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ABSTRACT: Magnesium is an indispensable cofactor in countless vital
processes. In order to understand its functional role, the characterization
of the binding pathways to biomolecules such as RNA is crucial. Despite
the importance, a molecular description is still lacking since the
transition from the water-mediated outer-sphere to the direct inner-
sphere coordination is on the millisecond time scale and therefore out of
reach for conventional simulation techniques. To fill this gap, we use
transition path sampling to resolve the binding pathways and to elucidate the role of the solvent in the binding process. The results
reveal that the molecular void provoked by the leaving phosphate oxygen of the RNA is immediately filled by an entering water
molecule. In addition, water molecules from the first and second hydration shell couple to the concerted exchange. To capture the
intimate solute−solvent coupling, we perform a committor analysis as the basis for a machine learning algorithm that derives the
optimal deep learning model from thousands of scanned architectures using hyperparameter tuning. The results reveal that the
properly optimized deep network architecture recognizes the important solvent structures, extracts the relevant information, and
predicts the commitment probability with high accuracy. Our results provide detailed insights into the solute−solvent coupling
which is ubiquitous for kosmotropic ions and governs a large variety of biochemical reactions in aqueous solutions.

1. INTRODUCTION

Magnesium plays a vital role in almost every biological process.
By now more than 800 different biochemical roles of Mg2+

have been identified in physiological processes ranging from
the creation of cellular energy or the synthesis of biomolecules
to the activation of enzymes and ribozymes.1−5 The specific
requirement for Mg2+ as a cofactor is particularly pronounced
in nucleic acid systems where Mg2+ plays structural roles by
complexing negatively charged groups or catalytic roles by
accelerating or inhibiting chemical reactions in ribozymes.3,6−8

In RNA systems, Mg2+ ions are essential for two reasons:
They screen the electrostatic repulsion, thus allowing RNA to
fold into compact and functional structures.9 In addition, a
smaller fraction of Mg2+ ions interacts directly with the
functional atom groups of the RNA. These site-specific ions
stabilize the three-dimensional structure further and are
involved either in a direct contact (inner-sphere) or are
mediated through the hydrogen bond of a coordinating water
molecule (solvent-shared).7,9 The second reason why cations
are essential is that binding of Mg2+ to active binding sites
allows ribozymes to perform chemical reactions that would not
be possible from the basic RNA building blocks alone.3,6

Despite the importance of Mg2+ in RNA biology, a detailed
understanding of the Mg2+-RNA interactions at the atomic
level is still lacking. As a first step in providing a thorough
understanding, we here resolve the binding pathways of Mg2+

to RNA and elucidate the dynamic interplay of direct ion-RNA
and indirect water-mediated interactions.

In aqueous solutions, the first hydration shell of Mg2+

consists of six water molecules arranged in octahedral
symmetry.10 Water molecules from the first hydration shell
exchange with the second, more loosely bound hydration shell
on the microsecond time scale.11−13 This dynamic equilibrium
allows for ligand exchange. Hereby, oxygen atoms are the
preferred binding partners, in particular the nonbridging
oxygens of the phosphate group on the backbone of
RNA.3,14 Interestingly, water exchange around Mg2+ is orders
of magnitude slower compared to other metal ions.11,15 The
long lifetimes of water molecules in the first hydration shell
facilitate two distinct binding arrangements: inner-sphere and
outer-sphere. In inner-sphere binding, one water molecule is
removed from the first hydration shell, and the ion is in direct
contact with the RNA atoms. In outer-sphere binding, the
interactions with the RNA are mediated by water, while Mg2+

remains coordinated by six water molecules.3

Does Mg2+ bind in inner- or outer-sphere coordination and
how can it transition from the one binding mode to the other?
Discerning the nature of the exact interactions is an important
and controversially discussed question in the field.14,16,17
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Typically, structural knowledge on the binding mode of Mg2+

is obtained from crystallographic experiments. However, the
correct assignment in the electron density maps remains
notoriously difficult. Yet, with proper stereochemical guidelines
a consistent picture emerges: Nucleobase nitrogen and
carbonyls are poor inner-sphere Mg2+ binders,16,17 while the
nonbridging oxygens of the phosphate group are the primary
nucleic acid binding location. In large RNA structures, Mg2+

ions can, depending on the exact environment, bind in inner-
or outer-sphere coordination,3,18 whereas the inner-sphere
coordination is thermodynamically favored in simple mono-
nucleotide systems.19

In addition to the structural information from crystallog-
raphy, NMR can provide valuable insight into the exchange
kinetics.11,20,21 Depending on the number of direct Mg2+-RNA
contacts, the time scale for ligand exchange ranges from
milliseconds20,22,23 to hundreds of seconds.21 However, the
structural changes at the microscopic level during an exchange
process are not accessible from experiments. Here, simulations
can contribute important insights by characterizing the solvent
behavior and by providing a unique atomistic description of
the dynamics. Yet, simulating the transition from outer-to-
inner sphere binding is tremendously challenging for two
reasons: According to experiments, the transition is on the
millisecond to second time scale and therefore out of reach for
conventional all-atom simulations. Alternatively, enhanced
sampling techniques such as metadynamics, replica exchange,
and umbrella sampling can be applied24,25 but do not prove
any information on the exchange dynamics and reaction
mechanism.
The second challenge is the coupling of the solvent to the

