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Abstract This paper presents a novel framework for optimizing portfolios using dis-
tribution dependent thresholds in Omega ratio to control the downside risk. Portfolios
resulting from the maximization of the classical Omega ratio simultaneously maxi-
mize the probability of superior performance compared to a threshold point set by an
investor and minimize the probability of a worse performance compared to the same
threshold. However, there is no mandatory rule or mechanism to choose this thresh-
old point in the Omega ratio optimization model yet. In this paper, we redefine the
Omega ratio for a loss averse investor by taking the distribution dependent threshold
point as the conditional value-at-risk at an α confidence level (CVaRα) of the bench-
mark market. The α-value reflects the attitude of an investor towards losses. We then
embed this new Omega-CVaRα model in a robust portfolio optimization framework
and present its worst case analysis under three uncertainty sets. The robustness is
introduced both in the Omega measure and the CVaRα measure. We show that the
worst case Omega-CVaRα robust optimization models are linear programs for mixed
and box uncertainty sets and a second order cone program under ellipsoidal sets, and
hence tractable in all three cases. We conduct a comprehensive empirical investigation
of the classical CVaRα model, the STARRα model, the Omega-CVaRα model, and
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robust Omega-CVaRα model under a mixed uncertainty set for listed stocks of the
S&P 500. The optimal portfolios resulting from the Omega-CVaRα model exhibit a
superior performance compared to the classical CVaRα model in the sense of higher
expected returns, Sharpe ratios, modified Sharpe ratios, and lesser losses in terms of
VaRα and CVaRα values. The robust Omega-CVaRα model under mixed uncertainty
set is shown to dominate the Omega-CVaRα model in terms of all performance mea-
sures. Furthermore, both the Omega-CVaRα and robust Omega-CVaRα model under
a mixed uncertainty set yield significantly lower risk compared to STARRα model in
terms of CVaRα and variance values.

Keywords Omega ratio optimization · Value-at-risk · Conditional value-at-risk ·
Robust portfolio optimization · Asset allocation

1 Introduction

The modern portfolio theory (MPT) has now become a giant tree whose seed was
farmed by Markowitz (1952) and later nourished and disseminated by a number of
academics and practitioners. Markowitz’s MPT foundation is laid on the fact that an
investor always aims for the best trade-off between portfolio return and its risk. The
portfolio return is assumed to follow a symmetric distribution and is thus charac-
terized by its first two moments, mean and variance.1 This theory gives birth to the
popularmean-variancemodel. However, themodel fails to capture heavy tails in return
distributions.

Over the decades, the assumption of symmetric return distribution has been relaxed
and other statistical measures have been proposed to represent risk (Roman and Mitra
2009 and references therein). Nevertheless, standard deviation is still a popular mea-
sure to quantify risk for a large number of risk seeking investors in practice. The
standard deviation andmean absolute deviation (Konno andYamazaki 1991) are exam-
ples of symmetric risk measures that penalize the deviations above as well as below
the threshold point (which is the mean of the return distribution). Yet, many investors
wish to amplify the threshold point and thus choose an asymmetric risk measure
(Markowitz 1959; Fishburn 1977) that minimizes only the points below the threshold
point. Other risk measures called “downside risk measures” focus on the right tail
of the loss distribution (or the left tail of the return distribution) to minimize large
losses. The Value-at-Risk VaRα (Linsmeier and Pearson 1996) and the Conditional
Value-at-Risk CVaRα (Rockafellar and Uryasev 2002), at an α confidence level, are
two popular downside risk measures designed for loss averse investors. The VaRα is
the realization of the loss distribution fromwhich all realizations over the time horizon
are smaller with an α probability and thus a higher value of α is desirable. CVaRα is
the average of those realizations that are larger than the VaRα . Thus, CVaRα contains
additional information of the loss distribution compared to the VaRα .

1 To be precise, variance is the second central moment of the distribution. However, it can be computed by
the first two moments.
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Beside an accurate determination of a riskmeasure of a return distribution, investors
also wish to evaluate the performance of their portfolios with respect to a benchmark
index or have the desire to rank different portfolio strategies. Performance indices are
one of the tools available in finance to assess this task (Treynor 1965 ratio; Sharpe
1966, 1994 ratio; Jensen 1967 alpha). Apart from ranking the portfolios, they are also
used to construct optimal portfolios (Mansini et al. 2003).

Thedevelopment of numerous riskmeasures succeeding theSharpe ratio leads to the
emergence of new performance indices such as the modified Sharpe ratio (Gregoriou
and Gueyie 2003), Sortino ratio (Sortino and Price 1994), STARR (Martin et al. 2003),
and Rachev ratio and generalized Rachev ratio (Biglova et al. 2004). Keating and
Shadwick (2002) introduce the Omega ratio as a performance index to measure the
growth of the upside deviation relative to the downside deviation of portfolio return
from a constant threshold point. Stoyanov et al. (2007) consider the maximization of
the STARR and Rachev ratio.

The notable advantage of using theOmega ratio in a portfolio selectionmodel is that
this ratio neither requires a specific type of utility function nor assumes any specific
distribution of portfolio return. Also, contrary to the Sharpe and Treynor ratioswherein
an investor needs to estimate the expected return and risk in stocks returns, the Omega
ratio does not suffer from such estimation errors. Moreover, while the Rachev ratio
(Biglova et al. 2004) focuses on extreme gains and extreme losses by considering only
the ratio of the upper and the lower tails of the return distribution, the Omega ratio
is a performance measure to build portfolios based on the entire return distribution,
thereby innate more information.

Similar to other performance indices, the Omega ratio can be optimized over a set of
admissible portfolios to construct an optimal portfolio. The theoretical beauty of max-
imizing the Omega ratio allows us to convert a non-convex non differentiable problem
into a linear programming problem (LPP) under specific conditions on the upper bound
of the threshold point. Nevertheless, the Omega ratio, along with many desirable fea-
tures, has some weak points such as that it is sensitive to changes in the threshold
point. Moreover, there is no formal rule to guide an investor regarding an appropriate
choice of a threshold point. Consequently, the Omega ratio optimization model is not
conducive to capturing heavy tails in portfolio return distribution (Mausser et al. 2006;
Sharma andMehra 2015). Thus, the Omega ratio optimization in its present shapewith
an arbitrary but constant threshold point is not suitable for loss averse investors.

In this paper, we attempt to improve the Omega ratio optimization model in the
sense of these weaknesses. We present a systematic approach to select distribution
dependent threshold points to reflect loss aversion of an investor. We incorporate
the loss aversion behavior into our model by employing the CVaRα of a benchmark
market portfolio (BM) as a distribution dependent threshold point in the Omega ratio.
We name the new Omega ratio optimization model by the Omega-CVaRα model. By
maximizing the Omega-CVaRα model, an investor maximizes expected losses below
the threshold CVaRα (i.e. gains) and simultaneously minimizes expected losses in
excess of the same CVaRα .2 To account for this, we redefine the original definition of

2 Note that the underlying distribution is the loss distribution in which expected losses below the threshold
indicate smaller losses than the CVaRα .
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Omega ratio and denote it as �α(�) by replacing the portfolio return r by the portfolio
loss � to make the study compatible with the concept of CVaRα .

We address the situation of an investor who wishes to avoid portfolio losses higher
than the CVaRα of the BM z.3 Our model has its practical application in mutual funds
which try to replicate an index (such as theS&P500,MSCIWorld), and enhanced index
tracking (Guastaroba et al. 2016), for instance. Therefore, we construct a portfolio by
maximizing the Omega ratio �α(�) from a subset of stocks x of the BM z. In our
empirical study, we take the BM z as being the entire set of those stocks listed on the
S&P 500 on June 2015 and whose data has been available for at least 10 years. Our
investment universe x contains the top 50 stocks from z with respect to the market
capitalization.Theproposedmethodology aims tomaximize theOmega-CVaRα model
using the subset of stocks x wherein the threshold point is obtained by minimizing
the CVaRα model for z. In other words, the proposed Omega-CVaRα model requires
no extra effort to find the benchmark threshold as it gets computed within the model
itself from the BM z-data, and subsequently the model construct an optimal portfolio
by optimizing the Omega ratio �α(�) from x-data.

To solve the Omega-CVaRα model, an investor should have a true knowledge of
the loss distributions of z and x which is generally not available. Therefore, the main
challenge is to find a portfolio which always remains close to optimality or feasibility,
independent of whatever future scenario persists in the market. Several studies (Ben-
Tal and Nemirovski 2000; Beyer and Sendhoff 2007) develop robust optimization as
a possible attempt to this uncertainty. To ascertain the robustness in the outcomes
from the proposed Omega-CVaRα model, we employ the worst case approach in
the Omega ratio as well as its threshold CVaRα when only partial information on
the underlying distributions is available.4 We present the worst case analysis of the
Omega-CVaRα model in the robust portfolio optimization framework under mixed,
box, and ellipsoidal uncertainty sets for discrete distribution for x and z. We prove
that Omega-CVaRα robust portfolio optimization models can be converted into linear
programs under mixed and box uncertainty sets and into a second order cone problem
(SOCP) under an ellipsoidal uncertainty set which makes them tractable in all three
cases.5

To test the performance of the proposed Omega-CVaRα model and its worst
case Omega-CVaRα robust optimization version under the mixed uncertainty set,
we perform a one month rolling window strategy for four different values of α =
0.97, 0.95, 0.93, 0.90. The observation period of the study covers 25.5 years from Jan
1990 to June 2015 with 306 closing monthly returns of all stocks listed on the S&P
500 as of June 2015. Our in-sample estimates are based on 20 years (240 months) and

3 With respect to the definition of theOmega ratio, the value-at-risk is not the natural choice for the threshold.
In fact, the Omega ratio for the value of risk at a certain confidence level is constant (when distribution
to compute Omega ratio is similar to the distribution to compute value-at-risk) due to the definition of the
value-at-risk.
4 Thus, in this framework, we are able to reduce the sensitivity of the Omega ratio to its threshold point,
which now is also chosen by the robust optimization approach.
5 For computational purposes, we analyze the worst case of Omega-CVaRα under the mixed uncertainty
set.
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the corresponding out-of-sample period covers the subsequent month. For a compar-
ative analysis, we optimize the classical CVaRα model using the sample of stocks x .
Moreover, we relate the performance of our proposed model to three further bench-
mark portfolios. First, we include the STARR optimization model in our empirical
analysis. The STARRα , at an α level, is the ratio of the excess mean return from
the benchmark index to the CVaRα value of the return, and thus conducive for our
comparative analysis. Second, DeMiguel et al. (2009) find that no portfolio strategy
was able to statistically outperform the naïve diversification 1/m portfolio, so we
decide to entail the 1/m portfolio strategy as an additional benchmark strategy. The
1/m portfolio strategy stems from the allocation of a fraction 1/m of a budget to
each of the available assets from S&P 500 index in each in-sample period. Third, we
also take a market capitalization value weighted portfolio (MCWP) from S&P 500
index in our comparison analysis; it is formulated by allocating the normalized market
capitalization weights instead of equal weights as in the 1/m portfolio strategy.

