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Abstract

Automatically recognising audio signals plays a crucial role in the development of
intelligent computer audition systems. Particularly, audio signal classification, which
aims to predict a label for an audio wave, has promoted many real-life applications.
Amounts of efforts have been made to develop effective audio signal classification
systems in the real world. However, several challenges in deep learning techniques
for audio signal classification remain to be addressed. For instance, training a deep
neural network (DNN) from scratch is time-consuming to extracting high-level deep
representations. Furthermore, DNNs have not been well explained to construct the
trust between humans and machines, and facilitate developing realistic intelligent
systems. Moreover, most DNNs are vulnerable to adversarial attacks, resulting in
many misclassifications.

To deal with these challenges, this thesis proposes and presents a set of deep-
learning-based approaches for audio signal classification. In particular, to tackle
the challenge of extracting high-level deep representations, the transfer learning
frameworks, benefiting from pre-trained models on large-scale image datasets, are
introduced to produce effective deep spectrum representations. Furthermore, the
attention mechanisms at both the frame level and the time-frequency level are pro-
posed to explain the DNNs by respectively estimating the contributions of each
frame and each time-frequency bin to the predictions. Likewise, the convolutional
neural networks (CNNs) with an attention mechanism at the time-frequency level is
extended to atrous CNNs with attention, aiming to explain the CNNs by visualising
high-resolution attention tensors. Additionally, to interpret the CNNs evaluated on
multi-device datasets, the atrous CNNs with attention are trained in the conditional
training frameworks. Moreover, to improve the robustness of the DNNs against ad-
versarial attacks, models are trained in the adversarial training frameworks. Besides,
the transferability of adversarial attacks is enhanced by a lifelong learning frame-
work. Finally, the experiments conducted with various datasets demonstrate that
these presented approaches are effective to address the challenges.
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Introduction

1.1 Motivation

Sound is a key component of human perception of the world in our daily life. A
variety of information is transmitted to human through audio signals. For instance,
a human being can perceive scenes through hearing the environmental sounds, a
physician diagnoses patients by auscultation, and a person can feel the other’s emo-
tions from their conversation. In the past decades, the era of Artificial Intelligence
(AI) sprang up to enable machines to automatically perceive audio information.
Thanks to the rapid development of machine learning [4], particularly deep learn-
ing techniques [5], machine perception of audio signals, which is called computer
audition [6], is advanced to facilitate numerous applications in intelligent systems,
e. g., scene recognition in mobile robots [7], automatic medical diagnosis systems [8],
affective social robots [9], etc.

As one of the well-known computer audition techniques, the audio classification
problem aims to produce a label from an audio signal, while the audio samples are
grouped into two or multiple pre-determined classes [10]. For example, each environ-
mental audio signal is labelled with one of the classes, including park, street, shop-
ping mall, tram, etc. Different types of classes promote a series of audio classification
tasks, such as Acoustic Scene Classification (ASC) [11], Heart Sound Classification
(HSC) [12], Speech Emotion Recognition (SER) [13], and many more.

In this thesis, audio classification tasks are formulated as the major task in a
supervised learning framework [14], where a model is optimised to learn a map-
ping function from each input to a label based on a pre-annotated training set. To
achieve audio classification, machine learning approaches, like Support Vector Ma-
chines (SVMs) and decision trees, have been effectively used in most studies [15, 16].
With the increasing amounts of data due to the advances of data storage technolo-
gies [17], the traditional machine learning methods are struggling to process massive
data [18]. The recent advent of deep learning techniques has shown a great contri-
bution to the classification of large-scale audio data sets compared to conventional
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machine learning methods. For example, Convolutional Neural Networks (CNNs)
can yield good performance by extracting highly abstract representations from audio
signals [19], and Recurrent Neural Networks (RNNs) can perform well via learning
sequential features [20]. The connected structure – Convolutional Recurrent Neu-
ral Networks (CRNNs) was also employed in recent studies for taking advantage of
CNNs and RNNs [21].

With these successful applications of deep learning on audio signal classifica-
tion, amounts of significant challenges posted by audio classification tasks remain
to be addressed by developing novel deep learning topologies and frameworks. The
challenges to be focused in this thesis are listed as below:

(1) Extraction of deep representations. With a strong capability of extracting highly
abstract representations, many deep learning architectures have been success-
ful in audio classification tasks [22, 23]. However, there are two limitations of
training deep learning models (i. e., Deep Neural Networks (DNNs)) needed to
be overcome. Firstly, a small amount of data might result in over-fitting dur-
ing training DNNs [24]. Therefore, training a deep learning model requires a
tremendous amount of data in order to learn a huge number of parameters dur-
ing the training procedure. In some practical cases, data collection is expensive
and time-consuming. For example, medical data sets are mostly small because
of the legal restraint and lack of resources in hospitals [25]. Secondly, developing
a deep learning model is time-consuming from designing the model architecture
to the training procedure [26], making it difficult to spread deep learning-based
applications to the real world, e. g., mobile devices. Therefore, processing un-
avoidable small-scale data sets and saving the training time are two key points
in extracting deep representations.

(2) Explanation of deep learning models. Even though deep learning has achieved
high performance, it is still mostly presented as an unexplainable “black box” in
practical scenes [27]. Lack of explainability in a deep learning model poses many
challenges during solving real-world problems, particularly in safety-sensitive do-
mains, e. g., autonomous driving, healthcare, etc. For instance, in the medical
area, an uninterpretable auxiliary diagnosis system cannot gain the physicians’
trust, as a wrong predicted decision may lead to severe health problems and
even death of a patient [28]. To this end, constructing transparent and explain-
able DNNs is needed to promote the development of deep learning in safety
crucial fields. More recently, explanation of deep learning models was mostly
investigated in image processing tasks via visualisation of the models [29, 30].
However, only a few studies have worked on explaining deep learning models for
audio classification [31]. Enhancing the explainability of DNNs for audio signal
classification tasks is still urgently required to break the “black box”.
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(3) Robustness of deep learning models. Because of the development of more and
more mature deep learning techniques, the robustness of deep learning models
is becoming an important factor in the real world. In a recent study [32],
deep learning was found to be vulnerable to adversarial attacks generated by
adding very small and human indistinguishable perturbations to the original
input data. DNNs may produce a wrong prediction with high confidence due to
such perturbations. Adversarial attacks are a serious threat to security-sensitive
fields, e. g., finance, autonomous driving, and healthcare. For example, a wrong
prediction given by a deceived deep learning model may result in misdiagnosis
and wrong treatment in the medical domain. With this in mind, improving
the robustness of deep learning models against adversarial attacks is a serious
requirement in applications of deep learning. Adversarial attacks have been
studied on image processing tasks in many research works [33], yet, only a few
works have focused on adversarial attacks for audio classification [34]. The
topic of adversarial attacks is still an active field of research in the audio signal
classification.

Overall, this thesis mainly focuses on analysing, discussing, and overcoming the
above three challenges on audio signal classification tasks via developing novel deep
learning architectures and frameworks. The audio signal classification tasks contain
ASC, HSC, Pain Level Evaluation (PLE), and SER. Due to the specific requirements
of different tasks, the study of each challenge is investigated on partial tasks with
emphasis.

1.2 Aims of the Thesis

To address the above three challenges introduced in Section 1.1, the three corre-
sponding major contributions, in which the last two contributions are respectively
followed by two extended contributions, are listed as follows:

(1) Extracting high-level representations through transfer learning. To address the
first challenge, transfer learning is a potential way to enable a DNN model
working on a small database, and save the time of the model design and the
training procedure. This thesis contributes to extracting deep representations
from audio signals with the use of pre-trained CNN models from large-scale
image datasets [35], while the spectrum representations of the original audio
signals are extracted as the input of CNNs [36].

(2) Explaining deep learning models via an attention mechanism. To face the
second challenge, the focus of this thesis is to visualise DNNs using an attention
mechanism. With the aim of estimating the contribution of each unit in the
high-level representations to the final predictions, the attention mechanism
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has the potential to improve the performance of DNNs. More importantly,
it is interesting to visualise the representations learnt by the attention, and
further help on understanding the decisions made by the “black-box” neural
networks.

(2-1) Explaining deep learning models in a multi-device condition. Because of the
development of audio recording devices, processing multi-device data sets in
a training procedure is needed to reduce the time and space costs of training
models on each single-device data set independently. The most straightforward
solution to save the costs is jointly training a model on multi-device data,
yet, the difference of the data distributions is a limitation to achieve a good
performance. This thesis, for the first time, proposes the conditional training
to improve the performance of both independently training models and jointly
training a model. Furthermore, an attention mechanism is applied to visualise
the DNNs and help analyse the difference of DNNs in multi-device data.

(3) Generating and protecting deep learning models against adversarial attacks. To
deal with the third challenge, adversarial training is performed in this thesis
to protect DNNs against adversarial attacks. This approach has two advan-
tages: i) the training set is augmented by the generated adversarial data, and
ii) the DNN model is trained to converge on adversarial data. Furthermore, a
similarity-based adversarial training approach is proposed to improve the ro-
bustness of DNNs by reducing the difference between the deep representations
of the original real data and the generated adversarial data.

(3-1) Improving the transferability of adversarial attacks. Besides protecting the
DNNs against adversarial attacks, a key measurement of the attacks is their
transferability of generating adversarial data to deceive multiple target DNNs.
The focus of this thesis is set on enhancing the transferability of adversarial
attacks via lifelong learning for the first time. In particular, instead of training
an attack model in a multi-task learning or a transfer learning framework, a
widely used lifelong learning approach of Elastic Weight Consolidation (EWC)
is explored.

1.3 Outline

With the motivation and goals of this thesis introduced in Chapter 1, to provide
a good overview for the readers, the rest of the thesis is structured into the four
chapters as follows.

Chapter 2 reviews the theoretical background of audio signal classification sys-
tems. A general framework of audio signal classification systems is firstly overviewed.
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Afterwards, feature-based machine learning is introduced with a brief survey of ex-
isting feature sets and models that are commonly used in audio signal classification.
Furthermore, the end-to-end deep learning is presented with pre-processing audio
signals into spectrum representations and typical deep learning architectures.

Chapter 3 concentrates on a set of the employed and contributed methodolo-
gies corresponding to the challenges mentioned in Section 1.1. Firstly, deep repre-
sentation learning using transfer learning paradigms is given. Next, an attention
mechanism is investigated to visualise DNNs, and conditional training is proposed
to train device-robust DNNs. Finally, adversarial training is studied to train robust
deep learning models, and enhancing the transferability of adversarial attacks is
investigated.

Chapter 4 presents the practical evaluations of methods described in Chapter 3.
Following an introduction of the databases and evaluation metrics, the performances
on each database are presented and discussed.

Chapter 5 summarises the achievements and limitations of the work in this thesis,
discusses the ethics in computer audition, and suggests the outlook of potential
future perspectives.
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2

Theoretical Background

This chapter mainly introduces the theoretical background of intelligent audio signal
classification to the readers. To be more specific, two general frameworks of audio
signal classification systems, including traditional machine learning and end-to-end
deep learning, are introduced and compared in Section 2.1. For better understand-
ing and comparing the two frameworks, the traditional machine learning is briefly
described in Section 2.2, and the end-to-end deep learning is then presented in Sec-
tion 2.3.

2.1 General Framework of Audio Signal Classifi-

cation Systems

A machine learning algorithm aims to optimise the parameters of a model through
an iterative progress with a goal of improving the performance on a specific task.
A standard machine learning framework for audio signal classification consists of
two stages: a training stage and a test stage. The goal of the training stage is to
optimise the model’s parameters on a labelled training set. At the test stage, the
trained model is used to predict the labels of an unseen test set.

In particular, from the perspective of the model architectures and the correspond-
ing inputs, machine learning contains two subsets: traditional machine learning (i. e.,
feature-based machine learning), and end-to-end deep learning (cf. Figure 2.1). In
feature-based machine learning (cf. Figure 2.1(a)), the first step is to extract fea-
tures, which are generally represented as vectors, from the labelled training set.
Furthermore, the extracted feature vectors and the annotated labels are provided
as the input of a feature-based machine learning algorithm. Typically, the feature
vectors are hand-crafted, such as pitch, formants, spectral features, etc. Lastly, the
model in the feature-based machine learning algorithm is optimised to accurately
classify the audio signals. Compared to the feature-based machine learning, the
goal of end-to-end deep learning is to learn a more complex model directly from
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(a) Feature-based machine learning.

Labelled
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(b) End-to-end deep learning.

Figure 2.1: General pipelines of the training procedure in an audio signal classifi-
cation system using feature-based machine learning and end-to-end deep learning,
respectively.

the audio signals or the simple spectrum representations by skipping the process of
feature extraction (cf. Figure 2.1(b)) [37]. The idea of end-to-end deep learning is
to save the costs of designing the feature sets, and directly learn highly abstract
representations, which are more helpful for a classification task than hand-crafted
features. The approaches in this thesis are achieved by end-to-end deep learning,
which is therefore called deep learning for simplification in the following sections.

2.2 Feature-based Machine Learning

In the following, the feature-based machine learning procedure for audio signal clas-
sification will be given, including the feature extraction in Section 2.2.1 and the
classification models in Section 2.2.2.

2.2.1 Feature Extraction

Essentially, the original audio signals are not directly fed into a traditional machine
learning model, as the useless information inside the audio signals may pull the
classification performance down. For instance, noises and human speech voices are
not helpful for an HSC task. To extract more useful information for improving the
classification performance, feature vectors are computed from the raw audio signals
regarding a crafted feature set. Feature extraction has been successfully employed in
a set of audio classification tasks, e. g., HSC [38], SER [39], etc. The idea of feature
extraction is to represent raw audio signals as more abstract representations, which
are more suitable for machine learning [40]. As the input of a traditional machine
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learning model, the acoustic feature vectors are typically extracted using a set of
signal processing methods, such as Fourier transform and filters.

Since 2013, the feature set employed by the baseline of INTERSPEECH COM-
putaional PARalinguistic ChallengE (ComParE), has shown good perfor-
mances in audio classification tasks [38]. The ComParE feature set consists of a
variety of segmental Low-Level Descriptors (LLDs) and supra-segmental function-
als. For an audio signal, the LLDs are obtained from the short-term analysis on
every segment, while the functionals aim to project the sequential LLDs onto an
independent vector.

In the ComParE feature set, the LLDs mainly contains the raw LLDs and the
derived LLDs. The raw LLDs are extracted from each short-time segment covered
by a sliding window, which is mostly set as 25 − 32 ms [41]. The raw LLDs in the
ComParE feature set include prosodic features (e. g., loudness, Root Mean Square
(RMS) energy, F0 via subharmonic summation, etc), spectral features (e. g., spectral
roll-off point 0.25, 0.50, 0.75, 0.90, spectral flux, spectral entropy, etc), cepstral
features (e. g., Mel-Frequency Cepstral Coefficients (MFCCs) 1 − 14), and voice
quality features (e. g., probability of voicing, jitter, and shimmer). Additionally, the
derived LLDs are added into the feature set as well, resulting in 130-dimensional
LLDs. To further compute the potential information among a time series of the
extracted LLDs, functionals are applied inside each LLD and over multiple LLDs.
Especially, functionals are computed through summarising the statistical features
from the LLDs, such as root-quadratic mean, flatness, standard deviation, temporal
centroid, linear regression slope, etc. Finally, a 6, 373-dimensional feature vector is
obtained from an audio sample.

Besides the ComParE feature set, the extended Geneva Minimalistic Acoustic
Parameter Set (eGeMAPS) was designed especially for the affective speech analy-
sis [42]. The eGeMAPS feature set has shown good performances in many speech-
related tasks, such as SER [43], detection of Alzheimer’s dementia [44], etc. Similar
to the ComParE feature set, the eGeMAPS feature set also consists of LLDs
and functionals. In the eGeMAPS feature set, 25 LLDs are employed, including
frequency related parameters (e. g., pitch, jitter, formant 1, 2, and 3 frequency, for-
mant 1, and formant 2− 3 bandwidth), energy/amplitude related parameters (e. g.,
shimmer, loudness, and harmonics-to-noise ratio), and spectral (balance/shape/-
dynamics) parameters (e. g., alpha ratio, hammarberg index, harmonic difference
H1–H2, MFCCs 1 − 4, etc). Moreover, the functionals (e. g., arithmetic mean, co-
efficient of variation, etc) are applied to the LLDs, generating the 88-dimensional
eGeMAPS feature set. To facilitate the acoustic feature extraction process, the
openSMILE toolkit [45] provides several predefined and well-established feature sets,
such as the ComParE and the eGeMAPs feature sets.

Additionally, the technique of Bag-of-Audio-Words (BoAW) [46] was proposed
to estimate the understandable representations based on the segment-level LLDs for
SER. The procedure of BoAW consists of three steps: codebook generation, vector
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quantisation, and BoAW aggregation. The purpose of codebook generation is to
extract a series of audio words from the LLDs using either random sampling or
k-means clustering. Random sampling is selected to achieve codebook generation
in this thesis, as the computation of k-means has been shown much slower than
random sampling [46]. Notably, a codebook is only generated from the LLDs of
the training set. Given a generated codebook, each LLD vector is then assigned to
the closest audio word based on the Euclidean distance. This procedure is called
vector quantisation. Once the codebook is generated, a histogram is built to count
the frequencies of the audio words in the BoAW aggregation step. Through the
BoAW procedure, the segmental LLDs are transformed to high-level representations.
The openXBOW [47], an open-source toolkit for BoAW features extraction, has
been successful in a number of audio classification tasks [38, 48]. Therefore, the
openXBOW is used in the partial experiments of this thesis.

2.2.2 Classification

With the extracted features as the input, a classifier is trained to predict the labels
for the audio samples. In general, machine learning techniques contain two major
types of models: generative models and discriminative models. Given the feature
vectors x and the labels y, generative models aim to calculate the posterior prob-
ability P (y|x) using the Bayes rule on the modelled joint probability distribution
P (x, y), whereas discriminative models attempt to compute P (y|x) directly from
the given features and labels.

In a generative model, the likelihood probability is firstly obtained using
P (x|y) = P (x,y)

P (y)
, where P (y) is the prior distribution of y. P (y|x) is then calculated

using the Bayes rule P (y|x) = P (x|y)P (y)
P (x)

, where P (x) is the prior distribution of x.
In this context, a set of generative models have been proposed, such as naive Bayes,
Gaussian mixture models, and hidden Markov models. Although the generative
models are more suitable for semi-supervised and unsupervised learning due to the
calculation of the joint probability distribution, they have been successfully applied
to a set of audio signal classification tasks [49, 50, 51].

A discriminative model focuses on producing P (y|x) through computing the
boundary between classes, instead of estimating the joint probability distribution
P (x, y). At this point, discriminative models can often achieve high performances
on audio classification tasks, such as ASC [52], because of their direct computing
of P (y|x). Typically, discriminative models include SVMs, decision trees, k-nearest
neighbours, and neural networks [53]. An SVM model attempts to learn a soft deci-
sion boundary between classes via constructing a hyperplane based on the features;
a decision tree constructs an interpretable model with a variety of nodes; k-nearest
neighbours evaluate each feature vector’s distances to its neighbours. Herein, the
neural networks are the artificial neural network with a single layer, which is the
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foundation of Feedforward Neural Networks (FNNs) with a deeper structure in Sec-
tion 2.3.2.1.

As SVMs have shown good performances in audio classification tasks [52], they
are chosen to represent the feature-based machine learning method in this thesis.
The basic idea of a linear SVM is to build a hyperplane for a binary classification
task, through optimising the function

arg min
||w||2

2
+ C

N∑
i=1

αi, subject to yi(w
Txi + b) ≥ 1− αi, αi ≥ 0, (2.1)

where yi ∈ {−1, 1}, i = 1, ..., N , N is the number of samples, w is the weights of each
value in a feature vector, b is the bias, and C, the complexity parameter, controls
the slack variable αi to penalize the misclassified samples.

Regarding the SVM model for binary classification, two major strategies are
available for a multi-class classification: one-versus-all strategy classifies each class
with the rest classes, and one-versus-one strategy classifies each pair classes [54].
Therefore, for a multi-class classification task, SVMs optimise the parameters to
construct a set of maximum-margin hyperplanes in the feature space. However, it
might be challenging to classify non-linear feature spaces with a linear SVM model.
In this regard, a linear SVM model can also be improved to nonlinear models by
integrating kernel functions, such as the radial basis function [55].

2.3 Deep Learning

Despite that the feature-based machine learning has been widely applied to many
audio classification tasks [52, 56], its application is limited by the time-consuming
feature extraction procedure [24]. To overcome this limitation, deep learning takes
the raw data as the input, and trains multi-layer neural networks for classification.
As mentioned in Section 2.1, the input of a deep learning model can be either
the original audio signals or the simple spectrum representations. In this section,
the data pre-processing procedure of generating spectrum representations will be
introduced in Section 2.3.1, and the typical DNNs for classification will be described
in Section 2.3.2.

2.3.1 Data Pre-processing

Spectrum representations, i. e., time-frequency representations of audio signals, have
been used as input of DNNs in a number of research studies for audio signal pro-
cessing. For instance, in [36], spectrograms were employed as the input of a CNN
models for music onset detection. Spectrograms were also investigated to extract
deep spectrum features for snore sound classification in [22]. Log-mel spectrograms
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were employed to train a CNN model for large-scale audio classification in [19].
MFCC features was used in [57] for SER. Wavelet representations were fed into
RNNs for HSC in [58]. In the following, a series of typical spectrum representations
will be introduced, including spectrogram in Section 2.3.1.1, log mel spectrogram in
Section 2.3.1.2, MFCCs in Section 2.3.1.3, and scalogram in Section 2.3.1.4.

2.3.1.1 Spectrogram

Through Short-Time Fourier Transform (STFT), a specific Fourier transform, spec-
trograms are extracted from audio signals. Fourier transform [59] decomposes the
global frequency components of a whole audio signal, yet, loses the local frequency
information in shorter periods. The purpose of STFT is to provide the frequency
components in every short-time interval of an audio wave. Given an audio signal s,
the spectrogram is obtained via applying Fourier transform to each audio segment
split by a sliding window,

f(ts, ω) =
∞∑

t=−∞

s[t]w[t− ts]e−jωt, (2.2)

where ts is a constant value indicating the translation distance of the window func-
tion w at each step, and ω is the angular frequency. At this point, the spectrograms
are represented with two axes of time frames and frequencies, where each time
frame holds the time length of the window function. A set of window functions are
available to conduct STFT, such as Triangular window, Hann window, Hamming
window, Gaussian window, etc [60].

2.3.1.2 Log Mel Spectrogram

An early study [61] proposed the mel scale to define the relations between pitch
and frequency, similar to the non-linear human auditory system. To accurately
mimic the perception of human ears, the mel scale was then investigated in a set of
studies [62, 63]. The mel scale was typically defined by

fmel(f) = 2595 log10(1 +
f

700
), (2.3)

where f is the spectrogram obtained by STFT. In practice, to obtain a mel spectro-
gram, a set of Triangular mel filter banks are constructed according to the mel scale,
and then multiplied with the original spectrogram. The passing frequency range of
each mel filter bank is increasing with the frequency. The number of the mel filter
banks determines the dimensions of the mel spectrograms at the mel frequency level.