exchange dynamics. Kosmotropic ions, such as Mg2+, provoke
strong structural ordering of the first hydration shells.
Therefore, any process in aqueous solutions is expected to
be governed by a complex interplay of structural, orientational,
and hydrogen bonding effects extending over several hydration
shells. It is therefore not surprising that the solvent not only is
a spectator of the chemical process but also plays an active role
in the evolution. Similarly, the dynamics of seemingly simple
processes such as dipeptide isomerization, ion pair formation,
water exchange between hydration shells, or proton and
electron transfer is governed by solute−solvent coupling.26−33
Therefore, attempts in describing the dynamics of such
processes in terms of simplified reaction coordinates that do
not include the solute−solvent coupling are likely to fail for
several reasons. (i) Solvent reorganization is orthogonal to
such simplified reaction coordinates giving rise to pronounced
non-Markovian behavior or memory effects.34 (ii) The
metastable states are not uniquely separated leading to the
violation of the no-recrossing assumption and failure of
transition state theory.35 (iii) Enhanced sampling techniques
that rely on biasing the slow degrees of freedom become
inefficient as the solvent reorganization becomes slower than
the reactive motion itself. Consequently, quantifying the
contribution of the solvent to the reaction coordinate is one
of the long-standing problems in chemical reaction kinetics.
In order to address both challenges, we apply transition path

sampling as a particularly powerful sampling strategy to
provide unbiased microscopic insight into the dynamics of
Mg2+ binding to the phosphate oxygen of RNA. Subsequently,
we perform a committor analysis comprising more than 28,600
configurations as the basis for a machine learning algorithm
which automatically selects the optimal deep learning model

from thousands of scanned architectures in a robust and
efficient manner. The resulting optimized deep neural network
is shown to capture the intimate solute−solvent coupling and
to provide an accurate description of the complete dynamical
process.

2. METHODS
Atomistic Model and Simulation Setup. Our model

system consists of an RNA dinucleotide with two guanine
nucleobases (Figure 1). The RNA dinucleotide is an ideal

model system to investigate ion-RNA interactions since it
contains the three most important metal cation binding sites:
The nonbridging phosphate oxygens of the backbone and the
N7 and O6 metal binding site on the nucleobase.19 For Mg2+,
there is clear experimental evidence that the nonbridging
phosphate oxygens are the primary nucleic acid binding site for
Mg2+.3,17 Since both oxygen atoms (O1P and O2P) have
identical force field parameters, we focus on the interactions
with O1P which has a partial charge of −0.776e. Our selection
of the phosphate oxygens is further justified by a large number
of unbiased simulations that reveal exclusive binding of Mg2+

to the phosphate oxygen and not to the nucleobases in
agreement with previous results.25 A single Mg2+ ion, one Cl−

ion, and 2150 water molecules are added to the cubic
simulation box (L = 40 Å). Since the dinucleotide has one
negative charge, the simulation box is neutral. For Mg2+ and
Cl−, recently optimized force field parameters were used36 in
combination with the TIP3P water model.37 The TIP3P water
model assigns partial charges of −0.834e and 0.417e to oxygen
and hydrogen. Note that to date a large variety of water models
exist with some reproducing the physical properties of water
better than TIP3P.38 Our main motivation to use TIP3P water
is that it is frequently used in biomolecular simulations since
protein and nucleic acid force fields were optimized with
TIP3P. The force field parameters of the RNA are taken from
Amber99sb-ildn*39 with parmbsc040 and χ0L3 corrections.

41

The Mg2+ parameters were optimized in our previous work36

in combination with TIP3P and are particularly suited to
investigate ion binding since they reproduce experimental
activity coefficients and the hydration free energy. In addition,
the Mg2+ parameters by Mamatkulov and Schwierz36 predict
an interchange dissociative exchange mechanism in water in
agreement with experiments, while polarizable force fields42−44

erroneously yield an associative mechanism.45 Note that
models with variable polarizability46 or scaled charge force
fields47,48 might yield improvement but are beyond the scope
of our current work.

Figure 1. Simulation snapshot of the RNA dinucleotide consisting of
two guanine nucleobases with a Mg2+ ion in inner- or outer-sphere
coordination. The backbone binding sites (atoms O1P and O2P) and
the N7 and the O6 binding site of guanine are shown. The exchanging
water molecule is shown in blue.
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A detailed comparison of the Mamtkulov Mg2+ force field
parameters with other parameters from the literature can be
found in refs 36 and 49.
All simulations were performed using GROMACS50 with

periodic boundary conditions. Particle mesh Ewald summation
was used along with a Fourier spacing of 0.12 nm and a grid
interpolation up to order 4 to handle long-range electrostatic
forces. Close Coulomb real space interactions were cut off at
1.2 nm, and Lennard-Jones (LJ) interactions were cut off after
1.2 nm, respectively. Long-range dispersion corrections for
energy and pressure were applied to account for errors
stemming from truncated LJ interactions.
The initial energy minimization was performed with the

steepest descent algorithm. For each simulation, an NVT and a
subsequent NPT equilibration were done for 1 ns, controlling
the temperature at 300 K and at a pressure of 1 bar with the
Berendsen thermostat and barostat.51 All production runs and
the transition path sampling were done in the NVT ensemble
at a temperature of 300 K using the velocity rescaling
thermostat with stochastic term52 and a time step of 2 fs. Here,
the velocity rescaling thermostat was used since it generates
the canonical ensemble and ensures detailed balance in the
canonical ensemble of transition paths.53

