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The structural behavior of hard spheres interacting with repulsive �screened Coulomb� interaction in narrow
constrictions is investigated using Brownian dynamics simulations. The system of particles adapts to the
confining potential and the interaction energies by a self-consistent arrangement of the particles. It results in the
formation of planes throughout the three-dimensional channel. The presence of hard walls leads to structural
deviations from the unbounded �infinite� crystal. The arrangement of the particles is perturbed by diffusion and
an external driving force leading to a density gradient along the channel. The particles accommodate to the
density gradient by reducing the number of planes if it is energetically favorable. This reduction in the number
of planes is analogous to the reduction in the number of layers in two-dimensional systems. The influence of
a self-organized order within the system is reflected in the velocity of the particles and their diffusive behavior.
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I. INTRODUCTION

While the equilibrium properties of colloidal systems in
bulk are extensively studied and understood by now, impor-
tant questions concerning colloids in confined geometries or
in nonequilibrium are still open �1�. Such systems can serve
as model systems for complex processes such as the dynamic
behavior of lattice defects, the transport of interaction par-
ticles through narrow constrictions, which is important in
biological systems like ion channels �2�, or nonequilibrium
transport and mixing phenomena on the micrometer scale in
the context of microfluidics and “lab-on-a-chip” devices �3�.
The advantage of using colloidal systems as model systems
is that they are experimentally easily accessible and can help
one to understand the underlying physics governing complex
processes.

The formation of lanes along the direction of motion is a
prominent feature and occurs in various systems with inter-
acting entities such as pedestrians in a pedestrian zone �4� or
ants following a trail to food places. For colloidal particles
this formation of layers has been studied both in two-
dimensional �2D� �5–7� and in three-dimensional �3D�
�8–10� systems. So far there are no experimental studies for
such systems. However, first hints for a lane formation tran-
sition occur in oppositely charged colloids driven in opposite
directions by an electric field �11� or in binary complex plas-
mas under microgravity conditions �12�. The transport be-
havior of superparamagnetic colloids confined in 2D micro-
channels has been investigated both experimentally and by
Brownian dynamics simulations �13,14�. Such driven diffu-
sive systems serve as model systems for the theoretical stud-
ies of nonequilibrium behavior �15�. Moreover, such systems
correspond to the classical case of a quantum point contact in
mesoscopic electronics �16� or in metallic single point con-
tacts �17,18� with transport occurring due to quantization ef-
fects in electronic channels. Due to a confinement, a classical

2D system forms a layered structure in equilibrium �19,20�
and the change in the number of layers due to the geometry
of the confinement has been predicted using Langevin dy-
namics simulations �21�. The layers in the macroscopic
transport can be seen as analogous to quantum channels
since in both transport occurs due to the interaction of the
particles with the confining potential.

In this work we investigate the structural behavior of par-
ticles interacting via a Yukawa hard-core �YHC� potential in
2D and 3D microchannels. Particles interacting via a YHC
potential serve as a model for charge stabilized suspensions
consisting of colloidal particles suspended in a polar solvent
with coions and counterions and occur in various physical
systems including elementary particles or charged dust
grains in a plasma environment. The phase diagram of YHC
particles has been studied extensively in experiments
�22–25� as well as by computer simulations �26,27� and is
similar to the phase diagram of hard spheres �25�. It has been
shown that confinement of 2D system of interacting particles
in narrow channels leads to the formation of layers, in order
to conform to the boundaries set by the hard walls
�19,28,29�. The number and stability of these layers change
as the density, the interaction potential of the particles, or the
boundary conditions are varied. In this paper we address the
question of whether analogous structural changes as ob-
served in 2D systems occur in 3D systems as well. More-
over, we investigate the reduction in the number of planes
when the particles are subject to a driven motion along the
channel.

The organization of the paper is as follows. In Sec. II we
provide the simulation details used in the present study. In
Sec. III we discuss the structural properties of the 2D micro-
channels focusing on the reduction in the number of layers
due to the influence of an external driving force. We analyze
the influence of a confinement on the structural properties in
3D channels in equilibrium and finally investigate the non-
equilibrium transport behavior. The results of this study are
summarized in Sec. IV.
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II. MODEL AND METHODS

A. Interaction potential

The system consists of purely repulsive particles interact-
ing via the YHC potential

Vij�rij�
kBT

= �
� , rij � �

U
exp�− ���rij/� − 1��

rij/�
, � � rij � Rcut

0, rij � Rcut,
� �1�

where rij is the distance between the centers of the particles
i and j, U is the value of the pair potential at contact, � is the
inverse Debye screening length, �=4.55 �m is the hard-
core diameter of the colloids, and Rcut is a density-dependent
cutoff of the interaction potential. Note, that with the help of
the Derjaguin-Landau-Verwey-Overbeek �DLVO� theory
�30,31� the contact value U can be written as

U =
Z2

�1 + ��/2�2

	B

�
, �2�

where 	B=e2 /4
�0�SkBT is the Bjerrum length with the sol-
vent dielectric constant �S and the charge of the colloids Z.
The total potential energy of N particles is given by the sum
over all pair interactions,

U�r1, . . . ,rN� = 	
i�j

N

V�rij� . �3�

B. Brownian dynamics simulations

The Brownian dynamics Simulations are based on the
overdamped Langevin equation, neglecting hydrodynamic
interactions as well as short-time momentum relaxation of
the particles. The colloidal trajectories are approximated by
the stochastic position Langevin equation with the friction
constant �,