Recently, mel spectrograms have shown the potential on audio signal classifica-
tion tasks [64, 65]. Moreover, in some classification tasks, as some useful information
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is hidden in the low frequencies, the logarithms of mel spectrograms (i. e., log mel
spectrograms) were employed to enhance the information of low-frequency bands in
a lot of research studies [66, 67].

2.3.1.3 Mel-Frequency Cepstral Coefficients

When obtaining log mel spectrograms, filter bank coefficients are most highly cor-
related. Therefore, a Discrete Cosine Transform (DCT) is employed to decorrelate
the log mel spectrograms [68], resulting in a compressed representation of the filter
banks (called MFCCs). The operation of DCT is defined by

fmfcc(n) =

Nmel∑
t=1

log(fmel[t]) cos(
πn(t+ 0.5)

Nmel

), n = 0, ..., Nmfcc, (2.4)

where Nmel is the dimensional number of mel frequency, and Nmfcc denotes the
dimensional number of the obtained MFCCs.

2.3.1.4 Scalogram

The above three kinds of spectrum representations only provide a fixed resolution
at the time-frequency level, as STFT cannot reach a high-resolution representation
at both time and frequency domains according to the Heisenberg uncertainty prin-
ciple [69]. For example, increasing the resolution at the time domain (i. e., increas-
ing the number of the windows) leads to the reduction of the frequency resolution
(i. e., reducing the width of the sliding window), and vice versa. In this regard,
wavelet transform [70, 71] was proposed to overcome this shortcoming of STFT by
a wavelet function, producing multi-scale time-frequency representations, which are
called scalograms. In this thesis, the Continuous Wavelet Transform (CWT) will be
introduced to generate scalograms. The CWT of a discrete audio signal is the con-
volution of the signal with a scaled and translated version of a wavelet basis, which
replaces the window function in STFT [72]. In relative studies, several wavelet ba-
sis functions have been proposed, such as bump [73] and morse [74], which will be
introduced as below.

Using the bump wavelet transform, the wavelet basis Ψbump is defined by

Ψbump(εω) = e

(
1− 1

1−(εω−µ)2/σ2

)
1[(µ−σ)/ε,(µ+σ)/ε], (2.5)

where ε is the wavelet scale, µ and σ are two constant parameters, σ affects the
frequency and time localisation, and 1[(µ−σ)/ε,(µ+σ)/ε] is the indicator function for the
interval ω ∈ [(µ− σ)/ε, (µ+ σ)/ε].

Besides, the wavelet basis of the morse transform is defined as

Ψmorse(a, γ, ω) = u(ω)βa,γω
a2

γ e−ω
γ

, (2.6)
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x
Input layer Hidden layer Output layer

yh

Figure 2.2: An example of FNNs with an input layer, a hidden layer, and an output
layer. The input is denoted by x, the units in the hidden layer is h, and the output
is y.

where u(ω) is the unit step, βa,γ stands for a normalising constant, a2 is the time-
bandwidth product, and γ is the symmetry parameter.

2.3.2 Classification

With the obtained spectrum representations as the input, deep learning models are
then trained to classify the data. In this section, three classical deep learning struc-
tures will be introduced, including FNNs in Section 2.3.2.1, CNNs in Section 2.3.2.2,
and RNNs in Section 2.3.2.3.

2.3.2.1 Feedforward Neural Networks

Herin, an FNN model is defined by the simplest artificial neural network with mul-
tiple layers, which are connected by feeding forward the output of each layer to the
next layer (cf. Figure 2.2). Besides the input and output layers, an FNN model
generally holds at least one hidden layer. Each unit of a layer in an FNN model is
connected to all units of the next layer. The computational procedure in each layer
is a linear transformation from the input to the output. For example, at the n-th
layer, n = 1, ..., Nl, where Nl is the number of layers, the output activation hn is
calculated from the input hn−1 by

hn = wnhn−1 + bn, (2.7)

where w is the weight values of each unit, and bn stands for the biases. In the input
layer, the input h0 is equal to the input data x. Before feeding the activation hn

into the next layer, hn is mostly passed to a non-linear transformation conducted
by an activation function, e. g., tanh function, Rectified Linear Unit (ReLU) func-
tion, sigmoid function, softmax function, etc. Especially, a softmax function or a
log-softmax function, is applied to the output of the final layer to compute the prob-
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Figure 2.3: An example of two-dimensional CNNs. This CNN model includes a
convolutional layer, a local pooling layer, a global pooling or a flattening layer, and
a fully connected layer. The “fc” means the fully connected layer.

abilities of every class. For each audio sample, the class with the largest probability
is finally selected to be the predicted label.

During the training procedure, backpropagation is often employed to optimise
the neural network for the best weights and biases in Equation (2.7) [75, 76]. The
whole procedure of backpropagation consists of two stages: forward pass and back-
ward pass. In the forward pass, the activations of all layers in an FNN model are
computed using Equation (2.7), while in the backward pass, an objective function
(i. e., loss function), such as cross-entropy loss, is minimised through calculating the
gradients of the loss function regarding the parameters. However, it is challenging to
find the global minimum, as the relation between the loss function and parameters
is highly non-linear. Therefore, gradient descent is mostly used to adjust the param-
eters towards the negative error gradient in a number of small steps. At this point,
the objective function is approximately minimised to the global minimum. Based
on gradient descent, a set of optimisation algorithms have been proposed and widely
used, such as Stochastic Gradient Descent (SGD) [77], RMSProp [78], Adam [79],
etc.

2.3.2.2 Convolutional Neural Networks

With a strong capability of learning high-level representations, CNNs have been
applied to process both image data and audio signals [23, 80]. Due to various
dimensions of the data, CNNs have been mainly developed as one-dimensional,
two-dimensional, and three-dimensional structures [23, 80], each of which is cor-
responding to the dimensions of the input data. In this thesis, since the spectrum
representations of audio signals are two-dimensional (time-frequency), they are fed
into two-dimensional CNNs. Therefore, two-dimensional CNNs are introduced in
this section.

A structure of two-dimensional CNNs is depicted in Figure 2.3. We can see that,
a CNN model generally contains a set of convolutional layers, pooling layers, and
fully connected layers. As the key component of CNNs, the convolutional layers
consist of many trainable filters (i. e., kernels), which are convoluted on the input
data or the feature maps outputted by the internal layers. During the convolutional
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operation, the dot product of each filter and each local area is computed as a unit of
the output, so that the convolutional layers can extract shift-invariant features [81].
Given the Cn−1 × P n−1 ×Qn−1 feature map hn−1 from the (n− 1)-th layer, where
Cn−1 is the channel number and P n−1 ×Qn−1 is the size of the feature map at the
time and frequency axes, the output of the n-th convolutional layer is computed by

hnj =
Cn−1∑
i=1

wn
ij ∗ hn−1i + bnj , (2.8)

where hnj is the j-th channel of hn, wij is the (i, j)-th convolutional kernel, ∗ denotes
the convolutional operation, and bnj is the bias at the j-th channel. In general,
convolutional layers are followed by batch normalisation and a ReLU activation
function for convergence acceleration, and batch normalisation can also improve the
stability of CNNs [82, 83].

The pooling layers reduce the size or the dimensions of the feature maps through
combining multiple units inside a feature map into a single unit using a set of
kernels. Regarding the methods of combining the neurons, pooling layers typically
contain max pooling and average pooling. In an area covered by a kernel, a max
pooling layer summarises the units through selecting the maximum unit, whereas
an average pooling layer computes the average value of the units. Furthermore, the
pooling layers consist of local and global pooling layers regarding the kernel size. As
shown in Figure 2.3, local pooling aims to reduce the size of the feature map with
keeping it as a three-dimensional tensor, while global pooling aims to convert the
three-dimensional feature map into a one-dimensional tensor. A local pooling layer
mostly follows a convolutional layer with batch normalisation and a ReLU activation
function, aiming to reduce the computational cost and improve the robustness of
CNNs against the input variation [84]. Global pooling is usually set between the final
convolutional layer and fully connected layer(s) to generate the fed feature map as
a one/two-dimensional tensor. Alternatively, the flattening operation, which simply
flattens the feature map into a vector with retaining all units, is also available to
reduce the three dimensions of a feature map into one dimension.

Finally, same as the layers in an FNN model for a classification task, the fully
connected layers predict the probabilities of every class by processing the feature
vectors obtained from either global pooling or flattening.

2.3.2.3 Recurrent Neural Networks

RNNs, constructed by a set of recurrent layers, can extract effective representations
from sequential data, e. g., audio signals. As illustrated in Figure 2.4, the hidden
layer is recurrent from each time step to the next one, resulting in many sequences in
each hidden layer. Each sequence in a recurrent layer is trained to process the input
data at the corresponding time step, producing a hidden state, which is represented
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Figure 2.4: An RNN structure. The input is x, the units in the hidden layer are
represented as h, and the output is y.

as a vector. The hidden states at all time steps are then fed into the next recurrent
layer, or used to predict the probabilities of each class when these hidden states are
produced by the final recurrent layer. While the total number of time steps is T ,
the hidden state ht at the time step t, t = 1, ..., T , is defined by

ht = σh(whxt + uhht−1 + bh), (2.9)

where wh and uh are the weights, bh is the bias, xt denotes the input vector at the
time step t, ht−1 stands for the previous hidden state at the time step t − 1, and
σh is an activation function. In classification tasks, the hidden states obtained from
the final recurrent layer are generally integrated to a single vector, which is then
forwarded to a fully connected layer in Equation (2.7). Typically, both extracting
the hidden state at the last time step and computing the average of the hidden
states are available to generate a vector as the input of the fully connected layer.

The above simple RNN structure can better capture the sequential context in-
formation [85] than an FNN model and a CNN model. However, the simple RNNs
cannot process long-term context information due to the exploding and vanishing
gradient problem, which describes that the backpropagated error either blows up
or decays over time [86]. In this regard, the Long Short-Term Memory (LSTM)
RNN structure [87] and the Gated Recurrent Unit (GRU) RNN structure [88] were
proposed to address the exploding and vanishing gradient problem. In LSTM-RNN
and GRU-RNN models, the neurons inside a simple RNN model are replaced by
memory blocks (cf. Figure 2.5), which are connected recurrently.

At the time step t, an LSTM memory block(cf. Figure 2.5(a)) consists of a cell
state ct and three gate units, including an input gate it, an output gate ot, and a
forget gate ft. These three gate units are in charge of writing, reading, and resetting
the cell state. The procedure inside an LSTM memory block at the time step t is
defined by

it = σr(wixt + uiht−1 + bi), (2.10)

17



2. Theoretical Background

xt

ht-1

ct-1

ft it ot ht

ct

ht

+

σr

x

tanh

tanh

x x

σr σr

(a) An LSTM memory block.

xt

ht-1

rt zt

ht

+

σr

x

tanh

x

x
1-

σr

(b) A GRU memory block.

Figure 2.5: The structures of the LSTM and the GRU memory blocks. (a) An
LSTM memory block contains an input gate it, an output gate ot, and a forget gate
ft, and (b) a GRU memory block consists of a reset gate rt and an update gate zt.

ft = σr(wfxt + ufht−1 + bf ), (2.11)

ot = σr(woxt + uoht−1 + bo), (2.12)

c̃t = tanh(wcxt + ucht−1 + bc), (2.13)

ct = ft � ct−1 + it � c̃t, (2.14)

ht = ot � tanh(ct), (2.15)

where c̃t stands for a candidate cell state, wi, wf , wo, wc, ui, uf , uo, uc are the
weight matrices, bi, bf , bo, bc are the biases, σr is a logistic sigmoid function, and �
denotes the element-wise multiplication. We can see that, the input gate controls
how much a new value flows into the cell state, the output gate controls how much
the cell state is used to compute the output hidden state ht, and the forget gate
controls how much a value remains in the cell state. For example, while the input
gate is closed and the forget gate is open, the cell state cannot be updated by the
new inputs. Therefore, only the information from the previous time steps is accessed
by the output gate.

Compared to the LSTM-RNN model, a GRU-RNN model has simpler memory
blocks, each of which has a reset gate rt and an update gate zt (cf. Figure 2.5(b)).
A GRU memory block processes the input and the previous hidden state using

rt = σr(wrxt + urht−1 + br), (2.16)

zt = σr(wzxt + uzht−1 + bz), (2.17)

h̃t = tanh(wgxt + ug(rt � ht−1) + bg), (2.18)

ht = (1− zt)� ht−1 + zt � h̃t, (2.19)

where h̃t is a candidate hidden state, wr, wz, wg are the weights, and br, bz, bg are
the biases. The update gate aims to control both how much to forget the existed
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contextual information ht−1 and how much to update the hidden states with the
current information h̃t. For instance, when the update gate is open (gate activation
values are close to one), the hidden state ht−1 is forgotten and the information h̃t
is remembered. Due to less parameters than those of LSTM-RNNs, GRU-RNNs
converged faster than LSTM-RNNs in [89].

Another RNN structure worthwhile introducing is the bi-directional RNN
(BRNN) model [90], which accesses both past and future information. A BRNN
layer contains two independent recurrent layers scanning the input sequences in
two opposite directions. With the bi-directional recurrent layers in each BRNN
layer, BRNNs are efficient to learn context inter-dependent features. Furthermore,
bi-directional LSTM-RNNs (BLSTM-RNNs) and bidirectional GRU-RNNs (BGRU-
RNNs) can also be extended from LSTM-RNNs and GRU-RNNs with the same idea
of BRNNs.
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Methodology

This chapter aims to analyse and address the three challenges of deep learning men-
tioned in Section 1.1, with the targeted contributions in mind (cf. Section 1.2). To
tackle the first challenge, i. e., extracting effective deep representations, the transfer-
learning-based deep representation learning approaches are firstly discussed in Sec-
tion 3.1. Regarding the second challenge about explaining DNNs, the deep learning
models are interpreted using an attention mechanism in Section 3.2, aiming to open
the “black-box” in DNNs. The attention mechanism is applied to explain the DNNs
in both single-device and multi-device conditions. Finally, to cope with the third
challenge (i. e., robustness of DNNs) caused by adversarial attacks, both the ro-
bustness of deep learning models and the transferability of adversarial attacks are
analysed and further improved in Section 3.3.

3.1 Deep Representation Learning

When training a DNN model, the inputs are either the original audio signals or
the spectrum representations. In recent years, spectrum representations, containing
the time and frequency information of audio signals, have shown good potential in
audio signal classification tasks, such as snore sound classification [22] and ASC [91].
Inspired by the CNNs’ successful applications in image processing, e. g., image clas-
sification [92], image captioning [30], etc, they have been employed to analyse the
spectrum representations of audio signals effectively [22]. CNNs have a strong ca-
pability of mapping the inputs to the predicted labels using highly nonlinear convo-
lutional layers. Consequently, CNNs can learn highly abstract representations from
the inputs. However, training CNNs is limited by the over-fitting problem caused
by small-scale data sets [93]. Furthermore, the time-consuming training procedure
with high computational costs could be a difficulty to run deep learning models on
mobile devices [94].

In this regard, to overcome these limitations and difficulties, transfer learning
using pre-trained CNNs is promising to extract useful deep spectrum representations
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from spectrum features instead of training a CNN model from scratch. The pre-
trained CNNs on large-scale image datasets are considered in this thesis, since they
are more robust to extract high-level representations than those CNNs learnt from
small databases. More importantly, transfer learning can effectively save the time
of designing CNNs’ structure and training CNNs.

To develop transfer learning for extracting deep spectrum representations, novel
transfer learning approaches will be introduced to avoid over-fitting on small-scale
data sets and save the training costs, as proposed by the author and her collaborators
in [95, 1, 3, 2]. In this section, the typical pre-trained CNN topologies will be firstly
introduced in Section 3.1.1. Next, the CNN-based transfer learning approaches will
be presented in detail in Section 3.1.2. Finally, an approach of fusing the classifiers,
each of which processes a type of deep spectrum representation, will be elaborated
in Section 3.1.3.

3.1.1 Pre-trained Convolutional Neural Networks

Over the past decades, a set of CNN models have been trained for image classification
tasks [96, 97]. Particularly, a large-scale database, ImageNet, was collected for the
ImageNet Large Scale Visual Recognition Competition (ILSVRC) challenges [98],
and promoted the development of effective CNN structures. This section provides
the structures of three CNN models: AlexNet [99], VGG-16, and VGG-19. [100]. All
of these three models have achieved good performances on the ImageNet database.

The topologies of the three CNNs are given in Table 3.1. AlexNet, VGG-16, and
VGG-19 consist of 8, 16, and 19 layers, respectively. Except for the final three fully
connected layers fc6, fc7, and fc, AlexNet contains three local max pooling layers
and five convolutional layers with output channel numbers of 96, 256, 384, 384, and
256, and kernel sizes of 11 × 11, 5 × 5, 3 × 3, 3 × 3, and 3 × 3. The two VGG
models (VGG-16/VGG-19) are constructed by five local max pooling layers and 13
(VGG-16: 2, 2, 3, 3, and 3)/16 (VGG-19: 2, 2, 4, 4, and 4) convolutional layers with
output channel numbers of 64, 128, 256, 512, and 512, and a kernel size of 3×3. For
the each CNN model, a softmax layer is employed finally to predict the probabilities
of 1, 000 image classes for the 1, 000-class classification task in ILSVRC.

Notably, as the three CNNs were proposed to work on the ImageNet database,
the inputs of the models are three-channel RGB (red, green, and blue) images with a
fixed size of 3×224×224 defined by the hyperparameters in these models. To process
one-channel spectrum representations with these introduced pre-trained CNNs, the
spectrum representations can be resized and saved with a colourful colour map, such
as viridis, which varies from blue (low range) to green (mid range) to yellow (upper
range). Then, the scaled image-like spectrum representations are available to be fed
into the pre-trained CNNs. Finally, the high-level features can be extracted from
the activations of the fully connected layers (either fc6 or fc7 ).
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Table 3.1: Structures of the three CNNs: AlexNet, VGG-16, and VGG-19. The
“conv” stands for the convolutional layer, “k” is the kernel size, and “ch” means the
number of output channels.

AlexNet VGG-16 VGG-19
Input: images

1×conv, k: 11, ch: 96 2×conv, k: 3, ch: 64 2×conv, k: 3, c: 64
Local max pooling

1×conv, k: 5, ch: 256 2×conv, k: 3, ch: 128 2×conv, k: 3, ch: 128
Local max pooling

1×conv, k: 3, ch: 384
3×conv, k: 3, ch: 256 4×conv, k: 3, ch: 256

Local max pooling

1×conv, k: 3, ch: 384
3×conv, k: 3, ch: 512 4×conv, k: 3, ch: 512

Local max pooling
1×conv, k: 3, ch: 256 3×conv, k: 3, ch: 512 4×conv, k: 3, ch: 512

Local max pooling
Fully connected layer fc6, neurons: 4096
Fully connected layer fc7, neurons: 4096
Fully connected layer fc, neurons: 1000

Output: softmax

3.1.2 CNN-based Transfer Learning

In the framework of transfer learning (cf. Figure 3.1), pre-trained CNNs with the
prior knowledge learnt from a large-scale image database are employed for audio
signal classification tasks. The transfer learning in our work contains two major
branches: one branch is feeding the extracted high-level representations from a pre-
trained CNN model into a classifier, which is either a traditional machine learning
model or a deep learning model; the other branch is fine-tuning a pre-trained CNN
model by adapting partial or the whole CNN parameters. In the following, the
first branch, which aims to extract high-level representations will be introduced in
Section 3.1.2.1, and the second branch, which focuses on the fine-tuning procedures,
will then be given in Section 3.1.2.2.

3.1.2.1 High-level Representation Extraction

With the extracted representations by pre-trained CNNs, a set of classifiers can
be used to map the high-level representations into classes. Next, both procedures
for constructing traditional machine learning and deep learning classifiers will be
introduced, respectively.

Classification using traditional machine learning. In Section 2.2.2, SVMs
were introduced as the major feature-based machine learning classifier in this thesis.
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Figure 3.1: An overview of the CNN-based transfer learning framework.

Therefore, SVMs are employed herein to classify the deep spectrum representations.
Depending on the segmentation procedure of the audio signals, the high-level rep-
resentations can be either fed into an SVM model directly when they are extracted
from every complete audio sample, or processed by BoAW first and then fed into
an SVM model when they are from segmented audio samples. Specifically, if each
audio signal is cut into segments, the BoAW features are firstly extracted through
summarising the LLD-like deep representations into a feature vector for each audio
sample. Afterwards, an SVM model is optimised to predict the probabilities of every
class with the BoAW feature vectors as the input.

Classification using Deep Neural Networks. Despite the good perfor-
mances achieved by traditional machine learning models [52], DNNs can further
model non-linear transformations between the high-level representations and the
predicted labels. Particularly, in the work of the author and her colleagues [1], the
(B)RNNs were proposed to process the deep representations extracted from the fully
connected layers of pre-trained CNNs. The purpose of using (B)RNNs is to learn the
sequential representations from the spatial features produced by CNNs. As shown
in the pipeline depicted in Figure 3.2, the audio samples are firstly cut into shorter
audio segments, and the spectrum representations are then extracted from every
audio segment. Next, the deep representations are extracted from each spectrum
representation by a pre-trained CNN model. Furthermore, these deep representa-
tions are arranged according to the time steps, and fed into the (B)RNNs to learn
deep sequential representations. Finally, the (B)RNNs are followed by a softmax
layer for classification.

3.1.2.2 Fine-tuning Procedure

As mentioned before, training CNNs from scratch on small datasets suffers from
over-fitting, since training a CNN model requires a large amount of labelled data to
ensure the convergence. Therefore, training CNNs on small-scale datasets is a chal-
lenging task. Using pre-trained CNN models from large-scale datasets is promising
to solve the over-fitting problem. However, a pre-trained CNN model on a large-scale
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Figure 3.2: The framework of the approach which employs (B)RNNs to classify the
extracted high-level representations from the pre-trained CNNs.

dataset mostly cannot work well on a small dataset because of the substantial differ-
ences between the two datasets. Therefore, fine-tuning was investigated to solve the
problem caused by the data differences [101]. The author and her collaborators also
attempted to fine-tune the pre-trained CNNs in [3], in order to improve the perfor-
mance of training an additional classifier on the extracted deep representations from
pre-trained CNNs. Two kinds of fine-tuning procedures in [3] will be introduced as
below.

Learning Classifier of CNNs. To construct a CNN model for a classification
task, the number of the outputted neurons from the final fc layer is set as the number
of classes. During the training of the CNNs, the classifier (fc7 and fc) is updated,
whereas the convolutional layers and fc6 are frozen by setting the corresponding
parameters of the pre-trained CNN model untrainable. Learning the classifier of
the CNNs can solve the data difference problem, yet, it is still challenging for only
training the classifier to perform well when there is a big difference between two
data resources, such as natural images and spectrum representations.