Free Energy Profiles. The one-dimensional free energy
profile as a function of the distance rI between the Mg2+ ion
and the oxygen atom O1P was calculated from umbrella
sampling using PLUMED.54 A force constant kb = 600,000 kJ/
(mol nm2) and a window spacing of 0.005 nm were used for rI
< 0.35 nm. A force constant kb = 60,000 kJ/(mol nm2) and a
window spacing of 0.01 nm were used for rI > 0.35 nm. To
ensure convergence, we computed the reverse pathway and
performed a block analysis by dividing the 100 ns long
simulation into eight individual blocks (Figure S1 in the
Supporting Information.)
The two-dimensional free energy profiles as a function of rI

and the effective hydration distance s6 were calculated from
umbrella sampling using PLUMED.54 Hereby, s6 was defined
as the sum of six Mg2+-oxygen distances

∑= +
=

s r r
i

6
1

5

i ex
(1)

where ri are the distances between Mg2+ and the five closest
water molecules, and rex is the distance between Mg2+ and the
exchanging water molecule. A force constant kb = 100,000 kJ/
(mol nm2) and a window spacing of 0.01 nm were used.
Without further restraints, the system shows three stable states
in the two-dimensional projection (see Figure S2 in the
Supporting Information). In the umbrella sampling, we focus
only on transitions between the two relevant states
(corresponding to the inner-sphere configuration with five
coordinating water molecules and the outer-sphere coordina-
tion in which O1P is replaced by the selected water molecule
for which the umbrella potential is applied). This is justified
further by the results from the unbiased simulations (TPS and
fleeting trajectory setup with 3.5 μs total simulation time)
which clearly demonstrate that Mg2+ goes directly to the
phosphate oxygen and never to any of the nucleobase binding
sites. In the umbrella sampling, this is achieved by an
additional biasing potential on the hydration number (see
the Supporting Information for further details). Position
restraints were applied on all heavy atoms of the dinucleotide
with the exception of the nonbridging oxygen atoms of the

phosphate group. Each umbrella simulation was performed for
2 ns discarding 500 ps for equilibration. The free energy
profiles were calculated using the weighted histogram analysis
method (WHAM).55

Transition State Theory. TST is the most popular theory
to calculate reaction rates. In simple systems for which the
reaction coordinate is exactly known, TST gives an accurate
estimate of the rate. However, in complex many-body systems
such as the one presented here, TST could fail due to the
violation of the nonrecrossing hypothesis which forms the
cornerstone of the theory. Therefore, TST can be used only to
provide an upper estimate for the rate constant. For a more
accurate estimate, additional corrections as implemented in the
reactive flux method are required35,56 but are beyond the scope
of our current work. Following conventional transition state
theory (TST), the upper estimate of the rate constant is
calculated from57,58

∫
λ θ λ

λ
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0 0
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where λ* is the position of the barrier top, θ(λ̇) is the
Heaviside step function, and ⟨...⟩c denotes the average over the
restrained ensemble of trajectories initiated from an equili-
brium ensemble of phase points on the dividing surface.

Transition Path Sampling. Transition path sampling53,59

was used to harvest an ensemble of rare trajectories that
connect the two stable states. Starting from an initial reactive
pathway generated at high temperature, new trial trajectories
were created by randomly selecting a time slice, randomizing
the velocities, and integrating the equations of motion forward
and backward in time. Using standard two-way shooting moves
with a fixed length of 1.6 ps, trial moves are accepted if they
connected the two stable states and rejected otherwise.

Committor Analysis and Transition States. For a
simulation snapshot taken from a reactive transition pathway,
the committor pA is defined as the probability of the
configuration initiated with randomized velocities drawn
from a Maxwell−Boltzmann distribution to be committed to
state A (inner-sphere coordination). Configurations from basin
A have pA = 1, configurations from basin B have pA = 0, and
transition states have pA = 0.5. The commitment probability pA
was calculated from the fraction of trajectories initiated with
randomized velocities that reach state A. 29,112 configurations
along more than 2500 independent pathways obtained from
transition path sampling were used as shooting points. 28,612
shooting points were chosen in the transition region (with 0.6
< λ < 1.0 based on the coordinate λ defined in eq 7). In
addition, 500 shooting points were selected in the regions of
the stable states (λ < 0.6 and λ > 1.0). For each shooting point,
100 trajectories were initiated with random velocities and run
forward and backward for 2 ps. A configuration was identified
as a transition state if half of the trajectories relaxed into each
stable state (0.45 < pA < 0.55). From the ensemble of shooting
point, two subsets with rI = 0.28 ± 0.02 nm or λ = 0.8 ± 0.05
with 3,500 randomly drawn data points were selected, and the
distribution p(pA) was calculated.
In total, 3.5 μs of unbiased simulation data were used to test

the different putative reaction coordinates.
Commitment Probability from Deep Neural Net-