�
dri�t�

dt
= − �ri	

i�j

Vij�rij� + Fi
�ext� + F̃i�t� . �4�

The right-hand side includes the particle interaction as a sum
over all forces acting on each particle, with the constant driv-

ing force Fi
�ext� and the random forces F̃i describing the ran-

dom collisions of the solvent molecules with the ith colloidal
particle. The latter is in the simulation given by a random

number with zero mean 
F̃i�t��=0 and variance


F̃i
�t�F̃ j��0��=2kBT��t��ij�
�, where kB denotes the Boltz-
mann constant, T is the temperature, and the subscripts 
 and
� are the Cartesian components. Equation �4� is integrated
forward in time using a finite time step �t and the technique
by Ermak �32�. A density-dependent cutoff is used for the
interaction potential which has a value of Rcut=6.5R, where
R= �2� /�3�−1/2 in the 2D systems and R=�−1/3 in the 3D
systems. The 2D channels have a length of Lx=800� and a
width of Ly =10� containing 3200 particles corresponding to
a density of �=0.4�−2. The 3D channels have a quadratic
square section of Ly =Lz=5� and a length of Lx=1000� con-

taining about 10 000 particles with a fixed particle density of
�=0.4�−3. The particles are confined within the channels by
ideal hard walls. The equilibrium configuration in a closed
channel is calculated starting from a random configuration
and applying hard wall boundary conditions in all directions.
The systems are typically equilibrated over 2�105 time
steps. The time step �t=7.5�10−5tB is used where tB
=��2 /kBT is the time a particle needs in equilibrium to dif-
fuse its own diameter �. The friction constant � is chosen to
be �=3
��=4.288�10−8 N s /m, where �=0.001 Pa s is
the shear viscosity of water. The simulations are done at a
constant temperature of T=295 K. To study the influence of
an external force, a constant driving force of Fext=2.603
�10−15 N is applied in the longitudinal direction. The chan-
nel end is then realized by an open boundary condition. To
keep the number density in the channel fixed a new particle
is inserted within the first 10% of the channel at a random
position avoiding overlaps every time a particle leaves the
open end of the channel acting as a particle reservoir. For the
simulation of the unconfined system a cubic simulation box
with an extension of 20� and periodic boundary conditions
in x, y, and z directions is used containing 3200 particles
corresponding to a density of �=0.4�−3.

C. Layer order parameter

The point of an increase or reduction in the number of
layers in a 2D microchannel can be well localized by an
appropriate local order parameter. Therefore, the channel of
width Ly is divided into several bins in the x direction. Every
bin contains nbin particles. An order parameter in dependence
of the number of layers can be defined as �13�

�layer�nl� = 
 1

nbin
	
j=1

nbin

exp�i�2
�nl − 1�/Ly�yj�
 . �5�

This layer order parameter is unity if the particles are distrib-
uted equidistantly in nl layers over the width of the channel.
Analogously, in a 3D channel the increase or reduction in the
number of planes can be localized by dividing the channel in
the x direction into several bins according to the mean par-
ticle separation in the x direction. For each bin with square
section Ly �Lz the order parameter of the number of planes
nP is defined as

�plane�np� = 
 1

nbin
	
j=1

nbin

exp�i�2
�np − 1�/Lp�pj�
 , �6�

with

pj � �yj,zj�, Lp � �Ly,Lz� . �7�

This plane order parameter is unity if the particles are dis-
tributed in nP equidistant planes over the channel.

D. Bond orientational order parameter

To analyze the structure of 2D systems the local bond
orientational order parameter �6 is calculated which mea-
sures the angle between a particle and its nearest neighbors
and is defined as
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�6 =
1

m
	
k=1

m

exp�i6�k� , �8�

where m is the number of neighbors of a given particle and
�k is the angle between the vector connecting the particle
with its kth neighbor and an arbitrary reference axis. In a
lattice with sixfold symmetry the angle is 60° and the order
parameter is unity while for a fluid it is zero.

In a 3D system the local orientational symmetries can be
determined by using the bond orientational parameters

�bops� Q̂l and Ŵl �33�. The former parameters are defined as

Q̂l = � 4


2l + 1	
m

�Q̂lm�2�1/2

, �9�

with the average over nearest neighbors Nb,

Q̂lm =
1

Nb
	

bonds

Qlm�r� , �10�

Qlm�r� = Ylm„��r�,��r�… , �11�

with the spherical harmonics Ylm�� ,��, where ��r� and ��r�
are the polar angles of the distance r connecting two nearest
neighbors with respect to some reference coordinate system.
The latter parameters are defined as

Ŵl =

�

m1,m2,m3

m1 + m2 + m3 = 0
� l l l

m1 m2 m3
� � Q̂lm1

Q̂lm2
Q̂lm3

�	
m

�Q̂lm�2�3/2 ,

�12�

where the coefficients are the Wigner 3j symbols. Nearest
neighbors are determined by

CN = 1.2 max�ax,ay,az� , �13�

with the particle separations ax, ay, and az. In an ideal fcc or
hcp lattice the particle separations are equal, ax=ay =az, and
are connected to the distance between adjacent planes di in x,
y, and z directions via

ax = dx, ay =
2
�3

dy, az =�3

2
dz. �14�

However, if the system is confined, e.g., in a microchannel,
the particle separations deviate from those in an ideal hcp or
fcc lattice: �i� the ratios dx /dy and dx /dz, which we refer to as
lattice stretching parameters in the following, adjust to the
given boundary condition leading to a lattice that is distorted
compared to an ideal lattice and �ii� for equal boundary con-
ditions in y and z directions the plane distances in these
directions are equal, dy =dz. From Table I it is clear that the
values of the bops change upon changing the lattice stretch-
ing parameter dx /dy or dx /dz. The dependence of the bops

Q̂l=4 and Ŵl=4 on the lattice stretching parameter dx /dy is
shown in Fig. 1 calculated for a fcc or hcp lattice with dy
=dz and varying the particle separation in the x direction.