Learning CNNs. The aim of learning CNNs is to train a more suitable CNN
model on a database than that trained by learning the classifier only. The last
fully connected layer fc, herein, is also replaced by a new one to generate neurons
whose number is equal to the number of classes. To better suit the database, all
parameters of the pre-trained CNN model are updated in the training procedure,
instead of setting the parameters of the classifier trainable only. The obtained CNN
model is called learnt CNNs.

Additionally, to compare the pre-trained CNNs and the learnt CNNs, the high-
level representations extracted from the learnt CNNs are fed into a traditional ma-
chine learning classifier. This approach is based on the assumption that the extracted
representations from the learnt CNNs are potentially more helpful than those from
a pre-trained CNN model, in targeted classification tasks.
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Figure 3.3: An overview of the transfer learning for multiple deep features extrac-
tion. In this framework, spectrograms and scalograms (bump and morse) are firstly
generated from the segmented audio waveforms. All spectrum representations are
then fed into the pre-trained CNNs, from which high-level features are further ex-
tracted at a subsequent fully connected layer. Finally, when the deep features are the
input of the (B)RNNs followed by a softmax layer, the final predictions are obtained
by fusing the predictions of multiple (B)RNN models via the MSV strategy.

3.1.3 Transfer Learning for Multiple Deep Features Extrac-
tion

Apart from extracting deep spectrum representations in Section 3.1.2.1, transfer
learning was proposed to extract multiple types of deep representations in the re-
search work of the author and her colleagues [1]. The aim of extracting multiple
deep representations is to improve the performance of a single one. As shown in Fig-
ure 3.3, three kinds of time-frequency representations are fed into the pre-trained
CNNs for deep features extraction. The extracted three sets of the deep features
are then used as the input of the (B)RNNs for a classification task. Finally, for each
audio sample, three predictions are produced by the three learnt (B)RNN models.
At this point, to obtain the final prediction for each audio sample, the decision-level
(i. e., late) fusion is applied. Since Margin Sampling Value (MSV) [102] has been
effectively used to fuse multiple machine learning models [103], we apply the MSV
to fuse the predictions from the three (B)RNNs.

The MSV strategy measures the confidence of each model, and the final decision
comes from the model with the highest confidence. For an audio sample, each single-
model prediction is defined by {ỹj, pj}, j = 1, ..., Nc, where ỹj denotes the predicted
label, pj is the probabilities of every class, and Nc is the number of the classifiers.
The final prediction ỹ is selected using MSV:

ỹ = {ỹj |
Nc

max
j=1

(p1j − p2j)}, (3.1)

where p1j and p2j are the first and second highest probabilities produced by the j-th
classifier. Herein, the difference of the probabilities (p1j − p2j) is considered as the

26



3.2. Explainable Deep Learning Models

confidence of the j-th model for the predicted label ỹj. At this point, the label
corresponding to the maximum confidence value is selected as the final prediction.

3.2 Explainable Deep Learning Models

In applications of deep learning, to construct the trust between humans and ma-
chines, it is essential to train interpretable deep learning models referred as explain-
able AI [104]. Several approaches have been explored to achieve explainable AI,
such as identifying the elements which could provide key information, constructing
data structures to describe the logic inside DNNs, and visualising DNNs [104]. For
example, Local Interpretable Model-agnostic Explanations (LIME) was proposed to
explain which input feature is important towards an outcome in [105]. In [29], a
decision tree was trained to semantically explain the reason of the predicted class for
an image made by a pre-trained CNN model, through interpreting which parts of an
image were used for the prediction and how much they contributed to the prediction.
An explanatory graph was learnt by disentangling multiple part patterns from each
filter in a pre-trained CNN model [106]. Regarding explaining DNNs through visual-
isation techniques in [107], the descriptive image regions were visualised through the
guided backpropagation. A CNN model was trained to reconstruct an image from
a layer of CNNs in [108]. Specifically, a more realistic image can be reconstructed
from lower layers, and the colours/rough contours can be reconstructed from higher
layers. However, these above methods require either an additional model or an extra
approach.

To learn an explainable model in a single training procedure, the study in [109]
trained an interpretable CNN model, where a high convolutional layer had multiple
filters representing specific object parts. A spatial and channel-wise attention mech-
anism was applied to a CNN model, aiming to achieve a visual image captioning task
in [30]. An attention mechanism was used to identify the important temporal parts
for an audio tagging task in [31]. Inspired by these successful research works on the
attention mechanism, the author and her collaborators focused on investigating vi-
sualising neural networks by training attention-based models in [110, 111, 112, 113],
which will be discussed in this section.

In the following, the basic attention mechanism will be firstly introduced in Sec-
tion 3.2.1. The approaches of visualising DNNs using an attention mechanism, in-
cluding localising both the important temporal and the time-frequency parts of high-
level representations, will be then presented in Section 3.2.2. Next, an atrous CNN
model with attention, aiming to visualise high-resolution feature maps of attention-
based CNNs, will be explained in Section 3.2.3. Finally, the atrous CNN model
with an attention mechanism will be extended to visualise CNNs in multi-device
conditions through a novel conditional training approach (cf. Section 3.2.4).
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3.2.1 Attention Mechanism

In early studies, the attention mechanism was mostly applied in speech-to-text
tasks [114, 115, 116]. In a speech-to-text task, an encoder-decoder neural network is
designed and trained. The encoder, an RNN model, reads the speech signals into a
context vector c, whereas the decoder is trained to predict the word given the vector
c. Typically, the vector c is equal to the representation at the final time step of the
hidden state, which is outputted by the final layer. However, selecting the repre-
sentation at the last time step may lose the context information at other potential
time steps. In this regard, the attention mechanism was proposed to identify which
context information the model should pay attention to [114]. While the hidden state
at the time step t is defined as ht and the total number of time steps is T , the i-th
word is determined by the context vector ci, the hidden state si−1 of the decoder,
and the (i− 1)-th word. The context vector ci is calculated by

ci =
T∑
t=1

ρitht, (3.2)

ρit =
exp (eit)∑T
k=1 exp (eik)

, (3.3)

eit = fa(ht, si−1), (3.4)

where ρit denotes the normalised evaluation score, and eit is the evaluation score
computed by an alignment model fa(ht, si−1), which aims to evaluate a matching
score between the hidden state ht and the decoder’s hidden state si−1. During the
training procedure of the speech-to-text model, the alignment model is also involved
to be updated through backpropagation.

3.2.2 Visualising Deep Neural Networks via Attention

With the inspiration of the attention mechanism in speech-to-text tasks, it is promis-
ing to apply an attention mechanism to classification tasks due to its capability of
evaluating matching scores between the hidden states and the outputs. There-
fore, the attention-based approaches, proposed by the author and her colleagues
in [110, 113], will be presented to compute how much a neural network pays atten-
tion to each unit for audio classification tasks with an attention mechanism at the
decision-level. In a similar way to the attention mechanism in a speech-to-text task,
the attention tensor herein is computed to evaluate the matching score between the
neurons and the predicted label. Attention at the frame-level working on RNNs will
be introduced in Section 3.2.2.1, and attention at the time-frequency level working
on CNNs will be discussed in Section 3.2.2.2.
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In addition to the goal of visualising neural networks, the attention mechanism
will be analysed from the perspective of the performance in the next two subsec-
tions (Sections 3.2.2.1 and 3.2.2.2). In an RNN structure, an attention mechanism
summarises each two-dimensional hidden state (time frame and feature vector) into
a vector. While in a CNN structure, the attention mechanism reduces the three-
dimensional feature maps into a vector. The above procedure reduces the dimensions
of hidden states and is referred as global pooling (cf. Section 2.3.2.2). In classification
tasks, global pooling has been often used to follow recurrent layers or convolutional
layers [117]. However, typical global pooling layers, e. g., global max pooling and
global average pooling, can not achieve the optimal performance, since they either
overestimate or underestimate the contribution of each unit in the high-level repre-
sentations. Hence, in the next two sections (Section 3.2.2.1 and Section 3.2.2.2), the
attention mechanism for classification tasks will be also compared to the traditional
global pooling methods.

3.2.2.1 Attention at Frame Level

In an RNN classification model, to reduce dimensions of the hidden states from
the final recurrent layer, the simplest way is selecting the representation hT at the
final time step (cf. Section 3.2.1). However, the feature vector at the final time
step may lose helpful context information, resulting in sub-optimal classification
performance. In this regard, three global pooling methods will be presented: the
global max pooling, the global average pooling, and the proposed global attention
pooling [113].

Global max pooling selects the maximum value from the hidden state at each
fixed frequency position among all time steps. Then, the selected maximum value
is considered as the unit at the corresponding position of the output vector. Global
max pooling is defined by

rj = max
1≤t≤T

hjt, (3.5)

where rj is the j-th unit of the vector r. Global max pooling can select the most
useful units for classification, but underestimates the contribution of the other units
in the hidden state to the prediction.

Global average pooling calculates the average value of the hidden state at each
frequency position among all of the time steps to better utilise all units in the hidden
state. The j-th unit of the vector r is obtained by

rj =
1

T

T∑
t=1

hjt. (3.6)

Although global average pooling considers the contribution of the hidden state at all
time steps to classification, it always underestimates helpful units and overestimates
other useless ones.
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Figure 3.4: An RNN structure with an attention mechanism. The input, which
is the log mel spectrogram of an audio signal, is fed into the RNN model with N
recurrent layers and an attention mechanism. C = C1, C2, ..., CT is the classification
tensor, and A = A1, A2, ..., AT stands for the attention tensor.

Global attention pooling reasonably evaluates the contribution of a hidden state
at each time frame to a classification task, therefore, it can overcome the above
shortcomings of global max pooling and global average pooling. An RNN model with
a global attention pooling at the frame level is depicted in Figure 3.4. The attention
mechanism has two branches: the attention branch computes the contribution of
a hidden state at each time step to a classification task; the classification branch
aims to achieve the classification procedure. When F is the length of hidden state
at each time frame and K is the number of classes, both branches convert an F ×T
hidden state into a tensor A (in the attention branch) or C (in the classification
branch) with a size of K×T , by a one-dimensional convolutional layer with a kernel
size of one and an output channel number of K. In the attention branch, the one-
dimensional convolutional layer is followed by an activation function (softmax or
sigmoid) to rectify the values in the obtained tensor A into [0, 1], representing the
weighted values of each time frame. Then, the tensor A∗, obtained by applying the
activation function to A, is normalised by

Pkt =
A∗kt
T∑
t=1

A∗kt

, (3.7)

where P is the probability tensor. Finally, the predicted probability pk of the k-th
class is obtained by

pk =
T∑
t=1

Ckt � Pkt, (3.8)
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where � means the element-wise multiplication. Notably, to achieve classification
tasks, a softmax or log-softmax function is employed after obtaining the classification
tensor. Such a function can be applied to either the classification tensor C or the
probability p.

To this end, the attention mechanism has the potential to improve the perfor-
mance of RNNs with global max pooling or global average pooling, as it evaluates the
contribution of all time steps to the predictions. Furthermore, the attention mech-
anism at the frame level can explain the contribution of each time step through vi-
sualising the attention tensor, producing an understandable and interpretable RNN
model.

3.2.2.2 Attention at Time-frequency Level

In CNN models, it is essential to reduce the three-dimensional feature map (channel,
time frame, feature vector) into a vector for classification. A direct way to achieve
the reduction of dimensions is to flatten the feature map into a vector. However,
the flattening may lead to a sub-optimisation, as it might retain redundant informa-
tion. Therefore, to produce a smaller vector with less redundant information than
that produced by flattening, the global max pooling, global average pooling, global
Region-of-Interest (ROI) pooling in CNNs will be introduced in the following, and
the global attention pooling will be then presented and discussed.

Global max pooling selects the maximum value across all of the time-frequency
bins of a feature map at each channel. Mathematically, given an H × Pw × Qw

feature map h, where H is the channel number and Pw × Qw is the size of each
sub-feature-map, global max pooling is defined by

rj = max
1≤p≤Pw

max
1≤q≤Qw

hjpq, (3.9)

where rj is the j-th unit of the output vector. Through global max pooling, the
three-dimensional feature map h is converted into a vector r with a length of H.
However, since global max pooling only considers the maximum value in each sub-
feature-map, it may underestimate the contribution of other time-frequency bins
with smaller values than the maximum one to a classification task.

Global average pooling calculates the average value of each sub-feature-map, with
considering that each time-frequency bin has the same contribution to classification.
The summarised vector using global average pooling is calculated by

rj =
1

Pw

1

Qw

Pw∑
p=1

Qw∑
q=1

hjpq. (3.10)

However, global average pooling is also not suitable to estimate the contribution
of each unit, as it overestimates or underestimates the time-frequency units in a
feature map.
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Input: log mel spectrogram
Output: prediction
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Attention tensor A Probability tensor P

Classification tensor C

Figure 3.5: A CNN structure with an attention mechanism. The log mel spectrogram
of an audio signal is fed into the CNN model, which consists of several convolutional
layers, local max pooling layers, and an attention mechanism.

Global ROI pooling, which retains more useful time-frequency units during the
dimension reduction than those in global max/average pooling, can be helpful to
overcome the above shortcomings of them [118]. Global ROI pooling splits each sub-
feature-map into smaller areas with a size of Ps×Qs, and then employs global max
pooling to these small areas. Finally, the produced tensor from these areas by global
max pooling is flattened into a vector for classification. Additionally, global ROI
pooling can be combined with an attention mechanism. During the combination of
ROI and attention, the output of global ROI pooling is fed into a global attention
pooling layer, in order to evaluate the contribution of each unit in the tensor from
global ROI pooling. However, both global ROI pooling and ROI with attention
cannot estimate the contribution of all units in a feature map.

Global attention pooling in CNNs reduces the dimensions of a feature map
through estimating the contribution of each time-frequency unit. Therefore, global
attention pooling is promising in improving the performance of CNNs with the above
global pooling methods. In Figure 3.5, a CNN structure with a global attention pool-
ing layer for classification is depicted. Following a set of convolutional layers and
local max pooling layers, global attention pooling consists of two branches: an atten-
tion branch and a classification branch. The attention branch has a two-dimensional
convolutional layer with a kernel size of 1× 1 and an output channel number equal
to the classes number K, producing an attention tensor A. Next, the convolutional
layer is followed by an activation function (softmax or sigmoid), generating a tensor
A∗, in which the values are in [0, 1]. The tensor A∗ is then normalised by

Pkpq =
A∗kpq∑Pw

p=1

∑Qw
q=1A

∗
kpq

, (3.11)

where P is the probability tensor. In the classification branch, an additional two-
dimensional convolutional layer with a kernel size of 1 × 1 is used to convert the
feature map into a new one C with the channel number of K. The produced classi-
fication tensor C is then multiplied with P to predict the probability of each class
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using

pk =
Pw∑
p=1

Qw∑
q=1

Ckpq � Pkpq. (3.12)

Herein, similar to the attention mechanism at the frame level, a softmax or a log-
softmax function is used to work on C or p to achieve a classification task.

The global attention pooling at the time-frequency level can evaluate the contri-
bution of each time-frequency bin to classification, thereby achieving more optimal
predictions. Furthermore, visualising the attention tensor is promising in presenting
the effectiveness of all time-frequency bins to the final prediction, and help humans
understand a CNN model.

3.2.3 Visualising Atrous CNNs via Attention

In the presented CNNs in Section 3.2.2.2, the convolutional layers are mostly fol-
lowed by local pooling layers or controlled by strides, which are the moving steps
of the convolutional kernels. Both local pooling layers and strides can reduce the
computational cost via downsampling the feature maps. However, these two down-
sampling procedures result in low-resolution attention tensors. These procedures
may lose the time-frequency details, which is a limitation of analysing the poten-
tial contribution of each time-frequency bin in the spectrum representations to the
predictions. In this regard, high-resolution attention tensors are needed to better
visualise and understand CNNs. In the following, let us now move to an attention-
based atrous CNN model which is used to produce high-resolution feature maps and
firstly proposed by the author and her colleagues [111].

As both the local pooling layers and strides can reduce the size of feature maps,
local pooling layers are considered only. To generate high-resolution attention ten-
sors, the simplest way is to remove the local pooling layers. However, CNNs without
local pooling have more convolutional operations than CNNs with local pooling, so
it may result in sub-optimisation and low performances. Recently, a set of ap-
proaches have been proposed to produce high-resolution feature maps from the final
convolutional layer in image processing tasks. For instance, encoder-decoder CNNs,
where an encoder downsamples the feature maps and a decoder upsamples the fea-
ture maps, were trained to learn internal representations [119]. Fully Convolutional
Networks (FCNs) were employed to upsample the low-resolution feature maps us-
ing a set of deconvolutional layers [120]. Deconvolutional layers were also used in
Generative Adversarial Networks (GANs) to generate high-resolution synthetic im-
ages, in order to improve the classification performance by augmenting the training
data [121]. However, these above image-based approaches mostly require strongly
labelled data, where each pixel of an input image is annotated. The datasets for
classification tasks are usually weakly labelled, as each audio signal is annotated
with one label, rather than each frame is annotated with a separate label. Hence,
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Figure 3.6: An overview of an atrous CNN model with an attention mechanism.
The dilation rates in the first four convolutional layers of the atrous CNNs are set
to 1, 2, 4, and 8. Then, the four convolutional layers are followed by an attention
mechanism.

it is difficult to generate high-resolution attention tensors using these image-based
approaches. In a recent study [122], atrous CNNs were proposed to retain the size
of feature maps at each convolutional layer by dilated convolutions, instead of using
downsampling and upsampling. Inspired by this work [122], atrous CNNs with an
attention mechanism will be discussed to visualise high-resolution attention tensors
in this section.

An overview of the atrous CNNs with attention is depicted in Figure 3.6. An
extracted log mel spectrogram is fed into the CNN model with four convolutional
layers and a global attention pooling layer. In each convolutional layer, the kernel
size is controlled by a dilation rate (1, 2, 4, and 8 in the four convolutional layers), so
that the size of the feature maps is the same as that of the original log mel spectro-
gram. Finally, a global attention pooling layer can help visualise the feature maps
from the internal CNN layers with a high resolution. Next, to further analyse the
effectiveness of the dilated convolution, atrous CNNs will be compared to the other
two CNN structures: CNNs with local pooling and CNNs without local pooling.

CNNs with local pooling employ local pooling layers with a kernel size of 2 × 2
following each convolutional layer, as shown in figure 3.7(a). Local pooling layers
can help CNNs extract time-frequency shift-invariant features, and accelerate the
convergence speed by reducing the computational cost [123]. However, as afore-
mentioned, local pooling layers lead to low-resolution feature maps, which are a
limitation of visualising high-resolution attention tensors in the CNNs.

CNNs without local pooling is the simplest way to retain the size of the feature
maps at each convolutional layer through removing the local pooling layers, as shown
in Figure 3.7(b). However, training CNNs without local pooling is time-consuming
due to more convolutional operations than those in CNNs with local pooling, and
may lead to worse classification performance. The reason for the underperformance
is assumed that, the sizes of the receptive fields in CNNs without local pooling
are mostly smaller than those in CNNs with local pooling. Herein, the receptive
field denotes the size of the input area which affects a pixel in the output of a
convolutional layer. As shown in Figure 3.8(a), the size of the receptive field is
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Figure 3.7: The three CNN structures. The red grids in each convolutional layer
denotes the convolutional kernels.

(a) CNNs with local
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(b) CNNs without lo-
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Figure 3.8: The receptive fields of the three CNN structures. The white grids are
the input, the green grids are the receptive field of a convolutional kernel in the first
convolutional layer, and the blue grids denote the receptive field of the kernel in the
second convolutional layer.
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sr × sr at the first convolutional layer, and is 2sr × 2sr at the second convolutional
layer due to local pooling. Consequently, at the n-th convolutional layer, the size
of receptive field is 2n−1sr × 2n−1sr. Compared to CNNs with local pooling, CNNs
without local pooling have the size of the receptive field sr× sr at both the first and
the second convolutional layers (cf. Figure 3.8(b)). At the n-th convolutional layer,
the size of the receptive field is also sr × sr in CNNs without local pooling. Hence,
a big difference exists between the receptive fields of these two CNN architectures:
the size of the receptive field in CNNs with local pooling increases exponentially
with the number of layers, but it stays the same at all of the layers in CNNs without
local pooling.

Atrous CNNs aim to preserve the size of the feature maps using the dilated
convolutional kernels (cf. Figure 3.7(c)). Different from the convolutional kernels
which are used in CNNs with/without pooling, a dilated kernel is sparse due to the
holes between each two kernel bins. The size of the holes inside a dilated kernel is
determined by the dilation rate, and the hole size affects the size of the receptive field.
The size of the receptive field becomes larger when the dilation rate is increased. For
example, the size of the receptive field is sr×sr at the first convolutional layer when
the dilation rate is set to 1, and is (2sr − 1)× (2sr − 1) at the second convolutional
layer when the dilation rate is set to 2. Furthermore, at the n-th convolutional layer,
the size of the receptive field is (2n−1(sr − 1) + 1) × (2n−1(sr − 1) + 1) when the
dilation rate is equal to 2n−1. Therefore, in atrous CNNs, the increasing trend of the
size of the receptive field is approximately exponential as the dilation rate increases
exponentially.

3.2.4 Visualising Conditional Atrous CNNs via Attention

Because of the development of audio recording devices, processing a multi-device
dataset has been essential in the applications of audio signal classification in the
daily life [124]. Audio signals are often recorded with different devices, such as
professional sound recording devices [125] and mobile devices [126]. The qualities
of audio data, such as sampling rate, amplitude, frequency responses, and data
distributions, vary due to various characteristics of audio recording devices [127].
Therefore, deep learning models trained on each single-device data set could be
distinct from each other due to the mismatch in audio qualities. As proposed by
the author and her colleagues in [112], conditional training will be introduced as a
novel framework to train a CNN model on a multi-device dataset.

To process a multi-device dataset, training a separate model on each single-device
data is time-consuming. To address the above constraints, supervised domain adap-
tion transfers the model knowledge from a source database to a target one [128].
Yet, it is also time-consuming to train models before and after transferring the learnt
knowledge. Although training a robust deep learning model on a multi-device au-
dio dataset is challenging due to various data distributions among single-device
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Figure 3.9: The proposed CAA-Net in the multi-task conditional training frame-
work. The top branch is a CNN model which predicts the device information, and
the bottom branch is an atrous CNN model with attention for an audio signal clas-
sification task.

datasets [129], a set of studies have investigated to train a model on a multi-device
audio dataset. For example, in [124], a joint model was trained on a multi-device
dataset, and learnt common parameters from each single-device dataset. A joint
training approach was proposed to process multi-source data by sharing the context
information in [130]. Therefore, it is helpful to reduce the computational burden
through jointly training a single model on a multi-device dataset. However, jointly
training a model is difficult to distinguish each single-device dataset, so that im-
proving the performance is hard. To address this difficulty, in [131], CNNs were
trained with sharing the parameters of the low-level convolutional layers only, and
the parameters of the high-level convolutional layers were learnt separately using
a multi-task learning framework. However, more separate high-level convolutional
layers might lead to a sub-optimisation [132]. In a study of multi-pose face recogni-
tion [133], conditional training was proposed to train CNNs, in which the convolu-
tional filters of each convolutional layer were sparsely activated using a conditional
activation function. Similarly, the speaker information was fed into a deep learn-
ing model to achieve multi-speaker speech generation in [134, 135]. In [136], the
predicted difficulty levels of the samples in a multi-task learning framework were
fed back into DNNs for a multi-modal emotion recognition task. Inspired by these
approaches [134, 135, 136], a novel approach of conditionally training CNNs with
the device information, namely Conditional Atrous CNNs with Attention (CAA-
Net), will be discussed. Through the CAA-Net, the learnt attention tensors on each
single-device dataset can be visualised with a high resolution.