works. Deducing an appropriate description by visual
inspection is virtually impossible if complex configurational
rearrangements are considered as in the system presented here.
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Neural networks, on the other hand, are particularly suited for
this task. For example, in the pioneering work by Ma and
Dinner,28 neural networks were used to predict the committor
based on a set of coordinates for the isomerization of alanine
dipeptide. More recently, Jung et al. proposed and
implemented a combination of path sampling and deep neural
networks to guide the sampling and to extract the reaction
coordinate.26,27,60 Following the work by Jung et al.,26,27 we
used a deep neural network to learn the reaction coordinate
from the outcome of the committor analysis by minimizing the
likelihood loss function.61,62 Note, however, that we did not
guide the sampling as described in refs 26 and 27. Instead, we
performed a preceding committor analysis (as described
above) and used the committor to map the molecular
configurations onto the reaction coordinate qpred(X). Each
configuration was described by a set of 83 physical properties
(referred to as features X in the following). The committor was
parametrized as in refs 26 and 27

[ ] = + − −p q eX( ) (1 )q X
A
pred ( ) 1pred

(3)

where the predicted committor ppred is a nonlinear function of
all the features X of the system. Note that by rescaling the
reaction coordinate via q = q̃/2 the frequently used expression
for the committor by Peters and Trout62 is retrieved:

[ ̃ ] = + = + ̃− ̃ −p q e qX X( ) (1 ) (1 tanh( ( ))/2q X
A
pred 2 ( ) 1 predpred

(4)

Therefore, eqs 3 and 4 are expected to yield identical results.
The likelihood that a model can reproduce the observed data is
given by26,27,61,62

∏= [ ] − [ ]
=

L p q p qX X( ( ( ) )) (1 ( ( ) ))
i

N
n n

1
A
pred

A
predA

i
B
i

(5)

where N is the number of shooting points, and nA
i and nB

i are
the number of trajectories that reach state A and B from
shooting point i, respectively. Following the work by Jung et
al.,26,27 we modeled the committor with a deep neural network.
Hereby, the weight matrix that defines the connection between
the nodes of the deep neural network was optimized by
minimizing the negative log likelihood loss l26,27

∑= − = + + +
=

−l L q n e n elog ( ) ( log(1 ) log(1 ))
i

N

B
i q

A
i qpred

1

pred pred

(6)

The overall accuracy and generalization of the machine
learning model (i.e., the deviation of the predicted values pA

pred

from the simulated ones pA
true) was estimated by dividing the

available data into a training set, a validation set, and a test set.
The first was used to train the model, the second was used to
validate the training result, and the third was used to check
whether the final model is able to correctly predict the values
for structures that were not used for training.
Training a Deep Learning Regression Model with

Hyperparameter Optimization. One challenge in the
application of neural networks is to choose the model
architecture. As illustrated in Figure 2A, the accuracy of the
network to predict the commitment probability of a
configuration and to autonomously select the transition state
strongly depends on the underlying model architecture.
However, there is no generic way to determine all the model
parameters such as the number of hidden layers, the number of

neurons, and all hyperparameters a priori. Moreover, a network
architecture that works well for one system might fail to
capture other systems or dissimilar problems. Therefore,
building an optimal deep neural network manually by trial
and error is a time-consuming problem which highly depends
on human expertise and intuition. In order to make this
progress more efficient, we developed an algorithm that
automatically finds the optimal network architecture. First, we
specified a class of multilayer perceptron (MLP) regression
models that are described by a set of hyperparameters.63

Subsequently, we selected the optimal model by running a
Keras Tuner random search hyperparameter optimization.64

Hereby, the generic MLP was defined by the following set of
hyperparameters: number of hidden dense layers (1−6),
number of neurons per hidden layer (32−256), activation
function (Rectified Linear Units (ReLU) or Scaled Exponential
Linear Unit (SELU)), position of a single dropout layer
(none/after feature input/middle layer/before output layer),
dropout rate (0−40%), and learning rate for the Adam
Optimizer (logarithmic sampling from 10−4−10−2). For ReLU
activation functions, a Glorot uniform initialization and a
normal dropout layer were used. For SELU activation
functions, a Lecun normal initialization and an alpha dropout
layer were used. ReLU and SELU are the standard choices for
regression models in Keras and were therefore used. The
custom loss function by Jung et al.26,27 according to eq 6 was
used. All models were trained via back-propagation using the
stochastic gradient algorithm.
The data was split into a 20% test set, a 72% training set, and

an 8% validation set. Different splitting of the data yielded
similar results (see the Supporting Information). All features
were normalized using the Keras standard scaler with mean μ =