Our empirical results show that the portfolios of Omega-CVaRα and robust Omega-
CVaRα (under the mixed uncertainty set) exhibit higher expected returns, Sharpe
ratios, modified Sharpe ratios, lower values of VaRα , and CVaRα for all four values
of α compared to the classical CVaRα model, and outcomes are significant for the
first two performance measures for most values of α. Both the models outperform
the 1/m portfolio strategy statistically in terms of CVaRα values for all values of α.
Moreover, the portfolios of robust Omega-CVaRα under the mixed uncertainty set
outperform those of the Omega-CVaRα model in terms of expected returns, Sharpe
ratio, modified Sharpe ratio, VaRα , and CVaRα values for all four values of α and thus
signifies the utility of robust optimization. Finally, portfolios of the STARRα model
exhibit significantly higher variance values and CVaRα values compared to portfolios
of the Omega-CVaRα and robust Omega-CVaRα model under a mixed uncertainty set
for all four values of α. Nevertheless, optimal STARRα model portfolios earn higher
average returns than the Omega-CVaRα and robust Omega-CVaRα under the mixed
uncertainty set only for α = 0.97.

The remainder of the paper is organized as follows. Section 2 presents a brief
overview on the Omega ratio, the CVaRα concept, and their optimization. Section 3
explains the proposed Omega-CVaRα model. Section 4 extends the proposed model
to its robust Omega-CVaRα model under three different uncertainty sets. Section 5
presents the empirical analysis. Section 6 concludes the paper.

2 Optimization models

In this section, we introduce and discuss the Omega optimization model as well as the
general shape of the CVaRα portfolio model. In the remainder of the paper we use the
following notations:

� time horizon of investment
z = (z1, . . . , zm) ∈ R

m vector of benchmark market portfolio of m stocks; z j is
the weight of the j th stock

x = (x1, . . . , xn) ∈ R
n vector of a subset portfolio of n ≤ m stocks of the bench-

mark market; x j is the weight of the j th stock

   



510              

T̂ discrete case: investment time � is divided into T̂ sce-
narios for z

T discrete case: investment time � is divided into T sce-
narios for x

�i j loss realization of j th asset at i th timepoint, i = 1, . . . , T

�̂iz =
∑m

j=1
�̂i j z j random loss in portfolio z at i th time point, i = 1, . . . , T̂

�ix =
∑n

j=1
�i j x j random loss in portfolio x at i th time point, i = 1, . . . , T

�x and �̂z denote the loss for portfolios x and z, respectively, and are distributed over the

respective finite scenarios (�1x , . . . , �
T
x ) and (�̂1z , . . . , �̂

T̂
z ). Also, note that all necessary

mathematical symbols associated with the benchmark market z are denoted using the
hat sign on top such as �̂z and T̂ , while all those associated with a subset of stocks
x ⊂ z are denoted by simple characters such as � and T .

2.1 The Omega optimization model

The Omega ratio is a young performance index. It ranks different strategies and,
therefore, is used to determine an optimal portfolio (Mausser et al. 2006; Gilli et al.
2011; Kirilyuk 2013; Kapos et al. 2014; Sharma and Mehra 2015; Guastaroba et al.
2016). Mausser et al. (2006) apply the Charnes and Cooper (1962) transformation to
convert the Omega ratio optimization model into a linear program in the case of the
optimal Omega ratio being greater than 1. For lower values of optimal Omega ratios it
is advisable to use global optimization (Glover and Laguna 1997), heuristics (Reeves
1993), and integer programming approaches. Dembo and Mausser (2000) and Kapos
et al. (2014) optimize theOmega ratio in the risk-reward framework, inwhich risk is the
downside deviation and reward is taken as the upside deviation (Dembo and Mausser
2000) or the mean return (Kapos et al. 2014). Sharma and Mehra (2015) optimize the
Omega ratio model with an additional constraint involving the traditional risk measure
to reduce some component of riskwhich otherwise is not captured solely by theOmega
ratio.6Moreover, Avouyi-Dovi et al. (2004) andKane et al. (2009) optimize theOmega
ratio as a non-convex program using the threshold acceptance technique (Dueck and
Tobias 1990) and NAG library implementation MCS method (Huyer and Neumaier
1999), respectively. Guastaroba et al. (2016) study an application of the Omega ratio
in enhanced index tracking problem in two frameworks, one when the threshold point
is a constant, and the second when it is random. The authors show that the optimal
portfolio obtained from theOmega ratio optimizationwith random threshold generally
outperforms the one obtained with the constant threshold. This also supports the idea
of considering the distribution dependent threshold point in Omega ratio in our study.

In the remainder of this subsection, we update the primary definition of the Omega
ratio for the case of a loss distribution and reshape the corresponding optimization

6 Heavy tails and dispersion around the mean return (as, at mean return, the Omega ratio is a constant)
are controlled by setting upper bounds on risk measures CVaRα , minimax (Young 1998), and semi-mean
absolute deviation SemiMAD (Ogryczak and Ruszczynski 1999) in constraints in the Omega ratio model
while maintaining linearity in the resulting three hybrid models.
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model. For a loss �x in a portfolio x ∈ R
n and a fixed threshold point, L , the Omega

ratio is defined as

�L(�x ) =

∫ L

−∞
Pr(�x < �)d�

∫ ∞

L
Pr(�x > �)d�

=

∫ L

−∞
F�x (�)d�

∫ ∞

L

(
1 − F�x (�)

)
d�

= E p(L − �x )
+

E p(�x − L)+
,

where F�x (�) is the probability distribution and p the probability density functions of
the random variable �x , E p(·) is the expected function under p, and y+ denotes the
maximum of zero and y. We assume that E p(�x − L)+ > 0. This assumption holds
in a situation in which an investor can generate portfolios with higher losses �x than
the threshold L . Indeed, this obviously holds for a reasonable selection of L .

For a given threshold point L , ranking under the Omega ratio optimization is taken
in the spirit that a portfolio x1 outperforms a portfolio x2 if and only if �L(�x1) ≥
�L(�x2). Note that�L(�x ) as a function of L is strictly increasing and so is the function
�∗

L = maxx �L(�x ). The Omega ratio equals one for L = E(�x ).
Rachev et al. (2008) introduce an aggressive-coherent ratio as a function G(X)

defined on real numbers X which satisfy the following three properties:

(I) It admits the form G(X) = ν(X)/η(X), where ν(X) and η(X) are, respectively,
the reward and the risk measures, η(X) posses same sign as of ν(X), for all X .

(II) In the ratio representation, both the reward and the risk measures are either
concave or convex functions.

(III) If X ≥ Y , then G(X) ≥ G(Y ) provided that the reward and risk measures are
both strictly positive, and G(X) ≤ G(Y ) when both are strictly negative.

In context of the above properties, it can easily be verified that the classical Omega
ratio is an aggressive-coherent ratio by taking ν(X) and η(X) as E p(L − �x )

+ and
E p(�x − L)+, respectively. Then, both functions are convex and positive. Also, for a
fixed L , the higher value of Omega ratio is preferable for portfolio X preference over
portfolio Y , resulting in property (III). Thus, the �L(�x ) is an aggressive-coherent
ratio, ∀ L , and hence for L = CVaRα .

Next, we determine the Omega ratio optimization model using the loss distribution
as

P1 max �L (�x ) = E p(L − �x )
+

E p(�x − L)+
subject to :

n∑

j=1

x j = 1, x j ≥ 0, j = 1, . . . , n,

where
∑n

j=1
x j = 1 is the normalized budget constraint and x j ≥ 0 prohibits short

selling. A computationally convenient and natural method to represent uncertainty
is through its finite scenarios.7 With this motivation, we approximate the �L(�x )

function by taking T finite number of scenarios of �x (using sampling techniques)
with the probability vector p = (

(p1, . . . , pT )t ; pte = 1, pi ≥ 0, ∀ i = 1, . . . , T
)
.

P1 can then be rewritten as the following fractional program:

7 A scenario is a particular realization of the uncertain data.

   



512              

P2 max �L(�x ) = ptu

ptd

subject to: Bx + u − d = Le (1)

u.d = 0, u, d ∈ R
T+ (2)

x te = 1, x ∈ R
n+, (3)

where B = [�i j ]T×n is the loss matrix of portfolio x . Throughout the paper, Rn+ is the
non-negative orthant of R

n and e is the vector of 1’s in an appropriate dimensional
space in the context, u = ((u1, . . . , uT )t ; ui = (L − �ix )

+, ∀ i = 1, . . . , T ) and
d = ((d1, . . . , dT )t ; di = (�ix − L)+, ∀ i = 1, . . . , T ) are the respective upside
and downside deviations vectors reflecting overachievement and underachievement

of the i th realization �ix =
∑n

j=1
�i j x j from the threshold point L . In (2), u.d is the

point-wise product, i. e. uidi = 0, ∀ i = 1, . . . , T .
The complementarity constraints (2) depict that, in every scenario, the portfolio loss

is either less than or greater than the threshold point L . Because of these constraints,
P2 is a nonconvex nonlinear problem and thus requires an efficient nonlinear solver
(Huyer and Neumaier 1999; Dueck and Tobias 1990; Glover and Laguna 1997) to find
a solution close to its global optimum. Following Mausser et al. (2006), we apply the
Charnes and Cooper (1962) transformation technique to convert P2 into the following
program, which we refer to as Omega.

Omega max �̃L(�x ) = pt ũ

subject to: Bx̃ + ũ − d̃ = L̃e

x̃ te = γ

pt d̃ = 1

ũ, d̃ ∈ R
T+, x̃ ∈ R

n+,

where γ > 0 is a homogenization variable, x̃ = xγ, ũ = uγ, d̃ = dγ, L̃ = Lγ .
The resulting model Omega is a LPP in ũ, x̃ , d̃, γ . An optimal solution for P2
can be obtained from an optimal solution of Omega only if max �̃L(�x ) > 1
or equivalently L > minx t e=1, x∈R

n+ E p(�x ). In this case the complementarity con-
straints (2) hold naturally inOmega (Mausser et al. 2006).Most of the optimal portfolio
strategies in real practice do not let the optimal Omega ratio value become less than
or equal to 1. As a consequence optimizing the Omega ratio is equivalent to solving
the linear program Omega ensuring a global optimal solution for P2. Earlier studies
(Avouyi-Dovi et al. 2004; Kane et al. 2009; Mausser et al. 2006) quote some efficient
nonlinear solvers to solve P2 in case it remains a nonconvex nonlinear model.

2.2 The CVaRα model

Worse scenarios on financial market associated with high losses are reasons for the
right skewness of loss distributions of investments. Risk managers try to gain control
of these losses by quantifying downside risk measures to capture these unfavorable
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occurrences. The Value-at-Risk VaRα is the first downside risk measure indicating the
amount of a possible maximum loss at a given confidence level α. The foundation of
VaRα provides a newperspective to riskmanagerswhen analyzing losses inmanyfields
such as investment banking, insurance, and gold mining companies. But it has been
noticed that the VaRα measure fails to have desirable properties of being a coherent
risk measure (Artzner et al. 1999). Moreover, VaRα optimization is computationally
cumbersome and does not reach the exact value (Ghaoui et al. 2003).

