

Ca2+
�2208.9 �2209 7.79 ± 0.01 8c 0.238 ± 0.001 0.242 ± 0.005

Sr2+
�2079.7 �2080 8.11 ± 0.01 7.9-8 0.252 ± 0.001 0.264 ± 0.004

Ba2+
�1951.7 �1952 8.57 ± 0.06 9d 0.277 ± 0.001 0.290 ± 0.006

aExperimental values are from Ref. 43.
bExperimental values are from Ref. 57.
cExperimental values are from Ref. 58.
dExperimental values are from Ref. 59.

parameters σiO and εiO. The statistical error of the simulated
solvation free energy is about 1 kJ/mol. The variation of∆Gsolv

with εiO is less pronounced while the charge density and there-
fore the effective cation size σiO has a significant influence:
The higher the charge density, i.e., the smaller theσiO, the more
the favorable the solvation is. Similarly, ∆Gsolv is much more
negative for divalent cations compared to monovalent cations
with the same effective size. From the grid shown in Fig. 2,
the solvation free energy isolines are constructed by selecting
σiO-εiO combinations that reproduce the experimental solva-
tion free energy Σ∆G with chloride as the counterion. In the
following, all properties of the metal cations are presented as
a function of these σiO-εiO combinations.

The free energy isolines for all mono- and divalent cations
are shown in Fig. 3 in direct comparison with parameter
sets from the literature (see Table I). Force field parameters
that have been optimized to match the solvation free energy
are close to the same isoline indicating a minor influence of
the water model. The Åqvist parameters developed in 1990
slightly underestimate the solvation free energy. This devia-
tion simply reflects that simulation protocols have improved,

especially the treatment of long-ranged electrostatic interac-
tions employing the particle mesh Ewald treatment, leading
to more accurate calculations. On the other hand, models
that target properties other than the ∆Gsolv, including cation-
water distances, coordination numbers, or water exchange free
energy barriers largely underestimate ∆Gsolv (for instance,
by 84.4 kJ/mol for Mg2+ with mTIP3P by Allnér50 or by
220 kJ/mol for Ca2+ with TIP3P and the standard amber
parameters51). These deviations reflect the challenge of repro-
ducing experimental structural, thermodynamic, and kinetic
properties simultaneously using simple 12-6 potentials.

To provide insight into important ion-water structural
properties, we calculate the number of water molecules in the
first hydration shell, n1, and the first peak in the ion-water
radial distribution function, R1, along the free energy isolines
(Fig. 4). n1 is well captured along the free energy isolines for
all cations [Fig. 4(a)]. On the other hand, it is obvious from
Fig. 4(b) that the experimental values for R1 (horizontal gray
bars) are not exactly reproduced for any parameter combi-
nation. It has been observed previously that simultaneously
reproducing ∆Gsolv and R1 is not possible using simple 12-6

TABLE V. Results for ion-pairing and kinetic properties for the optimized parameters in direct comparison with
experimental results. Activity derivative acc from simulations and experiments52 for 1M (monovalent cations) or
0.5M (divalent cations) salt concentration. Residence time τ of water in the first hydration shell from simulations
with the same salt concentration and experiments.34 Self-diffusion coefficient D at infinite dilution from simulations
and experiments.43

τ τexp D Dexp

Ion acc aexp
cc (ps) (ps) (105 cm2/s) (105 cm2/s)

Li+ 1.08 ± 0.04 1.143 39.9 ± 0.4 <100 1.07 ± 0.04 1.029

Na+ 0.99 ± 0.06 0.974 25.3 ± 0.1 <100 0.96 ± 0.17 1.334

K+ 0.88 ± 0.05 0.902 9.4 ± 0.02 <100 1.48 ± 0.11 1.957

Cs+ 0.87 ± 0.03 0.846 6.3 ± 0.01 <100 1.45 ± 0.05 2.056

Mg2+ 1.03 ± 0.05 1.083 . . . 1.49 × 106 0.71 ± 0.05 0.706

Ca2+ 0.99 ± 0.03 1.028 187.3 ± 3.8 <100 0.69 ± 0.031 0.791

Sr2+ 1.05 ± 0.02 0.989 181.6 ± 3.2 <100 0.66 ± 0.03 0.792

Ba2+ 0.95 ± 0.06 0.913 147.7 ± 4.5 <100 0.64 ± 0.03 0.847
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FIG. 2. Solvation free energy ∆Gsolv of monovalent (top) and divalent metal
cations (bottom) as a function of the LJ parameterσiO [(a) and (c)] and εiO [(b)
and (d)]. Symbols show the points obtained from simulations. Lines represent
cuts of the fitted free energy surface.

potentials.21,51 Other potential forms with additional param-
eters such as 12-6-4 potentials32 might perform better in this
respect but are outside the scope of our present work.