Figure 2. Dependence of the performance on the model architecture.
(A) Comparison of the committor distribution p(pA

true) for transition
states selected from deep learning algorithms with different model
architectures (see the Supporting Information for further details of the
models). (B) Validation likelihood loss l for a random subset of model
architectures. One parameter of the architecture, the total number of
neurons, is shown in color. In total, several thousand different model
architectures were explored by running a Keras Tuner random search
in the space of model parameters.
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0 and standard deviation σ = 1. Each model was set up for 50
epochs with a training batch size of 128. Early stopping with
patience 10 was used on the validation loss. Multiple thousand
different model architectures were explored, and the likelihood
loss of a random subset of 2,160 models is shown in Figure 2B.
For further optimization, a subset of best models based on

minimal validation loss was chosen. The training of the best
model subset was continued for up to 200 epochs with the
previous batch size and early stopping. In addition, a stepwise
reduction of the learning rate by a factor of 5 down to 10−5 was
used if the validation loss reached a plateau for 7 training steps.
Finally, the best model was chosen based on the highest
maximum in the p(pA

pred) distribution.
In summary, the optimization algorithm allows us to find the

optimal model architecture in a quick and reliable fashion. The
optimal deep learning model has five hidden layers with 256
neurons, ReLU activation, and an initial learning rate of 1.9 *
10−4. A dropout layer with 30% dropout is placed directly
before the output layer. All code was developed with Keras,65

scikit-learn,66 and TensorFlow.67

Features. For each shooting point, we calculated 83
features that reflect different structural properties of the
molecular configuration. Focusing only on the dominant
indirect exchange, the data set has 17,477 entries. Each entry
consists of 83 features, and the label pA

true was calculated for
each shooting point using the committor analysis. Specifically,
the features include all distances ri between Mg2+ and the 20
closest water molecules, distances between Mg2+ and different
RNA atoms and the Cl− ion, all angles ai formed between
Mg2+, O1P, and the 20 closest water molecules, the Steinhardt-
Nelson order parameters q3, q4, and q6

68 of the first and second
hydration shell, tetrahedral order parameters,54 and the
number of hydrogen bonds in the first and second hydration
shell and between RNA and water (Table S1).
Transition path sampling, performed in previous work,31,45

yielded detailed molecular insights into the mechanism of
water exchange in the first hydration shell and showed that the
coordinates of the exchanging ligands need to be included to
provide a reasonable description. Similarly, in the present case,
a putative, knowledge-based reaction coordinate λ was defined,
which combines the Mg2+-RNA distance rI and the effective
hydration distance s6 via a trigonometric function

λ = − −s s r ratan2( , )I I6 6
0 0

(7)

The atan2 function is an extension of the usual atan function
with two real numbers as argument. Therewith, the atan2
function comprises enough information to yield function
values in the range of 0−2π and allows us to cover all possible
values for s6 and rI. Note that the parameters s6

0 = 1.18 nm and
rI
0 = 0.18 nm correspond to the minima in the two-dimensional
free energy profile. With this choice, λ = π/2 corresponds to
the inner-sphere coordination, and λ = 0 corresponds to the
outer-sphere coordination (Figure 3B).
Feature Relevance. To this end, the machine learning

model employs a large number of features to model the
reaction coordinate and to predict the commitment probability
pA
pred of new structures. In the following, we aim to determine
the importance of each input feature. Since the deep learning
network consists of a large number of nodes, weighted sums,
and nonlinear transformations, the feature relevance was
calculated numerically by selectively replacing single features
or combinations of features by noise and resampling the
model.

For the single feature relevance, we generated for every input
feature i a data set in which the values Xi were replaced by
randomly permuted values Xi

p. The random permutation
approach was chosen as it exactly conserves the original
distribution. The normalized relevance of the i-th feature rs

i was
defined as

= =
−

−
r r

l l

l l
X

X
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p i
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where lopt is the converged loss of the optimal model, and lmax
is the largest value upon permutation. The relevance
corresponds to the loss of information (i.e., the negative log
likelihood increase) upon effectively removing a single feature
from the data set while leaving all other features unchanged.
Accordingly, the single feature rank ranges from low
(unimportant) to high (important).
For single feature permutation importance, standard libraries

can be used.66,69 For this work, we implemented a custom
algorithm that extends the standard permutation importance
algorithms to be able to measure the importance of combined
feature sets (see below). Note that an alternative approach for
the single feature analysis was proposed in ref 26 where
uniform random noise was used instead of random
permutations.
For the relevance of combined features, N(N + 1) /2 = 3486

permuted data sets were generated as follows. Starting from the
optimal model, the feature which yielded the smallest loss
upon permutation was removed (rank 1). This feature
contained the smallest amount of information and was
consequently least important for the process. Maintaining the
permutation of rank 1, we selected the second feature that
yielded the smallest loss upon permutation (rank 2). The
procedure was repeated until all features are permuted. The
normalized relevance for effectively removing the information
on n features is given by
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where lopt is the converged loss of the optimal model, and lrand
is loss obtained by permuting all features. Here, the relevance
corresponds to the increase of the negative log likelihood upon
removing the combination of n features that contain the least
amount of information. Accordingly, the feature combination
rank ranges from low (least important combination) to high
(most important combination).