TheConditionalValue-at-RiskCVaRα , an alternative downside riskmeasure,which
accounts for all of those losses that are greater than VaRα , surpasses the Value-at-
Risk measure in crucial aspects. For example, it accommodates more information
in the interest of risk managers, it is a coherent risk measure, and its optimization
can be approximated by a LPP for continuous scenarios and is exactly the same for
a discrete scenario. Therefore, we propose using the CVaRα measure to determine
the threshold in the Omega ratio optimization model. Following this approach, we
take the performance of a corresponding benchmark market into account and present
a framework to compute a portfolio which exhibits the highest Omega ratio with
respect to the CVaRα measure of the BM, i.e. which prevents an investor to fail the
expected shortfall of a BM at a given confidence level α. For a random loss �̂z of the
BM z ∈ R

m , the VaRα(�̂z) is the loss point from which all BM losses over the time
horizon are smaller with α probability. The CVaRα(�̂z) is the average of those BM
losses that are larger than VaRα(�̂z) (Rockafellar and Uryasev 2000).

Rockafellar and Uryasev (2000) introduce the primary CVaRα(�̂z) portfolio opti-
mization model. They prove that the CVaRα(�̂z) minimization with a continuous
distribution can be approximated by a linear program using sampling techniques.
Let T̂ be the finite number of scenarios of �̂z (using sampling techniques) with proba-
bility vector q = ((q1, . . . , qT̂ )t ; q te = 1, qi ≥ 0, ∀ i = 1, . . . , T̂ ), the CVaRα(�̂z)

minimization is equivalent to solving the following LPP:

PCVaRα(�̂z)
min η + 1

1 − α
q t û

subject to: û + ηe − B̂z ≥ 0, η ∈ R, û ∈ R
T̂+ (4)

et z = 1, z ∈ R
m+, (5)

where B̂ = [�̂i j ]T̂×m is the loss matrix of portfolio z and û = ((û1, . . . , û T̂ )t ; ûi =
(B̂i z − η)+, B̂i is the i th row of matrix B̂, i = 1, . . . , T̂ ).

3 The Omega-CVaRα model

3.1 Definition of the Omega-CVaRα model

In this section, we propose the Omega ratio optimization by replacing L by L(α) :=
CVaR∗

α(�̂z) as the optimal objective value from PCVaRα(�̂z)
model. We establish the

new Omega ratio for a fixed confidence level α, 0 < α < 1, as
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�L(α)(�x ) = E p(L(α) − �x )
+

E p(�x − L(α))+
.

With L(α) = CVaR∗
α(�̂z), we focus on designing the portfolios for investors who do

not wish to fall beyond this critical value at a fixed confidence level α. The motive
is to control heavy losses in the distribution of portfolio returns by minimizing lower
deviation from L(α) = CVaR∗

α(�̂z) and still advancing towards the positive rewards
by maximizing the upper deviation from the same L(α).

In contrast to the classical Omega ratio model, the optimization of the Omega
ratio with L(α) = CVaR∗

α(�̂z) involves an additional inner minimization problem
PCVaRα(�̂z)

in the constraints. We can solve this inner minimization problem by con-
sidering behavior of �L(α)(�x ) with respect to L(α) and the existence of the zero
duality gap in PCVaRα(�̂z)

. For a fix value of α, �L(α)(�x ) is an increasing function of
L(α), i.e. the maximum value of �L(α)(�x ) is attained at the upper bound of L(α).
Using this fact along with the zero duality gap in PCVaRα(�̂z)

model, we solve the
inner minimization problem by taking its corresponding dual maximization problem
in optimizing �L(α)(�x ).

Combining P2 and PCVaRα(�̂z)
, the Omega ratio optimization with L(α) =

CVaR∗
α(�̂z) is given as follows:

P3 max �L(α)(�x ) = ptu

ptd

subject to: constraints (1) − (3)

L(α) ≤ min{constraints (4) and (5)} η + 1

1 − α
q t û. (6)

We solve the innerminimization problem in P3 (constraint 6) by taking its dual problem
which is stated as follows:

PDCVaRα(�̂z)
max ϑ

subject to: v − q

1 − α
≤ 0 (7)

−B̂tv + ϑe ≤ 0 (8)

vte = 1, v ∈ R
T̂+, ϑ ∈ R, (9)

where ϑ ∈ R is the dual variable corresponding to constraint (5) in its primal problem
PCVaRα(�̂z)

. Using PDCVaRα(�̂z)
in P3, we obtain the following reduced problem P4:

P4 max �L(α)(�x ) = ptu

ptd
subject to : L(α) ≤ ϑ, constraints (1) − (3) and (7) − (9).

Applying the Charnes and Cooper (1962) transformation in P4, we receive the fol-
lowing linear program named Omega-CVaRα
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Omega − CVaRα max ˜�L(α)(�x ) = pt ũ

subject to: Bx̃ + ũ − d̃ = L̃(α)e

pt d̃ = 1, L̃(α) ≤ ϑ̃

ṽ − γ

1 − α
q ≤ 0, −B̂t ṽ + ϑ̃e ≤ 0

x̃ te = γ, ṽte = γ, ṽ ∈ R
T̂+, ϑ̃ ∈ R, x̃ ∈ R

n+,

where γ > 0 is a homogenization variable, and for every other variable φ, φ̃ =
γφ and Omega-CVaRα is linear in x̃, ũ, d̃, γ, ṽ, ϑ̃ . Analogously to the Omega
model, the optimal solution for P4 can be calculated from Omega-CVaRα only if

max ˜�L(α)(�x ) > 1 or equivalently if L(α) > min
x t e=1, x∈R

n+
E p(�x ) (see, Mausser et al.

2006; Sharma and Mehra 2015). For sufficiently large values of α, the average of all
losses beyond VaRα in BM z is generally greater than the minimum expected loss of
market x (i.e. CVaR∗

α(�̂z) > min
x t e=1, x∈R

n+
E p(�x )).8 Hence, the Omega-CVaRα model

remains a LPP and can be solved using any standard LPP solver.

3.2 Omega-CVaRα model and related ratios

Besides�L(α)(�x ), the other two prominent ratios involving CVaR-measure to control
the extreme losses in the return distribution with respect to the benchmark index (or
benchmark market) are STARR (Martin et al. 2003) and Rachev ratio along with the
generalized Rachev ratio (Rachev et al. 2008; Biglova et al. 2004). Rachev ratio is the
ratio of the average of (1 − α)% of most extreme gains from the benchmark index
over the average of (1 − β)% of the most extreme losses from the same benchmark
index. In short, it is the ratio of CVaRα value (to maximize) of the excess return of
benchmark index from the portfolio return to the CVaRβ value (to minimize) of its
negative series. It is defined as follows:

Rachevα, β(rX ) = CVaRα(rM − rX )

CVaRβ(rX − rM )
,

where 0 < α, β < 1, and rM and rx denote the benchmark index returns and portfolio
X returns, respectively. The following characteristics of Rachev ratio in relation with
the Omega ratio are noteworthy.

(I) In the case of α + β 	= 1: Rachev ratio does not extract complete information
of the distribution of stock returns and only emphasize on the tail parts of the
distribution (according to the values of α and β) of the excess return from
the benchmark index. However, the Omega ratio bifurcates the entire return

8 In other words, it conveys that value of CVaRα (which accounts for the right tail of loss distribution of
z) is larger than the minimum expected value of the loss function (which accounts for the left tail of loss
distribution of x)
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distribution into two parts according to the threshold point L . By replacing
L by CVaR∗

α(�̂z), we account to minimize all losses exceeding to the CVaRα

value of the benchmark market z and maximizing all losses lesser than the same
benchmark threshold, and hence do not miss any information in the distribution.

(II) In the case of α + β = 1: Rachev ratio acts similar (although not exactly equal)
to the Omega ratio for L = VaRα and α = 1− β in the Omega ratio, and rM =
0 in Rachev ratio.

(III) Rachev ratio as well as the Omega ratio are aggressive-coherent ratios irrespec-
tive of the values of the input parameters (α, β, and L).

(IV) The resultant optimization model for Rachev ratio is a mixed integer linear
program (see, Stoyanov et al. 2007). It is computationally challenging to solve
especially for 50 or more scenarios. However, the optimization model for the
Omega ratio is an LPP for a suitably chosen threshold point L , and hence easily
tractable.

Another similar ratio is STARRα (Martin et al. 2003) which, for a fixed confidence
level α, 0 < α < 1, is the ratio of the excess mean return to a benchmark index
over its CVaRα value. It is given as follows:

STARRα(rX ) = E p(rX ) − E(rM )

CVaRα(rX − rM )
.

Note that STARRα is the special case of theRachevα, β ratio inwhichRachev1, 0.97(rX )

= STARR0.97(rX ). Also, STARRα is a coherent ratio (Rachev et al. 2008).
The optimization model for STARRα is stated as follows:

STARRα(�x ) max −E p(�)̃x + γ E(�M )

subject to: τ̃1 + 1

1 − α
pt õ ≤ 1

õ + τ̃1e − B̂ x̃ + γ �M ≥ 0

et x̃ = γ

õ ∈ R
T+, τ̃1 ∈ R, x̃ ∈ R

n+,

where γ > 0 is a homogenization variable, and E p(�) = (
∑T

j=1
�i j p j ; i =

1, . . . , n)t is the vector of expected losses. In our empirical analysis, �M = �̂z ,
where z is the BM of the entire S&P 500 stocks, B̂[�̂i j ]T̂×m is the loss matrix of

z, and E(�̂z) = 1

T
(
1

m

∑T

t=1

m∑

i=1

�ti zi ). Due to the computational benefits of the

STARRα(�x ) model, we propose to include it in our empirical analysis.

4 Robust optimization

In the presence of two unknown distributions in the Omega-CVaRα model, namely p
and q, an optimal solution from it can suffer severely from errors in the distribution
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estimation which misleads an investor about the portfolio outcomes. To account for
the risk due to uncertainty in the underlying distributions, we present a worst case
analysis of the Omega-CVaRα model.

The randomness in modeling can be handled in two ways: either by robust opti-
mization (RO) such as in Ben-Tal and Nemirovski (2000); Beyer and Sendhoff (2007)
or by distribution dependent optimization (Ruszczynski and Shapiro 2003; Birge and
Louveaux 2011). The latter framework requires true knowledge of the underlying
probability distribution which is not usually available for future stock prices. RO over-
comes this shortcoming by relaxing the assumption on the underlying distribution and
generates a solution even if only partial or minuscule information is available on the
probability distribution. RO is a young research field which deals with the problem of
data uncertainty by guaranteeing feasibility and optimality of a solution for the worst
case of the parameters in an optimization problem. RO is useful in many situations, for
instance, when the model involves uncertainty in probability distribution or it requires
parameters estimation and hence carries estimation errors. RO is a set-based approach
wherein randomness in the parameters is assumed to be in the form of an uncertainty
set; different uncertainty sets lead to different RO models. An investor constructs a
solution that is feasible for any realization of the uncertainty in a given set. A signifi-
cant advantage of RO is that the resulting optimization problems continue to remain
computationally tractable for many popular classes of the uncertainty sets.