In the further parameter design, we have to make a
compromise: As the most important single-ion property, we

FIG. 3. Combinations ofσiO and εiO that reproduce the experimental solva-
tion free energies (solid lines) for monovalent (a) and divalent cations (b).
Open symbols correspond to parameter sets from the literature that were
optimized in combination with the TIP3P water model. Grayed out symbols
correspond to parameter sets optimized with the SPC/E water model. Filled
circles indicate our final choice of parameters. All values are listed in Tables I
and III.

choose to exactly reproduce the solvation free energy at
the expense of underestimating the cation-oxygen distance.
The first optimization step determines all possible σiO-εiO

combinations. Since other single-ion properties including
R1 and n1 are correlated, they do now allow us an unam-
biguous parameter determination. Therefore, our next opti-
mization step is based ion-pairing properties at finite salt
concentrations.

Activity derivatives of electrolytes

In the following, we aim to select the parameter combina-
tions that capture ion-pairing properties, i.e., parameters that
provide a proper balance between ion-water and ion-ion inter-
actions. Insight into ion-pairing properties is obtained from
experimental activity coefficients which measure the deviation
from ideal behavior. In an ideal solution of non-interacting
particles, the activity coefficient is one and deviations indi-
cate ion-ion and ion-solvent interactions. Hence, the activity
coefficient is sensitive to ion-pairing properties of electrolyte
solutions.

In our optimization procedure, we calculate the activity
derivative of the activity coefficient with respect to the con-
centration from the Kirkwood-Buff theory [Eq. (13)]. The
activity derivative can be compared readily to the abundant
experimental data.52 Figure 5 shows the results for the activ-
ity derivative for the monovalent and the divalent cations with
chloride as the counterion in comparison to the experimen-
tal results (horizontal gray bars from Ref. 52). The exper-
imental activity derivative increases with increasing charge
density of the cations. The reason for this trend is the fol-
lowing: In an electrolyte solution composed of ions with
similar charge density, such as CsCl, the ion-ion affinity is
larger compared to the ion-water affinity. Therefore, these
ions spontaneously form inner-sphere ion-pairs and the activity
derivative is smaller than one. By contrast, for ions with dis-
similar charge density, such as LiCl, the ion-water interaction
is much stronger than the ion-ion interaction. Consequently,
the ions prefer to remain solvent separated and the activity
derivative is larger than one. Even more importantly, the same
trend is observed when going along the free energy isoline
(open points in Fig. 5). For each cation, the activity derivative
increases from left (large σiO, large ion-pairing probability) to
right (small σiO, small ion-pairing probability). For the mono-
valent cations, the optimal σiO-εiO combination is uniquely
determined by the intersection point with the experimental
data.

The situation is more complex for the divalent cations
for two reasons: (i) For MgCl2, the parameter optimization
problem is overdetermined, i.e., there are no combinations of
LJ parameters that allow us to simultaneously match the sol-
vation free energy and the activity derivative. (ii) For CaCl2
and SrCl2, the optimization problem is underdetermined, i.e.,
there are several sets of parameter combinations that perform
equally well at matching the solvation free energy and the
activity derivative. In the following, we show how to solve
both problems (i) by going beyond standard combination rules
and (ii) by taking the kinetics of water exchange from the first
hydration shell into account.
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FIG. 4. Structural properties of the cations usingσiO-εiO combinations from the free energy isolines: (a) Number of water molecules in the first hydration shell
n1 of the cations as a function of the ion-water LJ parameter εiO on the isoline shown in Fig. 3. (b) Position of the first peak in the ion-water oxygen rdf R1 as a
function of the ion-water LJ parameter εiO on the free energy isoline for the monovalent ions (top) and the divalent cations (bottom). Horizontal lines denote the
respective experimental results with the line width indicating the experimental uncertainty (Table IV). Symbols correspond to the simulated values, and filled
symbols are degenerate parameter sets that simultaneously reproduce the experimental solvation free energy and the activity derivative. The filled diamonds
denote the optimized parameter set.