3. RESULTS AND DISCUSSION
Free Energy Landscape of Mg2+-RNA Interactions.

During association, one of magnesium’s six strongly bound
hydration waters is removed to facilitate a direct contact
between Mg2+ and the phosphate oxygen. In the simplest case,
this ligand exchange can be described by the distance rI
between Mg2+ and the phosphate oxygen, while all other
degrees of freedom are integrated out. The corresponding one-
dimensional free energy profile is shown in Figure 3A. The free
energy profile has two stable states. State A corresponds to the
inner-sphere coordination, and state B corresponds to the
outer-sphere coordination. The free energy barrier from outer-
sphere to inner-sphere is about 21 kBT and exactly matches the
value for water exchange.31 Consequently, the barrier
corresponds to the free energy necessary to remove one
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water molecule from the first hydration shell in order to
facilitate a direct contact with the phosphate oxygen. The
inner-sphere coordination is thermodynamically more stable in
agreement with experimental findings19 and Collins’ empirical
rule like-seeks-like:70 Due to the high charge density of the
phosphate oxygens, direct ion pairing with a high binding
affinity is expected.
Using transition state theory TST (eq 2), we can provide an

upper estimate of the exchange rate or conversely a lower
estimate of the lifetime. Here, it is essential to mention that the
true rate could be significantly smaller due to the violation of
the nonrecrossing hypothesis. As a lower limit, Mg2+ is

estimated to remain about 300 s in the inner-sphere
coordination before transitioning to outer-sphere. Similarly,
Mg2+ is estimated to remain about 0.2 ms in the outer-sphere
coordination before transitioning back to inner-sphere. Note
that the exchange between the outer-sphere cordination and
bulk is much faster since the free energy barrier is significantly
smaller (Figure 3A). The lifetime of the outer-sphere
coordination is in agreement with the millisecond time scale
observed experimentally.20,22,23 On the other hand, the
computed lifetime of the inner-sphere coordination is likely
too high reflecting the shortcoming of current Mg2+ force fields
in reproducing experimental binding affinities at nucleic acid
binding sites.25,49,71

The quality of a reaction coordinate can be assessed by a
committor analysis. For an ideal reaction coordinate, about half
of the trajectories initiated from the barrier top are expected to
relax back to either stable state. Consequently, the distribution
p(pA) of the probability to relax back to state A should have a
sharp peak at pA ≈ 1/2 (binomial committor distribution).
While rI provides a simplified description of the process, it is
not an adequate reaction coordinate by itself. The committor
analysis (Figure 3C) shows that most configurations, initiated
with rI = 0.28 nm, relax back to the inner-sphere coordination.
Therefore, the Mg2+-oxygen distance alone is insufficient to
describe the dynamics of the transition. To provide a more
realistic picture, the water molecules from the first hydration
shells have to be included. Figure 3B shows the two-
dimensional free energy landscape as a function of rI and the
hydration parameter s6, which includes the distances of the five
closest waters and the exchanging water (eq 1). From the two-
dimensional representation, the failure of rI as the reaction
coordinate can be rationalized: Trajectories starting from the
upper panel (s6 > 1.24 nm) are committed to state A, while
trajectories starting from the lower panel (s6 < 1.24 nm) are
committed to state B. rI and s6 can be combined into a
putative, knowledge-based reaction coordinate λ (eq 7). Based
on the committor distribution (Figure 3C), λ provides
significant improvement compared to rI. Still, configurations
with λ* = 0.8 lead to a much broader distribution compared to
the ideal binomial distribution.
These results show that free energy profiles along a few

simple coordinates provide valuable initial insight. Yet, the
committor analysis reveals that the exchange dynamics is more
complex than the free energy profiles might suggest.

Kinetic Pathways from Transition Path Sampling. To
gain insight into the kinetic pathways of Mg2+ association and
dissociation, transition path sampling is applied to sample a
large number of inner-to-outer sphere transitions. Four
representative transition paths that connect the two stable
states are shown in Figure 4A. Figure 4C shows the
distribution of transition times. Typically, the exchanging
water molecules spend less than 0.5 ps in transition. This time
is considerably smaller compared to the millisecond time scale
of the stable states. The clear separation of time scales
highlights the path sampling method as a particularly powerful
sampling strategy for these systems.
The distribution of the exchange angles (Figure 4B) along

reactive pathways indicates that two alternative exchange
pathways exist: In the indirect exchange mechanism, the leaving
oxygen ligand and the entering water molecule occupy
different positions on the water octahedron (Figure 4D).
During activation, one water molecule from the second
hydration shell enters the molecular void between the

Figure 3. Free energy landscape of Mg2+-RNA interactions. (A) Free
energy profile F(rI) as a function of the distance between Mg2+ and
the phosphate oxygen. Simulation snapshots of the two stable states
are shown. (B) Two-dimensional free energy landscape F(rI, s6) as a
function of rI and s6 where s6 is the sum over the distances between
Mg2+ and the five closest molecules and the exchanging water
molecule. The dashed line indicates configurations from the top of the
free energy profile with rI* = 0.28 nm shown in (A). Trajectories,
initiated from the upper green stripe, relax back into state A, and
trajectories from the lower blue stripe relax back into state B. The
diagonal dashed line for λ* = 0.8 approximates the saddle between
states A and B. (C) Committor distributions pSim(pA) for trajectories
initiated with rI* = 0.28 nm (top of the one-dimensional free energy
profile shown in A) and with λ* = 0.8 (saddle of two-dimensional free
energy profile shown in B). pid(pA) is the distribution expected for an
ideal reaction coordinate with 3500 shooting points.
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hydration shells. This motion leads to a concerted motion of
the phosphate oxygen out of the first hydration shell. The
distances of the leaving phosphate oxygen and the entering
water are elongated compared to their equilibrium values
(Table 1). Reflecting balanced electrostatic interactions, the
Mg2+-phosphate oxygen distance is smaller than the Mg2+-
water oxygen distance due to the smaller partial charge on the
phosphate oxygen compared to the water oxygen. The
distances of the five closest molecules remain relatively
unchanged (Table 1). Yet, they rearrange such that the
transition state has an approximate mirror symmetry. The
mirror plane is perpendicular to the plane composed of Mg2+,
the phosphate, and water oxygen and contains three water
molecules (Figure 4D).
In the direct exchange mechanism, the leaving oxygen ligand