RO technique has been widely applied to problems in engineering, supply chain,
hub location problems, and portfolio optimization (see, Bertsimas et al. 2011). Ghaoui
et al. (2003) optimize the worst case of VaRα when only partial information of the
distribution are known, i.e. the bounds on themean and covariancematrix are available.
They show that the resulting problem is a semi-definite program. Zhu and Fukushima
(2009) propose the worst case analysis of CVaRα under mixed, box, and ellipsoidal
uncertainty sets and show that the models remain computationally tractable. In the
spirit of Zhu and Fukushima (2009), Kapos et al. (2014) optimize the worst case of
Omega ratio under same uncertainty sets and perform empirical analysis for artificial
as well as real market data for three asset classes, S&P 500 index, US government
bonds, and gold asset. Moon and Yao (2011) study the robust optimization of mean
absolute deviation model by considering a type of uncertainty following Bertsimas
and Sim (2004) in estimating the expected returns based on real market data of 100
stocks randomly selected from NYSE, NASDAQ, and AMEX.

For the first time, Fliege and Werner (2014) consider the robust counterpart for
a multi-objective programming problem and examine the relationship between the
robust efficient frontier with the original nominal efficient frontier. They then investi-
gate the approach to derive the robust mean variance optimization (Markowitz 1952)
model. Chen andKwon (2012) obtain a robust portfolio in application of index tracking
using the approach of Bertsimas and Sim (2004). Experimental analysis is performed
for tracking the S&P 500 index and claimed that the tracking error is lesser in the
robust model than to its nominal model. Ben-Tal et al. (2009) provide more details on
the specific formulations and tractability issues in RO. The survey paper of Bertsimas
et al. (2011) highlights the prominent theoretical results and applications of robust
theory in various areas including portfolio optimization.
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We ascertain the robustness in portfolio outcomes from the proposed model. The
worst case optimization is considered both in maximizing the Omega ratio as well as
in minimizing the CVaRα measure (for a fixed α) in Omega-CVaRα model. Hence,
the resulting portfolio becomes robust with respect to the threshold point as well as
the distribution considered in the maximization of the Omega ratio. We formulate
three robust variants for Omega-CVaRα model corresponding to the mixed, box, and
ellipsoidal uncertainty sets, respectively, for discrete distribution of �x and �̂z . An
uncertainty set is considered to be a selection of a range of distributions for which the
underlying distribution possibly belongs to. We follow the worst case descriptions of
Kapos et al. (2014) for the Omega ratio and Zhu and Fukushima (2009) for the CVaRα

measure for the three mentioned uncertainty sets.

4.1 Worst case Omega-CVaRα model

For general uncertainty sets P and Q of the unknown distributions of �x and �̂z ,
respectively, the worst case values of �L(α)(�x ) and CVaRα(�̂z) are defined as
follows:

min
p∈P

E p(L − �x )
+

E p(�x − L)+
and max

q∈Q
min

τ
τ + 1

1 − α
Eq(�̂z − τ)+,

and theirworst case portfolio optimization problems are given, respectively, as follows:

WOmega max
x

min
p∈P

E p(L − �x )
+

E p(�x − L)+

WCVaRα min
z,τ

max
q∈Q

τ + 1

1 − α
Eq(�̂z − τ)+.

We present the worst case of the Omega-CVaRα model under mixed, box, and
ellipsoidal uncertainty sets for discrete case of loss distributions resulting in robust
Omega-CVaRα models that are tractable. Indeed, the assumption of discrete distribu-
tion is reasonable and also applies in practice to the prices of the financial instruments
are observed at discrete time points (daily, weakly, monthly, etc).

The worst case portfolio optimization problem for Omega-CVaRα is described as
follows:

WOmega-CVaRα max
x

min
p∈P

E p(L(α) − �x )
+

E p(�x − L(α))+
, where

L(α) ≤ min
z,τ

max
q∈Q

τ + 1

1 − α
Eq(�̂z − τ)+. (10)

For fix uncertainty sets P and Q, we solve the inner minimization programming
problem (10) associated with L(α) in WOmega-CVaRα model by taking its dual
under Q.
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4.2 Mixed uncertainty set

In the scope of financial markets, the three possible likelihood scenarios of stock
returns are bearish (when price continuously fall), bullish (when price continuously
rise), and nominal (when the changes in price is not deep). The resulting worst case
optimal solution does not hurt investors if any of the scenario (specifically the bearish
one) or a combination of the these scenarios occurs in the future.

The mixed uncertainty set is the set of convex combination (or mixed) of a finite
number of likelihood functions to estimate the underlying distribution. It is defined as
follows:

PM =
{
p =

s∑

k=1

wk p
k : w ∈ 


}
,


 =
{

w = (w1, . . . , ws) :
s∑

k=1

wk = 1, wk ≥ 0, k = 1, . . . , s

}
, (11)

where pk is the kth likelihood density function of portfolio loss �x . The mixed uncer-
tainty set Q for q is similarly defined to derive the worst case of PCVaRα(�̂z)

model
(see, Appendix B).

For a continuous density function p with the uncertainty set described in (11), we
have the following equivalence condition:

max
x̃

min
w∈


s∑

k=1

wkG
k
1 ⇐⇒ max

x̃
min

k=1,...,s
Gk

1, and

s∑

k=1

wkG
k
2 = 1 ∀ w ∈ 
 ⇐⇒ Gk

2 = 1, k = 1, . . . , s,

where Gk
1 =

∫

�

(Lγ − �x̃ )
+ pk(�) d�, Gk

2 =
∫

�

(�x̃ − Lγ )+ pk(�) d�, γ > 0 (see,

Appendix A).
Thus, optimizing WOmega becomes max

x̃
{θ : θ ≤ Gk

1, Gk
2 = 1, k = 1, . . . , s}

for the continuous likelihood density function p. For the derivation ofWCVaRα for the
continuous case under the mixed uncertainty set, one can refer to Zhu and Fukushima
(2009).

Just like P2 is approximated from P1 using a sampling technique, analogously
we approximate Gk

1 and Gk
2 with T k number of scenarios of �x with the kth like-

lihood probability vector pk = ((pk1, . . . , p
k
T k )

t ; (pk)te = 1, pki ≥ 0, ∀ i =
1, . . . , T k), k = 1, . . . , s, when L(α) > minx t e=1, x∈R

n+ E pk (�
k
x ), ∀ k = 1, . . . , s

(Mausser et al. 2006). Then the robust optimizationmodel for theworst case ofOmega-
CVaRα model is an LPP under PM given by
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P5 max θ

subject to: (pk)t ũk − θ ≥ 0 k = 1, . . . , s (12)

(pk)t d̃k = 1, ũk, d̃k ∈ R
T k

+ k = 1, . . . , s (13)

x̃ te = γ, x̃ ∈ R
n+ (14)

Bk x̃ + ũk − d̃k = L(α)γ e, k = 1, . . . , s

L(α) ≤ ϑ, (15)

where γ > 0 is a homogenization variable and for every variable φ, φ̃ = γφ,
Bk = [�ki j ]T k×n is loss matrix of portfolio x corresponding to the kth likelihood

probability density pk . And ϑ is the optimal value of the following problem:

max ϑ

subject to: ϑe −
ŝ∑

k=1

(B̂k)thk ≤ 0

vte = γ, −vte +
ŝ∑

k=1

(hk)te = 0

− vk

1 − α
qk + hk ≤ 0, hk ∈ R

T̂ k

+ , v ∈ R
ŝ+, k = 1, . . . , ŝ.

The above problem is dual PDMCVaRα(�̂z)
of PMCVaRα(�̂z)

model, a worst case model

of PCVaRα (�̂z) under mixed uncertainty set (Zhu and Fukushima 2009), see Appendix
B. Since PMCVaRα(�̂z)

is an LPP, due to the strong duality, the duality gap is zero in
PDMCVaRα(�̂z)

.

Proposition 1 For the discrete mixed uncertainty sets PM and QM , such a choice of
L(α) in constraint (15) ensures that P5 model is an LPP.

Proof Here, it is sufficient to show that L(α) > minx t e=1, x∈R
n+ E pk (�

k
x ), ∀ k =

1, . . . , s, in P5. Since L(α) is the worst case of PCVaRα(�̂z)
model under uncertainty set

QM it implies L(α) ≥ CVaRk∗
α (�̂z), ∀ k = 1, . . . , ŝ, where CVaRk∗

α (�̂z) is the optimal
value of PMCVaRα(�̂z)

(and hence of PDMCVaRα(�̂z)
) at the kth likelihood density func-

tion qk , k=1, . . . , ŝ. Consequently, L(α)>minx t e=1, x∈R
n+ E pk (�

k
x ), ∀ k =1, . . . , s.

�

The worst case of Omega-CVaRα model under the mixed uncertainty set is thus

proposed as the following LPP:

MOmega−CVaRα max θ

subject to: constraints (12) − (14)

Bk x̃ + ũk − d̃k = L̃(α)e, k = 1, . . . , s

L̃(α) ≤ ϑ̃
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ϑ̃e −
ŝ∑

k=1

(B̂k)t h̃k ≤ 0

ṽte = γ

−ṽte +
ŝ∑

k=1

(̃hk)te = 0

− ṽk

1 − α
qk + h̃k ≤ 0 k = 1, . . . , ŝ

ṽ ∈ R
ŝ+, h̃k ∈ R

T̂ k

+ k = 1, . . . , ŝ,

where ṽk, k = 1, . . . , ŝ, is the kth component of vector ṽ.
TheMOmega-CVaRα model optimizes the worst case of PCVaRα(�̂z)

model over the
mixed uncertainty set and subsequently optimizes the worst case of the Omega ratio
again over mixed uncertainty set for such a robust outcome of threshold value. In this
manner, we are able to impact robustness to the Omega ratio as well as its threshold
value.

4.3 Box uncertainty set

In robust optimization, one is required to make a trade-off between ‘full’ robustness
and the length of the underline uncertainty set. A box uncertainty set that contains a
vast range of unknown parameters is the most robust choice and thus most suited to
pessimistic investors. The simplest case of box uncertainty is when the only informa-
tion about an unknown parameter � is that ||� ||∞ ≤ 1. If more information becomes
readily available, e.g. bounds on the moments, or if the probability distribution is
symmetric or unimodal, smaller box uncertainty sets become available. Other than
simplicity in defining the box uncertainty sets, a large number of robust optimization
problems result in computationally tractable problems under box uncertainty sets. The
box uncertainty set for the distribution of portfolio loss �x is

PB = {p = p0 + π; π te = 0, π ≤ π ≤ π̄},

where p0 is the most likely distribution of �x and π , π̄ ∈ R
T are constant parameter

vectors to decide size/width of the box uncertainty set; larger width indicates higher
robustness. In other words, the bounds of the box uncertainty indicate attitude of an
investor towards risk.