Beyond standard mixing rules for Mg2+

As discussed in the section titled Activity derivatives of
electrolytes, it is not possible to simultaneously match the sol-
vation free energy and the activity derivative for Mg2+ (Fig. 5).
To overcome this problem, we follow the previously proposed
scheme that modifies the standard Lorentz-Berthelot combi-
nation rule for the effective anion-cation radius31 by using a
freely adjustable parameter λσ ,

σ+− = λσ
σ+ + σ−

2
. (18)

With this approach, the solvation free energy remains
unchanged since the ion-water interactions are not affected.
Changing the effective anion-cation radius has the following
effect on the cation-anion radial distribution function g+�(r)
shown in Fig. 6(a): With increasing λσ , the first peak in
g+�(r) corresponds to the solvent-shared ion-pair decreases.
Note that for MgCl2 no inner-sphere contact pairs occur
due to the mismatching charge density of the ions. Still,
with increasing λσ , the probability of forming solvent-shared

ion-pairs decreases and consequently the activity derivative
increases.

In order to select the correct value for λσ , we perform sim-
ulations at three different salt concentrations (0.5M, 1M, and
2M). From these simulations, we selected the value that repro-
duces the experimental data for the different concentrations
[Fig. 6(b)]. Finally, using λσ = 1.65 allows us to capture the
activity derivative over a broad concentration range [Fig. 6(c)].
In order to further validate our newly developed force field
parameters, we performed simulations for all metal cations
for larger salt concentration and achieved very good agree-
ment with experimental data up to 2M concentrations (Figs.
S1 and S2 in the supplementary material).

Water exchange from the first hydration shell

In the following, we focus on the water molecules in the
first hydration shell of the mono- and divalent metal cations
and calculate their mean residence time. For all ions with the
exception of Mg2+, water exchange times are on the order of a

FIG. 5. Activity derivatives for 1M LiCl, NaCl, KCl,
and CsCl (left) and 0.5M MgCl2, CaCl2, SrCl2, and
BaCl2 (right) as a function of the ion-water LJ param-
eter εiO on the free energy isoline. Open symbols corre-
spond to the simulated values withσiO-εiO combinations
from the free energy isolines. Horizontal lines denote the
respective experimental results at the same concentra-
tion (Table V). Filled symbols are degenerate parame-
ter sets that reproduce experimental solvation and ion-
pairing properties. Filled diamonds denote the optimized
parameter set.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-026807
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FIG. 6. Modification of the standard mixing rule: (a) Radial distribution function g+�(r) for Mg2+ and Cl� for different values of the scaling parameter λσ . (b)
Activity derivative for MgCl2 for different concentrations as a function of λσ . The horizontal lines correspond to the respective experimental results at the same
concentration. The dashed vertical line indicates the optimal values λσ = 1.65 for matching the experimental values. (c) Activity derivative as a function of the
salt concentration from simulations with λσ = 1.65 (open points) and experimental results from Ref. 52 (line).

few hundred picoseconds and can be calculated from a straight-
forward MD simulation (see the section titled Methods). In
experiments, the time resolution is insufficient to measure
the lifetime of the water molecules for these fast exchanges
which has been estimated to be smaller than 100 ps.34 Still,
insight into the kinetics can be obtained from ligand exchange
experiments.34

Figures 7(a) and 8(a) show the mean lifetime τ, i.e., the
time a water molecule remains on average in the first hydra-
tion shell as a function of εiO for the monovalent and divalent
metal cations. For the monovalent cations, τ decreases with
increasing εiO [Fig. 7(a)]. The reason for this decrease is
that by increasing εiO the ion-water LJ interaction becomes
more attractive leading to a reduction of the free energy bar-
rier associated with water exchange. The free energy profile
(PMF) underlying the removal of one water molecule from
the first hydration shell as a function of the ion-water oxygen

FIG. 7. Water exchange in the first hydration shell of monovalent metal
cations: (a) Average lifetime τ of the water molecules in the first hydration
shell of the cations as a function of the ion-water LJ parameter εiO on the
free energy isoline for 1M salt concentration. Open symbols correspond to
the simulated σiO-εiO combinations from the free energy isolines, and filled
diamonds correspond to optimized LJ parameters. (b) Free energy profile for
the removal of a single water molecule from the first hydration shell as a
function of the ion-water oxygen distance for the optimized parameter set.