and the entering water molecule occupy the same positions on
the water octahedron (Figure 4E). The exchange arises via the
attack of the incoming water onto the edge of the octahedron
formed by the oxygen ligands. Similar as in the indirect
pathway, the Mg2+-phosphate oxygen distance is slightly
smaller than the Mg2+-water oxygen distance, while the
distances of the five closest water molecules remain relatively
unchanged (Table 1). In the transition state, the five closest
water molecules form a square pyramidal coordination, and the
transition state has a distorted C2 symmetry (Figure 4E).
Based on the change of bond length during activation, both

pathways correspond to an interchange dissociative (Id)
process and are akin to the pathways of water exchange.31 In

equilibrium, the indirect exchange is observed much more
frequently (92%) compared to the direct mechanism (8%)
since configurations with cis positions of exchanging ligands
(direct pathways) are energetically less favorable compared to
trans positions (indirect pathways).72

The results reveal that phosphate oxygen, exchanging water,
and the five closest water molecules play a decisive role in the
exchange mechanism. However, additional simulations in
which those coordinates were fixed, while the solvent outside
the first hydration shell was relaxed, show that they are yet
insufficient to predict pA. Consequently, solvent molecules
beyond the first hydration shell are crucial for the exchange
and need to be considered explicitly.

Optimized Deep Neural Networks for Quantitative
Predictions. During the transition from outer-to-inner sphere
binding, water molecules from the first two hydration shells
couple to the exchange. The reordering of close and distant
water molecules determines whether the process can proceed
or not. This behavior might be expected since the kosmotropic
Mg2+ ion causes strong orientational ordering in the first
hydration shells leading to long-range and collective inter-
actions. However, resolving the subtle rearrangements and
providing a quantitative description of the solute−solvent
coupling is a demanding problem that is impossible to solve by
visual inspection. In order to make progress in quantifying the
solvent participation, we use a deep neural network to model
the outer-to-inner sphere exchange. Here, we focus the
machine learning on the dominant indirect exchange. In

Figure 4. Kinetic pathways from transition path sampling. (A) Four representative pathways connecting the two stable states. Blue/gray pathways
correspond to the indirect/direct exchange mechanism. (B) Probability distribution along transition pathways for the distance rI between Mg2+ and
the phosphate oxygen and the exchange angle αex between phosphate oxygen, Mg2+, and exchanging water oxygen. (C) Distribution of transition
times for the indirect and the direct exchange mechanisms. (D) Indirect Mg2+ exchange mechanism in which the leaving phosphate oxygen and the
incoming water molecule occupy different positions on the water octahedron. (F) Direct Mg2+ exchange mechanism in which the leaving phosphate
oxygen and the incoming water molecule occupy the same position on the water octahedron. In (D) and (E), the five closest water molecules are
shown. The incoming water molecule is highlighted in blue.

Table 1. Properties of the Transition State Ensemblea

mechanism rI [Å] rex [Å] rs [Å] αex [deg] τ [ps]

indirect 3.17 ± 0.03 3.51 ± 0.03 1.928 ± 0.003 122.9 ± 14.7 0.48 ± 0.01
direct 3.28 ± 0.03 3.46 ± 0.03 1.928 ± 0.003 47.7 ± 5.1 0.56 ± 0.01

aMg2+-O1P distance rI, Mg2+-oxygen distance of exchanging water rex, Mg2+-oxygen distance of the five closest water molecules rs, angle between
O1P, Mg2+, and the exchanging water molecule αex, average transition time τ. Standard deviations are indicated. A sample size of 1759 or 754
transition states was used for the indirect and direct exchange mechanisms, respectively.
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particular, we use 17,477 structures along independent
transition paths and their commitment probabilities pA (Figure
5A) to learn the functional relation between pA and the
features describing the structure of Mg2+, RNA, and the first
two hydration shells.
The choice of the architecture of the deep learning model is

essential for its performance. To derive the optimal deep
learning model, we have defined an algorithm that systemati-
cally selects the optimal architecture by scanning through
thousands of individual models using hyperparameter opti-
mization. In order to make robust predictions and prevent
overfitting, we optimize the neural network on the training set
and select the model that performs best on the validation set.
Finally, using the test set, we illustrate the performance of the
optimal machine learning model in predicting the commitment
probability of unknown structures (Figure 5B). The results
demonstrate that the optimized deep neural network is capable
of predicting pA with an RMS error of 6.5%. The high accuracy
in predicting the progress of the binding process clearly shows
that the network extracts all relevant information, combines it
in a weighted nonlinear fashion to a scalar reaction coordinate,
and captures the details of the solute−solvent coupling
precisely.
Further insight into the quality of the predictions is obtained

