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Abstract

Computer audition is omnipresent in everyday life, in applications ranging from per-
sonalised virtual agents to health care. From a technical point of view, the goal is
to robustly classify the content of an audio signal in terms of a defined set of labels,
such as, e. g., the acoustic scene, a medical diagnosis, or, in the case of speech, ‘what’
is said or ‘how’ it is said. Typical approaches employ machine learning (ML), which
means that task-specific models are trained by means of examples. Despite recent
successes in neural network-based end-to-end learning, taking the raw audio signal
as input, models relying on hand-crafted acoustic features are still superior in some
domains, especially for tasks where data is scarce. One major issue is nevertheless
that a sequence of acoustic low-level descriptors (LLDs) cannot be fed directly into
many ML algorithms as they require a static and fixed-length input. Moreover, also
for dynamic classifiers, compressing the information of the LLDs over a temporal
block by summarising them can be beneficial. However, the type of instance-level
representation has a fundamental impact on the performance of the model. In this
thesis, the so-called bag-of-audio-words (BoAW) representation is investigated as an
alternative to the ‘standard’ approach of statistical functionals. BoAW is an unsu-
pervised method of representation learning, inspired from the bag-of-words method
in natural language processing, forming a histogram of the terms present in a doc-
ument. The toolkit openXBOW is introduced, enabling systematic learning and
optimisation of these feature representations, unified across arbitrary modalities of
numeric or symbolic descriptors. A number of experiments on BoAW are presented
and discussed, focussing on a large number of potential applications and correspond-
ing databases, ranging from emotion recognition in speech to medical diagnosis. The
evaluations include a comparison of different acoustic LLD sets and configurations of
the BoAW generation process. The key findings are that BoAW features are a mean-
ingful alternative to statistical functionals, offering certain benefits, while being able
to preserve the advantages of functionals, such as data-independence. Furthermore,
it is shown that both representations are complementary and their fusion improves
the performance of a machine listening system.
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Zusammenfassung

Maschinelles Hören ist im täglichen Leben allgegenwärtig, mit Anwendungen, die
von personalisierten virtuellen Agenten bis hin zum Gesundheitswesen reichen. Aus
technischer Sicht besteht das Ziel darin, den Inhalt eines Audiosignals hinsichtlich
einer Auswahl definierter Labels robust zu klassifizieren. Die Labels beschreiben
bspw. die akustische Umgebung der Aufnahme, eine medizinische Diagnose oder—
im Falle von Sprache—was gesagt wird oder wie es gesagt wird. Übliche Ansätze
hierzu verwenden maschinelles Lernen, d. h., es werden anwendungsspezifische Mod-
elle anhand von Beispieldaten trainiert. Trotz jüngster Erfolge beim Ende-zu-
Ende-Lernen mittels neuronaler Netze, in welchen das unverarbeitete Audiosig-
nal als Eingabe benutzt wird, sind Modelle, die auf definierten akustischen Merk-
malen basieren, in manchen Bereichen weiterhin überlegen. Dies gilt im Beson-
deren für Einsatzzwecke, für die nur wenige Daten vorhanden sind. Allerdings
besteht dabei das Problem, dass Zeitfolgen von akustischen Deskriptoren in viele
Algorithmen des maschinellen Lernens nicht direkt eingespeist werden können, da
diese eine statische Eingabe fester Länge benötigen. Außerdem kann es auch für
dynamische (zeitabhängige) Klassifikatoren vorteilhaft sein, die Deskriptoren über
ein gewisses Zeitintervall zusammenzufassen. Jedoch hat die Art der Merkmals-
darstellung einen grundlegenden Einfluss auf die Leistungsfähigkeit des Modells.
In der vorliegenden Dissertation wird der sogenannte Bag-of-Audio-Words-Ansatz
(BoAW) als Alternative zum Standardansatz der statistischen Funktionale unter-
sucht. BoAW ist eine Methode des unüberwachten Lernens von Merkmalsdarstellun-
gen, die von der Bag-of-Words-Methode in der Computerlinguistik inspiriert wurde,
bei der ein Textdokument als Histogramm der vorkommenden Wörter beschrieben
wird. Das Toolkit openXBOW wird vorgestellt, welches systematisches Train-
ing und Optimierung dieser Merkmalsdarstellungen—vereinheitlicht für beliebige
Modalitäten mit numerischen oder symbolischen Deskriptoren—erlaubt. Es werden
einige Experimente zum BoAW-Ansatz durchgeführt und diskutiert, die sich auf eine
große Zahl möglicher Anwendungen und entsprechende Datensätze beziehen, von
der Emotionserkennung in gesprochener Sprache bis zur medizinischen Diagnostik.
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Die Auswertungen beinhalten einen Vergleich verschiedener akustischer Deskrip-
toren und Konfigurationen der BoAW-Methode. Die wichtigsten Erkenntnisse sind,
dass BoAW-Merkmalsvektoren eine geeignete Alternative zu statistischen Funk-
tionalen darstellen, gewisse Vorzüge bieten und gleichzeitig wichtige Eigenschaften
der Funktionale, wie bspw. die Datenunabhängigkeit, erhalten können. Zudem wird
gezeigt, dass beide Darstellungen komplementär sind und eine Fusionierung die Leis-
tungsfähigkeit eines Systems des maschinellen Hörens verbessert.
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� Adrià Mallol-Ragolta, Maximilian Schmitt, Alice Baird, Nicholas Cummins, &
Björn Schuller: Performance Analysis of Unimodal Models in Valence-Based Em-
pathy Recognition, Proc. International Conference on Face & Gesture Recognition
(FG) / OMG Challenge, Lille, France, 5 pages, IEEE, 2019.

� Christoph Janott, Christian Rohrmeier, Maximilian Schmitt, Werner Hemmert,
& Björn Schuller: Snoring – An Acoustic Definition, Proc. Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Berlin, Germany, pp. 3653–3657, EMBS, IEEE, 2019.

� Julian Schiele, Fabian Rabe, Maximilian Schmitt, Manuel Glaser, Franziska
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Introduction

The field of computer audition (CA) or machine listening has received a lot of at-
tention during the last two decades, resulting in a huge impact on both research
and user communities. Automatic speech recognition (ASR), i. e., speech-to-text
transcription, is nowadays a meaningful feature of every computer system or smart-
phone, while more sophisticated applications such as emotion recognition in speech
are paving the way for a fully-naturalistic human-machine interaction [1, 2]. As
another example, modules for acoustic scene classification (ASC) [3] can control the
sound profile of a smartphone, muting the ringtone when recognising that the cur-
rent location is a library or a church and increasing the sound level when walking
next to a street. One major scope of CA is also the field of health care and medical
diagnosis, where research has been conducted on tasks such as depression recog-
nition [4], detection of respiratory tract infection [5], and classification of snoring
types [6]. Finally, music information retrieval (MIR) is a further domain that is, to
a large extent, based on the analysis of audio signals with applications such as audio
fingerprinting [7], genre classification [8], and automatic music transcription [9].

Before the motivation and contributions of this work are defined, a general
overview of CA and the corresponding processing chain are presented. The in-
troduction closes with the outline of this thesis.

1.1 Computer Audition

From a technical point of view, most approaches in CA rely on a combination of
signal processing and machine learning (ML) techniques [1]. Recent advancements
in hard- and software for both domains and a multitude of novel methods in espe-
cially the ML field have boosted the performance of many applications and made
them trainable and deployable on any kind of computer or smart device.

The two basic categories in ML are unsupervised and supervised learning. While
in unsupervised learning, latent structures are discovered, e. g., using a clustering
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1. Introduction

method, in supervised ML, a model is trained on paired inputs and outputs, in order
to predict an output from only the input. In the case of CA, the input is usually
the audio signal and the output is an attribute corresponding to the given task.

In order to employ a method of supervised ML, a meaningful number of audio
examples are required to train the model. The corresponding audio dataset, also
referred to as corpus, is required to have a label (target) for each audio clip,
according to the given audio recognition task. The label can be either a discrete
category or class, or a continuous number (numeric label), describing a certain qual-
ity of the audio, such as the emotional state or the age of a subject speaking, the
acoustic scene, or the genre of a given piece of music. In the case of categorical
labels, a classifier is trained performing classification; in the case of numeric la-
bels, a regressor is trained performing regression. As shown later, ML approaches
for classification and regression are usually very similar. Given that the knowledge
which is exploited to create a model originates from the given data samples and
not from theoretical considerations, methods of ML are considered as data-driven
methods.

Each audio clip to be classified is referred to as data sample or instance. The
entirety of the provided labels is called ground truth, however, if the given task at
hand relates to a subjective quality, such as, e. g., emotion, the term gold standard
is preferred [1]. In this case, labels are normally obtained from a multitude of raters
and then fused with an appropriate method taking into account the certainty of
each rater, such as the evaluator weighted estimator (EWE) [1]. For some tasks, a
label needs to be predicted not only for each audio clip, but at discrete positions in
time throughout the audio. In this case, a given task is referred to as a sequence-
labelling task, as opposed to the classification or regression on chunk-level.

1.2 Audio Processing Chain

A processing chain typically used in CA, based on a dedicated audio corpus consist-
ing of a collection of audio signals and corresponding labels, is shown in Figure 1.1.
The audio is generally represented by digital signals, as a sampled and quantised
version of the sound pressure fluctuations picked up by a microphone [10]. The
sample rate must be at least twice the maximum frequency present in the signal
(Nyquist rate) [10], otherwise aliasing effects would occur in the sampled signal. A
typical sample rate for speech signals is 16 kHz [11, 12, 13], while at least 44.1 kHz
are used for music signals [10].

The signals are usually pre-processed as a first step (see Chapter 2). Next,
acoustic features are extracted from the pre-processed signals. These are numeric
descriptors capturing relevant properties of the audio. The feature extraction step
is usually executed in two stages: firstly, frame-level features are computed for
each time frame of an audio signal, i. e., on short intervals wherein its statistics do
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Figure 1.1: A typical processing chain in computer audition.

not change significantly. Secondly, the frame-level features are summarised for each
instance, forming a single vector of fixed length, independent from the duration of
the audio instances. The final instance-level features and the ground truth labels
from the corpus are then propagated to a supervised ML algorithm, which trains
a model analysing the relationships between the extracted features and the labels,
generalising from the given data. The field of ML has attracted a huge and recently
increasing research interest for the last 60 years, resulting in a myriad of approaches,
algorithms, and implementations. Finally, given a novel audio sample where the
label is unknown, it is possible to predict a label, applying the feature extraction
steps and the ML model. As the predictions always include a certain error, a proper
evaluation of the trained model is essential.

During the last few years, a number of benchmark corpora have been made
public in order to make research in CA comparable. Very often, they have been
published for the first time in the context of challenges (scientific competitions).
Examples are the data science platform Kaggle [14], the series of Computational
Paralinguistics ChallengEs (ComParE), organised annually as special sessions at the
Interspeech conference since 2009 [13, 15], and the series of Audio-Visual Emotion
Challenges (AVEC), organised annually since 2011 [16, 17]. While the different
editions of AVEC featured multimodal tasks related to the recognition of affect
and emotion or mental health conditions related to these such as depression [18]
and bipolar disorder [19], ComParE featured a large variety of tasks, such as, e. g.,
social signals [20], nativeness [21], eating condition [21], deception [22], sincerity [22],
addressee [11], crying [12], dialect [13], sleepiness [13], baby sounds [13], or orca
activity [13], to mention just a few.

1.3 Motivation and Research Questions

Despite of all the mentioned and adumbrated achievements, some problems in CA
remain challenging. As shown in Figure 1.1, acoustic frame-level features, also called
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low-level descriptors (LLDs), need to be summarised over each instance resulting in
a feature vector of fixed size. Typically, statistical functionals [23] are applied to the
LLDs, i. e., certain measures from descriptive statistics, such as means, higher-order
moments, percentiles, or regression lines are computed. However, this approach im-
plies a ‘global pooling’ operation, smoothing out local temporal information [24]. In
contrast, in this thesis, the bag-of-audio-words (BoAW) approach is investigated
as an alternative to statistical functionals, representing the LLDs of an audio in-
stance as a histogram [25, 26]. For this, a prior vector quantisation operation
is required, assigning each low-level feature vector to an ‘audio word’ from a pre-
defined codebook. BoAW is originally inspired from the standard ‘bag-of-words’
vector space model used in the text processing domain [27].

It is generally known that, even for the same type of underlying descriptors, the
feature representation, i. e., how the information is passed to the ML algorithm,
matters [28]. The main goal of this thesis is to advance the state-of-the-art in
unsupervised representation learning, by promoting BoAW as an alternative
and additional component of CA systems. The approach is evaluated on a large
variety of audio classification tasks and its pros and cons are carved out.

As pointed out in Chapter 3, many aspects in the BoAW processing chain have
not yet been conclusively clarified. Thus, this thesis is developed along the following
three research questions:

� Research question 1 (RQ 1):
Typically, the codebooks are generated by clustering the LLDs. Nevertheless,
even a simpler sampling has proven to be effective as well. Moreover, data-
independent codebooks would be beneficial as they enable the BoAW features
to be extracted on-the-fly, i. e., without a training or domain-adaptation phase.
Given this, one important goal of this thesis is to clarify: Which is the best
codebook generation technique and are data-independent codebooks
possible or not?

� Research question 2 (RQ 2):
Although BoAW features have already been employed for various audio recog-
nition tasks, their configuration has usually been optimised for a specific task.
Thus, the following is investigated: Is it possible to use the same BoAW-
configuration (in terms of selection of LLDs, codebook size, etc.)
across various tasks in CA?

� Research question 3 (RQ 3):
So far, there has been no systematic comparison or evidence if BoAW features
outperform ‘classical’ statistical functionals and which are the potential ben-
efits of each representation. Especially taking into consideration a large-scale
functionals-based acoustic feature set, the following is tried to be answered:
Which representation (functionals or BoAW ) is superior and are
they complementary or redundant?
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These research questions are revisited in the conclusion in Chapter 9.