The CAA-Net is developed under two conditions: i) the device information is the
prior knowledge, and ii) the device information is unknown for the trained audio clas-
sification model. As the device information is sometimes unknown in practical, the
CAA-Net without knowing device information in the multi-task conditional training
framework, namely multi-task CAA-Net, is depicted in Figure 3.9. The multi-task
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CAA-Net contains two branches: one branch aims to achieve the original audio sig-
nal classification task, and the other branch classifies the device information. The
first branch is constructed by an atrous CNN model with attention referred to as
Section 3.2.3. The second branch is a CNN model, including a set of convolutional
layers, local pooling layers, a global max pooling layer, and a fully connected layer.
Specifically, in the second branch, each convolutional layer is followed by a local
pooling layer. The global max pooling layer is used to summarise the feature maps
into a vector for classifying the device information. Then, the predicted device in-
formation from the fully connected layer is represented as a one-hot encoder, which
is a binary vector converted from the integer value of the device number. Next,
the one-hot encoder is expanded into a three-dimensional tensor along the time and
frequency axes. Finally, the three-dimensional tensor is fed into a convolutional
layer of the CNN model in the first branch to condition this CNN model with the
predicted device information.

In the following, to further discuss the details and the effectiveness of the con-
ditional training approaches, the four training strategies will be compared: single-
device training, joint training, teacher forcing conditional training (device informa-
tion is known), and multi-task conditional training (device information is unknown).

Single-device training aims to train an independent CNN model for a separate
single-device dataset as part of a multi-device dataset, resulting in Nd CNN models
for an Nd-device dataset, as shown in Figure 3.10(a). However, single-device training
requires many resources to train multiple models for data from various recording
devices, and is not suitable to train a robust CNN model if a single-device dataset
is small [137].

Joint training optimises a CNN model with the input of a multi-device dataset
(cf. Figure 3.10(b)). All of the parameters are shared among different single-device
data. Joint training is based on the assumption that common features could be
learnt from all single-device datasets [130]. However, as the CNN parameters are
shared among datasets from various devices, it is difficult to learn device-related
representations by joint training.

Teacher forcing conditional training, a specific conditional training approach,
has been employed in speech recognition [135] and speaker verification [138]. For
example, in [139], the ground truth of a previous time step was fed into the current
time step in a conditional RNN model. In the teacher forcing conditional training,
which is depicted in Figure 3.10(c), the device information is firstly processed by
a convolutional layer, and is then fed into the “CNN” model for a classification
task. Since the output of the convolutional layer can give weights to each time-
frequency bin of the feature map in the “CNN” model, the feature map produced
by this convolutional layer is similar to a “mask”, filtering out the time-frequency
bins which are useless for classifying a single-device data. Therefore, the produced
feature map from the convolutional layer which processes the device information
herein is called a “mask”.
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Figure 3.10: A comparison of the four training strategies. The Nd denotes the
number of devices. The “CNN” model aims to achieve the original audio signal
classification task, and the “CNN-D” model in (d) multi-task conditional training
is used to predict the device information.

To calculate the “mask”, the device information represented as an Nd-length
one-hot encoder is firstly expanded into an Nd × Pw × Qw tensor, where Pw × Qw

is the size of the sub-feature-map at a convolutional layer of the “CNN” model.
Referring to the linear transformation procedure of the speaker one-hot encoders
in a multi-speaker text-to-speech task [134], the expanded one-hot encoder, which
represents the device information, is fed into a convolutional layer with a kernel
size of 1 × 1. To further combine the feature map learnt from this convolutional
layer and the feature map in the “CNN” model, the output channel number of the
convolutional layer is the same as the feature map’s channel numbers in the “CNN”
model. While the feature map hn−1 in the “CNN” model is obtained from the
(n− 1)-th convolutional layer, the combination procedure is defined by

hnj = σu(
Cn−1∑
i=1

wn
ij ∗ hn−1i +

Nd∑
i=1

vij ∗ ei + bnj ), (3.13)

where wn
ij and vij are the (i, j)-th convolutional kernels, en−1i is the i-th channel

of the expanded device one-hot encoder, and σu denotes a ReLU activation func-
tion. Teacher forcing conditional training requires the device information to be the
prior knowledge, yet, the device information is sometimes unknown for an audio
classification model.

Multi-task conditional training predicts the audio classes and the device infor-
mation in a single model using a multi-task learning framework to overcome the
limitation that the device information has to be prior knowledge in the teacher forc-
ing conditional training. As shown in Figure 3.10(d), an additional CNN model
“CNN-D” is trained to predict the device information, which will be expanded to a
one-hot encoder. The one-hot encoder is then processed by Equation (3.13). During
the training procedure, the loss function Lcaa is defined by the weighted sum of the
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two CNN models (“CNN” and “CNN-D”),

Lcaa = Ls + λ× Ld, (3.14)

where Ls and Ld are the loss functions of the audio classification model “CNN”
and the “CNN-D” model for device prediction, respectively. The weight factor λ is
employed to balance the gradient difference between the two CNN models [140].

3.3 Robust Deep Learning Models Against Ad-

versarial Attacks

In recent years, due to the rapid development of deep learning, developing robust
DNNs has been an essential part in their applications. Several studies have shown
that deep learning models are vulnerable to adversarial attacks, which are well-
designed and imperceptible for humans [33, 141]. Especially, a set of studies have
investigated adversarial attacks in the research field of image processing. In [141,
142], fake data was generated to deceive deep learning models for image classification
and captioning. CNN models for semantic segmentation and object detection were
also deceived by adversarial attacks in [143]. However, only a few works focused on
investigating adversarial attacks for audio signal classification models [34], especially
in the field of healthcare.

In this regard, the novel approaches proposed by the author and her colleagues
in [144, 145] will be presented in this section. Firstly, the adversarial attacks will
be introduced in Section 3.3.1. Next, adversarial training will be employed to pro-
tect deep learning models against adversarial attacks in Section 3.3.2. Finally, the
transferability of adversarial attacks will be improved in Section 3.3.3.

3.3.1 Adversarial Attacks

The procedure of generating adversarial attacks and deceiving a CNN defence model
is depicted in Figure 3.11. Given a real data x, a small perturbation (i. e., an
additional noise) θ is generated by an attack model, and the adversarial data (i. e.,
fake data) x′ is then calculated by adding the perturbation to the real data. While
both x and x′ are fed into a defence model (e. g., CNN), the defence model classifies
the real data correctly, but wrongly classifies the fake data. The misclassification of
the adversarial data is caused by the structure of the defence model. Each layer of
the defence model can be simplified into a linear transformation y = wx, where y is
the labels, and w is the weight parameters. Given the adversarial data x′ obtained
by x′ = x + θ, the linear transformation is then updated to wx′ = wx + wθ.
Although θ is very small, the difference between wx′ and wx becomes bigger when
the model goes deeper, leading to wrong predictions on x′. Similarly, the generated
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Figure 3.11: An overview of the attack procedure, including generating adversarial
data and deceiving a CNN defence model. Through the attack procedure, a defence
model wrongly classifies the adversarial data, whereas the real data is classified
correctly.

adversarial data can also fool non-linear DNNs (e. g., CNNs), which are mostly used
in practice.

Recently, both targeted and non-targeted adversarial attacks were proposed to
deceive a deep learning model. Targeted adversarial attacks are generated by giving
the attack model a fixed label, so that the defence model classifies all adversarial
data into this label [146]. Non-targeted adversarial attacks make a defence model
predicting wrong labels without a targeted label [147]. In the following sections,
non-targeted adversarial attacks will be generated and defended.

Regarding the prior knowledge for an attack model, adversarial attacks contain
white-box attacks and black-box attacks. White-box attacks are obtained when an
attack model knows the data and the parameters of the defence model, while black-
box attacks are generated when either the data or the defence model’s parameters
are unknown for the attacker. Both white-box and black-box adversarial attacks will
be investigated to generate adversarial spectrum representations. In the following,
white-box adversarial attacks will be firstly introduced in Section 3.3.1.1, and a
CNN model for generating black-box adversarial attacks will be then described in
Section 3.3.1.2.

3.3.1.1 White-box Adversarial Attacks

To generate white-box adversarial attacks, the Fast Gradient Sign Method (FGSM)
has shown effectiveness in [148]. The FGSM calculates the gradient of the loss
function in a defence model as the perturbations. While the loss function is defined
by L(w,x, y), the gradient ∇xL(w,x, y) is obtained during the back propagation
procedure. The adversarial data x′ is calculated by

x′ = x+ εw × sign(∇xL(w,x, y)), (3.15)

x′ = clip(x′,x− η,x+ η), (3.16)

where εw is a perturbation factor, i. e., a weight value of the adversarial data relative
to the real data, and η is a constant hyperparameter for clipping the adversarial data
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Figure 3.12: An adversarial log mel spectrogram generated from the log mel spec-
trogram of the speech sample NP m 27 ang07b.wav in the DEMoS database (cf.
Section 4.1.3.2).

into the interval of [x−η,x+η]. Finally, the fake data x′ with a very small difference
(smaller than η) from x is obtained using the FGSM.

Figure 3.12 shows an example of the adversarial log mel spectrograms which are
generated by the FGSM. In an SER task, the real log mel spectrogram is correctly
classified into anger with a probability of 0.866. However, the generated adversarial
log mel spectrogram is wrongly classified into happiness with a probability of 0.958,
although it is difficult to distinguish the adversarial log mel spectrogram from the
real log mel spectrogram by human eyes.

3.3.1.2 Black-box Adversarial Attacks

Different from white-box adversarial attacks computed by the parameters of the
defence model, black-box adversarial attacks are generated without the parameters
of the defence model. With the spectrum representations x as the input, the attack
model can produce two-dimensional perturbations θ, where the value of each time-
frequency bin is very small. The fake data is then obtained by x′ = x+ θ.

In the following, the approach of training an atrous CNN model for perturba-
tion generation will be introduced, as proposed by the author and her colleagues
in [145]. Herein, the purpose of using an atrous CNN model is to generate adversar-
ial spectrum representations with the same size as the real spectrum representations
through setting suitable dilation rates in the convolutional layers (cf. Section 3.2.3).
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At this point, the outputs of the atrous CNN model can be added to the real spec-
trum representations for generating the fake data. During the training procedure
of the atrous CNN model, the loss function is minimised to achieve two goals: one
goal is to fool the defence model fD, and the other goal is to generate the fake data
which is similar to the real data. The loss function LA of the attack model is defined
by

LA = αLcla(fD(x′)) + (1− α)LMSE(x′,x), (3.17)

Lcla(f(x′)) = max(fD(x′)gt −max(fD(x′)other), 0), (3.18)

where Lcla is the loss function leading to misclassification on the fake data, LMSE is
a Mean Squared Error (MSE) loss function to minimize the difference between the
fake and real data, and α is a constant factor to balance the gradients of the two
loss functions Lcla and LMSE. The loss function Lcla is calculated by the difference
between the predicted probability fD(x′)gt on the ground truth gt and the maximum
predicted probability max(fD(x′)other) on the other classes. The computation of Lcla
is referred to as the Carlini-Wagner loss function [149], which has shown effectiveness
in generating image-based adversarial attacks [33, 150]. According to the definition
of the loss function in Equations (3.17) and (3.18), black-box adversarial data is
obtained by training an attack model.

3.3.2 Adversarial Training

In this section, to protect the defence models against the adversarial attacks, a novel
approach of adversarial training will be introduced, as proposed by the author and
her colleagues in [144].

In a recent study [34], fake emotional speech signals were generated using an end-
to-end model, yet, the approaches of defending against the attacks were not further
investigated. To train a robust deep learning model against the adversarial attacks,
adversarial training has proven to be effective in previous studies of image process-
ing [142, 143]. Adversarial training is achieved by optimising the defence model
with both real and fake data. There are two advantages of adversarial training: i)
adversarial training can train a defence model to perform well on classifying the
fake data, and ii) through the data augmentation by the fake data, the performance
of the defence model on the real data is potentially better. Therefore, adversarial
training a robust audio signal classification model with real and fake spectrum rep-
resentations will be discussed. In the following, the vanilla adversarial training will
be firstly introduced, and then a novel similarity-based adversarial training will be
proposed.

Vanilla adversarial training aims to optimise the loss functions on the real data
and fake data in a single training procedure, so that the defence model can perform
well on not only the original spectrum representations, but also the generated fake
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spectrum representations. The loss function of the vanilla adversarial training is
defined by

Lvat = βvLs(w,x, y) + (1− βv)Ls(w,x′, y), (3.19)

where Ls(w,x, y) and Ls(w,x′, y) are the loss functions for classifying x and x′,
respectively, and βv is a constant factor to balance the gradients of the two loss
functions Ls(w,x, y) and Ls(w,x′, y).

Similarity-based adversarial training, as an extension of the vanilla adversarial
training, is proposed to further minimise the difference of the learnt representations
from the real and fake data. Since the difference between the representations of
the real and fake data is bigger when the defence model goes deeper, minimising
the difference of the high-level representations is promising to help improve the
performance on the fake data. The loss function of the similarity-based adversarial
training is defined by

Lsat = ζ1Ls(w,x, y) + ζ2Ls(w,x′, y) + (1− ζ1 − ζ2)‖h− h′‖2, (3.20)

where ζ1 and ζ2 are the constant factors to balance the gradients of the three parts
(Ls(w,x, y), Ls(w,x′, y), and ‖h − h′‖2) in the loss function, and (h − h′) is the
difference between the representation h from the real data and the representation
h′ from the fake data. The difference of the representations is minimised via an L2
loss function.

3.3.3 Improving Transferability of Adversarial Attacks

The transferability of adversarial attacks, as one of the measurements for adversarial
attacks, measures an attack model’s capability of transferring among different tar-
geted defence models, i. e., how many defence models can be deceived by an attack
model [147, 151]. A highly transferable attacker can not only deceive the already
disposed defence models, but also fool a new defence. To save the cost of training
an attack model for deceiving each defence and promote the development of more
robust defence models, it is essential to enhance the transferability of adversarial
attacks. With this in mind, in this section, a novel lifelong learning framework for
improving the transferability of adversarial attacks will be presented as investigated
by the author and her colleagues in [145].

While single-task learning trains an attack model to deceive a target model,
multi-task learning trains an attacker to deceive multiple target models simultane-
ously for better transferability. In [152], multi-task learning was proposed to train a
universal attack model for fooling both semantic segmentation and depth estimation
DNNs. Additionally, an ensemble of models and an ensemble of inputs were pro-
posed to train a transferable attack model in [148, 153]. The study in [147] trained
an attack model with an ensemble of target models. Random transformations of
the original inputs were fed into an attack model in [154]. However, both multi-task
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Figure 3.13: A comparison of the four learning strategies for transferable adversarial
attacks. The fA is an attack model, fD is a target model, KD is the learnt knowledge
of an attack model to deceive a target model, and Nm denotes the number of the
target models.

learning and the ensemble-based methods require a substantial memory space to save
multiple target models in a single training procedure. In this regard, transfer learn-
ing was employed in [155], and a smooth regularisation was demonstrated in [153] to
train a transferable attacker with a smaller memory space. However, the learnt prior
knowledge is mostly forgotten in a transfer learning framework, so it is challenging
to train a highly transferable attack model. Lifelong learning [156], which enables
a model to transfer generalised knowledge across multiple tasks and domains [157],
is promising to overcome the problems of multi-task learning and transfer learning.
Therefore, the lifelong learning framework for training a transferable attack model
will be introduced as follows.

To investigate the effectiveness of lifelong learning, four training strategies of
adversarial attacks are depicted in Figure 3.13, including single-task learning, multi-
task learning, transfer learning, and lifelong learning. Next, the four training strate-
gies will be analysed and compared.

Single-task learning trains an attack model fA for deceiving a target model fD in
a training procedure (cf. Figure 3.13(a)). Consequently, Nm attackers are trained to
deceive Nm target models. Single-task learning is time-consuming to train multiple
independent attack models.

Multi-task learning trains a common attack model to deceive Nm defence models
simultaneously (cf. Figure 3.13(b)). However, a large memory space is required to
save multiple defence models in multi-task learning.

Transfer learning aims to sequentially train an attacker for each defence model
(cf. Figure 3.13(c)). During the transfer learning procedure, the attack model is
updated when it is trained to deceive a new defence model. The (nm + 1)-th attack

45



3. Methodology

model fAnm+1 is fine-tuned with an initialisation of the parameters from fAnm , nm ∈
[1, Nm− 1]. However, the learnt knowledge KD

nm is mostly forgotten during training
fAnm+1.

Lifelong learning trains an attack model for fooling each defence model sequen-
tially. Specifically, lifelong learning transfers the learnt knowledge KD

nm and enables
the attacker remember partial of KD

nm by regularisation (cf. Figure 3.13(d)). Herein,
Elastic Weight Consolidation (EWC) [158] is employed to achieve the lifelong learn-
ing framework. EWC aims to help the attack model remember the important infor-
mation of the learnt knowledge from each target model by giving elastic constraints
to the parameters of the attack model. The important parameters are subjected to
strict constraints, while the unimportant parameters are less constrained. The di-
agonal of the Fisher information matrix [159] herein is calculated as the importance
of each parameter. The calculation of the diagonal in the Fisher information matrix
is equivalent to computing the second derivative of the loss close to minimum for
every parameters. With the importance of each parameter, the loss function Lewc
of the attack model is defined by

Lewc = LA + λ
∑
i

FA
i (δi − δ∗i )2, (3.21)

where LA is the loss function of an attacker to deceive a target model (cf. Equa-
tion (3.17)), λ is a constant factor to balance the global importance of the parame-
ters δ∗ learnt from the previous target model, F A is the Fisher information matrix,
and δ is the current parameters of the attack model. The square of the difference
between δ and δ∗ is minimised to remember δ∗ according to F A. At this point,
the attack model is trained with a high transferability through remembering the
previous knowledge with the regularisation.
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4

Experimental Evaluations

In this chapter, comprehensive experiments of audio signal classification are designed
and executed to verify the effectiveness of the presented approaches in Chapter 3.
More specifically, the databases containing both audio and speech data sets are
firstly described in Section 4.1. The evaluation metrics of the performance are then
presented in Section 4.2. Afterwards, the experimental setups and the result discus-
sions for every proposed approaches are elaborated from Section 4.3 to Section 4.8.

4.1 Databases

This section gives a brief description of the audio and speech databases used for
the experimental evaluations in this thesis. Specifically, three types of databases
corresponding to different applications are included for the experiments: three open
databases for ASC tasks are firstly introduced in Section 4.1.1, two heart sound
databases for HSC are then given in Section 4.1.2, and Section 4.1.3 finally describes
two speech databases for speech-based classification tasks, including PLE and SER.

4.1.1 ASC Databases

ASC [11, 160], aiming to automatically identify the acoustic environment in an audio
stream, has become a major research field of computer audition in recent years [161].
Using computational approaches of signal processing and machine learning, ASC
has been employed in manifold applications, such as context-aware services [162],
wearable devices [163], robot navigation systems [164], and serious games [165].
Moreover, ASC could be performed as a pre-processing step for some other appli-
cations, e. g., source separation of speech signals from different types of background
noise [11].

In this light, the ASC task of the IEEE AASP Challenge on Detection and Clas-
sification of Acoustic Scenes and Events (DCASE) [124] provides a unique oppor-
tunity to develop machine learning models on the open databases. In the following
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subsections, three ASC databases will be described: the DCASE 2017 database (cf.
Section 4.1.1.1), the DCASE 2018 database (cf. Section 4.1.1.2), and the DCASE
2019 database (cf. Section 4.1.1.3).

4.1.1.1 DCASE 2017 Database

During the collection of the DCASE 2017 database [166], the audio signals were
recorded in various locations using a Soundman OKM II Klassik/studio A3, an elec-
tret binaural microphone, and a Roland Edirol R-09 wave recorder with a sampling
rate of 44.1 kHz and a resolution of 24 bits. To increase the number of audio samples,
each audio recording was split into a set of independent segments with a time length
of 10 seconds. Each audio segment was labelled as one of the 15 classes, including
beach, bus, cafe/restaurant, car, city center, forest path, grocery store, home, library,
metro station, office, park, residential area, train, and tram.

The whole database was split into a development set and an evaluation set consid-
ering the locations of the original audio recordings. In other words, the development
and evaluation sets contain the same classes’ recordings, but the recordings in the
two sets are from different geographical locations. In the development set, there
are 312 audio segments (52 minutes) for each acoustic scene, whereas each acoustic
scene has 108 segments (18 minutes) in the evaluation set. A cross-validation setup
was provided for the development set. This setup contains four folds, each of which
consists of a training subset and an evaluation subset. The average performance
over the four folds is computed as the final performance on the development set.

4.1.1.2 DCASE 2018 Database

The DCASE 2018 acoustic scene database [124] was recorded in six large European
cities with four recording devices. The major recording device (called device A)
incorporates a Soundman OKM II Klassik/studio A3, an electret binaural in-ear
microphone, and a Zoom F8 audio recorder. All of the other three recording devices
are customer devices, including a Samsung Galaxy S7 (called device B), an iPhone
SE (called device C), and a GoPro Hero5 Session (called device D). While recording
the audio signals, device A was worn in the ears, device B was held in a hand, device
C was worn in a sleeve of the strap of a backpack, and device D was mounted on the
other strap. Devices A and D were used to record the audio signals with a sampling
rate of 48 kHz, and both sampling rates of devices B and C were 44.1 kHz. The
recorded audio signals were then cut into separate 10-second segments.

All of the audio segments were labelled as one of the ten classes, including airport,
shopping mall, metro station, street pedestrian, public square, street traffic, tram,
bus, metro, and park. Based on the audio recordings from the four devices, the ASC
task of DCASE 2018 contains two subtasks (called subtask A and subtask B). The
recordings from device A are used in subtask A, while the recordings from all of the
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four devices are utilised in subtask B. In each subtask, the corresponding database
was split into a development set and an evaluation set. Particularly, in subtask
B, the development set involves part of the recordings from device A, B, and C,
while the evaluation set comprises the remaining part of recordings from device A,
B, and C, and all recordings from device D. Since the labels of the evaluation sets
were not publicly released, only experimental results on the development sets will
be presented.

In subtask A, the development set contains 8, 640 audio segments (24 hours).
There are 864 segments (144 minutes) for each acoustic scene. The development set
is split into two subsets: a training subset and a test subset. The training subset
consists of 6, 122 segments, and the test subset includes 2, 518 segments.