The strong dependence of the bops on the lattice stretching
parameter shows that it is not possible to determine the local
crystal structure from the values of the bops of an ideal crys-
tal structure alone. Rather, the value dx /dy has to be deter-
mined first. The value of the bops at that ratio determines the
local crystal structure.

TABLE I. Calculated values of the bond orientational order pa-

rameters Q̂l and Ŵl for l=4 and l=6 for ideal crystal structures
�ax=dx�dy =�3 /2dx�dz=�2 /3dx for hcp and fcc lattices�, elon-
gated hcp and fcc lattices �ax=dx�dy =dz=�3 /2dx�, and a com-
pressed lattice �ax=dx=dy =dz�. Values� are from �33�.

Q̂l=4 Q̂l=6 Ŵl=4 Ŵl=6

Liquid 0 0 0 0

Ideal crystal structure

hcp 0.0972222 0.484762 0.134097 −0.012442

fcc 0.190941 0.574524 −0.159317 −0.0131606

bcc 0.03637 0.51069 −0.159317 0.013161

sc� 0.76376 0.35355 0.159317 0.013161

icos� 0 0.66332 0 −0.169754

Elongated crystal structure

hcp 0.12537 0.488371 0.134097 −0.0125585

fcc 0.19436 0.571496 −0.140789 −0.0131637

Compressed crystal structure

hcp 0.169816 0.477932 0.142372 −0.00967825

fcc 0.215232 0.552729 −0.0431347 −0.010836
^

^

FIG. 1. �Color online� Bond orientational order parameters Q̂l=4

and Ŵl=4 as functions of the lattice stretching parameter dx /dy for
hcp �open squares� and fcc �open circles� lattices.
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III. RESULTS AND DISCUSSION

A. Layer reduction in 2D microchannels

Starting from a system of YHC particles in a 2D channel
with an inverse Debye screening length ��=4 and a contact
value U=400, the values of the interaction potential are var-
ied. The transport behavior of the confined particles is inves-
tigated, i.e., the colloids are driven by the application of an
external driving force Fext=Fextex through the channel form-
ing a system in nonequilibrium. The results are summarized
in Table II. In agreement with the results from �14� we find a
longitudinal density gradient and consequently a layer tran-
sition for particle interaction ranges larger than the average
particle separation. We calculate the average overall drift ve-
locity for the different values of the interaction potential. If
the particle flow is dominated by the driving force, i.e., in the
regime of plug flow, the particles move with


�vdrift�Drude =
Fext

�
, �15�

as expected for noninteracting particles. This dependency
was formulated for the transport of electrons in a metal by
Drude �34�. For large screening ����4� the average veloc-
ity of a particle in the channel corresponds to the velocity of
noninteracting particles �Eq. �15��. Hence, the driving force
dominates and we find plug flow of the particles without
layer reduction. In most of the regions the particles arrange
themselves in a hexagonal order. The formation of this order
naturally gives rise to the formation of layers in flow direc-
tion similar to the layering phenomenon observed under
equilibrium conditions �19,20�. Still, a local increase in the
number of layers formed in equilibrium occurs due to an
increase in the local density, which is caused by the bound-
ary conditions. For low screening ����1.025� the range of
the interaction potential is on the order of the particle sepa-
ration and the particles move faster than expected. The rea-
son is that the Drude model is based on a friction-dependent
mobility only. However, for low screening the diffusion of
the particles has to be taken into account and the interplay of
a small drift and the diffusion gives rise to an increased
mobility in the x direction. The system shows essentially the
same features as the system of superparamagnetic particles
�13,14�: we find rearrangement of the particles to a nearly

hexagonal lattice and the occurrence of layer reduction under
non-plug-flow conditions. A typical simulation snapshot of
the defect configuration around the points where a change in
the number of layers occurs is shown in Fig. 2. The system is
nearly hexagonal in left and right of the point of layer reduc-
tion. The reduction in the number of layers gives rise to a
defect. In the stationary nonequilibrium after about 2�106

time steps the position of the layer reduction zone does not
move with the particles in flow direction. The particles move
dynamically in layers adapting to the external force. The
local particle densities and the particle separations are shown
in Fig. 3�a� and the number of layers is shown in terms of the
layer order parameter �Eq. �5�� in Fig. 3�b�. A continuous
density gradient forms along the channel. At the left end of
the channel where eight layers form the particle separation ax
is larger than ay. The lattice is compressed perpendicular to
the confining walls since an additional layer forms compared
to the equilibrium configuration. At the point of layer reduc-
tion the value of ay shows a jump to a higher value. At the
same time the value of ax decreases and ax is smaller than ay
at the transition point. While ay remains constant until the
next reduction point, ax increases monotonically until the
value is so large that another reduction occurs. Stretching of
the lattice in flow direction leads to an instability toward a
smaller number of layers. At the transition point the changes
in ax and ay compensate each other leading to the continuous

TABLE II. Parameter used for the Yukawa hard-core �YHC� interaction potential for colloidal systems in
the 2D microchannels. U is the contact value, � is the inverse Debye screening length, and nL is the number
of layers in the channel after 106 time steps with an external force Fext=2.603�10−15 N. The bold numbers
denote the number of layers in equilibrium �Fext=0�, �� is the density gradient, and vD is the average drift
velocity in the stationary nonequilibrium. The drift velocity of noninteracting particle in the external field has
a value of vD=6.07�10−8 m /s �Eq. �15��.