The worst case of Omega-CVaRα model under the box uncertaintyPB is described
as follows:

P6 max
x̃ ,̃u,d̃,L

θ

subject to: θ ≤ min
p=p0+π; π t e=0, π≤π≤π̄

pt ũ (16)
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x̃ te = γ, x̃ ∈ R
n+, ũ, d̃ ∈ R

T+ (17)

pt d̃ = 1 (18)

Bx̃ + ũ − d̃ = L(α)γ e (19)

L(α) ≤ ϑ, (20)

where B = [�i j ]T×n is the loss matrix of portfolio x . And ϑ is the optimal value of
the following problem:

max ϑ

subject to: B̂tv − ϑe − λ5 = 0

etv = γ, −etλ6 = 0

q0

1 − α
+ λ6 − v − λ7 = 0

¯̂π
1 − α

− λ6 − λ8 = 0

π̂

1 − α
− λ6 − λ9 = 0

ϑ ∈ R, v, λ7, λ8, λ9 ∈ R
T̂+, λ5 ∈ R

m+, λ6 ∈ R
T ,

which is the dual PDBCVaRα(�̂z)
of PBCVaRα(�̂z)

model, the worst case model of
PBCVaRα(�̂z)

under the box uncertainty set (Zhu and Fukushima 2009), see Appen-
dix C. Again PBCVaRα(�̂z)

being an LPP, due to the strong duality, the duality gap is
zero in PDBCVaRα(�̂z)

.

Proposition 2 For the discrete box uncertainty sets PB and QB , such a choice of
L(α) in constraint (20) ensures that P6 is an LPP.

Proof Problem P6 involves two inner optimization problem (constraint (16) and (20)).
Since the inner maximization problem in constraint (20) is an LPP, it remains to show
that dual of the inner minimization problem in constraint (16) is also an LPP with
L(α) > minx t e=1, x∈R

n+ EPB (�x ).
The innerminimizationproblem in constraint (16) is anLPPand thus it canbe solved

by its corresponding dual maximization problem.Moreover, for L(α) = CVaRB∗
α (�̂z),

where CVaRB∗
α (�̂z) is the optimal value of PBCVaRα(�̂z)

(and hence for PDBCVaRα(�̂z)
),

we have, L(α) > min
x t e=1, x∈R

n+
EPB (�x ). �


The dual of the inner linear minimization problem in constraint (16), for fixed values
of ũ, d̃, and γ , or in other words, the dual of the following problem P7

P7 min ũt (p0 + π)

subject to : d̃ t (p0 + π) = 1, etπ = 0, π ≤ π ≤ π̄
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is an LPP given by

P8 max ũt p0 + λt2π − λt3π̄ − λ4d̃
t p0 + λ4

subject to: ũ − λ1e − λ2 + λ3 − λ4d̃ = 0, λ1, λ4 ∈ R, λ2, λ3 ∈ R
T+.

(21)

Using P8 in constraint (16), we have the following simpler LPP to solve

BOmega−CVaRα max
x̃ ,̃u,d̃,γ

θ

subject to: ũt p0 + λt2π − λt3π̄ − λ4d̃
t p0 + λ4 ≥ θ

Constraints (17) − (18) and (21)

Bx̃ + ũ − d̃ = L̃(α)e

L̃(α) ≤ ϑ̃

B̂t ṽ − ϑ̃e − λ̃5 = 0

et ṽ = γ, et λ̃6 = 0
γ

1 − α
q0 + λ̃6 − ṽ − λ̃7 = 0

γ

1 − α
¯̂π − λ̃6 − λ̃8 = 0

γ

1 − α
π̂ − λ̃6 − λ̃9 = 0

ϑ̃ ∈ R, ṽ, λ̃7, λ̃8, λ̃9 ∈ R
T̂+, λ̃5 ∈ R

m+, λ̃6 ∈ R
T̂ ,

where B̂ = [�̂i j ]T̂×m is the loss matrix of portfolio z.

4.4 Ellipsoidal uncertainty set

When the box uncertainty is found to be too pessimistic for a given problem, a wise
choice of the uncertainty set afterwards is an ellipsoidal uncertainty set. The ellipsoidal
uncertainty set of an unknown parameter� is given as ||� ||2 ≤ a0, a0 ≥ 0 with || · ||2
being the L2-norm. The ellipsoidal uncertainty set is the intersection of a finite number
of ellipsoid sets resulting in a finite number of convex quadratic inequalities and thus
robust optimization model under which it becomes a second order cone program
(SOCP). In many practical instances, the applicability of the ellipsoidal uncertainty
set has statistical reasons (see, Ben-Tal and Nemirovski 1999).

The ellipsoidal uncertainty set is described as follows:

PE = {p = p0 + Aπ; et Aπ = 0, p0 + Aπ ≥ 0, ||π ||2 ≤ ω},

where A ∈ R
T × T is the scaling matrix of the ellipsoidal uncertainty set, π ∈ R

T ,
and p0 ∈ R

T is a nominal distribution and the center of the ellipsoid, ω ∈ R decides
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the size of the ellipsoidal uncertainty set and its choice depends upon the behavior of
an investor towards the robustness. Specifically, we take ω = 1 in our present study.

The Omega-CVaRα under the ellipsoidal uncertainty set is as follows:

P9 max
x̃ ,̃u,d̃,γ

θ

subject to: constraints (17) − (19)

θ ≤ min
p=p0+Aπ; et Aπ=0, p0+Aπ≥0, ||π ||2≤1

pt ũ (22)

L(α) ≤ ϑ, (23)

and ϑ is the optimal value of the following problem:

P10 max ϑ

subject to: B̂tv − ϑ e − λ6 = 0

vte = 1, et Âλ7 = 0

q0

1 − α
+ Âλ7 − v − λ8 = 0

q0

1 − α
+ Âλ7 − λ9 = 0

||λ7||2 ≤ 1

1 − α

ϑ ∈ R, λ7, λ10 ∈ R
T̂ , v, λ8, λ9 ∈ R

T̂+, λ6 ∈ R
m+.

P10 is the dual PDECVaRα (�̂z) of PECVaRα (�̂z) model, the worst case model of
PCVaRα (�̂z) under the ellipsoidal uncertainty set QE described by the parameters

Â ∈ R
T̂ × T̂ and q0 ∈ R

T̂ , as explained in Appendix D.

Remark 1 The worst case of PCVaRα (�̂z) model under ellipsoidal uncertainty set is
an SCOP, namely PECVaRα (�̂z) (see, Appendix D). Under some mild condition (Lobo
et al. 1998; Calafiore andGhaoui 2014), the duality gap is zero in SOCP. Consequently,
we can find ϑ in constraint (23) by solving problem P10. A similar argument can be
given for the constraint (22) in problem P9.

Proposition 3 For the discrete ellipsoidal uncertainty setsPE andQE , such a choice
of L(α) in constraint (23) ensures that P9 is an SOCP.

Proof It follows on similar lines as proofs of Propositions 1 and 2, and in light of
Remark 1. �


Now, the inner minimization problem in constraint (22) is resolved by taking dual
of the following problem P11 (Calafiore and Ghaoui 2014) (see, Appendix D, problem
P12).
P11 min ũt p0 + ũt Aπ

subject to : d̃ t p0 + d̃ t Aπ = 1, et Aπ = 0, p0 + Aπ ≥ 0, ||π ||2 ≤ 1.
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Therefore, theworst case of theOmega-CVaRα model under the ellipsoidal uncertainty
set is the following SOCP:

EOmega−CVaRα max θ

subject to: ũt p0 − λ1d̃
t p0 + λ1 − λt2 p

0 − λ3 ≥ θ

constraints (17), (18), and (26) − (28)

Bx̃ + ũ − d̃ = L̃(α)e, ũ, d̃ ∈ R
T+

L̃(α) ≤ ϑ̃

B̂t ṽ − ϑ̃ e − λ̃6 = 0

ṽte = γ

et Ẫλ7 = 0
γ

1 − α
q0 + Ẫλ7 − ṽ − λ̃8 = 0

γ

1 − α
q0 + Ẫλ7 − λ̃9 = 0

||̃λ7||2 ≤ γ

1 − α

ϑ̃ ∈ R, λ̃6 ∈ R
m+, λ̃7 ∈ R

T̂ , ṽ, λ̃8, λ̃9 ∈ R
T̂+,

where constraints (26)–(28) are described in Appendix D.
Zhu and Fukushima (2009) address the issues in specifying the input parameters

(pk, k = 1, . . . , s) in mixed, (p0, π and π ) in box, and (p0 and matrix A) in the
ellipsoidal uncertainty sets. We apply the same type of uncertainty sets to bring in
robustness in both the Omega ratio and the CVaR∗

α(�̂z) measures. However, a further
development is to consider different possible permutations between the three sets in
twomeasures to derive different worst cases of the Omega-CVaRα model in the robust
portfolio optimization framework. This is reasonable, especially when the benchmark
market z is different to the market of the actual portfolio x construction in maximizing
the Omega ratio. However, if both z and x are drawn from the same market then our
approach of considering the same uncertainty set sounds appropriate.

5 Empirical applications and models comparison

In this section, we show the financial benefits of the Omega-CVaRα model and its
worst case robust optimizationmodel usingmixed uncertainty sets in a comprehensive
empirical study based on a real-world data set.

5.1 Sample data and methodology

We choose the US based index S&P 500 as the benchmark in our analysis and consider
a risk-averse investor who decides to invest in a portfolio of 50 constituents of the
S&P 500 with the highest market capitalization to mimic the developments of the
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S&P 500. An investor uses the CVaRα of the S&P 500 at a certain confidence level
α as the threshold. We take the whole S&P 500 to calculate the threshold value L in
the Omega ratio by solving PCVaRα(�̂z)

model, and on the other hand take a subset of
50 stocks from S&P 500 as the possible investment universe for which we maximize
the Omega ratio. The choice of the 50 stocks follows as a result of several studies
(Newbould and Poon 1996; Shawky and Smith 2005) showing that this quantity is a
reasonable number of stocks for an investor to achieve a well-diversified portfolio and
to keep transaction and management costs low. Following the notation in the body
of our paper, the threshold value L(α) = CVaR∗

α(�̂z) is estimated from the portfolio
z comprising a weight vector of at most m = 500 stocks9 to display the expected
shortfall of the S&P 500 portfolio. The portfolio x is the vector of the portfolio weights
of n = 50 stocks.