The development set in subtask B consists of the same development set in subtask
A, and the audio recordings from devices B and C. Devices B and C each contribute
720 segments (2 hours), and each scene contains 72 segments. As for the recordings
from each mobile device (i. e., devices B and C), 540 segments were split into the
training subset, and 180 segments were split into the test subset. Finally, the training
subset of subtask B contains 7, 202 segments, and the test subset consists of 2, 878
segments.

4.1.1.3 DCASE 2019 Database

The database of the ASC task in DCASE 2019 was recorded in the same ten acoustic
scenes as those in the DCASE 2018 database. As an extension of the DCASE 2018
database, the recording locations in the DCASE 2019 database were extended from
six cities to 12 large European cities. The audio recording devices for the DCASE
2019 database were the same as those in DCASE 2018. The audio recordings were
cut into smaller segments with a length of 10 seconds. The ASC task of DCASE
2019 also contains two subtasks, i. e., subtask A and subtask B. The databases in
both subtasks were split into a development set and an evaluation set. Similar to
the experiments on the DCASE 2018 database, the experimental evaluation will be
discussed on the development set only.

In subtask A, the development set consists of 14, 400 segments (40 hours)
recorded by device A in ten cities. For each acoustic scene, there are 144 seg-
ments per city. The development set was split into 9, 185 segments in the training
subset, 4, 185 in the test subset, and 1, 030 segments from Milan.

In subtask B, the development set contains the audio recordings in subtask A
and the recordings from devices B and C (amounting to 3 hours for each). In the
development set, there are 16, 560 audio segments, including 10, 265 audio segments
in the training subset, 5, 265 segments in the test subset, and 1, 030 segments from
Milan. In the training subset, there are 9, 185 segments from device A, and 540
segments from each of devices B and C. The test subset consists of 4, 185 segments
from device A, and 540 segments from each of devices B and C. Notably, the 1, 030
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audio segments from Milan were split into neither the training subset nor the test
subset. Therefore, only the official training and test subsets will be utilised in the
experiments.

4.1.2 Heart Sound Databases

As a leading cause of death, Cardiovascular Diseases (CVDs) caused 17.9 million
deaths in 2016 (representing 31 % of all global deaths), and have been a worldwide
health burden today [167, 168]. To mitigate the high costs and social burdens,
early-stage diagnosis is essential to cope with serious CVDs [169, 170]. Auscultation
of the heart sounds has been widely utilised in clinics over a century as a cheap,
convenient, and non-invasive means [171]. However, auscultation of heart sounds
requires experienced physicians [172]. In this regard, developing automatic auscul-
tation techniques of heart sounds can help early screening of heart diseases, and is
an auxiliary measure of the diagnosis by physicians. Typical automatic ausculta-
tion techniques of heart sounds contain HSC (e. g., normal/abnormal) [173, 174] and
heart sound segmentation [175]. Specifically, the HSC tasks will be focused in the
experiments.

In the following subsections, two heart sound databases for HSC tasks will be in-
troduced. The PhysioNet/Computing in Cardiology (CinC) database will be firstly
described in Section 4.1.2.1, and the Heart Sounds Shenzhen (HSS) database will
be then given in Section 4.1.2.2.

4.1.2.1 PhysioNet/CinC Database

The PhysioNet/CinC Challenge 2016 provided an opportunity for developing HSC
algorithms by constructing a large-scale heart sound database via collecting multi-
ple heart sound data sets from various research groups [12, 176]. The heart sounds
in the PhysioNet/CinC database were annotated into two classes: normal and ab-
normal. Only the training set of the PhysioNet/CinC database will be used in the
experiments, since the test set was not publicly released. Different from the of-
ficial data distribution, the training set is split into a new training subset and a
new test subset, as shown in Table 4.1. As the official test set is not considered,
the training subset and the test subset herein are called training set and test set,
respectively. The training set consists of four independent data sources, including
the Massachusetts Institute of Technology (MIT) heart sounds database, the Aris-
totle University of Thessaloniki (AUTH) heart sounds database, the University of
Haute Alsace (UHA) heart sounds database, and the Dalian University of Technol-
ogy (DLUT) heart sounds database. The test set contains two data sources: one is
the Aalborg University (AAD) heart sounds database, and the other is the Shiraz
University adult (SUA) heart sounds database. The details of every data source are
summarised in Table 4.1.
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Table 4.1: An overview of the training and test partitions. The training set is
structured by four sub-databases from the PhysioNet/CinC database, and the test
set is by two. The heart sound signals herein are annotated by the two-class labels
(normal/abnormal).

# Data source Recordings Normal Abnormal
Durations (seconds)∑

Min Max Average
Train MIT 409 117 292 13,328.08 9.27 36.50 32.59

AUTH 31 7 24 1,532.49 9.65 122.00 49.44
UHA 55 27 28 833.14 6.61 48.54 15.15
DLUT 2,141 1,958 183 49,397.15 8.06 101.67 23.07∑

2,636 2,109 527 65,090.86 – – –
Test AAD 490 386 104 3,910.20 5.31 8.00 7.98

SUA 114 80 34 3,775.45 29.38 59.62 33.12∑
604 466 138 7,685.65 – – –

Before training a model on the whole training set, the training set is split into
three folds for cross-validation. In the three folds (fold 1, fold 2, and fold 3), the
data sources MIT, AUTH, or UHA are excluded for validation, respectively. Please
note that, DLUT is always used for model training due to its large scale.

4.1.2.2 HSS Database

The HSS database [177], collected by the Shenzhen University General Hospital,
China, consists of 845 audio recordings from 170 subjects (female: 55, male: 115,
age: 65.4 ± 13.2 years), as shown in Table 4.2. These subjects have various health
conditions, including coronary heart disease, heart failure, arrhythmia, hypertension,
hyperthyroid, valvular heart disease, and congenital heart disease amongst others.
The heart sound recordings were collected from the four locations on the body of
each subject, i. e., auscultatory mitral, aortic valve auscultation, pulmonary valve
auscultation, and auscultatory areas of the tricuspid valve. An electronic stetho-
scope (Eko CORE, USA) was used to record the heart sounds at a sampling rate of 4
kHz. Each heart sound signal was recorded with a duration of 30 seconds on average
(ranging from 29.808 seconds to 30.152 seconds). Finally, the audio recordings were
annotated with three classes, i. e., normal, mild, moderate/severe, by experienced
cardiologists using Echocardiography as the gold standard.

The database was split into training, development, and test sets with the con-
sideration of age and gender balances in the INTERSPEECH ComParE 2018 [38].
This data distribution will be used in the experiments for a comparison with the
state-of-the-art methods on the HSS database.
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Table 4.2: The number [#] of the instances and the subjects in each data set of
the HSS database. The HSS database is split into three data sets, including the
(train)ing, (dev)elopment and test sets, for a three-class classification task (normal,
mild, and (mod)erate/(sev)ere).

# Normal Mild Mod./Sev. Σ Subject

Train 84 276 142 502 100
Dev 32 98 50 180 35
Test 28 91 44 163 35

Σ 144 465 236 845 170

4.1.3 Speech Databases

Apart from the above audio databases, two speech-based applications and the cor-
responding corpora will be given in this subsection. Firstly, the Duessel-dorf Acute
Pain (DAP) Corpus will be described in section 4.1.3.1 for PLE. Then, the Database
of Elicited Mood in Speech (DEMoS) mainly designed for SER will be presented in
Section 4.1.3.2.

4.1.3.1 DAP Corpus

As a neural perception within the human brain, pain is a key reaction from indi-
viduals in terms of their physical and psychological health [178, 179]. To diagnose
a set of pathologies, such as cancer [180] and Alzheimer [181], pain evaluation is
widely used as an auxiliary role in clinical practice. For instance, the diagnosis
of cancer and its severity can benefit from pain information. In practice, clinical
examinations of pain rely on self-reports from patients, e. g., questionnaires which
contain the details of pain information, including location, type, time, length, and
level [182]. Moreover, the pain information is evaluated inside the self-reports using
various assessment scales, like the Numerical Pain Rating Scale (NPRS) and the
visual analogue scale [183]. However, these evaluation methods of pain are highly
subjective, especially with age and gender. Such a subjectivity can possibly lead to
biases during the procedure of evaluating the pain level.

To mitigate the biases caused by the conventional evaluation methods, automatic
evaluation of pain is potential to construct an objective and unified standard. In
recent studies, models for automatic detection of pain have been investigated and
proposed based on multiple modalities, including facial expression [184, 185, 186],
body gestures, and motion descriptors [187, 188]. As an important factor of eval-
uating the physiological health like the cardiovascular system [189] and the mental
health such as depression [190], voice is potential to evaluate the pain level. In [191],
a speech-based corpus with 400 short samples from 27 participants was collected for
pain detection, yet, the small size of this corpus is a limitation for training the
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Table 4.3: An overview of the partition in the DAP corpus. The speech recordings
are divided into three data sets, including the (train)ing, (dev)elopment and test
sets, for a three-class classification task (mild/(mod)erate/severe).

Dataset
∑

Mild Mod. Severe
Durations (s)∑

Min Max Avg

Train 526 320 127 79 6,704.4 3.5 66.9 12.7
Dev 163 95 42 26 2,062.7 3.7 39.7 12.7
Test 155 108 25 22 2,018.0 3.8 36.0 13.0∑

844 523 194 127 10,785.0 3.5 66.9 12.8

state-of-the-art deep learning models. In this context, as presented by the author
and her colleagues in [2], a bigger corpus – the DAP corpus, which contains 844
audio samples from 80 subjects (female: 39, male: 41), will be introduced.

The ages of the participants in the DAP corpus vary from 19 to 64 years, with
35.3 years on average and a standard deviation of 14.9 years. A cold pressor test, as
the pain stimulus source, was utilised during the data collection procedure. The left
hand was immersed up to the wrist in ice-chilled water (0.5− 1.5◦C), and the water
tub (2.8 l) was shaken manually by the experimenter every 30 seconds to prevent
the water from warming up around the skin. During the cold pressor test, the par-
ticipants were asked to read sentences regarding the voice commands in German as
used for driver assistance systems and a German short story “The North Wind and
the Sun”. Additionally, spontaneous dialogues were elicited by asking the partici-
pants to book a doctor’s appointment. The speech recordings were collected with a
sampling rate of 44.1 kHz, and then down-sampled to 16 kHz with a quantisation
of 16 bits. All of the speech samples were annotated by the participants themselves
using the clinically reliable and valid 11-point NPRS, where 0 means “no pain” and
10 points at “worst imaginable pain”.

To make the machine learning experiments available on this database, the DAP
corpus is split into training, development, and test sets considering the balance of
gender and age, for a three-class classification task as shown in Table 4.3. The three
classes are obtained via splitting the NPRS into three intervals: i) mild : 0 − 2, ii)
moderate: 3− 5, and iii) severe: 6− 10.

4.1.3.2 DEMoS Database

In recent years, SER, which plays an essential role in Human-Computer Interaction
(HCI), has become a popular research topic [192]. SER is a task of recognising the
emotional aspects of a speech signal [193]. The emotional aspects can be either
continuous dimensional affect ratings in terms of arousal and valence, or discrete
emotional categories (e. g., happiness, sadness, etc). Thanks to the rapid develop-
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Table 4.4: An overview of the speaker-independent partitions, i. e., (train)ing,
(dev)elopment, and test sets, created from the DEMoS, including the distribution of
the seven classes as well as the subjects and the genders, i. e., (f)emale and (m)ale.

# Train Dev Test
∑

Gender (F:M)
Subjects 24 22 22 68 23: 45
Anger 492 472 513 1,477 516: 961
Disgust 525 556 597 1,678 596:1,082
Fear 380 383 393 1,156 415: 741
Guilt 351 366 412 1,129 400: 729
Happiness 447 434 514 1,395 524: 871
Sadness 493 486 551 1,530 532: 998
Surprise 336 327 337 1,000 349: 651∑

3,024 3,024 3,317 9,365 3,332:6,033

ment of machine learning, especially deep learning, SER has been employed in a large
number of real-life applications, such as call centre conversations [194], educational
settings [195], and diagnosis tools for conditions like depression [196].

In this thesis, predicting discrete emotional categories from the speech will be the
task of SER. An Italian emotional speech corpus – the DEMoS [197], is employed.
DEMoS, containing 9, 365 emotional speech samples and 332 neutral speech signals,
was recorded from 68 speakers (female: 23, male: 45). The emotions in DEMoS
were induced by an arousal-valence progression. Since neutral is a minority class,
only the emotional speech samples will be considered. As shown in Table 4.4, the
9, 365 speech samples were annotated with seven classes of emotional states, includ-
ing anger, disgust, fear, guilt, happiness, sadness, and surprise. Then, the whole
database was split into speaker-independent training, development, and test sets
with the consideration to gender and emotional class balancing. For more details of
the DEMoS, the readers are suggested to refer to [197].

4.2 Evaluation Metrics

To evaluate the performance of the proposed approaches for audio signal classifica-
tion, a set of measurements will be employed. In the following, a brief introduction
of the frequently-used measurements will be presented to evaluate the classification
performance.

In a binary-class classification task, the sensitivity (i. e., True Positive Rate
(TPR)), as a class-wise evaluation, is defined by

sensitivity =
NTP

NTP +NFN

, (4.1)
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where NTP is the number of true positive samples, NFN denotes the number of false
negative samples. Correspondingly, the specificity (i. e., True Negative Rate (TNR))
is computed by

specificity =
NTN

NTN +NFP

, (4.2)

where NTN denotes the number of true negative samples, and NFP denotes the
number of false positive samples.

To evaluate the performance of a model for a binary-class classification task on
both classes, the Mean Accuracy (MAcc) is generally utilised:

MAcc =
sensitivity + specificity

2
. (4.3)

In addition to binary-class classification tasks, to evaluate the performance on
each class in a multi-task classification problem, the recall (i. e., class-wise accuracy)
score and precision score are defined by

recallk =
Ñk

Nk

, (4.4)

precisionk =
Ñk

N̂k

, (4.5)

where k is the k-th class of all K classes, recallk is the recall score of the k-th
class, representing the ratio of the number of correctly predicted samples Ñk and
the total number of samples Nk at the k-th class, and precisionk, the precision score,
is computed as the ratio of Ñk and the total number of the predicted samples N̂k

at the k-th class. Specifically, the recall score is an extension of sensitivity in the
context of multi-class classification.

Apart from the class-wise evaluation metrics, several measurements over all
classes have been proposed. A widely-used measurement is the Weighted Aver-
age Recall (WAR) (i. e., accuracy), which aims to evaluate the performance of an
approach over all classes. WAR is computed based on the weighted recall scores
over all classes:

WAR =
K∑
k=1

Nk

N
recallk. (4.6)

Although WAR can give an effective evaluation of the performance, a classification
system might be overestimated if the correctly classified samples labelled with the
majority class.

To overcome the aforementioned problem of WAR, the Unweighted Average Re-
call (UAR) was proposed as a frequently-used measurement. UAR is computed as
the average value of the recall scores over all classes:

UAR =

∑K
k=1 recallk
K

. (4.7)
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As UAR is computed as the average of all recall scores without weights, a classifi-
cation system will not be overestimated on an imbalanced data set. Notably, MAcc
is a specific form of UAR in binary-class classification.

4.3 Transfer Learning based Deep Representation

Learning

In this section, to verify the proposed approaches of deep representation learning in
Section 3.1, the experiments will be carried out on three databases for three tasks,
respectively. Specifically, the DCASE 2017 database will be selected for an ASC
task (cf. Section 4.3.1), the DAP corpus will be chosen to evaluate the pain level
from speech (cf. Section 4.3.2), and the PhysioNet/CinC database will be used for
an HSC task (cf. Section 4.3.3). Finally, the experiments will be summarised in
Section 4.3.4.

4.3.1 Performance on DCASE 2017 Database

The first experiment of transfer learning is on the DCASE 2017 database. Next, the
experimental details will be introduced in Section 4.3.1.1, and then the results will
be presented and discussed in Section 4.3.1.2.

4.3.1.1 Experimental Setup

In the experiment, each audio sample is firstly cut into a sequence of 19 audio
segments with a length of 1 second and an overlap of 50 %. Then, the hand-crafted
features and the deep representations are extracted from all of these audio segments,
respectively.

The hand-crafted features consist of two kinds of LLDs: MFCCs 1− 14 and log
Mel-Frequency Bands (MFBs) 1− 8. Both of the two kinds of features are obtained
according to the feature sets which were provided in the ComParE challenges [198].
Therefore, 100 functionals are applied to each LLD, yielding 14 × 100 = 1, 400
MFCCs features and 8 × 100 = 800 log MFBs features. Specifically, the hand-
crafted feature extraction is implemented using openSMILE [199].

To obtain the deep representations, three kinds of time-frequency representa-
tions, including spectrograms, bump scalograms, and morse scalograms, are firstly
extracted from the audio segments, as shown in Figure 4.1. Then, the spectrum
representations are fed into pre-trained AlexNet, VGG-16, and VGG-19, yielding
three sets of deep representations from each kind of time-frequency representations.
As all of the three CNNs were designed for a 1, 000-class classification task, the deep
representations are extracted from the activations of the second fully connected layer
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4.3. Transfer Learning based Deep Representation Learning

(a) spectrogram (b) bump scalogram (c) morse scalogram

Figure 4.1: The spectrogram, the bump scalogram, and the morse scalogram ex-
tracted from the first audio segment of DCASE2017’s a001 10 20.wav with a label
residential area [1].

fc7. Notably, the pre-trained AlexNet is obtained from MATLAB R2017a3, and the
VGG-16 and VGG-19 models are from MatConvNet [200].

Next, the extracted features are fed into (B)GRU-RNNs with 120 and 60 neurons
respectively with a tanh activation function. The (B)GRU-RNNs are followed by
a single highway network layer with a linear activation function and a softmax
layer, as highway networks were found to be mostly more efficient than conventional
fully connected layers [201]. Empirically, the (B)GRU-RNNs are trained using an
RMSProp optimiser with a learning rate of 0.0002 and a batch size of 65. The
accuracy of each model are evaluated at the epochs of 20, 30, ..., 120. Finally, the
MSV strategy is used to fuse the predictions from all of the (B)GRU-RNN models
for producing the final predicted labels.

4.3.1.2 Results and Discussion

According to the official evaluation metrics of DCASE 2017, the mean accuracy on
the 4-fold partitioned development set is calculated in the experimental results. As
shown in Figure 4.2, the performances of both GRU-RNNs and BGRU-RNNs on
a set of feature sets are compared, when the training procedures are stopped at
multiple epochs. We can see that, the accuracies of (B)GRU-RNNs on the hand-
crafted features, i. e., MFCCs and log MFBs, are lower than the baseline. The
performances of the (B)GRU-RNN models on the deep spectrum representations,
particularly the representations extracted by the pre-trained VGG-16 and VGG-19,
are comparable to the baseline performance. This indicates that the deep spectrum
representations are more effective than hand-crafted features in this ASC task.

The performances of the (B)GRU-RNN models on each kind of deep spectrum
representations are presented in Table 4.5. Each accuracy score on the development
set is denoted as the best performance across all of the epochs, and the perfor-
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Figure 4.2: The performances of GRU-RNNs and BGRU-RNNs on different features.
(a) (MF)CCs and log MFB (lg) features. The features from the spectrogram and
scalograms (bump and morse) are extracted by the three CNNs: (b) AlexNet, (c)
VGG-16, and (d) VGG-19.

mance on the evaluation set is obtained using the consistent epoch number on the
development set. The results of the fused models on multiple deep representations
outperform those of the models on a single deep feature set. For instance, the per-
formances of the fused models on spectrograms and bump scalograms are mostly
better than those of a single model on each of the three spectrum representations
(spectrograms, bump scalograms, and morse scalograms). Furthermore, the per-
formances of GRU-RNNs and BGRU-RNNs are comparable on the development
set, yet, the performances of BGRU-RNNs are slightly better than those of GRU-
RNNs on the evaluation set. This improvement of BGRU-RNNs may be due to
the ability of BGRU-RNNs for covering the overall information in both forward and
backward time directions. Through GRU-RNNs with the input of deep representa-
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Figure 4.3: Confusion matrix of the best accuracy of 64.0 % on the evaluation set.
This best accuracy is obtained by the late fusion of BGRU-RNNs on the deep
features extracted by VGG-16 from the spectrograms and the bump scalograms.

tions extracted by VGG-16 from the spectrograms and bump scalograms, the best
performance of 84.4 % on the development set achieves a significant improvement
over the official baseline of 74.8 % in the DCASE 2017 challenge (p < 0.001 by a
one-tailed z-test). Correspondingly, the deep representations extracted by VGG-16
from spectrograms and bump scalograms yield the best performance of 64.0 % on
the evaluation set, when the BGRU-RNNs are trained for the classification task.
This result of 64.0 % on the evaluation set is also an improvement upon the official
baseline of 61.0 %.

To discuss the effectiveness of our proposed approach in each class, the confusion
matrix of the best result on the evaluation set is depicted in Figure 4.3. The model
performs well on the classes like forest path, home, and metro station. However, some
classes such as library and residential area are challenging to be correctly classified.
This difficulty might be caused by noises, or that the audio waves labelled with
different acoustic scenes have similar environments. For example, some audio waves
recorded in library are classified into home, which is also an indoor environment as
library.

Furthermore, as for the class-wise performance of the spectrograms and scalo-
grams, the best performance on the evaluation set, obtained by fusing the results of
BGRU-RNNs on the deep features from the spectrograms and the bump scalograms,
are compared to the performance before the decision-level fusion in Table 4.6. The
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4.3. Transfer Learning based Deep Representation Learning

result from the spectrograms performs better than that from the bump scalograms
on the classes of beach, grocery store, office, and park, while the result from the
bump scalograms is better on the scenes of bus, city, home, and train. Through the
decision-level fusion, the precisions of classes, like cafe/restaurant, metro station,
residential area, and tram, are improved over the results from a single deep feature
set. Therefore, it is effective to employ both spectrograms and scalograms in order
to obtain more accurate precisions.

Through the training set augmentation using GANs, the best results on the ASC
task of DCASE 2017 are 87.1 % on the development set and 83.3 % on the evaluation
set [202]. Since the approach of deep representation learning herein focuses on
comparing the performances of deep representations and omits data augmentation,
there is a significant difference between the result from the champion and the best
performance in this work (p < 0.001 by one-tailed z-test). The GAN-based data
augmentation in combination with the proposed method shown herein is promising
to lead to better performance. Therefore, it is worthwhile to improve the proposed
method through data augmentation in future work.

4.3.2 Performance on DAP Corpus

In this section, the experiments of deep representation learning will be evaluated on
the DAP corpus. The experimental setup will be given in Section 4.3.2.1, and the
results will be presented and discussed in Section 4.3.2.2.

4.3.2.1 Experimental Setup

Before training the classifiers, three feature sets are firstly extracted, including Com-
ParE, MFCCs features, and deep spectrum representations. Moreover, the BoAW
features based on these three kinds of representations are extracted, respectively.
The details of these feature sets are described as follows.