distance is shown in Fig. 7(b) for the optimal parameter set.
For the monovalent ions, the optimal LJ parameters are already
uniquely determined based on the solvation free energy and
the activity derivative. Without any further optimization, the
results are in agreement with the general trends expected from

FIG. 8. Water exchange in the first hydration shell of divalent metal cations:
(a) Average lifetime τ of the water molecules in the first hydration shell as a
function of εiO on the free energy isoline for 0.5M salt concentration. Arrows
indicate the LJ parameters which capture the characteristic kinetics of water
exchange:τ(Ca2+)>τ(Sr2+)>τ(Ba2+). Open symbols correspond to the sim-
ulated σiO-εiO combinations from the free energy isolines. Filled symbols
correspond to degenerate parameter combinations (matching experimental
solvation free energies and the activity derivatives), and filled diamonds cor-
respond to optimized LJ parameters. (b) Free energy profile for the removal
of a single water molecule from the first hydration shell as a function of the
ion-water oxygen distance for the optimized parameter set. (c) Free energy
profile for Mg2+ from umbrella sampling.



074504-10 S. Mamatkulov and N. Schwierz J. Chem. Phys. 148, 074504 (2018)

ligand exchange experiments:34 First of all, monovalent ions
are more strongly hydrated the higher the charge density as
reflected by the increasing depth of the minimum in the PMF.
Second, the free energy barrier to remove one water molecule
from the first hydration shell increases with increasing ionic
charge density. Consequently, the average lifetime is largest for
water molecules in the first hydration shell of Li+ and decreases
with decreasing charge density according to τ(Li+) > τ(Na+)
> τ(K+) > τ(Cs+).

For the divalent cations, the situation is more complex
due to the non-monotonic dependence of τ on εiO for Ca2+

[Fig. 8(a)]. This non-monotonic behavior is caused by two
opposing trends: Increasing εiO reduces the free energy bar-
rier as discussed before. At the same time, the hydrated state
becomes energetically more and more favorable with increas-
ing εiO. The non-monotonic behavior allows us to uniquely
determine the final parameter set from the degenerated param-
eter sets for Ca2+ and Sr2+ since there is only one combi-
nation that reflects the experimental trends: τ(Ca2+) > τ(Sr2+)
> τ(Ba2+). The arrows in Fig. 8(a) indicate the optimal param-
eter set that simultaneously matches the solvation free energy,
the activity derivative, and the characteristic kinetics of water
exchange for all divalent metal cations. Figure 8(b) shows the
resulting PMF as a function of the ion-water oxygen distance.
Ca2+ is most strongly hydrated and the free energy barrier asso-
ciated with water exchange decreases from Ca2+ over Sr2+ to
Ba2+ in agreement with experimental results.

What about Mg2+? Compared to the other metal cations,
Mg2+ is a difficult case since water exchange is much more
rare. In fact, direct 17O NMR measurements indicate that the
residence time of one water molecule in the first hydration
shell is on the order of a microsecond, i.e., 4 orders of mag-
nitude slower compared to Ca2+. Still, first insight can be
gained from the PMF as a function of the ion-water distance
calculated from umbrella sampling [Fig. 8(c)]. It is evident
that the mechanism of water exchange differs significantly
from the other ions. First of all, the free energy barrier is
much higher and amounts to about 20 kBT . Second, the free
energy profile has a sharp bent in the region of the barrier.
Such shapes indicated that the chosen reaction coordinate,
namely, the distance between Mg2+ and one water molecule,
is insufficient to capture the reaction mechanism. A detailed
committer analysis shows further that the distance alone is
not a good transition state criterion and even fails to cor-
rectly assign the basins of attraction (data not shown). In the
past, the kinetic rates for water exchange have been estimated
based on transition state theory using one-dimensional free
energy profiles along the ion-water distance coordinate.29,50

Unfortunately, since transition state theory relies on an appro-
priate choice of reaction coordinate, the results are likely to be
defective.

Self-diffusion coefficient

In order to gain insight whether the optimized force field
parameters correctly describe dynamic quantities, we calculate
the self-diffusion coefficient of the ions at infinite dilution. In
order to provide accurate results, we take finite size effects and
the reduced viscosity of the TIP3P water model into account.