System U �� ��2 nL �� vD �10−8 m /s�

1 400 4 0.4 8,7 0 6

2 800 4 0.4 8,7 0 6

3 1000 4 0.4 8,7 0 6

4 800 8 0.5 8 0 6

5 432.45 1.015 0.4 8,7,6 �0 11

7 Layers8 Layers

F
D

(a)

x

y

7 Layers 6 Layers

(b)

x
x

x

∆
∆

∆

FIG. 2. �Color online� Simulation snapshots of the defect con-
figuration for a YHC system ���=1.015, U=432.45� in a 2D
channel with ideal hard walls. The rectangles mark the region of the
layer reduction. Full circles ��� mark bulk particles with six nearest
neighbors and particles at the wall with four nearest neighbors.
Symbol � corresponds to a fivefold symmetry and symbol � cor-
responds to a sevenfold symmetry.
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decrease in the density. The reduction in the number of lay-
ers can be explained qualitatively by calculating the potential
energy per particle in dependence of the local density: start-
ing from an ideal triangular lattice with a constant number of
layers, the particle separations in the x direction are varied
and the potential energy per particle is calculated in depen-
dence of the local density. The potential energy, shown in
Fig. 3�c� for a different number of layers, has clear intersec-
tion points. For an in the x-direction stretched configuration
with nl layers it can therefore become energetically favorable
to switch to a configuration with �nl−1� layers. Below a local
density of ��2=0.31 it is energetically favorable for the sys-
tem to form six layers; for a density between 0.31���2

�0.425 seven layers are energetically favorable, while
above ��2=0.425 eight layers are energetically favorable.
These densities are in good agreement with the values at
which a reduction in the number of layers is observed in the
simulations.

B. Three-dimensional colloidal systems in equilibrium

To study the influence of parallel walls confining a 3D
system in y and z directions we first simulate an unconfined
system using a cubic simulation box and periodic boundary
conditions in all directions. The static structure factor S�k� is
calculated from the Fourier-transformed radial distribution
function g�r�, where k is the wave vector. The value of the

first peak exceeds the value of 2.85 at which the system is
melting according to the Hansen-Verlet criterion �35�, indi-
cating that the system is in the crystal phase. The local crys-

tal structure was determined using the bops Q̂l=4 and Ŵl=4.
The results for the unconfined system as well as for systems
confined within microchannels of different square sections
are summarized in Table III: for both the unconfined and the
confined systems a random hexagonal close packed �rhcp�
structure forms in equilibrium, i.e., a random mixture of ar-
eas with particles showing a fcc or hcp symmetry in agree-
ment with experimental results �36,37�. Note that for a hard-
sphere system, which behaves similar to the YHC system,
the fcc structure is favored by only �9�2��10−4kBT per
particle compared to the hcp structure �38,39� leading to
stacking defects. In the following we discuss the structural
changes upon confining the 3D system in a microchannel
with a square cross section.

C. Transverse mobility at the channel walls

The influence of the channel width on the emerging struc-
ture in 3D systems is similar to the 2D case discussed in
�14,19,28,29�. For small cross sections the structure depends
strongly on the channel width. Small changes in the distance
between the walls leads to significant structural changes mir-
rored in the mean-square displacement �MSD� perpendicular

(a) (c)(b)

FIG. 3. �Color online� �a� Local particle density and local particle separations ax and ay in the stationary nonequilibrium. The dashed lines
indicate the values in equilibrium. �b� Layer order parameter of the configuration shown in Fig. 2. �c� Potential energies per particle of
different layer configurations as a function of the particle density.

TABLE III. Local crystal structure of YHC particles ���=1.015, U=432.45� for selected 3D channels of

width w with nP planes and average lattice stretching parameter d̄x / d̄y and the unconfined system. The local
crystal structure is determined using bond orientational order parameters and the percentage of particles with
fcc symmetry, pfcc, or hcp symmetry, phcp, is given as well as the percentage of defects pDef, i.e., the number
of particles which have values of the bops that correspond neither to fcc symmetry nor to hcp symmetry.

w ��� nP d̄x / d̄y pfcc �%� phcp �%� pDef �%�

4.5 4 1.15 50.8 32.2 17.0

5.0 4 0.98 74.5 20.9 5.0

5.5 5 1.21 57.0 14.8 28.1

5.7 5 1.16 52.5 21.6 26.0

6.3 5 1.03 66.3 19.6 14.2

6.9 6 1.17 53.0 26.0 21.0

9.3 8 1.15 51.1 24.1 24.8

Unconfined 1.13 49.9 19.2 31.0
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to the wall, the density profile, and has an influence on the
number of defects in the crystal structure. With increasing
channel width these structural quantities oscillate indicating
magic numbers of the channel width for which the structure
is particularly stable. For these channels the structure is al-
most identical to the structure of the unconfined system.

The dimensionless mean-square displacement perpendicu-
lar to the wall 
�ỹ2��̃�� or 
�z̃2��̃�� of particles localized
close to the wall in dependence of the lag time �̃ is a measure
of their transverse mobility. Here, we refer to wall particles if
their distances from the wall are smaller than their diameters
�. After about 105 time steps the mean-square displacement
reaches a plateau value. Hence, particles located close to the
wall will remain in vicinity of the wall for a significantly
long time. To calculate the MSD in dependence of the di-
mensionless channel width w̃ and the dimensionless position
ỹ close to the wall, the interaction potential is divided into a
sum consisting of the contributions of the particles in the

same layer ṼL, the same plane ṼP, and the same volume ṼV,

V�ỹ,w̃�
kBT

= ṼL�ỹ,w̃� + ṼP�ỹ,w̃� + ṼV�ỹ,w̃� . �16�

The results for ṼL and ṼP are identical to the two-
dimensional case from �19�. Since an analytical calculation
of the MSD using the Yukawa interaction potential is not
possible, the interaction potential between the particles is
approximated by