1. The ComParE feature set [203] is extracted herein using openSMILE [199],
yielding a 6, 373-dimensional feature vector for each audio sample. It is
worth noting that, due to the relations between pain and emotion [179], the
eGeMAPS [42] designed for affective computing was also considered in the
initial experiment of this study. However, the preliminary results of the Com-
ParE feature set outperformed those of eGeMAPS.

2. The MFCCs features, which produced good performances in tasks related to
pain evaluation, like SER [204] and infant cry recognition [205], are extracted
with MFCCs 1 − 14 and 100 functionals. Finally, for each audio sample, a
1, 400 dimensional feature vector is extracted.
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3. The deep spectrum representations are generated by a pre-trained VGG-16
with the input of mel spectrograms, three examples of which are depicted
in Figure 4.4. The parameters of VGG-16 are obtained from Pytorch [206].
During this feature extraction procedure, the audio waves are firstly cut into
segments, whose length and overlap depend on the classifiers introduced later.
The mel spectrograms with 128 mel filter banks are then generated from each
segment. Finally, the deep spectrum representations are obtained from the
activations of the first fully connected layer in VGG-16.

4. The BoAW features contain three sub-feature sets corresponding to the above
three feature sets. For the ComParE features, 65 extracted LLDs are quan-
tised; for MFCC features, 14 LLDs are quantised. As deep spectrum rep-
resentations cannot be extracted in terms of LLDs, a set of deep spectrum
representations are generated from smaller non-overlapping audio segments
with a time length of 3.5 seconds, and then quantised by the BoAW method.
The codebook generation is achieved by openXBOW, and an iterative search is
designed to select the optimal codebook size (Cs ∈ {125, 250, 500, 1, 000, 2, 000}
with the number of assignments consistently set to 10.)

With the extracted features, two classifiers are then trained for the classification
task.

1. SVMs, as the baseline in this experiment, are used to process both the func-
tionals and the deep spectrum representations, as well as the BoAW features.
All SVM models are set to linear kernels, and tuned with the complexity pa-
rameter C ∈ [10−6; 10−1] on the development set.

Notably, the deep spectrum representations are generated from the audio seg-
ments with a time length of 3.5 seconds (as per BoAW features). Then, the
final prediction of each audio sample is calculated from the predictions of audio
segments using MSV.

2. LSTM-RNNs herein are designed with three structures by varying the number
of recurrent layers (Nl): the first structure has one layer with 60 neurons,
the second one has two layers which hold the number of neurons 120 − 60,
and the third one is set as a three-layer model with the number of neurons
480 − 120 − 60. The final recurrent layer in each LSTM-RNN model is then
followed by a highway network layer and a softmax layer for classification.

Please note that, to feed the sequential feature sets into LSTM-RNNs, all of
the audio segments with a length of 3.5 seconds are cut into smaller audio
chunks with a length of 0.6 seconds and an overlap of 0.3 seconds, and the
features are then extracted from each chunk. Each output of the LSTM-RNNs
is obtained from the prediction of the last audio chunk in a sequence. Finally,
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(a) mild (b) moderate (c) severe

Figure 4.4: The three mel spectrogram images are extracted from the first 3.5 s
segments of the three speech samples (labels: mild/moderate/severe) recorded from
the same person: (a) train 250.wav, (b) train 53.wav, (c) train 337.wav [2].

the prediction of each audio sample is selected from the results of the audio
segments using MSV.

During the training procedure, the learning rate is set to 0.0001, and the batch
size is 128. The results in Table 4.7 are the strongest among the epoch number
epoch ∈ [30; 90].

Finally, since the DAP corpus is highly imbalanced, the evaluation metric of
UAR is used herein instead of WAR.

4.3.2.2 Results and Discussion

Table 4.7 presents the results on both the development and the test sets. In the
results of “BoAW+SVM”, the performance on each Cs is the best one among the
C values (C ∈ [10−6; 10−1]) on the development set. The results of “BoAW+SVM”
with the input of the deep spectrum representations when Cs = 2, 000 are not given,
because the number of the training samples is less than 2, 000.

From Table 4.7, we can see that both ComParE and MFCCs feature sets per-
form well when SVMs are employed as the classifiers. The deep spectrum represen-
tations perform better than the other two feature sets (i. e., ComParE and MFCCs)
when LSTM-RNNs are trained for classification. Finally, the best UAR of 42.7 %
evaluated on the test set is obtained by the two-hidden-layer LSTM-RNNs with the
deep spectrum representations as the input. This indicates that the deep spectrum
representations extracted by transfer learning are effective to slightly improve the
performance over the conventional hand-crafted features.

The confusion matrix of the best result on the test set is depicted in Figure 4.5.
The class of mild is well classified. However, the other two classes (i. e., moderate
and severe) are difficult to be recognised. The reason for this difficulty might be the
imbalanced nature of the DAP corpus.
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Table 4.7: Performances (UAR [%]) of the speech-based PLE approaches evaluated
on the development and test sets of the DAP corpus.

ComParE MFCC Deep Spec.
UAR [%] Dev Test Dev Test Dev Test

C Functionals + SVM

10−6 47.3 42.0 39.9 41.0 37.0 33.7
10−5 45.2 38.3 39.9 41.0 37.6 31.8
10−4 40.3 39.1 39.2 39.0 32.9 32.6
10−3 42.2 36.8 39.0 38.5 31.3 32.5
10−2 40.8 34.5 35.3 35.1 31.6 30.9
10−1 40.8 34.5 33.5 36.7 31.1 34.7

Cs BoAW + SVM

125 46.8 35.2 39.6 30.7 44.0 35.7
250 47.9 38.9 40.6 40.0 41.7 28.6
500 46.0 33.8 45.7 38.4 40.8 30.5

1, 000 43.9 39.4 43.3 38.8 40.0 35.5
2, 000 50.3 33.0 40.2 41.3 — —

Nl LSTM–RNNs

1 36.1 31.7 38.5 31.2 38.6 38.4
2 39.3 36.9 39.1 34.8 40.0 42.7
3 34.5 31.0 39.1 33.6 36.9 37.3

mild moderate severe
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Figure 4.5: Confusion matrix of the best result (UAR: 42.7 %) on the test set. This
result is obtained by the two-hidden-layer LSTM-RNNs from the deep spectrum
features.
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4.3.3 Performance on PhysioNet/CinC Database

In this section, the experiments of the deep representation learning evaluated on
the PhysioNet/CinC database will be presented, including the experimental setup
in Section 4.3.3.1 and the result discussions in Section 4.3.3.2.

4.3.3.1 Experimental Setup

In the experiment, a baseline system using the 6, 373-dimensional ComParE audio
feature set and SVMs for classification, is compared to the four proposed transfer-
learning-based methods (cf. Section 3.1.2): the classification using traditional ma-
chine learning, the learnt CNNs with classification using traditional machine learn-
ing, the learning classifier of CNNs, and the learning CNNs.

In the proposed approaches, each heart sound file is firstly cut into non-
overlapping segments with an equal length of 4 seconds. The morse scalograms
are then generated from each audio segment with a sampling rate of 2 kHz (cf.
Figure 4.6), and fed into VGG-16 to achieve the HSC task.

For the first two aforementioned proposed approaches, which are denoted as pre-
trained VGG+SVM and learnt VGG+SVM in this experiment, the deep spectrum
representations are extracted from the activations of the first fully connected layer
fc6 in the VGG-16 model. Finally, the extracted deep representations are fed into
a linear SVM for the binary-class classification task (normal/abnormal).

Herein, the third and the fourth proposed approaches are called learning classifier
of VGG and learning VGG, respectively. The last fully connected layer of VGG-16 is
replaced by a new fully connected layer with two output neurons, in order to achieve
the binary-class classification task. While learning the classifier of VGG-16, the
parameters of the convolutional layers and fc6 are frozen, and only the parameters
of the final two fully connected layers are trained. All of the parameters in the
VGG-16 model are trained in the method of learning VGG. During the training
procedures in these two methods, the learning rate is set to 0.001, the batch size is
64, the epoch number is 50, and the SGD is employed as the optimiser.

To evaluate the performance, as the official evaluation metrics in the Phys-
ioNet/CinC Challenge 2016, the sensitivity, the specificity and the MAcc are used in
this experiment. Notably, the class of abnormal is considered as the positive state,
and the class of normal is considered as the negative state. Therefore, according
to Equations (4.1) and (4.2), NTP denotes the number of true positive abnormal
samples, NFN denotes the number of false negative abnormal samples, NTN denotes
the number of true negative normal samples, and NFP denotes the number of false
positive normal samples.
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(a) normal (a0007.wav) (b) abnormal (a0001.wav)

Figure 4.6: The scalogram images with the viridis colour map are extracted from the
first 4-second segments of the normal/abnormal heart sounds. The audio file names
corresponding to the presented scalogram images are described in parentheses [3].

Table 4.8: Performances comparison of the proposed approaches with the baseline.
The methods are evaluated on the 3-fold development set and the test set. The
experimental results are evaluated by (se)nsitivity, (sp)ecificity, and (MA)cc.

Development set Test set

fold 1 fold 2 fold 3 mean
performance [%] Se Sp MA Se Sp MA Se Sp MA Se Sp MA Se Sp MA

ComParE+SVM (baseline) 23.6 93.2 58.4 58.3 100.0 79.2 00.0 100.0 50.0 27.3 97.7 62.5 76.8 17.0 46.9
pre-trained VGG+SVM 57.2 70.9 64.1 41.7 85.7 63.7 17.9 81.5 49.7 38.9 79.4 59.1 24.6 87.1 55.9

learnt VGG+SVM 58.6 57.3 57.9 83.3 57.1 70.2 32.1 70.4 51.3 58.0 61.6 59.8 24.6 87.8 56.2
learning Classifier of VGG 68.2 51.3 59.7 79.2 14.3 46.7 35.7 40.7 38.2 61.0 35.4 48.2 33.3 63.7 48.5

learning VGG 83.6 40.2 61.9 95.8 28.6 62.2 53.6 44.4 49.0 77.7 37.7 57.7 12.3 95.7 54.0

4.3.3.2 Results and Discussion

As shown in Table 4.8, all of the VGG-based approaches outperform the baseline at
the metric of MAcc on the test set, although this outperformance is not obtained
on the development set. This indicates that the deep spectrum representations
perform better than the conventional hand-crafted features for this HSC task. In
the results of the two adapted VGG-16 models, learning VGG performs better than
learning classifier of VGG. The reason could be that all of the VGG-16 parameters
are optimised to suit the PhysioNet/CinC dataset in the method of learning VGG.
However, only the parameters of the final two fully connected layers are optimised
in the method of learning classifier of VGG. When comparing the classifiers, the
SVMs mostly perform stronger than the CNN classifiers. The reason is perhaps
that the SVM classifiers are more suitable to relatively smaller amounts of training
data than the CNN classifiers.

The best performance (MAcc: 56.2 %) on the test set is obtained by the learnt
VGG+SVM, which achieves a significant improvement over the baseline (p < 0.001
by one-tailed z-test). Therefore, the proposed method of extracting deep spectrum
representations using the learnt VGG is effective to perform on this HSC task.
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4.3.4 Summary

To this end, the deep representation learning approaches were applied to multiple
audio classification tasks, including ASC, PLE, and HSC. The time-frequency repre-
sentations of the audio waves were fed into a CNN model to extract deep spectrum
representations, which were further classified by the CNN model itself or an addi-
tional classifier. These proposed approaches outperformed either the baselines or
the conventional SVMs with the hand-crafted features as the input.

In future efforts, data augmentation methods, such as GANs, will be investi-
gated, as they have shown effectiveness in the champion’s work in DCASE challenge
2017 [202]. Data augmentation is also promising to compensate for the imbalanced
nature of the dataset, especially the DAP corpus and the PhysioNet/CinC database.
In particular, due to the potential relations between pain and emotional states [179],
in the work of PLE, it is worthwhile to annotate the data with emotional states,
and explore multi-task classification paradigms to improve the performance of PLE.

4.4 Deep Learning Models with Attention

To train an explainable deep learning model, the attention mechanisms will be
applied to DNNs in this section. In the following subsections, the attention-based
DNNs will be validated on the applications of ASC (cf. Section 4.4.1) and HSC (cf.
Section 4.4.2), respectively.

4.4.1 Performance on DCASE 2018 Database

On the DCASE 2018 database, an attention mechanism is employed to explain the
potential contributions of every time-frequency bin in the log mel spectrograms to
the predicted scenes. Next, the details of the experimental setup will be given in
Section 4.4.1.1, and the results will be presented and discussed in Section 4.4.1.2.

4.4.1.1 Experimental Setup

With the input of 320×64 log mel spectrograms extracted with a Hamming window
size of 2,048, an overlap of 672, and 64 mel bands, the three CNN models presented
in Table 4.9 are trained on the training sets of the two subtasks (i. e., subtask A
and subtask B). Since the DCASE 2018 dataset is much smaller than the ImageNet
database [35], both AlexNet and VGG-4 are designed with fewer parameters than
the models in Table 3.1. Additionally, “Net-4”, a CNN structure with a stride with
a size of 2 instead of local max pooling among the convolution layers, is designed
to weaken the effect of local max pooling layers. This Net-4 has a kernel size of
5×5 in between those of AlexNet and VGG-4 to explore the effect of the kernel size
and achieve better performance. To reduce the feature dimensions, a global pooling
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Table 4.9: Configurations of the convolutional layers and local pooling layers in the
three CNNs. The convolutional layers are denoted as “the number of convolution
layers × conv(kernel size – number of output channels)” with the stride “s(stride
size)”.

AlexNet VGG-4 Net-4

Input: log mel spectrogram

1×conv11-64; s1 1×conv3-64; s1 1×conv5-64; s2
Maxpooling Maxpooling

1×conv5-192; s1 1×conv3-128; s1 1×conv5-128; s2
Maxpooling Maxpooling

1×conv3-384; s1 1×conv3-256; s1 1×conv5-256; s2
2×conv3-256; s1 1×conv3-512; s1 1×conv5-512; s2

Maxpooling Maxpooling

Output

layer follows the convolutional layers to convert the three-dimensional feature maps
into one-dimensional tensors.

During the training procedure, the CNNs are optimised by an Adam optimiser
with a learning rate of 0.001 during 3, 000 maximum iteration steps. In the DCASE
challenge 2018, the accuracy computed as an average of the class-wise accuracy was
utilised as the official evaluation metric. Mathematically, the accuracy herein is the
same as the UAR defined in Section 4.2. Yet, to be consistent with the DCASE
challenge 2018, we call the measurement “accuracy” in this experiment.

4.4.1.2 Results and Discussion

The performances of the three CNN models, including AlexNet, VGG-4, and Net-4,
are shown in Table 4.10. Nearly all of the CNN structures with a global pool-
ing layer outperform the official baseline system. Specifically, the performances of
AlexNet with attention are comparable to those of AlexNet with global max and
average pooling, and the Net-4 with attention achieves improvements over the Net-4
with global max and average pooling. However, the VGG-4 with a global attention
pooling layer performs slightly worse than VGG-4 with global max pooling. This
underperformance might be caused by overfitting due to the larger number of hyper-
parameters in VGG-4 with attention. Finally, the best results are achieved by the
Net-4. This indicates that CNNs, with a kernel size of five and without local max
pooling among convolutional layers, appear more suitable for this ASC task. The
proposed Net-4 with a global attention pooling layer achieves an accuracy of 72.6 %
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Table 4.10: Performance (accuracy [%]) comparison of the baseline and the CNN
topologies of AlexNet, VGG-4, and Net-4, with three global pooling methods –
max, average, and attention, evaluated on the official development sets of subtask
A (SubA) and subtask B (SubB). The dataset recorded by device A is employed
in subtask A, and the datasets from devices A, B, and C are used in subtask B.
(B,C) stands for the mean evaluation performance on the data of devices B and C.

SubA SubB

Model Pooling A A B C (B,C)

Baseline 59.7 58.9 45.1 46.2 45.6

AlexNet max 67.2 62.2 51.7 54.4 53.1
AlexNet average 64.3 60.8 51.1 52.2 51.7
AlexNet attention 67.2 64.2 53.3 46.7 50.0

VGG-4 max 68.7 66.8 53.9 56.1 55.0
VGG-4 average 63.7 63.2 52.8 48.9 50.8
VGG-4 attention 67.6 64.6 50.6 46.1 48.3

Net-4 max 68.1 68.7 58.3 55.6 56.9
Net-4 average 68.1 67.3 59.4 56.1 57.8
Net-4 attention 72.6 71.8 58.3 58.3 58.3

for subtask A, which is a significant improvement over the baseline (p < 0.001 in a
one-tailed z-test). For subtask B, the Net-4 achieves accuracies of 71.8 %, 58.3 %,
and 58.3 % on the data from devices A, B, and C, respectively, which are significant
improvements of the baseline as well (in a one-tailed z-test, p < 0.001 for device A
, p < 0.01 for device B, and p < 0.05 for device C).

From Table 4.10, we can also see that the CNN models mostly perform better
for subtask A than subtask B. The reason might be that multiple data recording
devices were used in subtask B. The data mismatch may lead to a difficulty for the
models to achieve high performance. In subtask B, the models perform better on
the data from device A than the one from devices B and C, perhaps because of the
data imbalance among the three devices, i. e., more audio recordings were recorded
with device A than devices B and C.

To analyse the class-wise performances achieved by the best model, i. e., Net-
4 with attention, the confusion matrices of the results on the data from the three
devices are depicted in Figure 4.7. The Net-4 model performs well on several classes,
such as park, shopping mall, and street traffic. However, it is challenging to recognise
some classes, like public square and street pedestrian, perhaps due to the background
noise in these classes.
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Figure 4.7: Confusion matrices of the best results obtained by the Net-4 with at-
tention on the data from device A in subtask A and devices B and C in subtask
B.

As the attention mechanism can estimate the contributions of every time-
frequency bin to the predictions, the heat maps during the global attention pooling
procedure are visualised in Figure 4.8. We can see that, even though it is challenging
to analyse the characteristics of each acoustic scene from the visualised heat maps
due to their small size, each time-frequency bin in the heat map of each acoustic
scene is assigned a different weight. We think the weight difference thereby leads to
more optimal predictions.
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airport bus metro metro station park

public square shopping mall street pedestrian street traffic tram

Figure 4.8: Heat maps of every scene class computed by the probability tensors in
the attention-based Net-4 model. Each heat map is the transpose matrix of the
probability tensor with a size of 20 × 4 for a better display. The horizontal axis
represents the time steps, and the vertical axis represents the feature vectors.

4.4.2 Performance on HSS Database

To explain the DNNs performed on the HSS database, both attention mechanisms
at the frame level and the time-frequency level are applied in this experiment. The
experimental setup will be introduced in Section 4.4.2.1, and the results will be
presented and discussed in Section 4.4.2.2.

4.4.2.1 Experimental Setup

Firstly, the log mel spectrograms with a size of 936 × 64 are extracted from the
heart sound signals using a Hamming window with a length of 256, an overlap with
a length of 128, and 64 mel frequency bins. Then, two types of DNNs, including
CNNs and RNNs, are used to process the log mel spectrograms. The details of the
employed models are described as follows.

1. The CNN models contain four convolutional layers with output channels 64,
128, 256, and 256. Each convolutional layer is followed by a local max pooling
layer with a 2× 2 kernel.

2. The RNN models consist of LSTM-RNNs and GRU-RNNs. Both RNN models
contain three recurrent layers with output channels 256, 1, 024, and 256.

To achieve the HSC task, the above convolutional/recurrent layers are followed by
a flattening layer or a global pooling layer, and the final log softmax layer.

During the training procedure, an Adam optimiser is utilised to optimise the
models with a batch size of 32. To stabilise the training procedure, the learning
rate initialised by 0.0001 is reduced by a factor of 0.9 at every 100-th iteration. The
training process is finally stopped at the 3, 000-th iteration step. To be consistent
with the ComParE challenge [38], the performances are evaluated by the UAR.

71



4. Experimental Evaluations

Table 4.11: The performance (UAR [%]) comparison of various deep learning topolo-
gies on the HSS database.

w/o upsampling w/ upsampling

UAR [%] Dev Test Dev Test

CNN

Flattening 35.6 37.6 35.6 39.9
Max-pooling 41.7 38.4 39.3 38.5
Attention-softmax 31.5 43.1 38.3 47.3
Attention-sigmoid 40.1 51.2 39.6 50.5

LSTM-RNN

Last-time stamp 39.3 36.1 40.7 35.7
Max-pooling 32.9 38.9 34.6 38.1
Attention-softmax 40.0 39.6 39.0 39.4
Attention-sigmoid 39.6 38.9 42.0 42.6

GRU-RNN

Last-time stamp 39.0 36.5 37.4 36.1
Max-pooling 38.7 35.8 40.7 35.2
Attention-softmax 30.8 44.7 35.3 46.8
Attention-sigmoid 34.9 44.2 34.5 45.7

Specifically, in order to investigate the effect of data balance status to the clas-
sification performance on the HSS database, the results on the original imbalanced
database and random-upsampling-based balanced data [207] are compared.

4.4.2.2 Results and Discussion

Table 4.11 presents and compares the experimental results. The attention mecha-
nism can mostly improve the corresponding models in this HSC task. For example,
CNNs with a sigmoid-attention (UAR: 51.2 %) perform better than CNNs with flat-
tening (UAR: 37.6 %) and CNNs with global max pooling (UAR: 38.4 %) (p < 0.01
in a one-tailed z-test). Moreover, the upsampling strategy slightly improves the per-
formances of the best RNN models, but such improvement is not significant. The
reason might be that this simple upsampling strategy is not able to sufficiently gen-
erate informative instances to improve performance. Finally, the best result (UAR:
51.2 %) is achieved by the CNN model with a sigmoid-attention mechanism at the
time-frequency level. This best result outperforms those of LSTM-RNNs (UAR:
42.6 %) and GRU-RNNs (UAR: 46.8 %).
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Figure 4.9: Confusion matrices achieved by the best models on the test set. The best
three models are (a) CNN with sigmoid-attention, (b) LSTM-RNN with sigmoid-
attention, and (c) GRU-RNN with softmax-attention, respectively.

To analyse the class-wise performances of the three best models, the confusion
matrices are shown in Figure 4.9. Specifically, the best CNN model can classify the
class of mild better than the other two models. Although all of the three models
perform well on the class of mild, it is difficult for them to accurately predict the
other two classes, i. e., normal and moderate/severe.

Furthermore, the best result of our proposed model, i. e., CNN with sigmoid-
attention, is compared to those of the state-of-the-art methods on the HSS database
in Table 4.12. The proposed approach outperforms most of these methods, but un-
derperforms the ComParE baseline (fusion). The reason of the underperformance
might be that multiple models are fused to improve the performance of a single
model in the ComParE baseline (fusion).

73



4. Experimental Evaluations

Table 4.12: The performance (UAR [%]) comparison between the proposed model
and the state-of-the-art methods.