The results are listed in Table V together with the experi-
mental results at infinite dilution.43 For small cations such
as Mg2+, Ca2+, and Li+, the agreement with experiment is
quite good, while deviations are observed for larger cations.
Still, the agreement between simulations and experiments is
much better compared to the computed diffusion coefficients
reported in Ref. 53. Note, however, that the simulations by
Joung and Cheatham were done at finite salt concentrations
and did not take finite size corrections into account. In addi-
tion, it is important to consider that TIP3P water diffuses too
rapidly. Even though we approximately take this effect into
account via Eq. (4), experimental results might be better repro-
duced in SPC/E and TIP4PEW water. More work is required
in order to decide whether the agreement with experimental
results could be improved by an advanced treatment of finite
size effects in particular the treatment of deviations from the
Oseen point-particle limit and the treatment of reduced water
viscosity of TIP3P. Otherwise an alternative optimization pro-
cedure might be necessary to correctly capture mass transport
quantities quantitatively.

CONCLUSIONS

The importance of metal cations for the structure forma-
tion, dynamics, and function of biological systems has driven
advances in the development of accurate force field param-
eters for all-atom MD simulations in explicit water over the
past years. In order to provide a quantitative description for
metal cations, we have developed force field parameters for
the biologically most active monovalent and divalent metal
cations in conjunction with the TIP3P water model and the
Lorentz-Berthelot combination rules. Our optimization proce-
dure is designed to simultaneously reproduce thermodynamic
and kinetic properties of aqueous solutions. By systematic
optimization, we accurately reproduce the experimental sol-
vation free energy, the activity derivatives, and the charac-
teristics of water exchange from the first hydration shell of
metal cations (Tables IV and V). These properties represent
a balanced set of solution properties as the basis for a robust
model in MD simulations. However, reproducing all experi-
mental properties for metal ions in solutions by the simple and
computationally most efficient 12-6 potential turns out to be
difficult. Evaluation of the structural properties reveals that it
is possible to simultaneously match solvation free energy and
coordination number. However, in the parameter range inves-
tigated, we observe the limitations in accurately reproducing
the ion-water distance as discussed in a number of previous
publications.21,51

In our parametrization, special emphasis is placed on a
proper balance between ion-water and ion-ion interactions,
which is essential to quantitatively describe ion specific inter-
actions. This in turn opens up the possibility to resolve the
known experimental differences between physiologically very
important ions such as Ca2+ and Mg2+ or Na+ and K+ in MD
simulations. In our optimization, this is achieved by repro-
ducing the experimental activity derivatives of cation-chloride
aqueous solutions. Herein, the standard combination rule for
the cation-anion radius for Mg2+ has to be modified. This mod-
ification has no effect on the transferability, implementation, or
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computational speed. Matching experimental activity deriva-
tives allows us to capture the ordering of the ions in terms
of a Hofmeister series.54 This ordering clearly reflects that
Mg2+ binds its hydration water most strongly. Consequently,
Mg2+-water interactions are much stronger than ion-ion inter-
actions. Therefore, Mg2+ and Cl� ions remain solvent sepa-
rated while larger cations spontaneously from inner-sphere ion
pairs. These effects are important to capture ion specific bind-
ing to anionic biological groups and ion selectivity of active
sites.

In progressing toward improved force fields, it is impor-
tant to not only capture thermodynamic properties but also
capture kinetic properties. In this regard, the parameters of
the force field presented here correctly reproduce the char-
acteristics of water exchange from the first hydration shell
obtained from ligand exchange experiments. With the excep-
tion of Mg2+, the residence time is on the order of a few
to a hundred picoseconds and increases with the increasing
charge density of the ions (Tables IV and V). Our results show
that water exchange is much more rare for Mg2+ in agree-
ment with NMR measurements. However, an unambiguous
calculation of the residence time using transition state the-
ory and free energy profiles along a simple one-dimensional
coordinate is not possible. Here, more work is required in
order to derive a meaningful reaction coordinate for a reli-
able estimate. In the future, it remains to be tested how well
parameters optimized for aqueous solutions are transferable to
describe the ionic atmosphere around proteins, nucleic acids,
and lipids. Yet, with the approach presented, the parameters
represent a robust and efficient model to quantitatively capture
ion specific binding affinities, ion binding kinetics, and ion
competition.

SUPPLEMENTARY MATERIAL

See supplementary material for further discussions of cal-
culated and experimental activity derivatives over a broad
concentration range. This material is available free of charge
via the Internet at http://pubs.acs.org.
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