1.4 Contributions

The main contributions of the research compiled in this thesis are listed in the
following:

� The open-source crossmodal bag-of-words toolkit openXBOW [29] is intro-
duced, providing a systematic generation of bag-of-words representations for
both numeric (e. g., acoustic or visual) and symbolic (e. g., text) low-level fea-
tures. This pioneering work has been cited more than 100 times so far.

� A large number of experiments and case studies is presented and discussed,
focussing on different aspects and variations of the BoAW processing chain,
all of them integrated in openXBOW.

� Based on these experiments, it is proven that BoAW is effective for a wide
range of applications in the CA field, from emotion recognition to health care.

� It is shown that ML models trained on BoAW features outperform models
trained on classical statistical functionals, without tuning the configuration
of openXBOW on a particular dataset or task. In addition to that, some
evidence is found that domain adaptation works better with BoAW than with
functionals.

� It is further shown that BoAW and functionals are complementary and a fusion
usually leads to better results compared to using only a single representation.

� It is shown that BoAW representations can be used as an input for both shallow
and deep ML approaches.

� Depending on the task and data, evidence is found that recent deep end-
to-end learning methods are outperformed by BoAW in combination with a
support vector machine classifier, making the methodology relevant especially
for domains of scarce data.

� The BoAW method and the toolkit openXBOW have been established as
a baseline method for scientific challenges in the field of CA and affective
computing, deployed at eight different events so far (4 × ComParE, 3 × AVEC,
& the ICMI EAT challenge). In most of these events, the model based on
BoAW features gave the best performance across all feature representations
and methods. For two sub-challenges of ComParE, the BoAW approach was
involved in a fusion model that has not been beaten by any of the participants.

� Several codebook generation techniques are evaluated and compared to each
other and it is shown that a pure random sampling of LLDs from the training

7
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set provides optimal results, while also a data-independent codebook genera-
tion is feasible.

� The relevance of various types of acoustic LLDs is studied. Moreover, experi-
ments show that splitting LLD vectors into subsets prior to vector quantisation
is beneficial for the performance.

� It is proven that multi-assignment, i. e., assigning an LLD vector to more than
one audio word, improves the results and is required when dealing with large-
dimensional codebooks. Furthermore, it is found that a hard quantisation is
superior to a soft one in many scenarios, challenging prior works.

1.5 Outline

This thesis is structured in four parts. After the first part, i. e., the Introduc-
tion, the Theoretical Background is described, divided into three chapters.
In Chapter 2, acoustic frame-level and instance-level features, which are relevant for
CA tasks, are introduced, accompanied by some fundamentals of signal processing,
such as the short-time Fourier transform. At the end of this chapter, two stan-
dardised acoustic feature sets are introduced, which are used in several experiments
throughout the thesis. Then, the history and background of the BoAW approach is
introduced in Chapter 3, including also an overview of related methods. Chapter 4
is dedicated to the fundamentals of ML, with a focus on support vector machine and
neural network -based models, as these are the ones most relevant in the remainder
of this work. This chapter also involves a section on the evaluation of supervised
ML models.

The third part on the Experiments is subdivided into three chapters as well
and starts with a description of the BoAW-toolkit openXBOW in Chapter 5, which
has been implemented in the context of this thesis and on which all presented ex-
periments related to BoAW are based. This chapter also includes an overview of all
modifications and advancements of the approach that are proposed by the author.
Then, in Chapter 6, all experiments on BoAW that have been pre-published in case
studies are presented, highlighting certain tasks and aspects of the methodology. In
Chapter 7, the experiments are complemented by some systematic evaluations, in
order to find a response to the research questions that have not been solved in the
case studies or further literature.

Finally, in the fourth part, which is subdivided into two chapters, a Discus-
sion of the results takes place. Both the achievements and the limitations of the
proposed approaches are demonstrated in Chapter 8, completed by an outline of
ethical considerations. The last Chapter 9 remains for a summary of the thesis and
an outlook on possible future works, pointing out open research questions.
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THEORETICAL BACKGROUND
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2

Acoustic Features

Acoustic features are compact descriptors of the content of an audio signal. They
need to capture all relevant information and must be discriminative between target
classes. Which information in the audio is relevant highly depends on the given
recognition task. Nevertheless, certain feature types and feature sets, introduced
below, have proven to be suitable for a wide range of tasks [20, 30, 31].

As defined in the introduction, it is assumed that the audio is provided as a
digital signal of an adequate sampling rate (at least 16 kHz) to capture the relevant
frequency range of the signal and a sufficient bit depth (usually 16 bit) to obtain
a sufficient signal-to-noise ratio (SNR) [32, Chapter 8]. The real-valued1 discrete
signal is then defined as the time series

s(n), s ∈ [−1.0, 1.0], n = 0, . . . , N − 1, (2.1)

with the discrete time index n and the length of the signal (duration) N , as the
number of samples. The time index corresponds to the time t = n · Ts in the
continuous signal, given that it starts at t = 0, where Ts is the sampling period, i. e.,
the temporal distance between adjacent samples or the reciprocal of the sample rate
(sampling frequency) Fs.

For pre-processing, in the simplest case, only a waveform normalisation is per-
formed, fixing the maximum amplitude of each signal to the same value [13]. As a
usual convention, the largest possible amplitudes w. r. t the data format correspond
to −1.0 and +1.0, the mean value of the signal is assumed to be approximately 0,
as the direct component does not carry any acoustic information [30, 33]. This step
ensures that the level of the audio recording, which is usually arbitrary as there is
no general conversion factor between a sound pressure and its digital representation,
does not vary across the instances of the corpus, which would have an impact on
energy-related audio descriptors.

1In fact, a computer system always works with quantised data. However, as it is assumed that
the bit depth is sufficient, this fact will be neglected in the following, corresponding to the general
convention.
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2. Acoustic Features

More sophisticated pre-processing techniques include a normalisation w. r. t. the
root mean square (RMS) or the loudness of the signals, pre-emphasis of the upper
frequency range [30, 2.1.4] (see also Subsection 2.1.5.1) or speech enhancement [34,
35]. Furthermore, downmixing to reduce the number of channels, e. g., a stereo-to-
mono conversion, and downsampling are often useful steps to unify the data format
and reduce redundant or irrelevant information in order to speed up the training
process [36]. In the remainder of this chapter, as defined above (Definition 2.1), it is
assumed that mono (single-channel) signals are provided. If more than one channel
is given, the data can be downmixed to mono by averaging (stereo) or using only
the centre channel (e. g., 5.1 surround sound).

Following the processing chain from Figure 1.1, this chapter specifies the feature
extraction process, separated into frame-level features in Section 2.1 and instance-
level features in Section 2.2. Two standardised feature sets exploited in this work,
the ComParE feature set and eGeMAPS, are described in Section 2.3.

2.1 Frame-level Features

As mentioned, in the first step of the feature extraction, the audio is processed
frame-wise, i. e., by subdividing them into small excerpts (frames or blocks), where
the signal can be considered quasi-stationary within. This is based on the fact that,
the statistics (or parameters) of the signal change considerably slower than the rate
of the time-domain samples, given by the sampling frequency [37]. These frame-level
features are typically referred to as low-level descriptors (LLDs).

Frames are defined by their length (frame length) and the distance between the
onsets of adjacent frames, the hop size (or frame step) [30, 38]. The framed signal
is defined as

sf (h,m) = s

(
h ·Hs +m− M

2

)
, h = 0, . . . ,

⌈
N − 1

Hs

⌉
, m = 0, . . . ,M − 1,

(2.2)
with the hop size Hs and the frame length M . As can be seen from the boundaries in
equation 2.2, the frames capture information from outside the domain of s(n), which
needs to be padded with (usually) zeros. Each frame h contains then an excerpt from
the signal centred around the point h ·Hs in the discrete time domain. Extracting
frames with indexes until the

⌈
N−1
Hs

⌉
ensures that the last sample of the signal with

index N − 1 does not come after the centre of the last frame. The overall number of
frames in a signal with a length of N samples is then Nh =

⌈
N−1
Hs

⌉
+ 1. Figure 2.1

visualises the process of generating frames from a short audio signal. The described
padding strategy is appropriate at least for signal analysis while other procedures
are required for processing tasks, where the time-domain signal is restored from
overlapping frames [30].
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n=0 n=N-1

m=0 m=M-1

h=0
h=1

h=2
h=3

s
f
(h=3,m)

Hs

Figure 2.1: Illustration of short-time audio analysis for an audio signal of length N .
The boundaries of the first four frames of length M are plotted. The hop size Hs is
exactly half of the frame length in this example, resulting in an overlap of 50 %.

Before computing the short-time features, the time-domain samples within each
frame are usually weighted with a windowing function, i. e.:

sw(h,m) = sf (h,m) · w(m), m = 0, . . . ,M − 1, (2.3)

with the windowing function w(m) of length M , i. e., the frame length. This is
done mainly for two reasons: firstly, as the windows have their largest amplitude
at their centre, signal samples with larger distance to the centre of the frame are
attenuated, which results in a larger consideration of the samples close to the actual
frame time

tf (h) = h ·Hs · Ts. (2.4)

Secondly, when it comes to time-frequency analysis (see Subsection 2.1.2.3), smear-
ing and leakage effects [39], which deteriorate the precision of the analysis, can be
reduced by the choice of an appropriate windowing function.

While for the extraction of LLDs in the time-domain (see Subsection 2.1.1), a
rectangular window, which—following the notation used here—implies sw(h,m) =
sf (h,m), is sufficient, this most basic type of windowing function is not suitable for
spectral descriptors (see Subsection 2.1.2), due to the mentioned effects [1, 30].
The most common non-rectangular window types [1] are the Hamming window
whamming(m), the Hann window whann(m), and the Gaussian window wGaussian(m),
which are, based on the given definition that each window goes from m = 0 to
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2. Acoustic Features

m = M − 1, defined as follows [30]:

whamming(m) = 0.54− 0.46 cos

(
2πm

M − 1

)
, (2.5)

whann(m) = 0.5

(
1− cos

(
2πm

M − 1

))
, (2.6)

wGaussian(m) = e−0.5(m−0.5(M−1)
0.5σ(M−1) )

2

, (2.7)

with the standard deviation σ for wGaussian. Their properties depend—without going
into details—mainly on their shape in both time and frequency domain (see Subsec-
tion 2.1.2). The Hamming window is probably the most common one for spectral
short-time analysis. The Hann window is rather preferred for filtering or processing
in the spectral domain with a subsequent back-transform. The Gaussian window
in spectral analysis has the property that it has the same smooth shape in both
domains. More details are found in the corresponding literature [30, 39].

The frame/window lengths must be long enough to compute meaningful fea-
tures (see Subsection 2.1.2.3) and at the same time short enough so that the quasi-
stationarity assumption is not violated [32, 8.2]. Typical frame lengths range from
20 ms to 60 ms, depending on the feature type [30]. The hop size is usually shorter
than the frame length, to ensure that the whole signal is represented within the
series of LLDs. Therefore, the overlap (1 − Hs

M
) is often given as an alternative

to the hop size. Typically, the overlap is chosen between 50 % and 75 % [30, 32].
The resulting frequency of the frames ( 1

Hs
) can then be considered as the parameter

sampling frequency [32, 8.2] or LLD sampling frequency. Given a typical hop size
of 10 ms, a common LLD frequency in speech or audio processing is 100 Hz or 100
frames per second.

In the following, a selection of frame-level feature types, i. e., LLDs, is introduced.
The choice depends mainly on their general relevance for audio recognition tasks,
with a special focus on speech, and on the relevance for the approaches proposed
later in this thesis.

2.1.1 Time-domain descriptors

At first, three simple and conventional LLDs which are extracted from the time-
domain of the signal are introduced.

2.1.1.1 Energy, intensity

A very basic, but important descriptor is the short-time energy E(h) for each
frame h, which is computed as

E(h) =
M−1∑
m=0

s2
w(h,m), (2.8)
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2.1. Frame-level Features

i. e., it is the sum of the squared samples (after windowing). A common window
type for the measurement of energy is the Hamming window [1, 6.2.1.1]. Though
the energy could also be extracted from a Fourier representation of the signal (see
Subsection 2.1.2.3, it is usually extracted from the time-domain waveform. Option-
ally, the normalised energy can be used instead in order to soften the influence of
the frame length [30, 2.2.2]:

Enorm(h) =
1

M
· E(h). (2.9)

Very often, the square root is taken from Enorm(h) to obtain the RMS of the frame,
a measure that is proportional to the signal amplitudes, and not to the energy:

Erms(h) =
√
Enorm(h). (2.10)

Another common step is taking the logarithm of the energy, in order to compress
the range of values [30, 2.2.2]. As energy and intensity are proportional and the
signal does not have a fixed physical reference, the energy is usually also referred to
as the intensity [30].

The short-time energy or intensity can already be used as a simplistic voice
activity detection (VAD), in order to chunk speech or audio files at points of silence.
Furthermore, it is a fundamental LLD in phonetics and also linguistics, when it
comes to analysing speech prosody (see Subsection 2.1.4).

2.1.1.2 Zero-crossing rate

Another common time-domain LLD is the zero-crossing rate (ZCR) [40]. The ZCR
is defined as the signal’s number of changes of sign in a certain time interval, e. g.,
per second [1, 30]:

ZCR(h) =
FS

M − 1
·
M−1∑
m=1

s0(h,m),

with s0(h,m) =

{
0 if sgn (sf (h,m)) = sgn (sf (h,m− 1)) ,

1 if sgn (sf (h,m)) 6= sgn (sf (h,m− 1)) ,

(2.11)

with the sign function sgn(x). As the window function does not have any effect on
the result here, the ZCR can be computed from either sf (h,m) or sw(h,m).