We collect time series of monthly adjusted stock prices and market capitalization
data from Thomson Reuters Datastream for all constituents of the S&P 500 as on June
2015.We use the 3months US Treasury Bill for the risk free rate, which we also obtain
from Thomson Reuters Datastream on a monthly basis. The period of the historical
data ranges from January 1990 to June 2015. For each stock j = 1, . . . ,m, we
calculate monthly, discrete returns during the entire period if stock prices are available.
We follow the rolling window approach with an estimation window of 240 months
starting in Jan 1990 and one month out-of-sample period. Therefore, we obtain 66
one month out-of-sample periods during the period between Jan 2010 and June 2015.
We delete all stockswhose stock price data ismissing for at least 120monthswithin the
estimation period, and we thereby are left with S&P 500 portfolios including at least
412 stocks and at most 450 stocks (an average of 435 stock in each in-sample period)
to estimate the threshold value L(α) = CVaR∗

α(�̂z). We compare the performance of
412 to 450 stocks S&P 500 portfolios with the real S&P 500 (market capitalization
value weighted) index performance during the entire period and find a correlation of
98.9 %, which is highly significant. Therefore, dropping at most 88 stocks, because
of a lack of sufficient data availability does not change the performance of the slightly
reduced portfolios compared to the real S&P 500 portfolio and supports the fact that
those portfolios are an appropriate proxy for the S&P 500 index.

We compare the performance of portfolios resulting from four different portfolio
optimization models and two index based portfolios in our analysis. The classical
PCVaRα(�x ) model (when �̂z is same as �x ), the Omega-CVaRα model, the MOmega-
CVaRα , the STARRα(�x ) model, the naïve 1/m portfolio strategy, and the market
capitalization value weighted portfolio (MCWP), using all available m stocks of the
S&P 500,10 the latter three act as benchmark strategies. The weight of the i th stock in
the 1/m portfolio and MCWP portfolio is calculated as wi = 1

m , i = 1, . . . ,m, and

wi = MCi∑m
i=1 MCi

, i = 1, . . . ,m, respectively,whereMCi denotes themarket capitaliza-

tion of the i th stock. To illustrate the performance of portfolios of the models stated in

9 We take z as all those stocks listed on the S&P 500 whose monthly return data is available for more than
10 years during each in-sample period.
10 The naïve 1/m and the MCWP portfolios are continuously updated as soon as any stock on the S&P
500 index listed as of June 2015 declares its initial public offering (IPO).
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this paper,wepresent the results of theOmega-CVaRα model and theMOmega-CVaRα

model. We control for the sensitivity of the results according to different levels of loss
aversion by applying optimization for four values of α = 0.97, 0.95, 0.93, and 0.90.
All models except the naïve 1/m portfolio strategy and the MCWP are based on the
set of 50 stocks and the threshold point L(α) used in proposed models (nominal as
well as robust) is calculated from the S&P 500 stocks on the basis of availability of
the data for at least 10 years.

Whereas we compute the optimal solutions of the classical PCVaRα(�̂x )
model,

the STARRα(�x ) model, and the Omega-CVaRα model by taking T̂ = T = 240
simulations for random variables in �x and �̂z with equally likely probabilities
q j = p j = 1

240 , j = 1, . . . , 240, the procedure to solve the MOmega-CVaRα

model requires additional explanation. We consider the mixture of three likelihood
functions in line with Zhu and Fukushima (2009) to optimize robust counterpart of
PCVaRα model for any distribution. We divide each 240 months estimation period
into three equal sizes, each of 80 months, as three phases of the market for both
stock samples (the investment universe and the filtered S&P 500 sample). That is,
for both the loss portfolios �x and �̂z in MOmega-CVaRα , the length of the estima-
tion windows T k = T̂ k = 80 months, k = 1, 2, 3, with likelihood mass function
pki = qki = 1

80 , i = 1, . . . , 80, k = 1, 2, 3. Due to possible differences between
the returns series in three phases it is not reasonable to assume that the portfolio loss
follows a uniform distribution in the entire period. Therefore, we take the mixed dis-
tribution (convex combination) of these three phases whereby we are able to find such
a solution which remains feasible and optimal in the three phases each of 80 months.
Hence, we consider the mixed set as the convex combination of three uniform distri-
butions to optimize MOmega-CVaRα . Indeed, we assume the portfolio loss follows a
uniform distribution in each of the three phases. We apply this methodology for each
of the 66 in-sample periods.

5.2 Results

Table 1 reports upon descriptive statistics along with the Sharpe ratio, the modified
Sharpe ratio, the VaR, and the CVaR of the out-of-sample return from the rolling
window approach for PCVaRα(�x ), STARRα(�x ), Omega-CVaRα , MOmega-CVaRα

models, the MCWP, and the naïve 1/m portfolio strategy for four values of α =
0.97, 0.95, 0.93, 0.90 (over 66 out-of-sample monthly returns). The modified Sharpe
ratio (MSR) is defined in Gregoriou and Gueyie (2003) as follows

MSRα := μ − r f
MVaRα

with MVaRα = μ − Zσ, and

Z =
(
zα + 1

6
(z2α − 1)S + 1

24
(z3α − 3zα)K − 1

36
(2z3α − 5zα)S2

)
,

where μ, σ, and r f are mean, standard deviation, and risk free returns, S and K are
the skewness and kurtosis of the portfolio, and zα is the αth quantile of the portfolio
assuming the latter follows normal distribution. The Sharpe (1994) ratio SR is the ratio
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Table 1 Descriptive statistics of the one month out-of-sample returns for four values of α =
0.97, 0.95, 0.93, 0.90

PCVaRα(�x ) STARRα(�x ) Omega-
CVaRα

MOmega-
CVaRα

MCWP 1/m strategy

Panel α = 0.97

Mean 0.0072 0.0144 0.0096 0.0101 0.0133 0.0130

St. Dev. 0.0331 0.0435 0.0331 0.0312 0.0366 0.0392

Median 0.0052 0.0175 0.0115 0.0102 0.0178 0.0184

Kurtosis 2.3586 2.6105 2.5520 2.6536 3.1650 3.4125

Skewness −0.1114 −0.2499 −0.1741 −0.3273 −0.0897 −0.0403

Minimum −0.0715 −0.0945 −0.0802 −0.0807 −0.0793 −0.0848

Maximum 0.0836 0.1009 0.0756 0.0658 0.1143 0.1289

SR 0.1882 0.3085 0.2586 0.2912 0.3353 0.3063

MSR0.97 0.1191 0.1872 0.1614 0.1782 0.2131 0.1925

VaR0.97 0.0592 0.0804 0.0552 0.0551 0.0645 0.0694

CVaR0.97 0.0654 0.0875 0.0678 0.0681 0.0720 0.0772

Panel α = 0.95

Mean 0.0081 0.0139 0.0097 0.0102 0.0133 0.0130

St. Dev. 0.0324 0.0433 0.0330 0.0311 0.0369 0.0395

Median 0.0085 0.0436 0.0118 0.0106 0.0178 0.0184

Kurtosis 2.5877 2.4717 2.635 2.6702 3.1650 3.4125

Skewness −0.2653 −0.1795 −0.2418 −0.3317 −0.0897 −0.0403

Minimum −0.0823 −0.0915 −0.0839 −0.0806 −0.0793 −0.0848

Maximum 0.0710 0.0974 0.0726 0.0661 0.1143 0.1289

SR 0.2198 0.2979 0.2639 0.2972 0.3353 0.3062

MSR0.95 0.1747 0.2406 0.2133 0.2409 0.2893 0.2621

VaR0.95 0.0472 0.0783 0.0433 0.0408 0.0517 0.0601

CVaR0.95 0.0631 0.0849 0.0621 0.0584 0.0654 0.0724

Panel α = 0.93

Mean 0.0089 0.0126 0.0098 0.0104 0.0133 0.0130

St. Dev. 0.0325 0.0445 0.0328 0.0310 0.0369 0.0395

Median 0.0128 0.0183 0.0124 0.0106 0.0178 0.0184

Kurtosis 2.6492 2.377 2.6459 2.7417 3.1650 3.4125

Skewness −0.3135 −0.2152 −0.2702 −0.3509 −0.0897 −0.0403

Minimum −0.0853 −0.0945 −0.0845 −0.0826 −0.0793 −0.0848

Maximum 0.0671 0.1026 0.0709 0.0679 0.1143 0.1289

SR 0.2446 0.2625 0.2695 0.3034 0.3353 0.3063

MSR0.93 0.2407 0.2537 0.2707 0.3095 0.3706 0.3361

VaR0.93 0.0339 0.0729 0.0340 0.0339 0.0513 0.0565

CVaR0.93 0.0563 0.0839 0.0552 0.0511 0.0614 0.0684
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Table 1 continued

PCVaRα(�x ) STARRα(�x ) Omega-
CVaRα

MOmega-
CVaRα

MCWP 1/m strategy

Panel α = 0.90

Mean 0.0097 0.0127 0.0099 0.0107 0.0133 0.0130

St. Dev. 0.0335 0.0453 0.0321 0.0310 0.0369 0.0395

Median 0.0118 0.0178 0.0128 0.0085 0.0178 0.0184

Kurtosis 2.6077 2.4696 2.4914 2.8992 3.1650 3.4125

Skewness −0.2563 −0.2580 −0.2203 −0.3509 −0.0897 −0.0403

Minimum −0.0837 −0.0972 −0.0770 −0.0842 −0.0793 −0.0848

Maximum 0.0736 0.1027 0.0690 0.0762 0.1142 0.1289

SR 0.2584 0.2588 0.2770 0.3134 0.3353 0.3063

MSR0.90 0.3414 0.3266 0.3722 0.4442 0.5144 0.4658

VaR0.90 0.0315 0.0785 0.0295 0.0205 0.0320 0.0320

CVaR0.90 0.0503 0.088 0.0461 0.0454 0.0554 0.0604

of expected excess mean return from the risk free return to the standard deviation of
the excess returns, σ :

SR := μ − r f
σ

.

Note that a reasonable comparative analysis based on the modified Sharpe and the
Sharpe ratios is limited to the case of r f > μ.

We find that the proposed Omega-CVaRα model earns, on average (over α =
0.97, 0.95, 0.93, 0.90), a monthly return of 0.0097, a monthly SR of 0.2652, and a
monthly MSRα of 0.2514 which are, respectively, higher than the average monthly
return of 0.0085, monthly SR of 0.226, and amonthlyMSRα of 0.2164 for the existing
PCVaRα(�x ) model. We also depict that the proposed model generates an average VaRα

and CVaRα as 0.0405 and 0.0578, respectively, whereas PCVaRα(�x ) produces 0.0430
and 0.0588 and thus the proposed scheme Omega-CVaRα improves PCVaRα(�x ) in all
performance measures considered in this study.

Furthermore, theMOmega-CVaRα model has an average monthly return of 0.0103,
a monthly SR of 0.299, a monthly MSRα of 0.2665, a monthly VaRα of 0.0387, and a
monthly CVaRα of 0.0558. STARRα appears to have higher average return of 0.0134
(whereas a monthly SR of 0.2819, a monthly MSRα of 0.2520) which is associated
with higher extreme events monthly VaRα of 0.0775, and amonthly CVaRα of 0.0860.
Clearly MOmega-CVaRα model shows an improvement over Omega-CVaRα model
and STARRα(�x ) model in the sense of all performance measures (except in average
monthly return). Due to the robust target value MCVaR∗

α(�̂z) and robust return distrib-
ution in theMOmega-CVaRα model, the portfolio from it has the least values of losses
in terms of VaRα and CVaRα while it also produces comparatively large returns.