V�r�
kBT

= U� R̃

r
�3

, �17�

with the interaction strength U=241.2�2.7 and the length

scale R̃ �see below�. Approximating particles close to the
wall as a continuum, the three parts of the interaction poten-
tial can be expressed as

ṼL�ỹ,w̃� = UR̃�̃L�
−�

� dx̃

�x̃2 + �c̃ − ỹ�2�3/2 , �18�

ṼP�ỹ,w̃� = UR̃2�̃P�
−�

� �
2c̃

w̃ dx̃dY

�x̃2 + �Y − ỹ�2�3/2 , �19�

ṼV�ỹ,w̃� = UR̃3�̃�
−�

� �
2c̃

w̃ �
2c̃

w̃ dx̃dYdz̃

�x̃2 + �Y − ỹ�2 + z̃2�3/2 ,

�20�

where c̃ is the position of the first peak in the density spec-
trum, i.e., the arbitrary cutoff between the different parts of
the potential; �̃L is the dimensionless density of the particles
within one line; and �̃P is the dimensionless density of the
particles in the �z=0� plane. Integration yields

ṼL�ỹ,w̃� =
2UR̃�̃L

�c̃ − ỹ�2 , �21�

ṼP�ỹ,w̃� = 2UR̃2�̃P� 1

2c̃ − ỹ
−

1

w̃ − ỹ
� , �22�

ṼV�ỹ,w̃� = 2UR̃3�̃�
2c̃

w̃

dz̃

arctan� w̃ − ỹ

z̃
� − arctan�2c̃ − ỹ

z̃
�

z̃

� 2UR̃3�̃��w̃ − 2c̃�
arctan� w̃ − ỹ

2c̃
�

2c̃
− �

2c̃

w̃

dz̃
2c̃ − ỹ

z̃2 �
�23�

=2UR̃3�̃�arctan� w̃ − ỹ

2c̃
�

2c̃
− �ỹ − 2c̃�� 1

w̃
−

1

2c̃
�� .

�24�

The expression for the potential can be expanded to first
order near ỹ=0,

Ṽ�ỹ,w̃� � A�c̃,w̃� + B�c̃,w̃�ỹ , �25�

with

A�c̃,w̃� =
2UR̃�̃L

c̃2 + 2UR̃2�̃P� 1

2c̃
−

1

w̃
�

+ 2UR̃3�̃�� w̃

2c̃
− 1�arctan� w̃

2c̃
� + �1 −

2c̃

w̃
�� ,

�26�

B�c̃,w̃� =
4UR̃�̃L

c̃3 + 2UR̃2�̃P� 1

w̃2 −
1

4c̃2�

− 2UR̃3�̃�
w̃

2c̃
− 1

2c̃ +
w̃2

2c̃

− � 1

w̃
−

1

2c̃
�� . �27�

In the long-time limit the canonical ensemble average of the
MSD reads

lim
�̃→�


�ỹ2��c̃,w̃� = 2
ỹ2��c̃,w̃� − 2
ỹ�2�c̃,w̃�

= 2

�
0

�

ỹ2e−A−Bỹdỹ

�
0

�

e−A−Bỹdỹ

− 2��0

�

ỹe−A−Bỹdỹ

�
0

�

e−A−Bỹdỹ �
2

.

�28�

The upper integration limit can be replaced with infinity
since the Boltzmann factor drops quickly to zero and the
MSD reads

lim
�̃→�


�ỹ2��c̃,w̃� =
4

B2 −
2

B2 =
2

B2 . �29�

The dependence of the position of the first peak in the den-
sity profile c̃ on the channel width w̃ can be approximated by
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c̃ � R̃�1 +
1

w̃
� , �30�

where R̃ is the dimensionless effective boundary plane dis-
tance, which is calculated from the density profiles from the

simulations. Due to reduced neighbor interaction at the wall
the effective boundary plane distance deviates from the dis-
tance between adjacent planes in an ideal unconfined system.
Using Eqs. �30�, �29�, and �27� yields the MSD normal to the
wall:

lim
�̃→�


�ỹ2��c̃,w̃� =
1

2U2� 2�̃L

R̃2�1 +
1

w̃
�3 +

R̃2�̃P

w̃2 +
R̃2�̃P

4R̃2�1 +
1

w̃
�2 −

R̃3�̃w̃

2R̃�1 +
1

w̃
� − R̃3�̃

2R̃�1 +
1

w̃
� +

w̃2

2R̃�1 +
1

w̃
�

+
R̃3�̃

w̃
−

R̃3�̃

2R̃�1 +
1

w̃
��

−2

.

�31�

For large channel widths Eq. �31� can be expanded to

lim
�̃→�


�ỹ2��c̃,w̃� �
1

2U2�2�̃L

R̃2
+

�̃P

4
−

R̃2�̃

2 �2�1 −

2�−
6�̃L

R̃2
−

�̃P

2
− �̃R̃3 + R̃3�̃�1 +

1

2R̃
��

2�̃L

R̃2
+

�̃P

4
−

R̃2�̃

2

1

w̃� . �32�

Figure 4 shows the plateau values of the MSD from the
Brownian dynamics simulations of channels with different
square sections and the analytical result from Eqs. �31� and
�32�. The analytical expression is fitted to the simulation re-
sults using the fit parameter UFit=58.13�0.44. Due to the
approximations the fit parameter deviates from the interac-
tion strength U. Still, the qualitative behavior of the simula-
tion results is well captured. For large channels the MSD

reaches a constant value with a correction of the order 1 / w̃.
The dependence of the MSD on the channel width reveals
that the important factor to the MSD comes from the inter-
action of the wall particles with immediate neighboring par-
ticles, while the interaction with particles further away gives
a contribution of higher order only explaining the surprising
finding that the dependence of the MSD on the channel
width is the same in 3D as in 2D microchannels.