UAR [%] Dev Test

ComParE baseline (End2You) [208] 41.2 37.7
ComParE baseline (openSMILE) [208] 50.3 46.4
ComParE baseline (openXBOW) [208] 42.6 52.3
ComParE baseline (fusion) [208] – 56.2
Ensemble of transfer learning [209] 57.9 42.1
Utterance-level feature and SVMs [210] 53.2 49.3
Seq2Seq autoencoders and SVMs [65] 35.2 47.9
Log Mel features and SVMs [177] 46.5 49.7
Our proposed approach 40.1 51.2
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Figure 4.10: A comparison of the macro-average ROC curves of the best three
models on the test set. The corresponding AUC is also computed for each model.

Figure 4.10 presents the macro-averaged Receiver Operating Characteristic
(ROC) curves of the three best models’ performance on the test set. The ROC
curves of the CNN model and the GRU-RNN model mostly have higher TPRs at a
given False Positive Rate (FPR) than that of the LSTM-RNN model. The TPRs of
the CNN model are comparable to or higher than those of the GRU-RNN model.
The Area Under the ROC Curve (AUC) of the CNN model is the largest among
those of the three models, indicating that the CNN model is more effective than the
other two models.

To explain the attention-based models, the heat maps in the three models are
visualised in Figure 4.11; the original audio waveforms and the log mel spectrograms
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Figure 4.11: Visualisation of the three examples with the classes of normal, mild,
and moderate/severe, respectively. Each example consists of the original audio wave-
form, its corresponding log mel spectrogram, the attention tensor in the CNNs, the
attention tensor in the LSTM-CNNs, and the attention tensor in the GRU-RNNs.
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are also depicted. We can see that the class of moderate/severe shows more irregular
than the other two classes (i. e., normal and mild) from the perspective of the audio
waveforms (cf. Figure 4.11 (a)). Correspondingly, the high-level representations
also present the irregularity on the attention tensors. For example, the class of
moderate/severe has higher weights than the other two at the similar frequency
bands of the CNNs’ attention tensors. In the attention tensors of RNNs, we can see
the periodic signal’s characteristics in the class of normal, and the relative irregular
changes along the time axis in the class of moderate/severe.

4.4.3 Summary

In this section, the DNNs with attention were applied to the DCASE 2018 database
and the HSS database. Specifically, CNNs with attention at the time-frequency
level were used on the DCASE 2018 database, and DNNs with attention at both the
frame and the time-frequency levels were utilised on the HSS database. On both
databases, the attention mechanism achieved improvements over the corresponding
models without attention.

In future work, since the proposed attention mechanism is only at the decision
level of DNNs, it is worthwhile to investigate the attention-based models at the
feature level in order to explain the contributions of the representations in each
intermediate layer to the predictions. Furthermore, the size of the feature maps
in CNNs are reduced due to the local max pooling layers among the convolutional
layers or the strides inside the convolutional operations, therefore it is essential to
explain CNNs in detail through visualising high-resolution attention heat maps.

4.5 Atrous CNNs with Attention

To increase the size of the attention tensors in CNNs, the atrous CNNs with attention
(cf. Section 3.2.3) will be employed and developed on the DCASE 2018 database.
The details of the experiments will be introduced, including the experimental setup
in Section 4.5.1 and the result discussions Section 4.5.2. Finally, a summary of this
work will be given in Section 4.5.3.

4.5.1 Experimental Setup

The log mel spectrograms with a size of 64 × 320 are firstly extracted from the
acoustic signals using a Hamming window with a size of 2, 048 and 64 mel bins. The
overlap is set to satisfy that each log mel spectrogram contains 320 time frames.
Then, the log mel spectrograms are fed into CNNs to achieve the ASC task. Three
types of CNN models are used for comparison: baseline CNN, CNN without local
pooling, and atrous CNN. All of the three CNN models have four convolutional

76



4.5. Atrous CNNs with Attention

Table 4.13: Performance (accuracy [%]) comparison of the CNN topologies with flat-
tening and five global pooling models, including max, average (avg), ROI, attention
(att), and the combination of ROI and attention (roi+att), evaluated on the two
subtasks (SubA on the data of device A, and SubB on the data of devices A, B,
and C ).

Accuracy [%] SubA SubB

Network Pooling A A B C

Baseline CNN flatten 60.9 61.6 49.4 46.7
Baseline CNN max 68.6 69.8 57.2 57.8
Baseline CNN avg 69.1 65.8 57.2 57.8
Baseline CNN att 72.4 72.6 62.2 56.1

CNN w/o local pool max 60.4 61.9 46.7 52.2
CNN w/o local pool avg 62.8 59.1 54.4 50.0
CNN w/o local pool roi 61.6 61.7 50.6 43.9
CNN w/o local pool att 62.1 59.6 45.0 43.3
CNN w/o local pool roi+att 68.1 69.2 56.1 50.6

Atrous CNN max 68.8 69.7 60.0 59.4
Atrous CNN avg 69.1 67.2 62.8 60.0
Atrous CNN roi 65.2 62.6 48.3 43.9
Atrous CNN att 72.7 73.2 64.4 62.2
Atrous CNN roi+att 72.6 72.2 57.2 56.7

layers with the number of output channels 64, 128, 256, and 512. In the baseline
CNN, each convolutional layer is followed by a local max pooling layer with a kernel
size of 2 × 2 to extract shift-invariant features, whereas the CNN without local
pooling and atrous CNN have no local max pooling layers. Particularly, the dilation
rates are set to 1, 2, 4, and 8 in the four convolutional layers, respectively. Finally,
a global pooling layer and a softmax non-linearity are applied to the final feature
maps, in order to predict the probabilities of all scene classes. Notably, only a global
attention pooling layer is applied for classification when an attention mechanism is
used.

During the training procedure, the CNNs are optimised by an Adam optimiser
with a batch size of 16 and an initial learning rate of 0.001. The learning rate is
reduced by a factor of 0.9 at every 200 iteration steps for stabilising the training
procedure. The training procedure is finally stopped at the 15, 000 iteration step.
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Table 4.14: The class-wise accuracies [%] of the attention-based atrous CNNs, which
lead to the best results on the two subtasks (SubA on the data of device A, and
SubB on the data of devices A, B, and C ).

Accuracy [%] SubA SubB

Class A A B C

airport 59.6 74.0 61.1 38.9
bus 77.7 69.4 66.7 94.4
metro 64.0 81.6 94.4 55.6
metro station 75.7 82.2 66.7 66.7
park 84.3 86.8 77.8 77.8
public square 59.3 45.4 50.0 33.3
shopping mall 88.5 68.1 94.4 100.0
street pedestrian 52.2 68.0 44.4 61.1
street traffic 89.4 90.2 83.3 88.9
tram 76.2 66.3 5.6 5.6

Average 72.7 73.2 64.4 62.2

4.5.2 Results and Discussion

The performances of the three types of CNNs in Section 4.5.1 are presented in
Table 4.13. To avoid the potential overfitting caused by excessive parameters, flat-
tening is applied to the baseline CNN only, which produces smaller feature maps
with a size of 4 × 20 than the other two CNNs. In the baseline CNNs, the global
max, average, and attention pooling layers perform better than flattening on both
subtasks. The CNNs without local pooling underperform the baseline CNNs when
the global pooling layer is max, average, or attention. The proposed atrous CNN
model achieves the best results of accuracies (72.7 % on subtask A, and 73.2 %,
64.4 %, and 62.2 % on subtask B). The proposed model significantly outperforms
the CNNs without local pooling, which achieve accuracies of 60.4 % on subtask A,
and 61.9 %, 46.7 %, and 52.2 % on subtask B (in a one-tailed z-test, p < 0.001 for
subtask A and subtask B (devices A and B), and p < 0.05 for subtask B (device
C)). This indicates that the size of the receptive field can affect the performance
more than a local max pooling layer.

The class-wise accuracies are presented in Table 4.14. We can see that, except
tram, most classes are classified with high accuracies on devices B and C. The reason
might be there is noise in the recordings labelled as tram from devices B and C.

Due to the atrous CNNs, the size of the feature maps is retained as that of the log
mel spectrograms, which is 64×320. The high-resolution feature maps are visualised
to explain the CNNs. Therefore, the feature maps in the global attention pooling

78



4.5. Atrous CNNs with Attention

Frame

M
el

-F
re

qu
en

cy

0

16

32

48

64
airport bus metro metro station park

0 80 160 240 320
0

16

32

48

64
public square

0 80 160 240 320

shopping mall

0 80 160 240 320

street pedestrian

0 80 160 240 320

street traffic

0 80 160 240 320

tram

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.12: Heat maps with a size of 64 × 320 are the visualisation of the atten-
tion tensors in the attention-based atrous CNNs. The horizontal and vertical axes
respectively represent the time frames and frequency bins.

layer are presented in Figure 4.12. We can see that each time-frequency bin has
different contributions to the ten acoustic scenes. For instance, most time-frequency
bins of the heat maps have similar weight values in the classes of airport, park, and
street traffic, perhaps due to stationary background noise in these acoustic scenes.
In the traffic environments, including bus, metro, and tram, the temporal continuity
appears at several mel-frequency bins. The heat maps of public square, shopping
mall, and street pedestrian show that there might be audio events such as speech.

4.5.3 Summary

The attention-based atrous CNNs were proposed to visualise and understand the
feature maps from the intermediate layers of CNNs with a high resolution. The
proposed model performed better than the baseline CNNs and the CNNs without
local pooling on the DCASE 2018 database. Moreover, the attention tensors in the
CNNs were visualised and analysed.

In future efforts, it is worthwhile to investigate an attention mechanism at the
feature level to reach a deeper visualisation of CNNs. To consider the temporal in-
formation inside the audio signals, CNNs followed by sequence-to-sequence learning
methods (i. e., CRNNs [21]) and three-dimensional CNNs will be focused. Further-
more, as the CNNs share the parameters among the data recorded with three devices
in subtask B, it is challenging to learn device-related characteristics for better per-
formance. Therefore, training a device-robust CNN model will be investigated.
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4.6 Conditional Atrous CNNs with Attention

In the subtask B of the DCASE 2018 ASC task, multi-device audio data was simply
fed into a CNN model together in the experiments of Section 4.5, without considering
the device information. To train device-robust CNN models, the proposed approach
in Section 3.2.4 will be achieved on both DCASE 2018 and 2019 ASC databases in
this experiment. The experimental setup will be introduced in Section 4.6.1, and
the results will be presented and discussed in Section 4.6.2. Finally, a summary of
this work will be given in Section 4.6.3.

4.6.1 Experimental Setup

Firstly, the 64 × 320 log mel spectrograms are extracted from the audio waves
resampled to 44.1 kHz by a Hamming window with a sample length of 2, 048, an
overlap of 672, and 64 mel bins. Next, the log mel spectrograms are fed into a CNN
model for the ASC task.

In the experiments, the CNN with local pooling, the CNN without local pooling,
and the atrous CNN, are followed by a flattening layer or five global pooling layers
(max, average, ROI, attention, and the combination of ROI and attention). In the
three kinds of CNNs, four convolutional layers with the number of output channels
64, 128, 256, and 512 are optimised. Specifically, in the CNN with local pooling,
each convolutional layer is followed by a local max pooling layer with a kernel size
of 2 × 2. The convolutional layers in the atrous CNN model are designed to have
the dilation rates 1, 2, 4, and 8. Furthermore, these CNNs are trained in the four
training strategies, including single-device training, joint training, teacher forcing
conditional training, and multi-task conditional training. Notably, in the multi-task
conditional training, the “CNN-D” model (cf. Figure 3.10(d)) for predicting the
device information consists of two convolutional layers with the number of output
channels 64 and 128, each of which is followed by a local pooling layer.

During the training procedure, the CNNs are optimised by an Adam optimiser
with an initial learning rate of 0.001. The learning rate is reduced by a factor of
0.9 at every 200-th iteration. The training procedure is stopped at the 15, 000-th
iteration. To obtain a robust “CNN-D” model before training the CNN model for
ASC, the value of λ (cf. Equation (3.14)) is experientially set to 1 and 0.0001 before
and after the accuracy of “CNN-D” on the test subset achieves 98 %, respectively.

To be consistent with the official evaluation metrics in the ASC tasks of DCASE
2018 and 2019, the accuracy, which is the average of class-wise accuracies, is used
in this experiment.
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Figure 4.13: Performance (accuracy [%]) comparison of the CNN models evaluated
on the DCASE 2018 dataset, when the teaching forcing conditional training works
at different convolutional layers. The three CNN topologies contain CNN with
local pooling, CNN without local pooling, and atrous CNN. The CNNs are followed
by (fla)ttening and five global pooling layers, including max, average (avg), ROI,
(att)ention, and the combination of ROI and attention (r+a). The performance is
evaluated on the data from the three devices A, B, and C, respectively.
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Table 4.15: The average performance (accuracy [%]) comparison of the CNN topolo-
gies evaluated on the data from the three devices (A, B, and C ) available in the
DCASE 2018 dataset, when the teaching forcing conditional training works at dif-
ferent convolutional layers. The three types of CNN topologies contain CNN with
local pooling, CNN without local pooling, and atrous CNN. The CNNs are followed
by flattening and five global pooling layers, including max, average (avg), ROI,
(att)ention, and the combination of ROI and attention (roi+att). The best result
chosen from the four layers in each CNN model is highlighted.

Accuracy [%] Layer 1 Layer 2 Layer 3 Layer 4

CNN w/ pool flatten 52.2 50.8 50.6 51.5
CNN w/ pool max 60.6 63.8 58.7 59.7
CNN w/ pool avg 60.1 60.4 60.8 62.1
CNN w/ pool att 63.5 66.3 66.5 65.1

CNN w/o pool max 59.9 63.3 61.9 61.1
CNN w/o pool avg 61.2 61.1 58.6 60.3
CNN w/o pool roi 52.9 52.9 50.2 51.0
CNN w/o pool att 51.9 49.4 49.9 51.3
CNN w/o pool roi+att 60.1 57.5 59.4 58.4

Atrous CNN max 62.7 64.2 61.7 61.8
Atrous CNN avg 61.1 60.8 64.5 64.2
Atrous CNN roi 52.4 53.6 54.6 53.7
Atrous CNN att 65.8 62.7 65.3 67.0
Atrous CNN roi+att 63.0 64.9 66.3 64.6

4.6.2 Results and Discussion

The DCASE 2018 database is used to validate the teacher forcing conditional train-
ing, where the device information is conditioned at the four convolutional layers.
The performances of the CNNs in the framework of teacher forcing conditional
training evaluated on the DCASE 2018 database are depicted and compared in Fig-
ure 4.13. We can see that the performances on the data from device A are mostly
better than those on the data from devices B and C. The result might be due to
the data imbalance among the audio samples from devices A, B, and C, and the
potential existence of more noise in the audio waves recorded with mobile devices B
and C. When comparing the performances of the CNNs with global pooling layers
on the data from each device, the atrous CNNs mostly perform slightly better than
the other two (CNN with local pooling and CNN without local pooling). When
each of their four convolutional layers is conditioned by the device information, the
performances of the CNNs are similar to each other.
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In each CNN architecture, to select the best convolutional layer to be condi-
tioned, the average performances on the three-device data are presented in Ta-
ble 4.15. The global attention pooling method performs the best in the CNNs with
local pooling and atrous CNNs, perhaps due to its capability for estimating the con-
tribution of every time-frequency bin in the feature maps to the predictions. Condi-
tioning different layers with the device information can affect the performances. For
example, the best performances of CNNs without local pooling are mostly obtained
when the first convolutional layer is conditioned. The atrous CNNs, in which the
third convolutional layer is conditioned, mostly perform better than those in which
the other layers are conditioned. Therefore, the best performances of the teacher
forcing conditional training are selected to be compared with the other three training
approaches in Table 4.16.

In Table 4.16, the performances of the multi-task conditional training are ob-
tained when conditioning the same convolutional layers as those best layers in
the teacher forcing conditional training. Except CNNs without local pooling with
global attention pooling and global ROI combined with attention pooling, condi-
tional training outperforms the single-device training and joint training. The reason
might be that a huge number of convolutional operations are needed in those two
CNN architectures (CNNs without local pooling using global attention pooling and
global ROI combined with attention pooing). When comparing the two conditional
training approaches, teacher forcing conditional training performs slightly better
than multi-task conditional training. This is possibly because the ground truth of
the device information is employed in teacher forcing conditional training, while the
predicted device information is used in multi-task conditional training. The perfor-
mances of joint training and single-device training are comparable on the data from
devices B and C. The proposed conditional training can learn the device-related
complementary features. Therefore, conditional training mostly performs better
than the other two training methods on the data from devices B and C. Finally, the
best performance of 68.0 % on average, which is obtained by the proposed multi-
task CAA-Net, achieves a significant improvement over the performance of 65.0 %
obtained by the atrous CNNs with attention in single-device training (p < 0.01 in
a one-tailed z-test), and the performance of 49.0 % achieved by the CNNs without
local pooling using a global ROI pooling layer in single-device training (p < 0.001
in a one-tailed z-test).

To investigate the class-wise performance of the best model (i. e., multi-task
CAA-Net), the confusion matrices are depicted in Figure 4.14. The proposed multi-
task CAA-Net produces good performances on some classes, such as metro, park, and
street traffic. However, it is difficult to recognise other classes, such as public square
and street pedestrian. The reason for the underperformance might be that the audio
recordings in these two classes contain more noise. Moreover, some classes of scenes
are classified into similar environments. For example, the class of tram is easily
recognised as bus and metro, perhaps due to the similar characteristics in traffic
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Figure 4.14: Confusion matrices of the results on the data from devices A, B, and C
obtained by the proposed multi-task CAA-Net, which achieves the best performance
on the DCASE 2018 dataset.

sounds. This suggests that despite the performance is improved by considering the
device information, the type of acoustic scenes could be an additional factor to be
considered in the ASC task.

Apart from the performances on the DCASE 2018 database, the effectiveness of
the proposed conditional training approach is also validated on the DCASE 2019
database. Table 4.17 presents the performances of the three CNNs with attention,
including CNN with local pooling, CNN without local pooling, and atrous CNN.
The device information is used to condition the same convolutional layers as those
best layers in Table 4.15. The proposed conditional training achieves the best per-
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formances among the four training methods on the DCASE 2019 database. This is
consistent with the results on the DCASE 2018 database, indicating that the pro-
posed conditional training is more effective and robust than single-device training
and joint training on multi-device data sets.

To further visualise the intermediate layers of CNNs, the heat maps of the atten-
tion tensors in the proposed multi-task CAA-Net are depicted in Figure 4.15. The
audio examples at each class of scene were recorded at the same time and place by
the three devices. In Figure 4.15, the attention tensors are mostly similar across
the data from the three devices. In some classes, e. g., airport, metro, public square,
and tram, more time-frequency bins in the heat maps on the data from device A are
learnt with high values than those in the heat maps on the data from devices B and
C. The reason might be that the data qualities of the three devices differ from each
other. Some characteristics of specific acoustic scenes can be seen in the heat maps.
For example, the heat maps of traffic scenes, such as bus, metro, and tram, consist
of time-continuity bins. Non-traffic sounds, like speech and bird sound, may exist in
some classes, such as airport, metro station, park, shopping mall, street pedestrian,
and street traffic, so that the time-frequency bins concentrate on high-frequency
areas in these environments.

To make an understandable decision with machines, the visualisation of the
CNNs is essential in real-life applications, especially in security-sensitive fields.
Moreover, since the contribution of each bin in the heat maps to the predictions
may be relative to the time and frequency of sound events, the visualisation of the
heat maps can offer the potential to enhance the performance of other tasks, such
as sound event detection [211].

4.6.3 Summary

In summary, the CAA-Net was proposed for visualising and understanding the CNNs
on multi-device data. Particularly, in the multi-task CAA-Net, log mel spectrograms
were extracted from the audio signals, and fed into two CNN models to predict the
acoustic scenes and the device information, respectively. The produced device infor-
mation was represented by one-hot encoders, and then used to condition the CNN
model for ASC, which consists of four dilated convolutional layers and a global at-
tention pooling layer. The dilated convolutional layers were employed to preserve
the size of the feature maps, and the attention mechanism was used to estimate
the contribution of each time-frequency bin to the predictions. The proposed condi-
tional training outperformed single-device training and joint training. The attention
mechanism was visualised and analysed in this study.

In future efforts, learning the value of λ in Equation (3.14) will be investigated,
since the fixed value of λ is not flexible to apply the proposed approach to a new
database. A hierarchical structure to classify both the types of scenes and device
classes will be considered due to the aforementioned effect of scene types. Further-
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(c) Heat maps of CNNs on data from device C

Figure 4.15: Heat maps with a size of 64×320 are obtained by visualising the atten-
tion tensors in the multi-task CAA-Net which works on the DCASE 2018 dataset.
The horizontal and vertical axes represent the time frames and frequency bins, re-
spectively.
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more, training of cross-database CNNs will be explored through involving data from
more recording devices, so that the CNNs are effective on audio data recorded with
more devices. In practice, to mitigate the burden from the computation complexity
caused by an amount of multi-device data, the training strategies, such as trans-
fer learning [212] and lifelong learning [213], will be considered. The heat maps of
the attention mechanism will also be utilised for other tasks, such as audio event
detection.

4.7 Protecting DL Models against White-box Ad-

versarial Attacks

To achieve the proposed adversarial training in Section 3.3.2, the white-box ad-
versarial attacks are generated, and the SER models are protected by adversarial
training on the DEMoS database. The experimental setup will be introduced in Sec-
tion 4.7.1, and the results will be presented and discussed in Section 4.7.2. Finally,
the conclusion of this experiment will be given in Section 4.7.3.

4.7.1 Experimental Setup

The log mel spectrograms are firstly extracted from the speech samples resampled
from 44.1 kHz to 16 kHz, since the sampling rate of 16 kHz may lead to faster
progress, and the approaches in our early experiments achieved similar results on
the data with the two sampling rates. During the extraction of log mel spectrograms,
the length of the window size is set to 512, the length of the overlap is 256, and 64
mel bins are extracted for each time frame in a log mel spectrogram. Then, the log
mel spectrograms are broadcasted to have a unified time length of 373, therefore
all log mel spectrograms have a size of 373 × 64. Next, the log mel spectrograms
are fed into CNNs for the SER task. Three CNN architectures are employed in
this experiment: CNN-4, ResNet-50 [214, 215], and VGG-16 [100]. Specifically,
the CNN-4 model consists of four convolutional layers with the number of output
channels 64, 128, 256, 512 and a kernel size of 5× 5, a global max pooling layer, a
fully connected layer, and a softmax layer. Each convolutional layer is followed by
a local max pooling layer with a kernel size of 2× 2.

During the training procedure, each CNN model is optimised by an Adam op-
timiser with a learning rate of 0.001. To improve the stabilisation of the training
procedure, the learning rate is reduced with a factor of 0.9 at every 100-th training
iteration. The training procedure is finally stopped at the 10, 000-th iteration. The
performances on both adversarial and real data are evaluated by UAR.
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Figure 4.16: The performance (UAR [%]) of the CNN models obtained by single
training on the adversarial (dev)elopment and test data generated from the DEMoS
database. The adversarial development/test data is equal to the real data when
εw = 0.00.