The ZCR is a scalar indicator for high-frequency content of a signal. Noise,
especially white noise, and other ‘sharp’ sounds typically have much energy in the
upper frequency range, compared to harmonic signals, i. e., signals with a prominent
fundamental frequency [30, 2.2.1]. This is quite intuitive as the number of zero-
crossings per second for a pure sine wave is twice its frequency. Thus, the ZCR
is suited for the detection of voiced (vowels and voiced consonants, such as ‘b’)
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2. Acoustic Features

and unvoiced (unvoiced consonants, such as ‘p’) parts of speech [41], as well as the
distinction between harmonic and percussive musical instruments [42]. This comes
with the downside that this LLD is quite prone to noise [30, 2.2.1], which leads to
the conclusion that it can just be considered a ‘baseline’ approach for the mentioned
tasks.

2.1.1.3 Autocorrelation function

For the sake of completeness, and, as it is used as a processing step in some of the
more complex descriptors, the autocorrelation function (ACF) is introduced here
as another descriptor computed from a time-series of data. It can be employed as
an LLD itself, but in the context of this thesis, it is only used as an intermediate
step. The ACF generally describes the self-similarity of signals as a function of the
delay [30]. The short-time ACF can be defined as (in modification of [32], stationary
way)

ACF(h, d) =
M−1−d∑
i=0

sw(h,m) · sw(h,m+ d), 0 ≤ d ≤M − 1, (2.12)

with the discrete delay d. In theory, the ACF is a symmetric function defined also
for d < 0. However, as this information would be redundant, it can be omitted as
in Equation 2.12. While the coefficient for a delay of 0, ACF(h, d = 0), is identical
with the short-time energy from Equation 2.8 for each frame step h, the ACF for
larger delays provides insights into the harmonicity of signals. The largest peak is
always the one at d = 0 and all other peaks point out periodicities with a frequency
close to Fs

d
. Also a version of the ACF, normalised w. r. t. the frame length, i. e.,

1
M
· ACF(h, d), or w. r. t. the energy, i. e., 1

ACF(h,0)
· ACF(h, d), are common [1].

2.1.2 Spectral descriptors

Many acoustic features rely on the short-time Fourier transform (STFT). The
Fourier transform (FT) in general is a mathematical tool to convert a function
into a representation composed of sinusoidal functions [38]. For an audio signal, this
means that it is transformed from a function of time into a function of frequency
(f), the spectrum.

2.1.2.1 Fourier transform

The transform of a time-domain function (or signal) st(t), t ∈ R, i. e., the result of
the FT, is generally a complex-valued function, SFT(f) ∈ C, and defined as [43]

SFT(f) =

∫ ∞
−∞

st(t) · e−j2πftdt, f ∈ R. (2.13)
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The complex-valued amplitudes can be represented by a magnitude MFT(f) =
|SFT(f)| and a phase ϕFT(f) = arg(SFT(f)), with the argument function arg(x) ∈
(−π, π], solving the equation SFT(f) = MFT(f) · ejϕFT(f), with the imaginary unit
j, where j2 = −1. The amplitudes of SFT(f) can be interpreted as sine waves
with amplitude MFT(f) and a phase (shift) of ϕFT(f). Thus, the FT represents
the function st(t) by a superposition of scaled and shifted sine waves. The inverse
FT converts SFT(f) back to the original function, i. e., no information is lost during
the (back-)transformation. The domain of the transform is generally unrestricted,
however, if the function st(t) is real-valued—and this is true for audio signals—the
transform on the negative frequency axis (f < 0) is the complex-conjugate of the
positive axis, i. e., SFT(−f) = S∗FT(f) [43].

2.1.2.2 Discrete Fourier transform

The FT can also be computed on time-discrete functions or signals. A signal s(n)
that is defined on a discrete domain is periodic in the frequency domain, with
a period of Fs, the sampling frequency. However, in contrast to the signal, the
transform is still on a continuous domain [43], which is not suitable when dealing
with non-deterministic signals, such as audio signals. In order to achieve a discrete
frequency domain, the signal must be periodic. This requirement is similar to the
concept of the Fourier series [43], but with the properties of discrete and periodic
in both domains.

The periodicity in the time domain can easily be achieved: as each recorded signal
is finite, the continuation outside of its boundaries can be considered as periodic.
This transform is called discrete Fourier transform (DFT) and defined as

SDFT(k) =
N−1∑
n=0

s(n) · e−j
2πkn
N , k = 0, . . . ,

⌊
N

2

⌋
, (2.14)

with the discrete frequency index k. In theory, the upper limit of the frequency
index is equal to N − 1, but as mentioned before, one half of the spectrum is
redundant in case of real-valued signals [38]. Given this and the fact that SDFT(k) is
complex-valued, i. e., two numbers2 need to be stored for each coefficient, the digital
representation in the frequency domain will require the same amount of memory as
the waveform representation in the time domain. Nevertheless, due to the limited
resolution of digital numbers on computers, given by the bit depth, rounding errors
will occur in both the forward and the inverse transform, so that a perfect recovery
of the original signal is not possible after performing the operations.

2Real & imaginary part or magnitude & phase
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The maximum frequency, represented by the coefficient with the highest index
in equation 2.14, is the half of the sample rate3. The frequency corresponding to
each k in general is fk = k · Fs

N
[38].

With the fast Fourier transform (FFT), a very efficient algorithm exists to
compute the DFT in real-time [44]. It reduces the complexity from O(N2) to
O(N logN), but requires that the number of samples is a power of two, which
can be accomplished by padding. This makes it the probably most important tool
in digital signal processing, including, i. a., analysis and filtering operations.

While the Fourier transform (either continuous or discrete) is a powerful tool
to analyse the frequencies of sinusoidal waves a signal is composed of, the major
drawback is that the information is averaged over the whole signal and temporal in-
formation is not stored in the spectrum in a human-readable way [38]. This kind of
analysis makes indeed sense for some applications, e. g., if a stationary background
noise is investigated or the timbre (acoustic colour) of a musical instrument is stud-
ied. However, in most scenarios, where an excerpt of speech, a musical piece, or a
non-stationary sound needs to be analysed, the raw FT or DFT are not suitable.

2.1.2.3 Short-time Fourier transform

In order to obtain both temporal and spectral information in a representation that
can be both read by humans and processed by machines, the short-time Fourier
transform (STFT) is a state-of-the-art tool. It was introduced by Gabor in the
1940s [45] and the underlying concept of short-time analysis is the one already
introduced above at the beginning of this section. The signal is multiplied by a
windowing function with limited support4 prior to the transform, in order to analyse
the spectrum of solely the corresponding time interval. The window is then shifted
and the FT is performed, until the spectrum for all intervals has been computed.
The STFT is a so-called linear 5 time-frequency transform, as the information
of the signal is broken down into both temporal and spectral domains.

The discrete STFT [38] is computed as

SSTFT(h, k) =
M−1∑
m=0

sw(h,m) · e−j
2πkm
M , k = 0, . . . ,

⌊
M

2

⌋
, (2.15)

for each hop h within the boundaries of the discrete signal—potentially padded
with zeros to complete the frames (cf. the beginning of this Section 2.1). Of course,
also for the discrete STFT, the FFT algorithm can be used. For this, it is suitable
to choose a frame and window size of a power of two, e. g., 512, 1 024, or 2 048;
otherwise, the frames need to be padded with zeros. As in equation 2.15, the ‘D’

3If the number of samples N is odd, this applies only approximately.
4The window is non-zero only for a short time interval, e. g., 20 ms.
5Scaling of the input results in an output scaled with the same scaling factor.
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for ‘discrete’ is often omitted in digital signal processing, as the continuous FT or
STFT are usually not used in practice.

The choice of the frame length M implies a trade-off between the resolution in
time and in frequency. The smaller the frame, the more precise is the resolution
w. r. t. time and the less precise is the resolution w. r. t. frequency and vice versa.
‘Resolution’ in this context means how exactly an instant of time, when a sinusoid
of a certain frequency is present, can be recognised, or, how well the frequency of a
present tone can be recognised. This means that, e. g., in order to precisely estimate
the fundamental frequency of a string, a sufficiently long analysis window is required.
This trade-off is called Gabor limit, or even Heisenberg-Gabor limit, relating to
the well-known Heisenberg’s uncertainty principle in quantum physics [1, 45]. The
Gabor limit states for the uncertainty in time, ∆t and the uncertainty in frequency
∆f , that

∆t ·∆f ≥ 1

4π
. (2.16)

In practice, one can apply zero-padding to a frame in order to receive a higher
frequency resolution, however, this will only increase the density of the frequency
bins (i. e., the bandwidth of frequency each bin k covers), while not more information
is obtained about the signal. Similarly, increasing the overlap, i. e., decreasing the
hop size, only returns redundant data and not more information. Nevertheless, an
optimisation of frame length and overlap can put the data into a representation that
is better suited for further processing or analysis.

Furthermore, the choice of the windowing function is of major importance [38].
It must be noted that the windowing process (multiplication in the time domain)
introduces artefacts in the frequency domain, depending on the shape of the window.
As discussed before, different common functions exist to weight the signal within
a frame, where each function has certain advantages and disadvantages, e. g., if
the user wants to exactly analyse a prominent frequency or rather perform signal
processing in the time-frequency domain with a subsequent inverse transform. More
information on the proper selection of the window function can be found in the given
literature [30, 39].

The result of the STFT, SSTFT(h, k), is complex-valued, nevertheless, the
phase information is usually omitted for further processing, i. e., the magnitudes
|SSTFT(h, k)| are used. The reason for this is that the human sense of hearing is
mainly sensitive to the strengths of the partial sinusoids that constitute the signal
and less to the (relative) phase. However, this phenomenon, which is referred to
as ‘Ohm’s acoustic law’ is only valid to a certain extent, actually, the human sense
of hearing is very complex [46], involving also highly non-linear processes [33]. In
any case, if the representation is going to be transformed back into the time domain
using an inverse STFT, the phase information is essential.

The visualisation of the squared STFT magnitudes, i. e., the time-dependent
spectral energies, is called spectrogram. Optionally, the logarithm is taken (with
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Figure 2.2: Waveform (left) and spectrogram (right) of the German sentence “Der
Lappen liegt auf dem Eisschrank.” (female speaker, filename: 08a01Na.wav) from
Berlin EmoDB [47]. The sample rate is 16 kHz, the STFT is performed with a
‘Hamming’ window of a length of 512 samples (32 ms), the overlap is 75 % (8 ms,
hop size 256). For the visualisation of the spectrogram, the logarithm is taken from
the coefficients and the ‘viridis’ colour map is used (the more yellow, the larger the
value).

a bias of 1 to avoid negative values), in order to compress the typically large range of
values. This turns the squaring operation into a factor, which is of no relevance for
the visualisation. Often, a logarithmic scale is used also for the frequency axis, as
most of the energy is contained in the lower frequency bands (see Figure 2.2 on the
right) and the human perception of frequencies is approximatively logarithmic [33].
The spectrogram is a very common representation of audio in many subdomains,
such as, e. g., phonetics and paralinguistics [32], music information retrieval [38], or
computational auditory scene analysis [48]. Nevertheless, the spectrogram does not
consider any further stages of psychoacoustic modelling, which are typically used to
enhance the analysis methods [48]. Figure 2.2 shows the waveform and the spec-
trogram of a human speech recording taken from Berlin EmoDB [47]. In the
spectrogram, the horizontal axis represents time, while the vertical axis represents
the frequency. The figure provides a trained phonetician already with a rough idea
of what is said. The pauses between syllables are visible as well as some parallel hor-
izontal lines originating from voiced phonemes. Also formants, i. e., local emphases
of the energy in some frequency bands (see Subsection 2.1.5), can be derived, as
well as the sibilant ‘s’, manifesting in plenty of energy in the upper frequency bands
(Time: 1.0 s to 1.2 s).

The magnitude STFT representation is already a very suitable basis for different
kinds of signal processing tasks, such as, e. g., audio source separation or speech
denoising [49], however, for audio recognition tasks, further processing steps are
usually executed until the data is fed into an ML algorithm. As it is a common
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2.1. Frame-level Features

practice for the energy (see Equation 2.9), the STFT is very often normalised to
make the strength of the magnitudes independent from the frame length:

SSTFT,norm(h, k) =
1

M
· |SSTFT(h, k)|. (2.17)

This step is very often included in the STFT implementation itself, e. g., in the
Python library SciPy6. Further processing steps follow in most scenarios where
acoustic features are extracted for audio recognition tasks. These steps are mainly
based on human perception models [33]. A very common step is to work on power
spectral densities [30, 2.2.3.2], computed as

SSTFT,P,norm(h, k) =
1

M
· |SSTFT(h, k)|2. (2.18)

From this representation, simple spectral descriptors can be derived, by sum-
ming up the energies of certain bands (spectral band energies, e. g., from 250 Hz
to 650 Hz), or by computing spectral slope, spectral flux, spectral flatness,
spectral centroid, and spectral moments. Further suitable descriptors are the
Hammarberg index, alpha ratio, and spectral roll-off points, amongst others.
Details on their definition are found in the thesis of Eyben [30, 2.2.4].

2.1.2.4 Mel-frequency spectrum

Next, similar to the common practice for spectrograms, the frequency scale, which
is generally linear for the STFT output, is often transformed into a non-linear one.
This takes account of the non-linear human perception of frequency, which is usually
modelled in terms of the mel scale [33], approximating the critical bands. A popular
definition of the mel scale zmel is given by [30]

zmel = 1127 · ln
(

1 +
f

700

)
(2.19)

The mel-frequency spectrum (sometimes also referred to with the more general
term critical band spectrum) is then computed by compressing the power spectrum
(or power spectral densities) into a certain number of bands, e. g., 26 bands, by using
overlapping triangular filters which are equidistant on the mel scale and summing
up the powers of the accordingly weighted bins.