The plateau values from the simulations show oscillations
occurring likewise in y and z directions. These oscillations
vanish for w�11� indicating that the effects leading to the
periodic alteration of the MSD occur in the center of the
channel and do not affect the wall particles for large channel
widths. For channel widths being an integer multiple of R the
MSD shows maxima. In this case a loose structure forms
within the channel in which the wall particles can move
away from the wall easily. Minima of the MSD occur at the
channel widths 3.4�, 4.5�, 5.7�, 6.9�, 8.1�, and 9.3�.
These “magic numbers” for the widths do not emerge at
integer multiples of the plane distance as expected. Calculat-
ing the average values of the particle separations reveals that
in this case āx= āy = āz and the average lattice stretching pa-

rameter d̄x / d̄y corresponds to that of the unconfined system.
In contrast, if the MSD shows a maximum, the particle sepa-
rations are unequal �āx� āy � āz�. In this case the lattice

stretching parameter d̄x / d̄y is smaller than in an unconfined
system. Hence, a loose structure forms if the lattice is
stretched perpendicular to the walls confining the system.

theo

app

simu

~

~

~

~

~

FIG. 4. �Color online� Plateau values of the mean-square dis-
placement of wall particles in direction normal to the walls of a 3D
channel in dependence of the dimensionless channel width w̃.
Minima correspond to the magic channels �open diamonds� and
maxima correspond to an integer multiple of the effective boundary
plane distance R=1.2718� �open circles�. The lines show the ana-
lytical result for the mean-square displacement according to Eq.
�31� �red solid line� and the approximation for large channel width
according to Eq. �32� �blue dashed line�.
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D. Density profile

To analyze the structure of systems in more detail the
density profile is calculated. Figure 5 shows the density pro-
file perpendicular to the confining walls in y and z directions
as well as simulation snapshots of the equilibrium configu-
ration. One characteristic property of the density profile is
the increased peak at the channel wall which results from the
fact that it is energetically favorable to distribute the particles
in such a way that particles with less nearest neighbors close
to the wall have smaller separations than those with more
neighbors in the center of the channel. This is also the reason
why the distance of the first plane from the wall is smaller
than the distance of adjacent planes in the center of the chan-
nel. The origin of the oscillations in the structural properties
is apparent from the configuration snapshots �Fig. 5�: for
channel widths smaller than 2� two planes form—one at
each wall. With increasing square section w the particles start
to occupy the center of the channel forming a stable mid-
plane at w�3.4�. This plane forces the wall particles to
remain close to the wall, thus leading to a minimum in the
MSD. If the channel width is further increased the interaction

between particles in adjacent planes decreases leading to an
increase in the MSD until the midplane splits up into two
planes and the MSD shows a second minimum at w=4.5�.
Until a channel width of w=5 the distance between the
planes increases while the particle separation in the x direc-
tion decreases. Therefore, the lattice is stretched perpendicu-
lar to the confining walls and the MSD shows a maximum.
Above w=5.25� the particle separations in the x direction
are so small that it is energetically favorable to form an ad-
ditional plane. This process continues up to a channel width
of �11� whereas maxima in the MSD occur if the distance
between adjacent planes is maximal, i.e., if the lattice is
stretched normal to the confinement and the interaction be-
tween the particles in adjacent planes is minimal. Minima of
the MSD occur if an ideal undistorted lattice can form.

E. Crystal structure in dependence of the channel
width

The local crystal structure within channels of different
square sections is determined using the values of the bops

Q̂l=4 and Ŵl=4 at the appropriate lattice stretching parameter
dx /dy �Fig. 1�. The results are summarized in Table III and a
snapshot of the local crystal structure is shown in Fig. 6 for
selected channel widths. Wall particles with a distance d
�� from the wall are neglected, as they have different val-
ues of the bops due to missing next neighbors �33�. For all

systems Q̂l=4�0.0364 and Ŵl=6�0 indicating that there are
no particles with bcc symmetry. In the magic channels a rhcp
structure forms as in the unconfined system with a larger fcc
proportion ��50%� than hcp proportion ��20%� in the equi-
librium crystal structure �Fig. 6�b��. For channel widths
where the lattice is stretched normal to the confinement
�maxima of MSD� a rhcp structure forms, too �Figs. 6�a� and
6�c��. However, the number of defects is smaller, as the par-
ticles are more localized within one plane and the fcc pro-
portion is larger than in the magic channels. For channel

w=3.9 σ

w=4.5 σ

w=5.0 σ

w=6.3 σ

w=5.25 σ

w=5.7 σ

w=3.4 σ

(a)

(b)

(c)

(d)

(e)

(f )

(g)

FIG. 5. �Color online� Projection of simulation snapshots of the
equilibrium configuration of YHC system ���=1.015, U
=432.45� in 3D microchannels on the xy plane for different channel
widths �left� and average density profile �middle� in y direction �red
�light gray� line� and z direction �black line�. The projection of the
equilibrium configuration on the yz plane is shown to the right.

(a) w = 5.0 σ

(b) w = 5.7 σ

(c) w = 6.3 σ

x

y

FIG. 6. �Color online� Local crystal structure in 3D microchan-
nels for selected channel widths. Particles with fcc symmetry are
blue �dark gray�, those with hcp symmetry are red �light gray�, and
defects are white. Wall particles are shown as small black spheres
for clarity.
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width larger than 11� the lattice can hardly be influenced by
the distance between parallel walls. A different possibility to
influence the structure is the application of an external field,
which will be discussed in the following.