The MCWP and the naïve 1/m portfolio strategy earn higher (average monthly
returns, monthly SR, monthly MSRα of (0.0133, 0.3328, 0.3468) and (0.013, 0.3039,
0.3142), respectively, but generate higher losses (VaRα , CVaRα), (0.0499, 0.0636) at
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MCWP and (0.0545, 0.0696) at the naïve 1/m portfolio strategy. In other words, all
models except STARRα(�x ) improve over the MCWP and the naïve 1/m portfolio
strategy in terms of having less losses. Therefore, for a loss averse investor we consider
in our study, we are able to successfully develop portfolio strategieswhich produce low
losses through the Omega-CVaRα andMOmega-CVaRα models. The proposed model
enhances the PCVaRα(�x ) model, MCWP, and the naïve 1/m portfolio strategy in terms
of losses and thus most suitable for loss averse investors. Also, robust optimization
under the mixed uncertainty set produces promising results compared to its nominal
counterpart and thus encourages investors to apply it in finance modeling.

The descriptive statistics in Table 1 display the behavior of the return series for each
of the five portfolios. Due to presence of a higher magnitude of negative returns than
positive returns, all models possess negative skewness. The kurtosis which explains
steepness in distribution relative to the normal distribution is higher for the MCWP
and the naïve 1/m portfolio strategy than for all other models. Among all models,
portfolios from MOmega-CVaRα produce the highest kurtosis indicating a compara-
tively large mass of returns around the mean value than the other two robust models.
The range (difference of maximum andminimum values) shows highest the amount of
uncertainty in the naïve 1/m portfolio strategy (an average of 0.2138) and minimum
in the MOmega-CVaRα (an average of 0.151).

Next, we perform some statistical tests over winsorized data11 of 66 out-of-sample
monthly returns to provide evidence regarding the performance differences between
the benchmark portfolio and the proposed model Omega-CVaRα as well as its robust
counterpart MOmega-CVaRα . To test whether the out-of-sample average returns of
two strategies s1 and s2 are statistically different, we apply a one-sided tμ test with
hypothesis H0 : μs1 − μs2 = 0 and Ha : μs1 − μs2 > 0.12

Furthermore, we test whether the out-of-sample Sharpe ratio of two strategies s1
and s2 are statistically different. We apply a one-sided zSR test with the hypothesis
H0 : SRs1 −SRs2 = 0 and Ha : SRs1 −SRs2 > 0 (Jobson andKorkie 1981; DeMiguel
et al. 2009).13

11 Winsorizing data atβ percentilemeans replacing the extreme values of a data setwith their corresponding
β percentile values to limit the effect of the extreme values on the test. We take β = 0.90 in our study.
12 Given two strategies s1 and s2, with μs1 , μs2 as their sample means and σ(s1 − s2) as the standard
deviation of the difference of two strategies over a sample period of size n (n = 66 in our case). We evaluate
the p values of the difference using the t test statistic:

tμ := μs1 − μs2
σ(s1 − s2)/

√
n

.

13 Given two strategies s1 and s2, withμs1 ,μs2 , σs1 , σs2 , σs1,s2 as their samplemeans, standard deviations,
and the covariance of two strategies over a sample period n. We evaluate the p values by calculating the z
test statistic:

zSR := σs2μs1 − σs1μs2√
ϒ

with

ϒ = 1

n

(
2σ 2

s1σ
2
s2 − 2σs1σs2σs1,s2 + 0.5μ2

s1σ
2
s2 + 0.5μ2

s2σ
2
s1 − μs1μs2

σs1σs2
σ 2
s1,s2

)
.
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Table 2 This table reports upon
the statistical inference for the
differences between the
portfolio of Omega-CVaRα and
MOmega-CVaRα from the
target portfolio of PCVaRα(�x )

one month out-of-sample returns
(t-statistics) and in the
out-of-sample Sharpe ratios SR
(z-statistics) for four values of
α = 0.97, 0.95, 0.93, 0.90

The values in parentheses are p
value and the significance levels
are 0.01, 0.05 and 0.1 which are
displayed by ∗∗∗, ∗∗, and ∗,
respectively

Omega-CVaRα MOmega-CVaRα

Panel α = 0.97

tμ 2.0004∗ (0.0237) 1.9109∗ (0.0290)

zSR 1.8215∗ (0.0344) 2.1129∗∗ (0.0174)

Panel α = 0.95

tμ 1.8569∗∗ (0.0327) 1.6099∗ (0.0548)

zSR 1.5000∗ (0.0668) 1.8206∗∗ (0.0344)

Panel α = 0.93

tμ 1.4460∗ (0.0751) 1.1004 (0.1365)

zSR 1.0771 (0.142) 1.4416∗ (0.0749)

Panel α = 0.90

tμ 0.21481 (0.4151) 0.6358 (0.2629)

zSR 0.7135 (0.2389) 1.3366∗ (0.0918)

The third measure is to test whether the out-of-sample CVaRα of one strategy s1
is different to the CVaRα (c) of the target portfolio using the one-sided zCVaRα test
with hypothesis H0 : c − CVaRαs1

= 0 and Ha : c − CVaRαs1
> 0 following Vekas

(2015).14

In Table 2, we report values of tμ and zSR (and their respective p values in
parentheses) for the differences amongst expected returns and Sharpe ratios of Omega-
CVaRα , and MOmega-CVaRα models from the PCVaRα(�x ) model, for four values of
α = 0.97, 0.95, 0.93, 0.90.

For a value of α, this is accomplished through calculatingμs2 and σs2 of the 66 out-
of-samplemonthly return series of portfolios from PCVaRα(�x ) model and using them to
derive tμ and zSR test values for portfolios fromOmega-CVaRα andMOmega-CVaRα

models.
We find that Omega-CVaRα exhibits statistically significant improvement over

PCVaRα(�x ) in expected return for α = 0.97, 0.95, 0.93 and Sharpe ratio for α =
0.97, 0.95, all within 90 % level of confidence. MOmega-CVaRα also dominates
PCVaRα(�x ) statistically, on expected returns for α = 0.97, 0.95 and in Sharpe ratio

14 Given a strategy s1 and a target portfolio s∗, with y1, . . . , yn as the return series of s1 sorted from lowest
to highest, ĈVaRα, V̂aRα as their sample CVaRα and CVaRα values over sample period n, we evaluate the
p values by calculating the z test statistic:

zCVaRα :=
√
n(1 − α)(c − ĈVaRα)√√√√

n∑

i=nα+1

(yi − ĈVaRα)2/
(
n(1 − α)

) + α
(
ĈVaRα − V̂aRα

)2
, where V̂aRα := ynα,

and

ĈVaRα := 1

n(1 − α)

n∑

i=nα+1

yi .

   



532              

Table 3 Out-of-sample statistical analysis for zCVaRα when the target is the naïve 1/m portfolio

PCVaRα(�x ) Omega-CVaRα MOmega-CVaRα MCWP

Panel α = 0.97

zCVaR0.97 11.7148∗∗∗ (0.000) 7.2624∗∗∗ (0.0000) 2.1151∗∗ (0.0191) 0.856 (0.1975)

Panel α = 0.95

zCVaR0.95 2.2285∗∗ (0.0146) 2.1563∗∗ (0.0173) 2.5064∗∗∗ (0.0073) 1.0897 (0.1399)

Panel α = 0.93

zCVaR0.93 2.13∗∗ (0.0184) 1.9415∗∗ (0.0282) 3.0414∗∗∗ (0.0016) 0.9675 (0.1684)

Panel α = 0.90

zCVaR0.90 1.643∗ (0.0427) 2.1466∗∗ (0.0162) 2.4148∗∗∗ (0.008) 0.5468 (0.2981)

The values in parentheses are p values and the significance levels are 0.01, 0.05 and 0.1 which are displayed
by ∗∗∗, ∗∗, and ∗, respectively

for α = 0.97, 0.95, 0.093, all within 92 % level of confidence. These results sta-
tistically support the beneficial properties of the proposed models over the classical
PCVaRα(�x ) model.

In Table 3, we report upon values of zCVaRα for portfolios from PCVaRα(�x ), Omega-
CVaRα , MOmega-CVaRα models, for four values of α = 0.97, 0.95, 0.93, 0.90, and
the MCWP, to test the significant improvement over the naïve 1/m portfolio in terms
of CVaRα . For this, we take c = CVaRα of the 66 out-of-sample monthly return series
of the naïve 1/m portfolio in calculating the zCVaRα test values for each portfolio.

From Table 3, we observe that portfolios from PCVaRα(�x ), Omega-CVaRα and
MOmega-CVaRα models generate statistically significant lower values of CVaRα than
the naïve 1/m portfolio.

Lastly, in Table 4, we report the statistical analysis of Omega-CVaRα , and
MOmega-CVaRα models vis a vis STARRα model on the basis of three out-of-sample
statistics namely, tμ, zCVaRα , and the F test for variance (Fσ 2 ). The F test is used to
find if the out-of-sample variance of the two strategies s1 and s2 is statistically differ-
ent, we apply a one-tailed Fσ 2 test with null hypothesis H0 : σ 2

s1 ≥ σ 2
s2 against an

alternative hypothesis Ha : σ 2
s1 < σ 2

s2 .
15

Since the average returns of the portfolios of STARRα model are found to be greater
than that of portfolios of Omega-CVaRα and MOmega-CVaRα models (see, Table 1),
so strategy s1 is taken as the portfolio from STARRα model in computing tμ statistics.
On the other hand, variance and CVaRα of portfolios of STARRα are lower than that of
portfolios of Omega-CVaRα andMOmega-CVaRα (again see, Table 1), hence strategy
s2 is taken as the portfolio from STARRα model in computing the zCVaRα and Fσ 2

statistics. We observe that both Omega-CVaRα and MOmega-CVaRα models surpass
the STARRα model significantly in terms of risks (CVaRα as well as variance) while
the STARRα model earn higher average return than Omega-CVaRα model only for α

= 0.97, 0.95, and MOmega-CVaRα only for α = 0.97.