4.7.2 Results and Discussion

To verify the effectiveness of the adversarial data generated by FGSM, the three
CNN models are firstly trained on the real training data as the baseline (called
single training). The performances of the single training on the adversarial devel-
opment and test data are shown in Figure 4.16. Particularly, the performances are
evaluated on the real data when εw = 0.00. All of the six models perform well on
the real data with UAR values of around 80 %. The UAR values decrease when εw
increases, indicating that the generated adversarial data can successfully attack the
CNN models when the perturbations become bigger.

Furthermore, the performances of the vanilla and similarity-based adversarial
training frameworks are presented in Table 4.18. Due to the data augmentation
with fake data, the performances on the real data are mostly improved. Both of
the two training approaches perform well on the fake data, although their perfor-
mances are slightly worse than those on the real data. Especially, the performance
on the fake data becomes worse when the εw increases, perhaps because that a big-
ger value of εw can affect the data distribution. When comparing the two training
approaches, the vanilla adversarial training mostly outperforms the similarity-based
adversarial training on the real data, and the similarity-based adversarial training
performs better on the fake data than the vanilla one. This indicates that the
proposed similarity-based adversarial training can effectively defend against the at-
tacks. The loss function in the similarity-based adversarial training reduces the
difference between the features learnt from the real and fake data, but it affects the
representations learnt from the real data.
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Table 4.18: Performance (UAR [%]) comparison of the three CNN topologies in
the three training strategies: single training, (van)illa (adv)ersarial training, and
(sim)ilarity-based (adv)ersarial training. The CNN models are validated on both
the real data and the fake (i. e., adversarial) data in the (dev)elopment and test sets
of the DEMoS Corpus.

CNN-4 ResNet-50 VGG-16
UAR [%] Real Fake Real Fake Real Fake

NN εw Dev. Test Dev. Test Dev. Test Dev. Test Dev. Test Dev. Test

Single Training .00 82.6 83.6 – – 71.9 81.3 – – 79.8 83.6 – –

Van. Adv. Training .02 82.5 85.6 74.4 80.0 69.9 81.7 62.0 77.4 85.0 84.7 79.4 80.6
Van. Adv. Training .04 81.7 87.1 65.7 74.9 81.3 85.0 68.5 75.5 84.9 85.5 74.3 78.3
Van. Adv. Training .06 85.4 86.9 57.6 67.1 77.4 83.9 59.5 67.2 87.1 87.8 74.1 77.0
Van. Adv. Training .08 85.3 85.8 52.0 54.0 81.3 85.5 60.7 71.0 87.5 86.7 70.9 75.6
Van. Adv. Training .10 86.6 88.0 45.7 57.0 82.3 84.5 60.2 67.8 84.2 87.0 63.8 71.6

Sim. Adv. Training .02 84.4 79.7 82.7 78.4 74.3 79.8 73.2 77.1 84.7 82.3 83.9 82.1
Sim. Adv. Training .04 82.2 82.5 77.2 76.9 70.8 79.8 65.2 75.9 81.4 84.2 80.6 82.0
Sim. Adv. Training .06 77.5 82.4 67.5 73.1 72.3 78.8 63.0 72.8 78.6 83.9 75.3 81.5
Sim. Adv. Training .08 73.9 80.6 61.0 67.4 63.1 80.3 45.0 71.4 79.2 65.3 73.0 55.0
Sim. Adv. Training .10 72.7 75.2 52.6 58.5 40.7 73.4 31.6 49.8 80.4 83.3 71.6 76.9

The VGG-16 model performs the best among the three CNN models. How-
ever, ResNet-50 performs the worst on both real and fake data, perhaps because
ResNet-50 consists of more convolutional layers in the Inception architecture than
the other two CNN models. The performances of the CNN models are highly re-
lated to the number of layers, so that too many convolutional layers may slow down
the convergence. Moreover, VGG-16 is more stable and more robust than CNN-4.
We think there are two possible reasons: i) more convolutional layers can help to
extract higher-level representations, and ii) it may be easier for a VGG-16 model
to be optimised on the fake data, as more convolutional layers can increase the dif-
ference between the representations from the real and fake data. Finally, the best
performances of the adversarial training on the real data (development: 87.5 %, test:
86.7 %) significantly outperform the performances of single training (development:
82.6 %, test: 83.6 %) (p < 0.001 in a one-tailed z-test).

The best results on the real data (development: 87.5 %, test: 86.7 %) are com-
pared to the state-of-the-art methods for data augmentation in Table 4.19. We can
see that WaveNet achieves a good performance, especially on the development set.
However, this WaveNet-based method was used for a binary classification task, in-
stead of classifying seven emotional classes [216]. When comparing the methods for
seven-class classification, the proposed approach performs significantly better than
the data (raw audio waves and log mel spectrograms) augmentation methods using
random noise (p < 0.001 in a one-tailed z-test).
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Table 4.19: Performance (UAR [%]) comparison between the proposed approach
and other data augmentation methods on the DEMoS corpus.

UAR [%] Dev. Test

WaveNet (two classes) [216] 85.7 74.1
Raw audio augmentation by random noise 79.5 83.3
Spectrogram augmentation by random noise 80.8 83.3
The proposed approach 87.5 86.7

4.7.3 Summary

A training framework was proposed to train a robust SER model against adversarial
attacks. The vanilla and similarity-based adversarial training approaches were em-
ployed to work on the three CNNs, including CNN-4, ResNet-50, and VGG-16. In
the experiments, adversarial training performed better on the real data than single
training due to the data augmentation with the adversarial data. The similarity-
based adversarial training helped the CNN models perform better on the fake data
than the vanilla adversarial training.

In future work, since only the white-box adversarial attacks are generated in
this experiment, the black-box adversarial attacks will be investigated to approach
the practical situation that the parameters of the target model are unknown for
an attacker. Furthermore, transferring the fake data across multiple deep learning
models might be helpful to validate models’ robustness. Training a detector to
recognise the fake data is also promising to improve the performances of the models
on the fake data.

4.8 Improving Transferability of Black-box Ad-

versarial Attacks

To improve the transferability of black-box adversarial attacks for deceiving SER
models, the proposed lifelong learning approach in Section 3.3.3 is achieved in this
experiement. In the following, the experimental setup will be introduced in Sec-
tion 4.8.1, and the results will be presented and analysed in Section 4.8.2, followed
by a summary of this study in Section 4.8.3.

4.8.1 Experimental Setup

Similar to the experimental setup in Section 4.7.1, the 373×64 log mel spectrograms
are extracted from the speech signals with a sampling rate of 16 kHz. An atrous
CNN model (cf. Section 3.3.1.2) is trained to generate the adversarial data. This
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atrous CNN model consists of four convolutional layers with the number of output
channels 64, 128, 64, and 1, the dilation rates of 1, 2, 4, and 8, and a kernel size of
5 × 5. Each convolutional layer is followed by a batch normalisation and a ReLU
(for the first three convolutional layers) or a sigmoid (for the final convolutional
layer) activation function. To generate the minimal perturbations using the attack
model, a sigmoid function, which produces data values in [0, 1], is assumed to be
more helpful for the optimisation than a ReLU function which produces data values
in [0,+∞]. Furthermore, to validate the effectiveness of the generated adversarial
data, the three pre-trained CNN models in Section 4.7, including CNN-4, VGG-16,
and ResNet-50, are employed in this experiment. A final log-softmax layer is used
in all of the three CNN models.

During the training procedure, the attack model is optimised by an Adam opti-
miser with an initial learning rate of 0.0001. To stabilise the training procedure, the
learning rate is reduced by a factor of 0.9 at every 1, 000-th iteration. The training
procedure is finally stopped at the 10, 000-th iteration. In particular, the attacker is
trained for 1, 000 iterations to deceive a new defence in the lifelong learning frame-
work. The hyperparameter α (cf. Equation (3.17)) is experientially set to 0.02, and
λ (cf. Equation (3.21)) is optimised from {1e4, 1e5, 1e6, 1e7} on the development
set.

To explore the effect of the defence orders, an attacker is trained to deceive two
types of defence sequences: one is going deeper (CNN-4 → VGG-16 → ResNet-50)
(i. e., clockwise), and the other is going shallower (ResNet-50 → VGG-16 → CNN-
4)) (i. e., counterclockwise). In the experiment on each sequence, the attackers are
trained to fool either the first two defence models or the whole sequence, and then
utilised to attack all of the three models. Finally, the UAR is used to evaluate the
classification performance.

4.8.2 Results and Discussion

The performances of the generated fake data are evaluated on the development set,
as shown in Figure 4.17. A strong attack model can lead to a low UAR value. We can
see that, in each defence sequence, a bigger value of λ means more constraint to the
parameters of the attack model, therefore more prior knowledge from the previous
target model is remembered. For instance, in the clockwise sequence, the attack
model can better deceive the CNN-4 model if using λ = 1e7 rather than λ = 1e4.
While comparing the performances on the two kinds of sequences, the attacker in the
clockwise sequence performs better on the third model ResNet-50 than the attack
model in the counterclockwise sequence working on CNN-4. The reason might be
that a shallower target model is helpful to train a more transferable attack model
than a deeper one. Therefore, to improve the transferability of an attacker, it is
necessary to remember more prior knowledge learnt from a shallower defence than
that from a deeper one. In the experiment, the attacker trained on the clockwise
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Figure 4.17: The performances (UAR [%]) of lifelong learning with various λ values
on the development set. The attack models are trained on the four sequences of
target models (bottom), and the transferability is tested on the three target models
(CNN-4, VGG-16, and ResNet-50).

sequence requires a bigger value of λ (1e6 on the two-defence sequence, and 1e5 on
three), while the attack model on the counterclockwise needs a smaller λ ((1e4 on
the two-defence sequence, and 1e5 on three). Finally, the attack models trained on
both of the whole sequences can effectively deceive the three targets models.

In Table 4.20, the results of lifelong learning are compared to the other three
learning methods, including single-task learning, multi-task learning, and transfer
learning. Single-task learning performs the worst on new target models, since an
attacker learnt on one target model has a low transferability. Multi-task learning
trains the most transferable attacker, yet, it is time- and space-consuming. It is
challenging to train a highly transferable attack model using transfer learning, as
the attack model forgets the prior knowledge during the fine-tuning procedures,
particularly in the results of the clockwise sequences. In contrast, as lifelong learning
trains the attack model by remembering the prior knowledge, the attack model can
fool target models which have been attacked in the training procedure.

When comparing the results of transfer and lifelong learning on the two types
of sequences, lifelong learning outperforms transfer learning on the clockwise se-
quences, whereas transfer learning performs comparably with lifelong learning on
the counterclockwise sequences. This is consistent with the aforementioned analy-
sis, which pointed out that the attack models trained on the clockwise sequences
need more constraint than those on the counterclockwise sequences, since a shal-
lower target model can lead to a more transferable attacker. Transfer learning can
be considered as a special case of lifelong learning without constraint. Therefore,
the attack model is adapted to fool shallow defence models in the counterclockwise
sequences by remembering less prior knowledge in transfer learning than in typical
lifelong learning. In practice, it is difficult to know how deep a new defence model
is. In this regard, transfer learning is not able to train a transferable attack model
when the new target model is deeper than the existed defences. With the capability
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Table 4.20: The performance (UAR [%]) comparison of the four learning methods
on the (dev)elopment and test sets. The attackers are learnt on different defence
sequences. Then, the generated fake data are utilised to attack the three target
models (CNN-4, VGG-16, and ResNet-50).

CNN-4 VGG-16 ResNet-50

Method UAR [%] Dev. Test Dev. Test Dev. Test

Single-task learning
CNN-4 28.5 21.9 47.5 46.1 39.3 54.5
ResNet 68.8 56.0 49.7 42.1 20.0 20.7

Multi-task learning
CNN-4 + VGG-16 29.4 23.0 21.8 17.9 31.5 49.1
ResNet-50 + VGG-16 63.5 52.6 24.0 19.8 21.2 22.9
CNN-4 + VGG-16 + ResNet-50 33.1 28.0 22.9 18.5 21.0 23.9

Transfer learning

CNN-4 + VGG-16 45.2 48.6 19.3 16.1 30.8 54.7
CNN-4 + VGG-16 + ResNet-50 52.7 41.4 30.7 28.8 18.5 18.9
ResNet-50 + VGG-16 59.3 53.0 22.9 18.1 25.1 37.6
ResNet-50 + VGG-16 + CNN-4 24.9 22.0 30.2 29.0 24.0 34.2

Lifelong learning

CNN-4 + VGG-16 34.6 30.1 31.4 29.7 32.5 46.9
CNN-4 + VGG-16 + ResNet-50 39.2 38.5 25.0 26.4 24.5 33.4
ResNet-50 + VGG-16 64.7 54.1 27.4 21.7 29.5 36.3
ResNet-50 + VGG-16 + CNN-4 43.3 33.9 31.6 29.4 28.8 30.9

of remembering the prior knowledge, lifelong learning can help to train an attack
model which can deceive the new target models and the target models which have
been fooled during training.

4.8.3 Summary

In this study, an atrous CNN model was trained as the black-box adversarial at-
tacker, and was improved to be highly transferable by lifelong learning. In the
proposed lifelong learning framework, the attacker was trained to successfully de-
ceive the three CNN models, including CNN-4, VGG-16, and ResNet-50. Moreover,
after analysing the effect of different defence orders, a stricter constraint is required
to train an attack model on a sequence from shallow to deep models than an inverse
one.

Although the attack models’ transferability has been improved with EWC by
updating the parameters in the lifelong learning framework, it is still restricted by
the limited parameters. In future efforts, more lifelong learning approaches, such as
training dynamically expandable networks [217], will be explored to further improve
the transferability of the attack models. For verification, more defence models will be
used. As the attack model in this study generated a specific adversarial perturbation
for each real speech sample, it is worthwhile to focus on universal black-box adver-
sarial attacks, which generate a universal perturbation for all real data. Lifelong

94



4.8. Improving Transferability of Black-box Adversarial Attacks

learning will be further applied to enhance the transferability of universal black-box
adversarial attacks.
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5

Conclusions and Outlook

Audio signals are an essential part of interactions among humans and perceptions of
the world. Computer audition techniques teach machines to perceive audio signals,
and in its development, automatic audio signal classification, which attempts to
predict a label for an audio signal, plays a crucial role. Consequently, audio signal
classification has become increasingly popular in a number of applications in the
real world, such as ASC, HSC, SER, etc. Considerable efforts, especially in deep
learning, have been made with the aim of training accurate, robust, and reliable
neural networks for audio signal classification. However, the development of audio
signal classification techniques is still limited by many open challenges, including
extracting high-level deep representations, explaining DNNs, and training robust
DNNs against external attacks.

To tackle these challenges, this thesis investigates several novel deep-learning-
based algorithms to classify audio signals. In particular, this work presents and
evaluates a variety of approaches to achieve the three major objectives: i) learning
advanced and effective representations, ii) improving the interpretability of DNNs,
and iii) learning robust DNNs through adversarial training approaches.

In the following, this chapter summarises the presented approaches and results
in Section 5.1. Then, the ethics in computer audition is discussed in Section 5.2.
Finally, the limitations of the current work and suggestions of the future research
directions are given in Section 5.3.

5.1 Achievements

In this section, the achievements of this thesis are summarised as follows.
In the first research contribution of extracting high-level representations (cf. Sec-

tion 1.2), transfer learning from pre-trained image classification models was devel-
oped to process the time-frequency representations of audio signals. In particular,
with the introduction of the pre-trained CNN models in Section 3.1.1, the state-of-
the-art transfer learning frameworks were proposed in Section 3.1.2 to extract deep
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spectrum representations. Moreover, to improve the performance, a novel transfer
learning framework was proposed in Section 3.1.3 by dealing with multiple types of
time-frequency representations.

For deep learning models explanation as the second contribution, the attention
mechanism was applied to visualise DNNs by estimating the contributions of each bin
to the predictions. Firstly, an attention mechanism was introduced in Section 3.2.1,
and attentions at the frame level and the time-frequency level were proposed in
Section 3.2.2. The attention at the frame level explains the contribution of each
time frame in the time-frequency representations to the predictions, whereas the
goal of the attention at the time-frequency level is to estimate each time-frequency
bin’s contribution. Furthermore, to visualise the attention mechanism with a high
resolution, atrous CNNs were proposed to retain the size of the feature maps to be
the same as that of the input (cf. Section 3.2.3).

To extend the second contribution, i. e., explaining deep learning models in multi-
device conditions, this thesis introduced novel conditionally trained atrous CNNs
with attention (cf. Section 3.2.4). In the framework of conditional training, the
device information is fed into the atrous CNNs with attention for classification in
order to train a device-robust CNN model. In detail, two sub-approaches were de-
liberated in conditional training: one is teacher forcing conditional training, which
uses the known device information, and the other is multi-task conditional training,
in which the device information is predicted via a separate CNN model. The exper-
imental results demonstrated that the proposed conditional training can learn more
robust models on multi-device data, yielding appealing performance improvements
compared with single-device training and joint training.

Another contribution of this thesis is to train robust deep learning models against
adversarial attacks (cf. Section 3.3). The approaches of generating white-box and
black-box adversarial attacks were introduced in Section 3.3.1. Furthermore, to
improve the robustness of deep learning models, the adversarial training approaches
were employed to process both real and generated adversarial data in one training
procedure (cf. Section 3.3.2). In particular, the similarity-based adversarial training
was proposed to protect the CNNs against white-box adversarial attacks better than
vanilla adversarial training in the experiments.

As an extension of the above contribution, this thesis is further dedicated to
improving the transferability of adversarial attacks, especially black-box adversarial
attacks (cf. Section 3.3.3). For this purpose, a lifelong learning framework was pro-
posed to train an attack model in order to deceive multiple targeted defence models.
The experiments indicated that lifelong learning performs better than single-task
learning and transfer learning.

All in all, the research works presented in this thesis have demonstrated that
the proposed deep learning approaches bear the potential to contribute to the de-
velopment of audio signal classification applications, delivering good performances
as well as interpretable and robust models.
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5.2 Ethics in Computer Audition

During collecting and processing data for computer audition, a series of ethical
considerations are demanded. In this section, the existing ethical topics in computer
audition are listed and discussed.

Applications. In pure research experiments, there might be no harm because
of guaranteed privacy for subjects [218]. Applications should be crucially required
to ensure privacy for using (or monitoring) massive data. For example, in the
current COronaVIrus Disease 2019 (COVID-19) pandemic, applications for COVID-
19 diagnosis based on respiratory sounds (e. g., coughing and breathing) should
always protect the users’ privacy to aid in the prevention of COVID-19 transmission.
Further concerns will be related to legal and societal implications [219].

Anonymisation and personalisation. Because of various experimental tar-
gets, subject information is not needed in some research studies that focus on specific
phenomena, e. g., ASC [218]. However, subject information is required in some other
research domains, such as therapy and teaching. Applications of computer audition
can be either anonymous or personalised. For instance, personal information is nec-
essary when we are only interested in the general emotional reactions of people to a
movie. In contrast, personalisation is strictly enforced when a subject is monitored
to analyse his or her emotional changes.

Data collection and usage. The forms of data collection can be either exper-
imental or crowd-sourcing. When personal information is recorded, ethical consid-
erations are required during data storage, transmission, and usage [220]. To protect
the collected data, firewalls, encryption, and authentication are often used.

Multiple modalities. Apart from audio signals, other modalities (e. g., facial
expressions, body gestures, etc) can benefit many computer audition tasks, such as
emotion recognition. As personalisation is easier based on multi-modal data, ethical
considerations are essential to ensure the anonymisation is stricter when multiple
modalities are analysed [218].

The above descriptions discussed general ethical considerations in computer au-
dition. For more details in specific research domains, such as computational par-
alinguistics, the readers are suggested to refer to the related studies [218, 220, 221].

5.3 Limitations and Future Perspectives

Despite that a set of deep learning techniques have been presented in this thesis
to address some challenges of audio signal classification, several potential research
directions are still worthwhile to be investigated in the future.

Small-scale datasets processing. Although a large-scale dataset is helpful to
train deep learning models, a recent trend in machine learning is to train models
based on small-scale data, since there are still a number of small databases in real
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life. A potential solution is to augment the training data through synthesising
new data using GANs [216, 222]. Additionally, to train a DNN model on small
quantities of data only, it is promising to apply the recently developed machine
learning algorithms, including few-shot learning [223], one-shot learning [224], and
zero-shot learning [225].

Explainable AI. Investigating approaches for explainable AI can boost the
applications of audio signal classification in practice, yielding transparency and re-
liable deep learning systems. Apart from the attention mechanism presented in this
thesis, it will be interesting and useful to explore other approaches in explainable
AI. Several approaches of correlating the regions in the input to each prediction are
potential to be considered in audio signal classification, e. g., LIME [105], layer-wise
relevance propagation [226], etc. Furthermore, constructing a decision tree [29] is
helpful to clarify the specific reason for each prediction, and building a graph [106]
can better reveal the knowledge hierarchy hidden inside a pre-trained classifier.

Adversarial audio data generation. This thesis presented generating ad-
versarial attacks from the log mel spectrograms only, and most studies focused on
adversarial attacks of images. Therefore, it is worthwhile to generate adversarial
audio signals in the future [146]. Two investigation directions in adversarial attacks
for audio signals are essential: one is to explore algorithms for generating adversarial
data, such as one-pixel attack [227] which generates effective adversarial data with
very small changes of the original data, and the other is to improve the robustness
of the deceived models by several state-of-the-art machine learning algorithms, e. g.,
GANs.

In summary, all algorithms and approaches developed in this thesis reached the
goals described in the introduction, that is, to improve the effectiveness, explain-
ability, and robustness of audio signal classification models. Hopefully, the work
presented herein can inspire other researchers in this community, and expedite the
pace of developing deep learning systems in computer audition and the relative
applications in real life.
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comparison of acoustic and linguistics methodologies for Alzheimer’s dementia
recognition,” in Proc. INTERSPEECH, Shanghai, China, 2020, pp. 2182–
2186.

[54] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support
vector machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp.
415–425, Aug. 2002.

115



Bibliography
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[119] V. Vukotić, S.-L. Pintea, C. Raymond, G. Gravier, and J. Gemert, “One-step
time-dependent future video frame prediction with a convolutional encoder-
decoder neural network,” in Proc. ICIAP, Catania, Italy, 2017, pp. 140–151.

[120] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for
biomedical image segmentation,” in Proc. MICCAI, Munich, Germany, 2015,
pp. 234–241.

[121] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and
H. Greenspan, “GAN-based synthetic medical image augmentation for in-
creased CNN performance in liver lesion classification,” Neurocomputing, vol.
321, pp. 321–331, Dec. 2018.

[122] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous con-
volution for semantic image segmentation,” arXiv preprint arXiv:1706.05587,
2017, 14 pages.

[123] H. Phan, F. Andreotti, N. Cooray, Y. Chèn, and M. De Vos, “DNN filter bank
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