The mel-frequency spectrum is used for a set of features called cepstral coeffi-
cients of perceptual linear prediction (PLP), or as an advancement, relative
spectral transform (RASTA)-PLP, which are used in some of the experiments
presented in this thesis. Based on the mel-frequency band spectrum (or another

6https://www.scipy.org/
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2. Acoustic Features

critical band spectrum) and some further pre-processing steps, autocorrelation coef-
ficients (see Subsection 2.1.1.3) are computed from which a linear prediction analysis
(see Subsection 2.1.5.1) and finally cepstral coefficients are derived. The RASTA
extension introduces one more pre-processing step to the critical band spectrum, en-
hancing modulations around 4 Hz, a frequency, speech is typically modulated with
and the human hearing system is especially sensitive to. Moreover, the spectral
bands from the spectrum pre-processed by mel-frequency transform and RASTA
are also employed as a feature already (without computing the PLP coefficients).
For more details on the RASTA, the reader is referred to the thesis of Eyben [30,
2.2.9] and in the original publications of Hermansky [50, 51].

The mel-frequency spectrum and the STFT, respectively, are further relevant
for the computation of the so-called mel-frequency cepstral coefficients, introduced
in Subsection 2.1.6 and the extraction of the fundamental frequency of a human
voice or a musical instrument, as described in Subsection 2.1.4.2. As it has been
shown, the plain STFT has a constant frequency resolution throughout the domain,
i. e., a low frequency bin k represents the same frequency range as a high one. This
is, however, not suitable given the previously discussed human perception of the
frequency range approximated by the mel scale with a lower selectivity in the higher
frequency bands. Thus, besides the mel-frequency spectrum, further alternatives
have been proposed, particularly the wavelet transform, discussed in the following
subsection.

2.1.3 Wavelet descriptors

The wavelet transform (WT) is a linear time-frequency transform, such as the STFT.
In contrast to this, the WT is neither restricted to sinusoidal base functions nor are
the frame lengths and hop sizes constant. The name ‘wavelets’ (i. e., ‘small waves’)
describes the shapes of the base functions. In fact, the shape of a wavelet base
function is quite arbitrary in case certain requirements are fulfilled. The windowed
base functions can be considered as band-pass filter kernels with variable centre
frequency and support [52]. Compared to the STFT, the wavelet base functions
(i. e., the windowed base functions) are compressed and dilated in the time domain,
depending on the frequency.

An advantage compared to the STFT is that the time resolution is better for
higher frequencies, so that quick frequency changes are seen more clearly. For lower
frequencies, the frequency resolution is better, i. e., the exact frequency can be de-
termined more precisely, but the output representation does not change as quickly
over time as for the high frequencies. Nevertheless, the Heisenberg-Gabor limit
introduced in Subsection 2.1.2.3 applies also for the WT and cannot be challenged.

Also for the WT, a discrete version, the discrete wavelet transform (DWT),
exists, which is relevant in digital signal processing. The DWT is usually realised as
a cascaded filter bank, decomposing the signal in different levels [52]. For the DWT,
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an inverse transform exists and as for the STFT, separate from rounding errors, the
operations are lossless, i. e, the full information of the signal is kept with the DTW.
Analogously to the FFT, an efficient method called fast WT exists, computing the
DWT with discrete multi-scale band filters [53].

In some of the experiments described in this thesis, an extension of the DWT,
the so-called wavelet packet transform (WPT) [54, 55, 56], is employed. While
in the DWT, only the low-pass signals are further transformed (decomposed) in the
cascaded levels, also the band-pass signals (corresponding to the higher frequency
bands) are split with the same number of levels in the WPT.

As LLDs, measures of the energies of DWT and WPT are used. From the relative
energies in each decomposition level, certain statistical measures (mean, variance,
entropy, and waveform length) are computed for the DWT [55, 57]. For the WPT,
the normalised filter bank energies [56] are computed. More details about these
features are found in the corresponding references. The LLDs introduced in the
following are not based on the DWT or WPT.

2.1.4 Prosodic features

In general, prosody characterises parameters of natural speech that are not connected
to the phonemes (distinguishable sound units in natural speech) [58]. The most
commonly used parameters are

1. stress (accentuation),

2. intonation (speech melody), and

3. rhythm & tempo.

Also voice quality, e. g., a harsh or a tense voice, is very often considered a prosodic
parameter [32, 59, 60]. Even though prosody is independent from the phoneme, it
can be decisive in resolving some lexical ambiguities. Consider the homographs7

‘übersetzen’8 (German) and ‘project’9 (English), which are pronounced in the same
way and differ only by a different stress. On the acoustic side, prosodic parameters
have a more or less close correspondence with some LLDs.

2.1.4.1 Stress (accentuation)

Stress (accentuation) is correlated with the contour of the intensity over time [61]
(see Subsection 2.1.1.1). As an alternative, loudness is a much more sophisticated
descriptor, modelling human perception by taking into account different sensitivities
of the human ear depending on the frequency band and masking effects [33].

7words of the same spelling
8‘übersétzen’: to translate vs ‘ú̈bersetzen’: to ferry across the river
9‘próject’ (noun) vs ‘projéct’ (verb)
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2.1.4.2 Intonation and fundamental frequency (F0)

The intonation or speech melody is related to the pitch of the human voice [62].
While pitch describes a perceived quality [63], the fundamental frequency, usually
called F0 is the technical counterpart and often used as a prosodic feature [64, 65].
For the computation of F0, a large number of algorithms and refinements exists [66].
Many approaches are optimised for specific usage scenarios (speech or singing; back-
ground noise or music) and come with certain pros and cons, resulting in different
performances [67]. Some approaches are based on only the time domain (usually
based on the ACF) [30, p. 63 et seq.], some exploit the frequency or time-frequency
domain [66, 68, 69], and more recent ones employ a neural network regressor using
the raw time-domain signal as input [70].

In the experiments discussed in this thesis, the F0 LLD is obtained from the
subharmonic summation (SHS) algorithm. Voiced speech and music signals gener-
ally consist of complex tones, consisting of, i. a., an oscillation of a certain frequency
(fundamental frequency) and corresponding harmonics (or overtones), which are
oscillations of integer multiples of the fundamental frequency. This is exemplified
in Figure 2.3, where the waveform signal and the corresponding magnitude spec-
trum from the articulation of the vowel ‘a’ (German) are visualised. The (quasi)-
periodicity of the waveform is obvious and the maximum peak of the spectrum is
located around a frequency of 150 Hz, which is the F0 of this speaker. The next
peak is at the duplicate of F0, at around 300 Hz. Further harmonics are present
at around 450 Hz, 600 Hz, and so on, but with a much smaller magnitude. The
(relative) magnitudes of the harmonics are relevant for the perceived timbre of a
sound or complex tone and are important for the distinction between phonemes (see
Subsection 2.1.5). Besides the intended variations of the fundamental frequency in
order to form the intonation, to convey emotion, or a singing melody, F0 is also a
voice characteristic of each speaker, where women usually have a higher F0 than
men [71].

The sensation of pitch is mainly related to the fundamental frequency and not
the harmonics. Moreover, the fundamental frequency can—in many cases—even be
recognised if it is not present in the signal, e. g., if a speech signal is transmitted over
a band-pass channel (such as telephone). This phenomenon is referred to as residue
pitch or virtual pitch [33] and taken into account by the SHS method. The SHS
algorithm introduced by Hermes in 1988 [72] is based on the STFT of the signal.
First, the magnitudes |SSTFT(h, k)| are extracted with a frame/window length of
60 ms and a Gaussian window. Then, the short-time spectrum for each time step
h is pre-processed by enhancing local maxima in setting magnitudes distant from
them to 0 and then smoothing with a simple filter over the frequency domain. Next,
the frequency scale is transformed into an octave scale and an auditory weighting
is applied [30, p. 66]. Then, the pre-processed spectrum is iteratively shifted with
a constant factor on the octave scale frequency axis and summed up with a de-
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Figure 2.3: Waveform (left) and magnitude spectrum (right) of the vowel ‘a’ in the
German word “Eisschrank” (female speaker, filename: 08a01Na.wav) from Berlin
EmoDB [47]. The frequency axis is cropped to 2 kHz for a better visualisation.

creasing weighting factor. The iterative summation of the harmonics ensures that
the corresponding fundamental frequency is boosted. Finally, from the subharmonic
sum spectrum, the F0 can be selected with a peak picking algorithm, where different
realisations are possible [30, p. 67 et seq.]. Besides F0, also the so-called voicing
probability [30, p. 69] can be derived from the SHS and is relevant in two respects.
Firstly, it says how likely it is that a certain frame of speech does contain a pitch
at all. Frames with a voicing probability below a certain threshold can be excluded
from the further processing chain. Secondly, the voicing probability can be con-
sidered an LLD itself. Finally, a step that is appropriate to improve the LLDs by
exploitation of the temporal context, a temporal smoothing can be performed (see
Subsection 2.1.7).

2.1.4.3 Rhythm

Rhythm and tempo can be expressed by the duration of different speech units [73]
or the rate of syllables per second [32, p. 66]. These descriptors are mainly based on
the contour of the energy, but also the voicing probability can be used to distinguish
between voiced (F0 detected) and unvoiced (F0 not detected) segments, from which
a measure for the rate of speech can be derived [74]. Moreover, a descriptor of
speech rhythm can be derived as well from the frequency-domain representation of
the envelope of band-pass-filtered speech [75].

2.1.4.4 Voice quality

Voice quality is described by the harmonics-to-noise ratio (HNR) and the micro-
prosodic features jitter and shimmer [1, 6.2]. HNR can be derived from the ACF
(see Subsection 2.1.1.3), by calculating the ratio between the energy of the peak
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representing F0 and the overall energy [1, p. 61]. As it is the common practice for
energy ratios, the logarithm is often taken and the logHNR is obtained. Jitter and
shimmer describe micro-variations of F0 (jitter) and amplitude (shimmer) between
successive fundamental periods, i. e., [30, p. 73 et seqq.]. However, the measure of
jitter is not only depending on the voice quality, but is also affected by the age of a
subject [76] and her/his heartbeat [77].

Even though, as mentioned above, prosody is also relevant for the linguistic
meaning of speech [60], it is generally only of minor importance for ASR systems,
but of central significance for paralinguistics [64]. Paralinguistics covers all aspects of
speech which are not related to ‘what is said’, but to ‘how it is said’ [32]. A typical
and well-studied paralinguistic task in CA is the recognition of affect and emo-
tion [78, 79]. Cowie et al. studied the relationships between emotion and prosodic
features [80]. Ishi et al. showed that also voice quality features prove to be suit-
able for emotion recognition [64]. Further tasks include the assessment of age and
gender [81], personality in terms of the OCEAN big-five dimensions10 [82], intoxica-
tion [83], eating condition [21, 84], physical or mental load [85], sleepiness [13, 83],
dialect [13], native language [22], deception and sincerity [22], and health conditions,
such as, e. g., Parkinson’s disease [21, 86], autism spectrum condition [20, 87, 88],
or cold [11].

In the last few decades, brute-force modelling, i. e., extracting a large set of
descriptors and then let the machine decide on the relevance of certain descriptors,
has become a state-of-the-art, however, phoneticians conducted a lot of research in
the past, with the goal of analysing and understanding the suitability of features
for certain tasks. For example, speech tempo has turned out to be a good indicator
for non-nativity of the speaker [32], the dynamics of pitch over time have proven
to be important for the recognition of arousal [32]. Arousal is one dimension of a
multi-dimensional model of human affect and reflects the level of mental activation
associated with the emotional state [89]. Moreover, prosodic descriptors are suitable
for the detection of sarcasm. Cheang and Pell found that sarcastic speech can
be reliably recognised based on F0 and the speech rate [90]. Besides tempo, also
intonation is known to be language-specific [62, 91], where language-dependence is
a basic aspect which needs to be considered generally, when it comes to building
systems analysing both linguistic and paralinguistic parameters, such as ASR and
emotion recognition [17, 19].

As indicated before, the best representation of prosody (and other feature types)
is not always the raw time-dependent LLD, but also its differentials between suc-
cessive frames. Consider the case of a subject speaking with high arousal, where
usually large dynamics in F0 can be recognised, whereas the absolute or mean values

10Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism
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of pitch depend strongly on the gender [92]. Differences between successive frames
are also called deltas and will be introduced below in Subsection 2.1.7.

2.1.5 Formants

In contrast to the prosodic features, formants describe properties of speech that
are highly related to the phoneme and the spectral shaping. The same concept is
sometimes applied to musical instruments and other types of sound sources. The
formants of a sound are the frequency ranges, in which the spectral envelopes, i. e.,
the contour of the harmonics, are amplified [71, p. 305 et seqq.].

A human speech signal contains several formants, where the first two (called F1

and F2, the two formants with the lowest frequencies) determine the vowel spoken,
and the third one F3 or subsequent ones are relevant mainly for the timbre of the
voice. As an example, the vowel ‘a’ typically has its F1 and F2 at 900 Hz and
1200 Hz, respectively [71]. The formant frequencies are independent from F0, which
leads to the fact that one vowel has the same characteristic sound, no matter which
person is speaking or which musical note is vocalised by a singer. Based on the
harmonic spectrum with a certain fundamental frequency that is generated by an
oscillation of the vocal folds in the human vocal tract, the formants are shaped by
the positions of the tongue and the lips during speaking or singing. Analogously,
for musical instruments, the harmonic spectrum of a fundamental frequency given
by, e. g., the string in the case of a string instrument, is filtered by the material
and shape of the resonator, resulting in a characteristic timbre. Nevertheless, these
‘formants’ are less distinctive than those of the human voice, while the temporal
envelope and the transient effects during attack, decay, sustain, and release phases
of a musical note are quite specific for each musical instrument [71].

Even though the formants are visible as the envelopes of the short-time mag-
nitude spectrum, it is not a suitable approach to derive them directly as the local
maxima, due to disturbances by F0 and noise [30, 2.2.8]. A straightforward solution
is to smooth the magnitude spectrum with a low-pass filter in order to obtain the
spectral envelope [30]. Another method, the one which is used in the experiments
in the remainder of this thesis, is based on linear predictive coding (LPC) [30].