15 Given two strategies s1 and s2, with σ̄ 2
s1 , σ̄

2
s2 as their sample variances over a sample period of size n

(n = 66 in our case), we evaluate the p values using F test statistic: Fσ2 := σ̄ 2
s2

σ̄ 2
s1

(Table 4).
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Table 4 Out-of-sample
statistical analysis for tμ,
zCVaRα , and Fσ2 when the
target are the portfolios from
STARRα model

The values in parentheses are p
values and the significance
levels are 0.01, 0.05 and 0.1
which are displayed by ∗∗∗, ∗∗,
and ∗, respectively

Omega-CVaRα MOmega-CVaRα

Panel α = 0.97

tμ 1.6401∗ (0.0529) 1.3163∗ (0.0963)

Fσ2 1.7791∗∗ (0.0107) 2.0316∗∗∗ (0.0024)

zCVaR0.97 12.8629∗∗∗ (0.0000) 3.7353∗∗∗ (0.0001)

Panel α = 0.95

tμ 1.3421∗ (0.0921) 1.1019 (0.1372)

Fσ2 1.8043∗∗∗ (0.0093) 2.0477∗∗∗ (0.0021)

zCVaR0.97 2.925∗∗∗ (0.0023) 3.2403∗∗∗ (0.0009)

Panel α = 0.93

tμ 0.8195 (0.2077) 0.6470 (0.2599)

Fσ2 1.8785∗∗∗ (0.0060) 2.1386∗∗∗ (0.0012)

zCVaR0.97 2.4896∗∗∗ (0.0076) 3.7534∗∗∗ (0.0001)

Panel α = 0.90

tμ 0.7974 (0.2140) 0.5523 (0.2912)

Fσ2 2.0087∗∗∗ (0.0027) 2.2783∗∗∗ (0.0005)

zCVaR0.97 3.7831∗∗∗ (0.0001) 4.0107∗∗∗ (0.0000)

6 Conclusions

In this paper, we propose to take the threshold point L in Omega ratio as L(α) =
CVaRα of the loss distribution of the benchmark market z at α confidence level where
α is a measure of loss averse attitude of an investor. To accomplish this, we first re-
defined the Omega ratio for loss distribution to make this study compatible with the
concepts of CVaRα . The Omega-CVaRα model involves maximization of L(α) while
L(α) is described in terms of CVaRα which requires minimization. To bridge this gap
in our study, we use the zero duality gap in the scenario based CVaRα minimization
problem (an inner problem in the proposed Omega-CVaRα model) and convert it into
a maximization problem. The optimal maximum value of the dual problem act as an
upper bound for L(α) in the proposed Omega ratio maximization model.

We next formulate the robust variants of the Omega-CVaRα model in which robust-
ness is introduced in maximizing the Omega ratio as well as in minimizing CVaRα

(with the aim to derive the robust threshold point) under themixed, box, and ellipsoidal
uncertainty sets. We observe that the robust Omega-CVaRα remains a linear program
under mixed and box uncertainty sets while it becomes a second order conic program
in case of ellipsoidal uncertainty set. We then perform a comparative analysis between
the PCVaRα(�x ) model, the STARRα model, the proposed Omega-CVaRα , and a robust
variant of Omega-CVaRα under the mixed uncertainty set over the sample period
from Jan 1990 to June 2015. We use the S&P 500 index as the benchmark market to
derive the threshold CVaRα in Omega-CVaRα and select the top 50 stocks from the
S&P 500 on the basis of high market capitalization to optimize the standard nominal
CVaRα model and to maximize the Omega ratio in the proposed nominal Omega-
CVaRα model. We find that the Omega-CVaRα model improves PCVaRα(�x ) model in
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expected returns, Sharpe ratio, and modified Sharpe ratio while controlling the losses
in terms of having smaller values of VaRα and CVaRα , where results are significant for
the first two measures. We also perceive that the robust Omega-CVaRα upgrades the
Omega-CVaRα model by having a comparatively large expected return, Sharpe ratio
and modified Sharpe ratio and lesser value of losses measured by VaRα and CVaRα .

The Omega-CVaRα as well as the robust counterpart under mixed uncertainty set
generate statistically significant lower values of CVaRα than the naïve 1/m portfolio
strategy. Moreover, the two proposed models Omega-CVaRα and its robust model
under mixed uncertainty set outperform the STARRα model in terms of losses by
producing statistically significant lower CVaRα and variance. These results show the
financial benefits of our proposed model and its robust counterpart over the classical
CVaRα model in terms of both return and risk of loss.

Acknowledgements We thank two anonymous OR Spectrum reviewers for their helpful advice and con-
structive comments on an earlier draft.

Appendix A: Worst Omega ratio in continuous case under mixed uncer-
tainty set

Define

H = E p(L − �x )
+

E p(�x − L)+
=

∫

�

(L − �x )
+ p(�) d�

∫

�

(�x − L)+ p(�) d�
=

∫

�

∑s

k=1
wk(L − �x )

+ pk(�) d�
∫

�

∑s

k=1
wk(�x − L)+ pk(�) d�

.

Applying the Charnes and Cooper (1962) transformation, with γ > 0 as a homoge-
nization variable, we have,

H =
∫

�

s∑

k=1

wk(Lγ − �x̃ )
+ pk(�) d� with

∫

�

s∑

k=1

wk(�x̃ − Lγ )+ pk(�) d� = 1, x̃= xγ,

=
s∑

k=1

wkG
k
1 with

s∑

k=1

wkG
k
2 = 1,

where Gk
1 =

∫

�

(Lγ − �x̃ )
+ pk(�) d�, Gk

2 =
∫

�

(�x̃ − Lγ )+ pk(�) d�.

Appendix B: Mixed uncertainty set

Themixeduncertainty set for the distributionof benchmarkmarket loss �z is as follows:

QM =
⎧
⎨

⎩q =
ŝ∑

k=1

ŵkq
k;

ŝ∑

k=1

ŵk = 1, ŵk ≥ 0, k = 1, . . . , ŝ

⎫
⎬

⎭ ,
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where qk is the kth likelihood density function of portfolio loss �̂z . The worst
case analysis of PCVaRα(�̂z)

under the mixed uncertainty set for continuous case
is already discussed in Zhu and Fukushima (2009). Here we re-state its discrete
version for reader comprehension. Let T̂ k be the finite number of scenarios of �̂z
(using sampling techniques) with the kth, k = 1, . . . , ŝ likelihood probability vector
qk = ((qk1 , . . . , q

k
T̂ k )

t ; (qk)te = 1, qki ≥ 0, ∀ i = 1, . . . , T̂ k). Then following Zhu
and Fukushima (2009), the PCVaRα(�̂z)

model under QM as follows:

PMCVaRα(�̂z)
min θ̂

subject to: τ + 1

1 − α
(qk)t ûk ≤ θ̂ k = 1, . . . , ŝ

ûk + τe − B̂kz ≥ 0, k = 1, . . . , ŝ

zte = 1, τ ∈ R, z ∈ R
m+, ûk ∈ R

T̂ k

+ ,

where B̂k = [�̂ki j ]T̂ k×m is the loss matrix of portfolio z corresponding to the likelihood

probability function qk .
Therefore, the dual of PMCVaRα(�̂z)

is derived as follows:

PDMCVaRα(�̂z)
max ϑ

subject to: ϑe −
ŝ∑

k=1

(B̂k)thk ≤ 0

vte = γ

−vte +
ŝ∑

k=1

(hk)te = 0

− vk

1 − α
qk + hk ≤ 0 k = 1, . . . , ŝ

hk ∈ R
T̂ k

+ , v ∈ R
ŝ+, k = 1, . . . , ŝ,

where vk, k = 1, . . . , ŝ, is the kth component of vector v.

Appendix C: Box uncertainty set

Let QB = {q = q0 + π̂; π̂ te = 0, π̂ ≤ π̂ ≤ ¯̂π} be a box uncertainty set for the
distribution of benchmarkmarket loss �̂z , then PCVaRα(�̂z)

underQB is given according
to Zhu and Fukushima (2009):

PBCVaRα(�̂z)
min θ̂

subject to: τ + 1

1 − α
(q0)t û + 1

1 − α
( ¯̂π tξ + π̂

t
�) ≤ θ̂
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εe + ξ − � = û

û + τe − B̂z ≥ 0

et z = 1, τ ∈ R, z ∈ R
m̂+

ε ∈ R, û, ξ, � ∈ R
T̂+,

where B̂ = [�̂i j ]T̂×m is the loss matrix of portfolio z. The dual of PBCVaRα(�̂z)
is as

follows:

PDBCVaRα(�̂z)
max ϑ

subject to: B̂tv − ϑe − λ5 = 0

etv = γ

−etλ6 = 0

q0

1 − α
+ λ6 − v − λ7 = 0

¯̂π
1 − α

− λ6 − λ8 = 0

π̂

1 − α
− λ6 − λ9 = 0

ϑ ∈ R, v, λ7, λ8, λ9 ∈ R
T̂+, λ5 ∈ R

m+, λ6 ∈ R
T .

Appendix D: Ellipsoidal uncertainty set

For fixed values of θ, ũ, d̃ , here, we first derive the dual of P10 in the following steps:
TheLagrange of P10withLagrangemultipliersλ1, λ2, λ3, λ4, λ5, is given as follows:

L(.)= ũt p0+ut Bπ − λ1(d̃
t p0 + d̃ t Aπ − 1) − λt2(p

0 + Aπ) − λ4(e
t Aπ) + λ5π − λ3.

= (At ũ − λ1A
t d̃ − λ4A

te − Atλ2 + λ5)π + ũt p0 − λ1d̃
t p0 + λ1 − λt2 p

0 − λ3.

(24)

Using the minimax representation of the primal problem P11 as

min
π

max{||λ5||2≤λ3,λ1,λ2,λ4}
L(.) = min{||λ5||2≤λ3,λ1,λ2,λ4}

max
π

L(.), (25)

the inner problem of the latter one is affine in π and can be solved by taking its
derivative with respect to π which leads to the following dual constraint derived from
Eq. (24):

At ũ − λ1A
t d̃ − λ4A

te − Atλ2 + λ5 = 0
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Therefore, the dual of P11 is given as follows:

P12 max ũt p0 − λ1d̃
t p0 + λ1 − λt2 p

0 − λ3

subject to: At ũ − λ1A
t d̃ − λ4A

te − Atλ2 + λ5 = 0 (26)

||λ5||2 ≤ λ3 (27)

λ1, λ3, λ4 ∈ R; λ2 ∈ R
T+, λ5 ∈ R

T . (28)

P12 is an SOCP problem.
Dual of worst case of CVaRα model under ellipsoidal case
For the ellipsoidal setQE = {q = q0+ Âπ̂; et Âπ̂ = 0, q0+ Âπ̂ ≥ 0, ||π̂ ||2 ≤ 1}

of portfolio z, the worst case of PCVaRα(�z) is as follows (Zhu and Fukushima 2009):

PECVaRα̂(�z) min θ̂

subject to: τ + 1

1 − α
(q0)t û + 1

1 − α
(ζ + (P̂0)tϒ1) ≤ θ̂

−ξ − Ât� + Âteε = Ât û

||ξ ||2 ≤ ζ

û + τ − B̂z ≥ 0

et z = 1, z ∈ R
m+

ε, τ ∈ R, û ∈ R
T̂+ ξ ∈ R

T̂ , ϒ1 ∈ R
T̂+.

PECVaRα(�̂z)
is an SOCP problem. Analogously to the dual derivation P12 from P11,

we can also obtain the dual of PECVaRα(�̂z)
as follows:

PDECVaRα(�̂z)
max ϑ

subject to: B̂tv − ϑ e − λ6 = 0

vte = 1

et Âλ7 = 0

q0

1 − α
+ Âλ7 − v − λ8 = 0

q0

1 − α
+ Âλ7 − λ9 = 0

||λ7||2 ≤ 1

1 − α

ϑ ∈ R, λ7, λ10 ∈ R
T̂ , v, λ8, λ9 ∈ R

T̂+, λ6 ∈ R
m+.
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