F. Transport behavior of colloids in 3D microchannels

Now, we want to address the transport behavior of col-
loids confined in a 3D microchannel. Again, the colloids are
driven by the application of an external driving force. First,
we focus on the effect of a reduction in the number of planes,
i.e., the dynamical rearrangement of the colloids during their
flow along the channel. This phenomenon is analogous to the

layer reduction observed in the 2D microchannels. Figure
7�a� shows the equilibrium configuration in a 3D channel
with a quadratic square section of width w=5� and length
1000�. In equilibrium a loose structure with four planes
forms, which is stretched perpendicular to the confinement
and in which the particles can move away from the wall
easily �see Figs. 5�d� and 6�a� and Table III�. In the stationary
nonequilibrium the average drift velocity is 1.43
�10−7 m /s, which is significantly larger than the drift ve-
locity of noninteracting particles �Eq. �15�� indicating non-
plug-flow. Figure 7 shows the time evolution of the system:
in equilibrium a plane structure forms with four planes par-
allel to the confining walls in y and z directions. The external
force leads after 105 time steps to an additional fifth plane in
the reservoir. The area with five planes moves with increas-
ing time in flow direction. Close to the end of the channel the
number of planes reduces from four to three planes. After
106 time steps the system reaches a stationary nonequilib-
rium. After that time the position, at which a reduction in the
number of planes occurs, does not move in flow direction
any more. The transition point oscillates backward and for-
ward within a small area. The particles move in planes and
layers adapting to the external force. At the transition point
the particles have to switch from the midplane to one of the
adjacent planes closer to the channel wall. Often, particles
leave the midplane and proceed in flow direction before
changing on a plane further outside. The local particle den-
sities and the particle separations are shown in Fig. 8�a� and
the number of planes is shown in terms of the plane order
parameter �Eq. �6�� in Fig. 8�b�. In the stationary nonequilib-
rium a density gradient forms along the complete length of
the channel causing the change in the number of planes and
therefore leading to a change in the particle separations. At
the left end of the channel the particle separation ax is larger
than ay and az, and the lattice is compressed perpendicular to
the confinement. In the transition area ay and az increase in
two steps in contrast to the 2D systems where the particle
separation ay shows a single jump. At the end of the transi-
tion area ax is smaller than ay and az. While the latter two
remain constant until the next transition point, ax increases
monotonically. This behavior suggests that stretching of the
lattice in flow direction leads to an instability causing the
reduction in the number of planes. The change in the number
of planes is clearly visible from the plane order parameter

(a)

(b)

(c)

(d) (f )(e)

FIG. 7. �Color online� Projection of simulation snapshots of the
configuration in a 3D microchannel on the xy plane �a� in equilib-
rium without an external force, �b� after 105 time steps with an
external driving force, and �c� in the stationary nonequilibrium after
106 simulation steps with a constant position of the plane reduction
zone within the channel. Projection of simulation snapshots on the
yz plane �d� for the equilibrium configuration, �e� for the configu-
ration in the stationary nonequilibrium in the region before the re-
duction zone, and �f� after the reduction zone. For clarity all dis-
tances in y direction are stretched by a factor of 16 in the xy
projection.

(a) (c)(b)

FIG. 8. �Color online� Difference of the potential energy per particle in a hcp and a fcc lattice. �a� Local density distribution within the
channel and particle separations ax, ay, and az in the stationary nonequilibrium after 106 time steps. The dashed lines show the equilibrium
values of the local density and the particle separations. �b� Plane order parameter of the configuration shown in Fig. 7�c�. �c� Potential energy
for a fcc lattice in a channel of width 5� in dependence of the local density for the number of planes in the stationary nonequilibrium.
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shown in Fig. 8�b�. The order parameter does not have a
sharp transition point but rather a transition area with an
extension of about 100� in which the value changes steplike.
The reason is that the order parameter of the wall particles
drops to zero about 100� later than the order parameter of
the planes in the middle of the channel. Thus, the planes
closest to the wall are more stable against a deformation of
the lattice. Again, the reduction in the number of planes can
be explained by calculating the potential energy per particle
in dependence of the local density. Starting from an ideal fcc
crystal with a constant number of planes, i.e., constant dis-
tances between the particles in y and z directions, the dis-
tances in the x direction are increased or decreased, and the
potential energy is calculated. The dependence of the poten-
tial energy on the local density for a constant number of
planes is shown in Fig. 8�c�. Above a value of the local
density of ��3=0.38 it is energetically favorable for the sys-
tem to form five planes; for values 0.38���3�0.13 four
planes are energetically favorable and below ��3=0.13 three
planes are energetically favorable. These values are slightly
smaller than the values at which a reduction occurs in the
simulations. This can be explained by the fact that the den-
sity in the middle of the channel is smaller than close to the
walls �see Fig. 5�.