2.1.5.1 Linear source-filter model

The principle of linear prediction is also exploited for the PLP descriptors introduced
earlier in this thesis 2.1.2.4, where the coefficients are computed from the power
spectrum; according to the Wiener–Khinchin theorem, the power spectrum of a
signal is the Fourier transform of its ACF. LPC is a common method to model
time-discrete signals, especially speech signals. It is used in many sub-domains,
such as synthesis, analysis, and coding of speech [93]. In LPC, the signal s(n) at
discrete time n is approximated as a weighted sum of P previous samples, i. e., the
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approximated signal is given by

ŝ(n) = −
P∑
i=1

ais(n− i). (2.20)

The number of contextual samples considered, P , is also referred to as the order of
the LPC and ai are the corresponding coefficients. The error term e(n) = s(n)−ŝ(n)
is then given by

e(n) =
P∑
i=0

ais(n− i), with a0 = 1. (2.21)

The z-transform is an elegant tool to represent and analyse time-discrete signals
and linear shift-invariant filters and it is suitable as such to handle linear predictive
modelling. Given the signal from Definition 2.1, the z-transform of s(n) is defined
as [43]

S(z) =
N−1∑
n=0

s(n) · z−n. (2.22)

Analogously, for arbitrary signals or systems (filters), the summation goes over
the whole support. In practice, for the purpose of the computation of formants,
the transform is done over a windowed—and possibly pre-emphasised [30]—frame.
Pre-emphasis can be realised by a simple 1st-order linear filter executing the op-
eration semph(n) = s(n) − kemphs(n − 1) in the time domain, or Semph(z) =
S(z)−kemphz

−1S(z) in the z-domain [43], where the pre-emphasis coefficient kemph is
often chosen to be 0.97 [30, 94]. This operation attenuates the (typically prominent)
low-frequencies of the signal and thus behaves like a high-pass filter, resulting in a
more balanced magnitude spectrum [95]. In order to simplify the readability, S(z)
frame indexes and emph subscripts are omitted until the LLDs are defined at the end
of this subsection, but it must be kept in mind, that all corresponding computations
need to be executed for each frame.

As a shift in the time domain s(n − n0) translates to a factor of z−n0 in the
z-domain, Equation 2.21 can be expressed as

E(z) =
P∑
i=0

aiS(z)z−i, with a0 = 1. (2.23)

The advantage of this representation is that S(z) can be pulled out of the summation
and the equation can be divided by the summation and E(z) resulting in

Hvoc(z) =
S(z)

E(z)
=

1

1 +
∑P

i=1 aiz
−i
. (2.24)

The specifications are now made that
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1. E(z) represents the excitation source, elicited by either the vibrations of the
vocal folds in case of voiced phonemes or white11 noise in case of (most) un-
voiced phonemes, and

2. S(z) represents the speech signal.

Under these assumptions, Hvoc(z) is the z-domain transfer function of the vocal
tract, i. e., the filter function of the vocal tract. It must be noted that Hvoc(z) is
defined only by the coefficients ai. As the signal is modelled by S(z) = E(z)·Hvoc(z),
this model of speech is called the (simplified) linear source-filter model [1]. It
must be pointed out that this model is just an approximation of the filter transfer
function of the vocal tract. Firstly, it applies primarily to vowels and some types of
consonants; secondly, a recorded speech signal includes also the transfer functions of
the radiation from the mouth and the acoustics of the room [30], i. e., these sources
of error must be considered when performing LPC analysis.

The coefficients ai are defined by the resonator characteristics of the vocal tract,
thus, mainly by the positions of tongue and lips. As the speech signal is a product of
source signal and filter response in the z-domain (and also in the Fourier domain),
the peaks of the filter are exactly the resonance frequencies, or, the formants.

To estimate the model parameters ai, several methods can be applied minimising
e(n), such as the estimation from the autocorrelation coefficients; an overview is
given by Eyben [30, 2.2.7]. The LPC can also be considered an autoregressive
model as future samples of a signal are a linear combination of their predecessors.
The vocal tract filter model can be realised as an infinite impulse response filter [43].

2.1.5.2 Formant descriptors

To determine the formant frequencies, the poles of Hvoc(z) need to be computed,
or, as the dual problem, the roots (zeros) of H−1

voc(z), using numeric methods [1].
Boersma, who developed the voice analysis software Praat [96], described the fol-
lowing method to derive formant frequencies. First, from all poles pi, those which
are outside the unit circle are mapped into it as follows:

pi ←
1

p∗i
if|pi| > 1, (2.25)

where ∗ denotes the complex-conjugate. This operation does not change neither the
corresponding frequency nor the bandwidth. Furthermore, as each pole is present
twice with its complex-conjugate pair, only the ones with a positive imaginary part
are considered. For each frame h, the formant frequencies are given by [30]

Fi(h) =
1

2πTs

∥∥∥∥arctan

(
={pi(h)}
<{pi(h)}

)∥∥∥∥ (2.26)

11White noise is a stochastic signal with a constant power density spectrum across the whole
frequency range.
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and the corresponding bandwidths by

FB,i(h) = log

(
|pi(h)|
2πTs

)
. (2.27)

Usually, not more than the first three formants, (F1, F2, and F3), are employed as
acoustic features [31]. Further restrictions can be applied (minimum frequency and
maximum bandwidth) to ensure that the estimated formants are plausible and the
method has not failed due to disturbances or absence of a pronounced formant [97].
In addition to the bandwidth—or alternatively—the STFT energies or magni-
tudes of corresponding frequencies can be used as a feature. However, it should
be considered that energies might be at a local minimum in frequency ranges that
are not multiples of F0. Thus, a smoothing of the magnitude or energy short-time
spectrum is advisable.

2.1.6 Mel-frequency cepstral coefficients

It has already been shown that the LLDs of speech can be—loosely speaking—
subdivided into prosodic ones, which are closely related to the speaking style, and
the ones that contain information about the phonemes, e. g., the formants, which
contain more or less low-level linguistic information. In the following, a major LLD
in machine speech analysis is introduced, which belongs to the second group, and has
been the most widely used one in ASR: the mel-frequency cepstral coefficients
(MFCCs) [98, 99].

The mel scale has already been introduced in Section 2.1.2.4, to non-linearly
transform the frequency axis into a scale mimicking properties of the human sense
of hearing. Before presenting the steps to compute MFCCs, another important
concept needs to be introduced, the cepstrum. Though the original definition,
introduced by Bogert et al. in 1963 [100], was the power cepstrum and also further
specifications exists, such as the complex cepstrum, the following definition for the
short-time cepstrum is used in this thesis [30, 101]:

CEP(h, q) = DFT−1{lnSSTFT,P,norm(h, k)}, (2.28)

with the inverse DFT (DFT−1) of a short-time spectrum X(h, k) given by

DFT−1{X(h, k)} =
M−1∑
k=0

X(h, k) · ej
2πkq
M , q = 0, ...,M − 1. (2.29)

It must be noted that the complex exponent does not have a negative sign for the
inverse DFT, in contrast to the DFT, and, that the normalisation of a coefficients
needs to be performed if it has not been done as part of the DFT or STFT. Further-
more, the upper half of the short-time spectrum X(h, k) must be added (mirrored
and complex-conjugated) in order to be able to perform the summation up to M−1.
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The result of the inverse transform, which is the cepstrum when using the loga-
rithm of the power spectrum, is a function of the quefrency12 q [100]. As the input of
the analysis is a time-domain signal, also the quefrency has a dimensionality of time.
Nevertheless, it is not similar to the original signal, as the STFT has undergone the
operations of squaring and logarithm. Thus, it is closely related to the ACF, which
is the result of the inverse transform of the power spectrum (see also Section 2.1.5).
The only difference of the cepstrum is that the logarithm of the power spectrum is
subject to the inverse transform.

The advantage of the logarithm in the frequency domain is that products turn
into sums13. As mentioned in Section 2.1.5.1, filtering operations, such as the vo-
cal tract transfer of an harmonic excitation signal, are multiplications of the signal
spectrum and the frequency response of the filter in the frequency domain. Con-
verting this into sums makes it easier to separate excitation signal and vocal filter
parts in subsequent processing steps. Moreover, harmonic signal parts with low am-
plitudes can be recognised more easily. The inverse DFT is (as the DFT) a linear
operation and preserves the additive characteristic. Consequently, the cepstrum is,
i. a., well suited for the estimation of either the fundamental frequency or the vocal
tract transfer function (formants), as the effects of the other can be suppressed more
easily.

Nevertheless, with the MFCCs, a more compact representation than the raw
cepstrum has been established [102]. Although there are variations between dif-
ferent implementations [99], the computation steps are typically similar to what is
described in the following [30]:

1. The (normalised) short-time magnitude spectrum (see Equation 2.17) or power
spectrum (see Equation 2.18) is computed. Sometimes, the signal is pre-
emphasised before (see Section 2.1.5.1).

2. The mel-frequency (power) spectrum is obtained as described in Sec-
tion 2.1.2.4, with B = 26 bands, ranging from 20 Hz to 8 000 Hz [30].

3. The logarithm is applied, except for very small magnitudes/powers, which are
below a certain threshold, in order to avoid large negative numbers [30].

4. Finally, the discrete cosine transform (DCT, more specifically, DCT type-
II) [103] is applied. Assuming that the result of step 3 is SlogMel(b, h) for each
frame h, with the mel-band b, the MFCCs are computed as

MFCC∗kc(h) =

√
2

B
·
B−1∑
b=0

SlogMel(b, h) cos

(
πkc
B

(
b+

1

2

))
. (2.30)

12The terms ‘cepstrum’ and ‘quefrency’ were derived from ‘spectrum’ and ‘frequency’ by Bogart
et al. in order to point out their origin from the backwards transform.

13log xy = log x + log y
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Figure 2.4: Spectrogram (left) and MFCCs 1 to 12 (right) of the German sentence
“Der Lappen liegt auf dem Eisschrank.” (female speaker, filename: 08a01Na.wav)
from Berlin EmoDB [47]. The sample rate is 16 kHz, a pre-emphasis with kemph =
0.97 is done, the STFTs for both spectrogram and MFCCs are performed with a
‘Hamming’ window of a length of 400 samples (25 ms), the hop size is 160 samples
(10 ms, i. e., the overlap is 60 %). Liftering is performed with a coefficient of 22. For
the visualisation of the spectrogram, the logarithm is taken from the coefficients.
For the MFCCs, the energy coefficient (MFCC 0) is not shown as its range is larger
than the range of the other coefficients. For both, the ‘viridis’ colour map is used
(the more yellow, the larger the value).

From this result of the DCT, typically, only the first 12 to 16 coefficients with
corresponding index kc are used [30]. As it can be seen in Equation 2.30, the
0-th coefficient is computed as the unweighted sum of the log-mel spectrum
and is therefore closely related to the energy of the frame.

The DCT has a similar effect as the inverse DFT, which is used to generate the
cepstrum. The advantage of the DCT is that it is more suited to represent magnitude
spectrum-like information, i. e., data that exhibits most of its energy in the lower
frequency range (cf. Figure 2.3), in just a low number of coefficients [104]. The DCT
implicitly assumes a symmetric continuation of the function to be transformed, while
the (inverse) DFT assumes a periodic one and therefore rather faces jumps at the
boundaries. As a post-processing step, liftering can be applied to emphasise the—
usually more important—lower coefficients with a coefficient-specific weight [30]:

MFCCkc(h) = MFCC∗kc(h)

(
1 +

Lc
2

sin
πck
Lc

)
, (2.31)

where Lc is the liftering coefficient.
Figure 2.4 compares the spectrogram representation of the speech signal shown

before with its MFCC representation. It can be seen that the MFCC representation
is less structured than the spectrogram and cannot be interpreted easily by humans.
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2.1. Frame-level Features

Nevertheless, it is a compact descriptor of a speech signal with little redundancy and
well-suited as an input for ML. As mentioned, MFCCs are a set of well-established
LLDs in CA and can be used for a great variety of tasks, ranging from ASR [102]
to ASC [105] and MIR [106].

2.1.7 Smoothing and deltas

All LLDs introduced in the previous subsections have in common that they have
been computed from single frames. This comes with two problems: first, the short-
time analysis involves some artefacts, as the quasi-stationarity assumption is not
completely fulfilled in practice [30]. This issue is addressed by applying a smooth-
ing operation, where a simple moving average filter over the LLD values of a group
of adjacent frames has proven to be suitable [107]. I. e., for an arbitrary LLD D(h),
the smoothed LLD contour is given by

Dsma(h) =
1

Wsma

1
2

(Wsma−1)∑
i=− 1

2
(Wsma−1)

D(h+ i), (2.32)

with the odd-numbered length of the smoothing average window Wsma
14, typically

set to 3 [30].
The second problem is that although the employed frame lengths can vary, no

contextual information, i. e., information from neighbouring frames, is taken into
account and captured, so far. However, as it will also be shown later in this thesis (see
Chapter 6), the differential information between frames of certain LLDs is sometimes
more relevant than the descriptor itself. Consider the scalar LLDs of intensity or
F0, which usually contain information about the overall level of a recording and the
gender of a person, respectively, or, in case of music signals, information about the
pitch of the current note. In case, e. g., the emotion is to be classified, the mentioned
parameters are not of interest as information about the affective states of a person
or the mood of a song is rather encoded in the dynamics of these descriptors [108].
As an example, the dominance of a speaker has been found to be correlated with
the rise and falls of intensity and F0 ranges [109].

The simplest way to define the differential information is by computing the dif-
ferences between the LLDs of adjacent frames, i. e., for the smoothed LLDs, the
differences ∆diffDsma(h) are

∆diffDsma(h) =

{
Dsma(h)−Dsma(h− 1), if 1 ≤ h ≤ Nh − 1 and

0 if h = 0.
(2.33)

Another method to capture dynamic information of the LLDs is the so-called delta
regression, as proposed by Young et al. [102]. It captures the differences over more

14sma: smoothed with moving average
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than just one frame step and implies a smoothing operation. The delta regression
∆Dsma(h) is the preferred method used in the experiments in the remainder of this
thesis and defined as follows:

∆Dsma(h) =


∑W∆
i=1 i·(Dsma(h+i)−Dsma(h−i))

2
∑W∆
i=1 i

2
, if W∆ ≤ h ≤ Nh − 1−W∆ and

0 otherwise.