from the distribution of commitment probability p(pA) of the
transition states selected autonomously by the neural network
(Figure 5C). The distribution is unimodal and sharply peaked
at pA ≈ 0.5 and closely resembles the binomial distribution
expected for an ideal reaction coordinate.61 Consequently, the
information contained in the features is sufficient for the
network to single out the transition state. The results from
deep learning provide significant improvement compared to

the reaction coordinate based on expert knowledge and
highlight the machine learning ansatz as a particularly useful
strategy in recognizing the relevant patterns. In addition, the
results from deep learning outperform the results from linear
regression based on the exact same features (Figure 5C).
Therefore, hidden layers and a nonlinear combination of
features using activation functions are essential to describe the
many-body interactions. At the same time, the complexity of
the deep learning model prohibits further insight into the
reaction mechanism. In this regard, it is particularly useful to
evaluate the contribution of each feature. Two complementary
rankings are presented in Figure 5D. The single feature ranking
quantifies the relevance of a single feature independent of all
others. Since the single feature ranking can contain redundant
information, the complementary combined feature rank is
given, which yields the most relevant combination of features.
Taken together, a consistent picture emerges: All features
describing the molecular structure within the first two
hydration shells contain information that is relevant for the
process. Adding this information to the model leads to a
continuous decrease of the likelihood loss and therefore to a
linear increase of the relevance rc. Finally, four features give rise
to an exponential increase in the relevance and carry about
40% of the information (Table 2). These features reflect the
concerted motion of the leaving phosphate oxygen and the
entering water molecule as well as the rearrangement of the
five closest water molecules from octahedral to mirror
symmetry. At the same time, the remaining 60% of the
information is distributed over the remaining 79 features
reflecting the importance and many-body nature of the
solvent−solute coupling.

Figure 5. Reaction coordinate from artificial intelligence. (A) Data set used for machine learning. The committor probability pA
true and free energy

contour are shown as a function of the features rI and s6 for the full data set consisting of 17,477 entries for indirect exchange pathways (72%
training set, 8% validation set, 20% test set). (B) Committor values pA

pred predicted by the optimized deep neural network correlated with the values
pA
true obtained from the committor simulations. The RMS error of the prediction is 6.5%. (C) Comparison of the committor distribution p(pA

true) for
transition states selected from the deep learning algorithm, from linear regression over all features, and from the expert knowledge using eq 7 and
the binomial distribution expected for an ideal reaction coordinate.61 (D) Ranking of the features according to their relevance in the machine
learned reaction coordinate: single feature relevance rs (top) and combined feature relevance rc (bottom). The color indicates the rank of the
features according to the combined feature relevance. The corresponding features are shown in Table 2 and Table S2.
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4. CONCLUSION
Characterizing the kinetic pathways of Mg2+ binding to
biomolecules such as RNA is fundamental in understanding
its functional role in biochemical processes. Yet, the transition
from water-mediated outer-sphere to direct inner-sphere
binding is on the millisecond time scale and therefore out of
reach for conventional all-atom simulations. To fill this gap, we
used transition path sampling to resolve the kinetic pathways
of Mg2+ binding to the most important ion binding site on
RNA, namely the phosphate oxygen. The results reveal a
superior indirect pathway and an inferior direct exchange
pathway. In both pathways, the molecular void in the first
hydration shell provoked by the leaving phosphate oxygen is
immediately filled by an entering water. At the same time, the
water molecules from the first and second hydration shell
couple to the concerted exchange. These long-range and
collective interactions are a direct consequence of the high
ionic charge density of Mg2+ which provokes strong ordering in
the surrounding solvent and an intimate coupling between
solute and solvent. Consequently, ligand exchange gives rise to
a complex interplay of orientational, packing, and hydrogen
bonding effects in which the collective reorientation and
translation of several solvent molecules become important.
A complete understanding of the dynamics requires

knowledge of the detailed molecular motions involved in the
exchange process. However, quantifying their contribution is
exceptionally difficult. Instantaneous fluctuations, resulting
from different solvent configurations, influence the progress
in particular since the time scale of solvent reorientation
(about 10 ps) is slower than the reactive motion itself (0.4 ps).
In order to quantify how the reactant and solvent dynamics are
coupled, the rapidly growing field of machine learning offers
exciting possibilities in extracting complex patterns in large
data sets and in finding optimal reaction coordi-
nates.26−28,60,73,74 The results presented here reveal that a
properly optimized deep neural network is particularly suited
to recognize the molecular motions that occur during the
course of the binding, to extract the relevant information, and
to predict the commitment probability with high accuracy.
About half of the information on the dynamics is contained in
the concerted motion of the leaving phosphate oxygen and the
entering water molecule as well as in the rearrangement of the

five closest water molecules. The other half is contained in the
solvent structure rendering deep neural networks particularly
useful in recognizing the relevant molecular structures.
The question how the solvent affects processes in aqueous

solutions is ubiquitous in all areas of chemistry and biology.
Here, machine learning provides a promising perspective to
explore the intimate coupling between charged solutes and the
solvent at the molecular level.26,27,73 Still, more work is
required to investigate whether a simple one-dimensional
reaction coordinate exists that captures such complex
dynamics.75
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