G. Crystal structure in the stationary nonequilibrium

Figure 9 shows snapshots of the crystal structure which
forms in the stationary nonequilibrium in the region of the
channel with five planes �Fig. 9�a�� and with four planes
�Fig. 9�b��. In both regions a rhcp structure forms as in the
equilibrium configuration. The fcc and hcp proportions in the
crystal structure change in dependence of the lattice stretch-
ing parameter dx /dy. The dependence of the potential energy
difference per particle in a hcp and a fcc lattice �Upot
=Uhcp−Ufcc on the lattice stretching parameter dx /dy is
shown in Fig. 10. On the left-hand side of the channel an
additional fifth plane forms and the lattice is compressed
normal to the confinement. The stretching parameter has a
value of dx /dy =1.3, which is significantly larger than in the
equilibrium configuration. For this ratio the potential energy
per particle of a fcc crystal is 0.0623kBT smaller than that of
a hcp lattice. In the crystal structure the hcp proportion

�7.7%� is suppressed in favor of the fcc proportion �78.3%�.
At the same time the number of defects increases �14%�
compared to the number of defects in equilibrium. In the
region with four planes the lattice stretching parameter has a
value of dx /dy =1.02 and the potential energy of the hcp lat-
tice is smaller compared to the fcc lattice. The crystal struc-
ture in this part of the channel is similar to the equilibrium
configuration �Fig. 6�a� and Table III�. Most of the particles
show a fcc symmetry �68%�, some particles show a hcp sym-
metry �30%�, and the number of defects is small �2%� since
in the configuration with four planes the particles are more
localized within one plane. Therefore, in the stationary non-
equilibrium the number of planes is determined by the local
density, while the crystal structure and the number of defects
depend on the deformation of the lattice.

IV. SUMMARY

A structural analysis has been performed in a model sys-
tem of charge stabilized colloids interacting via a YHC po-
tential in 2D and 3D microchannels. We have reported on a
variety of ordering and transport phenomena induced by the
confinement of the motion of the particles by parallel walls
and by the application of a constant driving force along the
channel. We used Brownian dynamics simulations to analyze
the structural behavior both under equilibrium and under sta-
tionary nonequilibrium conditions.

First, we have studied systems with varying interaction
range in a 2D channel. A longitudinal density gradient and
consequently a layer transition occur only for particle inter-
action ranges larger than the average distances between the
neighboring particles in agreement with previous results
�14�. Second, we have studied the systems in three dimen-
sions. In an unconfined 3D system we observe a global rhcp
structure in agreement with experimental results �36,37� as
well as in the 3D microchannels where the motion of the
particles is confined in all directions by ideal hard walls. In
the microchannels closest packed �111� planes align parallel
to the confining walls, leading to a plane structure with equal
distances between adjacent planes in y and z directions for
quadratic square sections of the channels. Systematically, we
have analyzed the influence of the width of the channel on
the MSD of the wall particles, the density profile, and the

150σ120σ(a)

620σ 650σ(b)

x

y

FIG. 9. �Color online� Local crystal structure in the stationary
nonequilibrium �a� in the region with an additional fifth plane
120��x�150� and �b� in the region with four planes 620��x
�650�. Particles with fcc symmetry are blue �dark gray�, those
with hcp symmetry are red �light gray�, defects are white, and wall
particles are shown as small black spheres for clarity.

FIG. 10. �Color online� Difference of the potential energy per
particle in a hcp and a fcc lattice, �V=Vhcp−Vfcc, in dependence of
the lattice stretching parameter dx /dy. The dashed line indicates the
value of dx /dy of an ideal fcc lattice.
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local crystal structure. The structural properties show oscil-
lations upon increasing the width of the channel with a pe-
riod of the effective boundary plane distance. When the
channel width is increased, a periodic destabilization of the
plane structure with np planes takes place, and the system
switches to a structure with �np+1� planes. Moreover, we
have shown that the number of planes can be reduced by
applying an external driving force. In the stationary nonequi-
librium the particles flow over the reduction zone which
stays at a constant position. For small driving forces, where
the particles are not in the regime of plug flow, the particles
arrange themselves into a different number of planes analo-
gous to the rearrangement into layers in the 2D systems. The
reduction originates from a density gradient along the chan-
nel and is similar to the system of driven superparamagnetic
particles in 2D microchannels �13,14�, suggesting that the
phenomenon of layer reduction is independent of the exact
form of the interaction potential and occurs likewise in 2D
and 3D systems if the range of the interaction potential is
larger than the average distance between neighboring par-
ticles. The local density decreases monotonically and con-
tinuously along the channel. In front of the reduction zone
the lattice is stretched in flow direction whereas it is com-
pressed and one layer or plane has disappeared after the re-
duction zone. Stretching of the lattice leads to an instability
toward a decreased number of planes. At the point of reduc-
tion the increase in the particle separation ay is compensated
by the decrease in ax, leading to a continuous decrease in the
local density along the channel. In the 2D systems the
change in the particle separations is jumplike while it has
intermediate values in the 3D systems which result from the
stabilization of the planes which are closest to the walls. The
reduction in layers or planes takes place for specific values of
the local density. Using a static stretching analysis the values
of the local density can be calculated for which the transition
from an energetically less favored longitudinal stretched lat-

tice to a lattice with one layer or plane less occurs. The
estimated values of the local density are in good agreement
with the values from the simulations.

We have shown that the crystal structure of 3D colloidal
systems can on one hand be manipulated by varying the
geometry of the confinement or by applying an external
force. Using a rather simple classical model system of col-
loidal particle interacting via a screened Coulomb potential
allows us to predict both equilibrium properties and the
transport behavior in confining geometries. The observed
phenomena will take place in any system in which long-
range interacting particles are driven by an external field
through a narrow constriction. However, hydrodynamic in-
teractions might modify the quantitative results for real mi-
crochannels whose dimensions are only a few particle diam-
eters in magnitude: a particle close to a planar hard wall is
subject to hydrodynamic interactions with the wall which
enhance the transverse friction �40�. Moreover, for an array
of interaction particles there is an additional enhancement of
friction due to the hydrodynamic confining effect of the wall
�41�. Another limitation of our approach is that an external
driving force acting on the particles might lead to different
results than pressure-driven flow since in the latter one a
shear-induced tendency of twisting and disrupting the plane
structure occurs �42�. Therefore, the results of these studies
can be seen as a step in understanding transport processes in
biological and quantum systems.
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