(2.34)

The size of the context window W∆ is often chosen as 2 [30]. The larger the window,
the more the long term slopes and dynamics are captured by the delta regression
coefficients (deltas). Additionally, the double delta, or acceleration, coefficients
∆∆Dsma(h) are commonly used [102], defined by simply executing the operation in
Equation 2.34 to the deltas.

Finally, it must be noted that for jitter, in addition to the ‘default’ local coef-
ficients, the ‘difference of differences of periods’ (DDP) [96] is used as a standard
descriptor [30], without consideration of the delta regression and computed as the ab-
solute value of the difference (i. e., the absolute value of the result of Equation 2.33).

2.2 Instance-level Features

All acoustic features defined so far in this thesis are frame-level features, or LLDs,
describing only very local properties of the audio. The whole signal is thus repre-
sented as a sequence of LLD vectors, with one LLD vector for each frame. For many
paralinguistic CA tasks, such as emotion recognition or music genre classification, a
machine requires an input of a duration from a few seconds up to a minute in order
to be enabled to make a decision [30]. The necessary amount of data highly depends
on the task, if a personal trait (such as, e. g., the age or the gender of a person)
or a rapidly changing state (such as, e. g., emotion) is to be classified. This is in
contrast to classical ASR models, where a first classification is made on phoneme
level (� 1 s), followed by decisions on word and sentence level [110].

Usually, paralinguistic datasets for ML are provided in a suitable format, either
as a chunk-labelling task, with one label per chunk, where the chunks usually have
a variable duration (e. g., in ComParE 2019 [13]), or, as a sequence labelling task,
with one label for each time stamp on a uniformly sampled grid (e. g., in AVEC
2019, Cross-cultural Affect task [17]). Many ML models in the field of CA are so-
called static approaches (see Chapter 4), i. e., they require one feature vector of a
constant size for each label to be predicted, the so-called instance-level feature
vector (see Figure 1.1). Generally, an instance-level feature vector can be created
by stacking (concatenating) all LLDs into one large vector of a dimensionality of Nh

times the number of LLDs [30]. In case one chunk is the instance to be classified,
all sequences would need to be padded to match with the chunk of the longest
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2.2. Instance-level Features

duration. However, this approach is not very suitable, as the feature vectors are not
shift-invariant. This means, if two audio recordings have a very similar (or even the
same) content with a slight temporal shift between them, the feature vectors look
very different, comparing them ‘index-wise’. Such kind of shifts are very difficult
to learn for most ML approaches as one single instance-level feature is supposed to
have the same meaning in all instances. Moreover, the overall vector would be quite
large for an audio file of several seconds duration.

For these reasons, it has been established to ‘summarise’ the information of
one instance as supra-segmental features [32] in order to create the instance-level
feature vector. For this, several methods have been proposed. Probably the most
established one is the use of functionals, introduced below in Subsection 2.2.1.
An alternative is the bag-of-audio-words (BoAW) approach, which is the central
theme of this thesis and introduced in Chapter 3.

2.2.1 Functionals

A functional maps a time series of a value of arbitrary length (the contour of a
certain LLD) into a scalar [32]. Functionals can also be considered as statistics or
descriptors of the properties of one individual LLD contour D(h). In the following,
a non-exhaustive list of functionals FFunc(D) is given; for further information, the
reader is referred to the thesis of Eyben [30]:

� Moments:

– Arithmetic mean: Fµ(D) = 1
Nh

∑Nh−1
h=0 D(h) (1st order statistical mo-

ment),

– Variance: Fσ2(D) = 1
Nh

∑Nh−1
h=0 (D(h)−µ)2 (2nd order statistical moment),

– Standard deviation: Fσ(D) =
√
Fσ2(D),

– Coefficient of variation: Fσ̄(D) = Fσ(D)
Fµ(D)

,

– Skewness: Fskew(D) = 1
NhF 3

σ (D)

∑Nh−1
h=0 (D(h)−µ)3 (standardised 3rd order

statistical moment),

– Kurtosis: Fkurt(D) = 1
NhF 4

σ (D)

∑Nh−1
h=0 (D(h)− µ)4 (standardised 4th order

statistical moment).

� Extreme values:

– Absolute maximum: Fmax(D) = maxhD(h),

– Absolute minimum: Fmin(D) = minhD(h),

– Index of the absolute maximum: Fposmax(D) = arg max
h

D(h),

– Index of the absolute minimum: Fposmin(D) = arg min
h

D(h),
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– Range: Frange(D) = Fmax(D)− Fmin(D).

� Percentiles Fp(D), i. e., the value below which a certain percentage p of all
values in D(h) lies. Percentiles are less sensitive than extreme values under
presence of outliers and can replace them. Typical choices are the 1st or 5th

percentile and the 99th or 95th percentile to get a more robust alternative for
absolute minimum and maximum, respectively, and the functionals related to
them.

� Linear regression coefficients (slope and offset: Fslope(D) & Foffset(D)), similar
to the spectral slope (see Section 2.1.2.3) and the corresponding regression
error Ferror(D).

� Up- and down-level times, Fup−level(D) & Fdown−level(D), i. e., the absolute
or relative number of frames, the signal is above/below a certain threshold.
Typical thresholds are: 0.25, 0.5, 0.75, and 0.9.

� Rise and fall times Frise(D) & Ffall(D), i. e., the absolute or relative number
of frames, the signal is rising/falling, corresponding to the positive/negative
result of D(h)−D(h− 1).

� Peaks and valleys, i. e., local maximum/minimum values, with a large variety
of derived functionals, such as, e. g., (the exhaustive list is found in [30]):

– Number of peaks/valleys,

– Arithmetic mean of peak/valley amplitudes and their difference to Fµ(D),

– Peak/valley amplitude range,

– Slopes between peaks/valleys.

� Onsets and offsets (see [30])

As already mentioned, depending on if the recognition task is a chunk- or a
sequence-labelling task, the instance to predict a label for can either be a full
recording or each time stamp from a recording. In the first case, the functionals
are—obviously—computed over the whole chunk [111], in the second case, they are
computed over a certain segment [112], sometimes also referred to as window or
block, not to be confused with the windowing functions from the short-time pro-
cessing defined at the beginning of this section. The functionals of F0 contours and
voice quality descriptors are usually computed only based on those frames where
the voicing probability is above a certain threshold [31]. The process of generating
supra-segmental instance-level features using functionals is illustrated in Figure 2.5.

As a final note, it must be pointed out that instance-level features are not es-
sential for all types of ML models for audio recognition. For example, dynamic
approaches, such as hidden Markov models (HMMs) [113, 114] and several types of
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Figure 2.5: Illustration of frame-level feature (orange) generation from acoustic
LLDs (green) using functionals. Only a small selection of potential LLDs (energy,
ZCR, F0, & MFCCs 1–3 ) and functionals (arithmetic mean & standard deviation)
are shown.

neural networks are able to handle time-series input of variable length in a robust
way. Nevertheless, functionals over short segments of audio are often considered also
when using these models, in order to reduce the amount of input data, to increase
the robustness, or to synchronise with the hop size of the target labels in case of a
sequence labelling task [115].

2.3 Feature Sets

To conclude with this chapter, two well-established and public acoustic feature sets
with functionals will be introduced. They have established in the CA community
and proven to be suitable for many kinds of tasks. For this reason, they are used
throughout this thesis and have been used in related publications as a baseline,
i. e., a comparative approach to benchmark novel methods against. The definitions
of the two sets follow completely different paradigms.

2.3.1 ComParE

The ComParE feature set [20, 30], introduced at the Computational Paralinguistics
ChallengE in 2013, is a large scale feature set, consisting of 6 373 instance-level
features, originating from 65 LLDs with corresponding deltas and up to 54 func-
tionals applied to them [30]. The set is referred to as a (semi) brute-force set as
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2. Acoustic Features

single features have not been hand-picked, motivated by phonetic or acoustic consid-
erations [32, 109], but rather by aggregating established LLDs and functionals that
have proven their usefulness in previous research and form a final feature vector
of large dimensionality. Moreover, the ComParE feature set is not a task-specific
one, but due to the large variety of its components, it has proven to be meaning-
ful for a wide range of speech and audio tasks, such as, e. g., the recognition of
emotion [12, 20, 116], autism spectrum condition [20, 111], Parkinson’s disease [21],
snoring [11, 117], and sleepiness [13]. Good recognition performances have been
achieved throughout in combination with a classifier that is able to handle large
input vectors, such as a support vector machine (SVM) with a linear kernel (see
Chapter 4).

ComParE contains all the LLDs listed in the left column of Table 2.1 [30].
LLDs are extracted with a hop size of 10 ms; a frame length of 60 ms and a Gaussian
window are used for F0, the corresponding voicing probability, jitter, shimmer, and
logHNR, a frame length of 20 ms and a Hamming window are used for all other LLDs,
except for the RMS and the ZCR, which are extracted with rectangular windows
from 20 ms and 60 ms frames, respectively. A pre-emphasis is not applied. For all
LLDs, the corresponding deltas are included, but no double deltas.

For the functionals, the reader is referred to the thesis of Eyben [30, p. 129].
Different functionals are applied depending on the feature group. For F0, voicing
probability, logHNR, jitter, and shimmer, the same 39 functionals are applied for
both the descriptors and corresponding deltas. For all other LLDs, 54 functionals
are applied to the descriptors, and 46 to the deltas. In brief, moments, percentiles
(with corresponding ranges), regression coefficients, up-level times, and rise times
are computed for all LLDs, while functionals describing peaks and valleys of the
contours are only considered for the latter group. The set is complemented with
five global descriptors, namely, the percentage of voiced frames, and the minimum,
maximum, mean, and standard deviation of voiced segments lengths, totalling up to
6 373 instance-level features.

2.3.2 eGeMAPS

eGeMAPS (extended Geneva Minimalistic Acoustic Parameter Set) is, in contrast
to ComParE, a reduced feature set, designed in a knowledge-based and hand-
selected approach [31]. It has been originally engineered with a special focus on
affective speech [118, 119, 120], but it has proven its suitability also for further
paralinguistic and voice analysis tasks, such as, e. g., the related task of recognising
autism spectrum conditions from speech [111]. It consists of a set of 88 instance-
level features.

eGeMAPS contains all the LLDs listed in the right column of Table 2.1 [30].
The most significant difference to the ComParE set is that formants are included
(frequencies, energies, and bandwidths from the first three formants), but there is
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ComParE eGeMAPS

RMS (energy)
ZCR
Spectral energy 250—650 Hz
Spectral energy 1—4 kHz
Spectral roll-off points (4)
Spectral flux, entropy, & variance Spectral flux
Spectral skewness & kurtosis
Spectral centroid & slope

Spectral slopes within 0–500 Hz & 500–1 500 Hz
Spectral harmonicity & sharpness

Alpha ratio
Hammarberg index

RASTA auditory band energies (1–26)
MFCCs (1–14) MFCCs (1–4)

Frequency of formants F1, F2, F3

Relative energies of formants F1, F2, F3

Bandwidth of formant F1

Loudness Loudness
Modulation loudness [30]
F0 F0

Harmonic differences (H1–H2 & H1–A3) [31]
Voicing probability
logHNR logHNR
Jitter (local & DDP) Jitter (local)
Shimmer Shimmer

Sum: 65 Sum: 23

Table 2.1: List of LLDs included in the ComParE and eGeMAPS acoustic feature
sets. The descriptors are grouped according to the sections where they have been
introduced together.

only a limited selection of spectral features and the first four MFCCs. The voice
quality parameters are more or less the same. A pre-emphasis is not applied either.
In accordance with the ComParE set, the 23 LLDs are extracted with a hop
size of 10 ms. A frame length of 60 ms and a Gaussian window are used for F0,
harmonic differences, jitter, shimmer, and logHNR; a frame length of 20 ms and a
Hamming window are used for all other LLDs, also for the formants. In contrast to
the ComParE set, no deltas are included.

As functionals, the arithmetic mean and the coefficient of variation are com-
puted for all 23 LLDs. In addition to that, from F0 and loudness, the 20th, 50th,
and 80th percentiles, the range from the 20th to the 80th percentile, and the mean
and the standard deviation of the slope of rising and falling segments in the signal
are considered [31]. These, in total, 66 features are computed over only the voiced
frames, except for spectral flux, MFCCs, and loudness, for which the values from
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all frames are taken into account. For alpha ratio, Hammarberg index, spectral flux
and the two spectral slopes, the arithmetic means computed over only the unvoiced
segments are added to the set. Likewise, the arithmetic mean and the coefficient
of variation are added for the spectral flux and MFCCs from voiced frames. The
set is completed with six temporal features, describing the durations of voiced
and unvoiced segments, and a feature describing the ‘equivalent sound level’ [31],
totalling up to 88 acoustic instance-level features in eGeMAPS.

Both feature sets are provided by the open-source toolkit openSMILE [23, 121,
122], which has been used to compute most of the LLDs and functionals employed
in the experiments throughout this thesis. The main characteristic of openSMILE
is that it supports both incremental and off-line processing at a very high speed.
openSMILE is implemented in C++, without any third-party dependencies for the
feature extraction, and runs on multiple platforms, including Windows and Linux.
As an example, for a 16 kHz speech signal, energy, MFCCs, and PLP frame-level
features together with their deltas and double deltas are extracted at a real-time
factor of 0.012 [121]15, i. e., more than 80 times faster than the duration of the
corresponding signal.

From the ComParE feature set and eGeMAPS, in some experiments in this
thesis, only the LLDs are used—especially as an input for the BoAW features—,
whereas in other experiments the original sets with functionals are employed as a
baseline, as described in Chapters 6 and 7.

15The reported evaluation has been done on a single core of an AMD Phenom 64 bit CPU at
2.2 GHz and 4 GB DDR2 RAM.
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Bag-of-Audio-Words

In this chapter, the bag-of-audio-words (BoAW) method is introduced as an alter-
native method to transform acoustic LLDs, i. e., sequences of features extracted
from short-time frames, into instance-level representations. The BoAW approach
is the central topic of this thesis. While the theoretical foundations and related
works are discussed in this chapter, the implementation of the method in the toolkit
openXBOW and enhancements are presented in Chapter 5; experimental results
are presented in Chapters 6 and 7 and discussed in Chapter 8.

In this chapter, first, the bag-of-words (BoW) approach in text processing, where
the BoAW approach is inspired from, and its common enhancements are introduced
in Section 3.1. Then, in Section 3.2, it is explained how the concept can be adapted
to numeric features, such as visual features and acoustic LLDs. This section includes
a detailed outline of the academic history of BoAW in Subsection 3.2.2. Afterwards,
an overview of the BoAW approach is given in Section 3.3 and the most essential
steps are formalised, with a focus on the codebook generation (Subsection 3.3.1)
and assignment of audio words (Subsection 3.3.2). This section concludes with a
characterisation of the properties of the representation (Subsection 3.3.3). Finally,
in Section 3.4, relationships of BoAW with similar methods are described.

3.1 Bag-of-Words

The BoW method is a standard approach in natural language processing (NLP) to
represent texts as a numeric feature vector for ML [123].

3.1.1 Methodology

The fundamental idea is quite simple: based on a certain dictionary, the frequencies
(numbers of occurrences) of all words from a text document are counted, creating
a histogram. This histogram is then interpreted as a feature vector having a
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Histogram
generation

Dictionary

“Michael likes reading and watching funny 
movies.”

“Sarah does not like reading very much, 
but she does like cycling.”

“They like cycling very much.”

and
but

cycling
does
funny
like
likes

Michael
movies
much
not

reading
Sarah
she

They
very

watching

0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 1

1 0 1 2 0 2 0 0 0 1 1 1 1 1 0 1 0

0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0

Bag-of-words
Vector space model

Figure 3.1: An example of the bag-of-words approach. Three sentences are turned
into their bag-of-words/vector space model representation. The dictionary is learnt
from the given sentences (and displayed in alphabetic order).

fixed length—the size of the dictionary—independent from the length of the text
document. The principle is visualised in Figure 3.1. It is apparent that the order of
the words does not have any effect on the BoW representation, which is in accordance
with findings from information retrieval, stating that word order is of only minor
relevance for many recognition tasks in the NLP domain [27].

Strictly speaking, the concept of BoW denominates just an unordered list of the
words from a document, while the feature vector representation generated from the
BoW is called a vector space model (VSM) [124, 125]. In the VSM, the value
of each of its elements is not necessarily the raw word count in the document, but
it can as well be a boolean (word present / word not present) or a value based on
another weighting scheme (see below). As for the purpose of ML, usually only the
VSM is of relevance, the terms BoW (or BoAW) and VSM are used equivalently to
denominate the feature vector.

The dictionary is usually derived from all words (more generally: terms) forming
the training set [123], i. e., the subset of a corpus utilised to train the recognition
system (see also Chapter 4). Using a larger, possibly generic dictionary would
not help to improve the performance as no dependencies could be learnt by the
ML algorithm from words with zero-frequency in the training data. Moreover, a
context-specific dictionary is smaller in size and therefore, in terms of storage.
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Formally, based on a suitable dictionary DW = {d1, d2, . . . , dLD}, the word se-
quence SW = {w1, w2, . . . , wLS} is summarised in a BoW feature vector FBoW as

FBoW,i =

LS∑
j=1

δ(di, wj), for i = 1, . . . , LD, (3.1)

with δ(di, wj) = 1 if di = wj and δ(di, wj) = 0 otherwise. (3.2)

LD and LS are the lengths of the dictionary (and the resulting BoW feature vector)
and the sequence, respectively; di and wj are the words of the dictionary and se-
quence, respectively, with the corresponding index. The word sequence can be any
kind of written document, from a short message to a text book.

In other words, a term frequency histogram is created from the words present
in document SW , based on a given dictionary DW . The VSM FBoW is a feature
vector, where each single feature describes the term frequency of a certain word.
In many cases, depending on the type of document, the VSM representation is
sparse [27], i. e., most elements in the vector are zero.

The BoW approach can, in principle, be employed for any imaginable application
of document classification, or more generally, text classification [126] of all kinds of
written documents, such as, e. g.,

� information retrieval in digital humanities [127],

� authorship attribution of books [123, 128],

� e-mail spam filtering [129],

� web (content) mining [130],

� search for research papers [131], and

� emotion recognition and sentiment analysis in news headlines [132] or short
messages in social networks, such as Twitter [133].

3.1.2 History

The BoW concept has been mentioned for the first time yet in 1954 by Harris [134].
The author established distributionalism as a linguistic theory, with the central hy-
pothesis (‘distributional hypothesis’) which suggests: linguistic items, such as words,
that are used in similar contexts/distributions also have similar meanings [135]. The
theory is also supposed to describe the way how children learn a language and the
meaning of words. However, Harris clearly states that “language is not merely a bag
of words” [134]. Nevertheless, the basic BoW/VSM approach introduced above can
be considered as a feature vector summarising the topic of a certain document. This
document must, usually, consist of several words in order to have the BoW provide a
meaningful description. Thus, BoW does not directly implement the distributional
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hypothesis, though it is related and motivated by the idea that some higher order
semantics can be recognised from a representation of a certain linguistic context.

The VSM has been employed in order to perform document similarity ranking,
computing the cosine similarity of the feature vectors from the documents in a
corpus and a query document [125]. Moreover, they have already been studied as
an input representation for different kinds of ML approaches for decades [125, 136,
137]. In 1965, Rocchio and Salton introduced their relevance feedback method for
document retrieval [138], as one part of the SMART1 Information Retrieval System
project, originally started in 1961 [139, 140]. As opposed to keyword-based search
strategies, a ‘full text retrieval’ system has been implemented as (in principle) the full
text is used to create a document-specific feature vector [131]. In 1973, Salton and
Yang described properties of term frequency assignment schemes given a collection
of documents for information retrieval [141]. The topic of approaches for weighting
the term frequencies occurring in documents has been a topic of research for many
years [131, 142]. However, the term ‘bag-of-words’ became widely used not before
the late 1990s [136].

At this point, it needs to be mentioned that very novel approaches closely derived
from distributional theory exist as well. As an approach closely linked to the distri-
butional hypothesis can be considered a VSM of a word represented by the BoW of
its context [135]. Most importantly, the Word2vec model has been proposed by
Mikolov et al. [143, 144]. Based on a neural network architecture, word embeddings
are trained in a way that they reconstruct the context (i. e., the surrounding words)
of a given word. The resulting model, the embedding space, is a continuous vector
space of a dimensionality much lower than the size of the underlying dictionary,
with the property that similar words, especially synonyms, have a very close dis-
tance from each other. In the embedding space, a whole text can be represented,
e. g., by the mean of the embeddings of all words occurring in the document [126].

3.1.3 Enhancement

The BoW approach comes with a few problems, having an impact on the employed
approach for document search, or more specifically, the ML approach that is using
the VSM from the BoW as an input. An unclosed list of the most important issues is
presented in the following, where some problems can be tackled by the modifications
to the BoW approach introduced in the subsections right after this list.

� The relevance of function words, such as articles and conjunctions, and of
personal names is questionable. On the one hand, one might argue that words
like ‘the’ or ‘and’ can be omitted as they imply no meaning. On the other
hand, it has been shown that, e. g., the frequency of function works is a quite
reliable feature for the task of authorship attribution [123, 128].

1SMART: System for the Mechanical Analysis and Retrieval of Text
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� The raw BoW approach differentiates between words in upper case and lower
case [123]. A regular conversion from upper case to lower case (or the other
way round) is questionable as capitalisation may have a meaning, e. g., in
social media posts [145], in case of person or organisation names [125], or in
some languages, such as German2. However, a strict conversion might make
sense in order to handle, e. g., capitalisation at the beginning of sentences,
non-standardised capitalisation, and typos in social media posts.

� Words of the same word stem with diverse endings are mapped to different
terms in the dictionary (e. g., likes vs like), leading to a lower robustness and
compactness of the feature vector.

� The same goes for the relevance of punctuation (dots, commas, etc.), which
might not provide any further information for the task at hand, but can as well
imply information on authorship or the intensity of social media posts [145].

� Synonyms are especially difficult to be handled as they could be mapped to the
same entry in the dictionary, but additional knowledge about the mappings or
word meaning is required.

� The word order or context and grammar are not taken into account at all, but
excerpts such as, e. g., ‘I like’ and ‘I do not like’ have opposite meaning, where
also the second excerpt [144] accounts for the term ‘like’ in the dictionary.

� The VSM has a high dimensionality and is usually sparse [144], where the
level of sparseness depends on the lengths of the documents to be classified.

Most of the problems introduced can be resolved or at least attenuated by one or
more of the modifications of the BoW approach, as introduced in the following
subsections.

3.1.3.1 Stop words, stemming, and external knowledge databases

The problem of the presence of irrelevant function words can be tackled by defining
a list of stop words, i. e., words that are excluded from the dictionary and not
considered during processing [123]. The most common criterion to identify this set
is based on the relevance of the word with respect to the given query or classifica-
tion task, i. e., whether a word is more likely to appear in particular query classes
than in others [146]. Generic lists may work for a variety of use cases, but also
automated systematic approaches have been proposed. For example, Wilbur and
Sirotkin define a stop word list by selecting terms whose likelihood to contribute
to similar feature vectors (w. r. t. cosine similarity) between documents of the same

2Consider, e. g., the German words ‘Weg’ (noun, engl.: path) and ‘weg’ (adverb, engl.: away)
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classes is below chance level [146]. They found that—targetting a document query
system for technological documents—the majority of the occurring words can be
included in the stop list and thus be excluded from the dictionary. In fact, Yang
and Wilbur claim that task-specific dictionaries, where up to 87 % of the terms are
removed, lead to a higher precision in document classification [147].

Furthermore, the exclusion of very rare words can make sense as well. Rare words
often do not occur frequently enough to be meaningful for ML and they contribute
massively to the large dimensionality of the feature vector. This can be implemented
simply by introducing a minimum term frequency for dictionary generation [123].

Methods to reduce inflected words to their stem are called stemming [123]. A
basic stemming step has already been included in the early SMART system since
the beginning of the 1960s [139]. A popular algorithm has been introduced by
Lovins in 1968 (‘Lovins Stemmer’) [148]. In 1980, Porter published an algorithm
for stemming of the English language, which is still being used nowadays (‘Porter
Stemmer’) [149]. The core of the method is that each word is considered as a
sequence of vowels and consonants, where, English suffixes (e. g., ‘-ed’ or ‘-ation’)
are either removed or replaced, based on predefined lists in a defined order and based
on other conditions, such as the length of vowel-consonant sequences. The method
has proven to be capable of increasing the accuracy of information retrieval systems,
but it is important to note that the Porter Stemmer is language-specific. Even if
the approach itself can be adapted to some other languages, the replacement rules
need to be defined and optimised for each particular language.

Advanced methods of stemming are also used, called lemmatisation, taking
into account also the context and the part of speech of the word [150]. Moreover,
improved morphological tables are provided in order to reduce words to stems that
are not obvious from the letters, such as, e. g., ‘better’ reduced to ‘good’.

Further refinements have been introduced, e. g., Gabrilovich and Markovitch pro-
pose a method to augment the BoW with features representing concepts from exter-
nal knowledge databases [151], also referred to as bag-of-concepts [152]. Concept
in this context describes the terms in an ontology that relates the terms and their
properties to each other using relations. The external data resources can be lexical
databases such as WordNet [153]. However, it has been found that WordNet
ontologies to generate concepts require a lot of manual efforts to be maintained [152]
and that the knowledge included about word meaning is limited [154]. It has been
shown that bag-of-concepts generated from public encyclopedias such as Wikipedia
are more promising [154].

3.1.3.2 Modified term frequency weighting

In general, each bin in the VSM FBoW,i can be any positive function of the corre-
sponding term frequency. As mentioned, in the simplest case, the mapping is the
pure term count (word count) FBoW,i for the ith term in the dictionary (see Equa-
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tion 3.1). Another option would be just a boolean indicating whether the term is
present in the corresponding document or not. However, it has been found that more
sophisticated mapping functions usually lead to a better performance of the infor-
mation retrieval system [142]. Many term frequency weighting schemes have been
proposed in the past; the ones most relevant for the presented works are introduced
in the following.

Logarithmic term frequency
A common way to compress a range of descriptors is applying the logarithm [123]. In
order to avoid negative numbers, a bias of 1 is usually added to each term frequency
before applying the logarithm. Given the pure word count FBoW,i, the VSM with a
modified term frequency weight is then

FBoW,log,i = log(FBoW,i + 1), for i = 1, . . . , LD. (3.3)

As a strictly monotonous function for all positive numbers, the logarithm is invert-
ible, i. e., no information is lost during conversion, while at the same time, counts
of very frequent words (such as, e. g., articles if they are not in the stop list) do
not result in a very large weight. Depending on the further processing or ML, such
outliers could deteriorate the robustness of the conversion.

Term frequency–inverse document frequency
So far, each term in the dictionary is given the same importance a priori. However,
one could argue that terms that are present only in a few instances (documents) may
be more discriminative or relevant w. r. t. captioning the content than terms that are
present throughout and differ only by their exact count [125]. This is modelled by
the inverse document frequency (IDF) [123, 141]. The idea was first introduced
by Spärck Jones already in 1972 [155], who defines ‘specificity’ of a term as a function
that is inverse to the number of documents where the term occurs. Given a corpus
of documents (a collection of word sequences) C = {SW,1, SW,2, . . . }, the IDF of the
term with index i from dictionary DW is defined as

IDFi = log
|C|

|{SW ∈ C|di ∈ SW}|
, for i = 1, . . . , LD. (3.4)

In other words, the IDF of dictionary term di is the logarithm of the ratio of the
number of documents in the corpus and the number of documents where di appears
at least once.

For the resulting VSM, the term frequency–inverse document frequency (TF-
IDF) is usually employed, combining the term frequency count with the IDF as a
product:

FBoW,TFIDF,i = FBoW,i · IDFi, for i = 1, . . . , LD. (3.5)
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Intuitively, for the TF-IDF, it is evident that words or terms occurring in only a
few documents are considered more specific and receive an above average weight in
the model. Correspondingly, also the logarithmic term frequency from Equation 3.3
can be used instead of FBoW,i.

Vector normalisation
As a final step (independent of the usage of the previous weighting methods) a
normalisation of the feature vector can be taken into account [131]. This is relevant
especially in cases where the lengths of the documents vary throughout the corpus,
but also the influence of other non-linear operations such as the logarithmic or IDF
weightings on the norm of the vector is removed. Normalisation is typically done
by dividing each of its elements by the Euclidean norm (L2-norm) of the feature
vector [125], i. e.,

FBoW,L2,i =
FBoW,i√∑LD
j=1 F

2
BoW,j

, for i = 1, . . . , LD, (3.6)

in case no other weighting is applied. The same applies accordingly to the feature
vectors from Equations 3.3 or 3.5. Following Equation 3.6, the resulting feature
vector will have an Euclidean length of 1, independent from the length of the input
document. The inner product (i. e., dot product as the vectors are in an Euclidean
space) is then equivalent to the cosine similarity [131], which provides a robust
(length-independent) metric for document similarity. However, in some use cases, a
normalisation on the average document length (average number of words) could be
preferred due to numerical reasons.

Alternatively, also the L1-norm can be employed, which appears to be more
common in BoW of multimedia data [156, 157, 26] (see Section 3.2). If there has been
no other prior weighting of the term frequencies, the output of the L1-normalisation
are the relative term frequencies (i. e., the sum of all features is equal to 1).

3.1.3.3 Context-sensitive approaches

So far, except for the mentioned lemmatisation, the context of the words is not taken
into account by the described methods and enhancements. Nevertheless, numerous
approaches have been proposed to improve the model semantically by taking into
account the interrelation with the surrounding words in a document. This is some-
how challenging the basic principle of BoW, which represents the document as an
unordered multiset. As an example, Cohen and Singer proposed several popular
algorithms taking into account word contexts [158]. However, most of them are not
closely related to the BoW paradigm anymore, such as RIPPER, where sets of rules,
implemented as conjunctions of occurring terms, are generated using information
gain as a criterion. Erk and Padó introduced a structured VSM or semantic space
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model [159] in order to augment the BoW model with the meaning of the word in
the given context. This is made by combining VSM feature vectors with so-called
preference vectors, which are encoding, i. a., the subjects and objects of a given
phrase. However, significant improvements can be achieved as well by methods that
are still highly related and originating from the BoW model. In the following two
paragraphs, the context-sensitive approaches most relevant for this thesis are quickly
introduced.

N-grams
The concept of n-grams is found in many sub-fields of computer science and compu-
tational linguistics. N-gram modelling means that sequences of linguistic entities—
these can be either phonemes, letter, syllables, or words—are represented as over-
lapping sub-sequences of n items [160]. For the task of document classification,
n-grams are often generated on word level. As an example, given the phrase ‘they
like cycling very much’, the extracted bigrams (n = 2, 2-grams) are ‘they like’, ‘like
cycling’, ‘cycling very’, and ‘very much’. The trigrams (n = 3, 3-grams) are ‘they
like cycling’, ‘like cycling very’, and ‘cycling very much’. For word-level n-grams,
grams consisting of more than 3 words are usually not taken into account.

Typically, e. g., in the ML toolkit Weka [161], also the shorter grams are used
and added to the dictionary. This means that for n = 3, all trigrams, bigrams, and
unigrams (the standard BoW dictionary terms) are extracted as terms and a VSM
of the corresponding term frequencies is generated.

Character n-grams
Instead of using word-level n-grams, building a BoW-like representation from se-
quences of characters (letters) is more common [125, 160, 162]. Also the word
boundaries are usually encoded as a separate character [160]. In the example from
the previous paragraph, the character trigrams (n = 3) would be ‘ the’, ‘the’, ‘hey’,
‘ey ’, ‘y l’, ‘ li’, ‘lik’, and so on (the character ‘ ’ encodes the word boundaries in
this example). The document representation based on a character-level n-gram dic-
tionary is accordingly referred to as bag-of-(character)-n-grams.

3.2 Adaptation for Numerical Data

Inspired and motivated by the success of BoW and VSM, other communities adopted
the main idea of the approach, namely describing a document by a histogram of
‘words’, to their fields. First, the computer vision community introduced bag-of-
visual-words (BoVW) as global image descriptors and then, the bag-of-audio-words
(BoAW) approach became established in CA. The main difference between the NLP
domain and the audio or visual domains is that NLP data consists of terms from a

49



3. Bag-of-Audio-Words

limited vocabulary while data in the other two domains are represented by, in prin-
ciple, continuously-valued signals or continuously-valued features (see Section 2.1).
In other words, the BoW approach requires symbolic input data whereas audio
and video/images are usually represented as numeric LLDs or (local) video/image
descriptors [52], respectively.

This gap is closed by introducing a step of vector quantisation (VQ). In VQ,
a low-level feature vector is assigned to an ‘audio word’ or ‘visual word’ by finding
the most similar template feature vector from a dictionary of pre-defined templates
in the corresponding domain, usually determined using the Euclidean distance. The
dictionary in the context of BoAW and BoVW is also referred to as codebook. A
‘word’ can be considered as a vector quantised low-level feature vector, as given in
the codebook.

3.2.1 Bag-of-visual-words

The idea of BoVW got published first—to the best knowledge of the author—by
Idris and Panchanathan in 1995 [163, 164]. Even though their early work is only
recognised rarely and their approach is not inspired from BoW in text classification,
they have first proposed the concept of VQ in combination with a histogram to
capture the content of an image, while the idea of using histograms (e. g., of colours)
as image descriptors has been common already before [165]. Although they use the
term ‘histogram’, the frequency of occurrences are not counted and only a boolean
is used to indicate whether a template is present or not. In contrast to more recent
references, the focus of their work is on image indexing, i. e., generating compact
descriptors for image search systems, and they quantise the raw pixel information
from blocks. Nevertheless, the authors introduce the term ‘codebook’ for the set of
templates for the image blocks and generate it by using a clustering method (see
Subsection 3.3.1). A similar approach with some adaptations was published by Lu
and Teng in 1999 [166].

One widely noticed contribution was presented by Leung and Malik in 2001 [167],
focussing on the task of texture classification, though they still have not introduced
the term ‘BoVW’. The authors employ the concept of ‘textons’, a terminology that
actually has been proposed already 20 years earlier by Julesz [168], who established
a theory of human texture perception in images. Leung and Malik use a set of filters
to compute appearance vectors as local image features, describing small patches of a
texture. They employ k-means clustering on the local features from the training set
in order to define a codebook of textons. These textons can then be considered the
‘words’, each appearance vector is assigned to during VQ. As for BoW, the locations
of the textons are not taken into account and they are aggregated into a histogram
representation. A chi-square significance test is employed to measure the similarity
between histograms of different images.
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Zhu et al. also propose feature-based clustering to create codebooks in 2002 [169],
probably working on it in parallel with Leung and Malik [167] without being aware
of each others progress. They also use VQ and, amongst others, a histogram rep-
resentation for the images. Zhu et al. call the visual words ‘keyblocks’, as opposed
to the ‘keywords’ (words in the dictionary) from BoW. As a novelty, the codebooks
are generated at different resolutions and levels of the images.

The term ‘BoVW’ was first introduced by Sivic and Zisserman in 2003 [170]. The
pursued application was the development of a very fast and efficient video search
engine, finding given objects. They used continuously-valued viewpoint invariant
image region descriptors as an input and performed a VQ to map them to ‘tem-
plate’ visual words. The dictionary of templates (“vocabulary”) is constructed by
a k-means clustering, though the authors mention other methods that could be em-
ployed. In order to save computational efforts, clustering is performed only on a
subset of the videos. LLD feature vectors have a dimensionality of 128; between
6 000 and 10 000 cluster centroids are used. The authors say that the clustering
process has been performed several times and the set of centroids with the best per-
formance is used. The authors also adopt the ideas of stop words, i. e., they exclude
(visual) words appearing in (almost) all video frames, and TF-IDF. Cosine similar-
ity can be used to find relevant documents in a database, given a query object to
be found in the videos. In 2004, Csurka et al. propose a similar method combined
with ML methods for image classification and call it ‘bag-of-keypoints’ [171]; also
the terminologies ‘bag-of-visterms’ [172] and, more generally, ‘bag-of-features’ are
utilised [173].

BoVW were then established during the following years, e. g., in 2006, it has
been applied to flower classification [174] and visual scene classification [175]. The
authors of both publications employ a nearest neighbour classifier, which assigns
an instance to the class of the training sample closest in terms of a certain dis-
tance measure. Dedicated codebooks need to be learnt for each sub-domain using a
clustering method. Moreover, some widely noticed extensions have been proposed,
such as spatial pyramid matching to generate and combine the BoVW in different
levels at sub-regions of the images [176]. Also in the video domain, BoVW has es-
tablished itself, e. g., for the task of action recognition [177]. Recent advancements
include the usage of local image features learnt by a deep neural network (DNN) (see
Section 4.4) instead of classical ‘hand-crafted’ features (analogously to the acous-
tic low-level features discussed in Section 2.1) [178] and novel codebook generation
techniques [179].

3.2.2 A survey on bag-of-audio-words

Early works
The BoAW approach has been employed for the first time—to the best knowledge of
the author—by Jonathan Foote in 1997 [180]. Based on MFCCs as low-level features
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and a tree-based VQ, a histogram is created to represent an audio document for the
purpose of similarity search, applied to both general sound and music data. Foote
motivates his approach by the success of such representation schemes in the text
retrieval domain, but does not introduce the term BoAW or ‘audio words’ for the
quantised frame-level features. Pye showed that a Gaussian mixture model (GMM)
outperforms the tree-based VQ for the same task [181].

The first multimodal approach was presented by Leopold et al. in 2003 [182]. In
this work, the BoW, BoVW, and BoAW approaches are combined—similar to the
work presented later in this thesis—and an SVM classifier (see Chapter 4) is trained
for the task of topic mining in broadcast data. For the audio domain, spectral flatness
and envelope for a number of frequency bands are used, extracted from frames of
30 ms duration. However, the authors state that the performance of BoAW is much
lower than that of BoVW or BoW, except for the topic class of ‘commercials’. They
hypothesise that this is likely due to a high general sound level of this class.

BoAW becomes popular in MIR
The straight BoAW method has become successful in MIR first, starting in 2005.
Vignoli and Pauws [183] propose a BoAW-like system to recognise music similarity,
based on a number of timbre-related features, which are clustered by a self-organising
map [184]. Histograms (‘probability distributions’) are computed based on the 256
derived clusters and compared using the Kullback-Leibler divergence [185], a mea-
sure for the dissimilarity of probability distributions. The authors argue that self-
organising maps are well-suited for the presented use case, due to their structure-
preserving property. Nevertheless, the authors avoid the analogy with VSMs and
text retrieval and the terminology of ‘BoAW’.

The latter was introduced in the MIR-domain by Riley et al. in 2008 [25]. An
audio fingerprinting system is proposed based on Chroma-features [1]. These are
12-dimensional descriptors of the relative presence of the musical notes of the West-
ern scale, independent from the octave they are played in. The system is able to
match also studio and live versions of the same song, even though distortions, tempo
variations, and extended guitar solos might be present. In analogy to some of the
mentioned BoVW approaches, clusters, i. e., dense regions of feature vectors, are
derived via clustering applied to a subset of the training set and VQ is applied to
find the nearest correspondence in the audio words space for each Chroma-feature
vector in each song. A TF-IDF weighting is used and the generated histograms
between songs are then compared in terms of different similarity measures. The
authors’ findings include that a k-means clustering outperforms more complex ap-
proaches such as, e. g., expectation-maximisation (EM) or hierarchical agglomerative
clustering. They experiment with assigning not only the closest but several audio
words to each feature vector, i. e., the NA closest ones and find that a number of
3 works best, while it degraded the performance if the corresponding histograms
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bins were not incremented by 1, but with a variable increment, decreasing with a
larger distance to the cluster centroid. This last result is contrary to findings for
BoVW [186] and nevertheless, approaches closely related to BoAW, but with a soft
assignment, came up at around the same time.

Soft assignment
Barrington et al. proposed to use ‘bags-of-feature-vectors’ for audio information re-
trieval in 2007 [187]. They employed EM-clustering and a GMM of MFCCs instead
of the ‘hard’ VQ executed to generate the ‘typical’ BoAW representation, and thus
end up with a soft encoding. The same approach for the task of music classification
was studied later by Wang et al. [188]. The parameters of a GMM (prior prob-
abilities, mean vector, covariance matrix) are trained in an unsupervised manner
on a selection of LLDs (MFCCs, spectral, and tonal descriptors) from the training
set. The soft assignment is done by computing posterior probabilities of the mix-
ture components and the assignments are averaged over the whole instance (song).
The authors find that the soft assignment works better than a hard VQ based on a
codebook derived from k-means clustering. They emphasise on the diversity of the
templates (GMM components) and also find that considering uniformly distributed
prior probabilities (mixture weights) for the GMM outperforms the learnt priors.

Variations of codebook generation and word assignment
Su et al. compare the effectiveness of several BoAW variants and related methods,
mainly sparse coding and deep belief networks codebook learning approaches, in the
MIR field [189]. They summarise the works under the concept of ‘bag-of-frames’,
a term which is also used for a different set of methods (see Section 3.4). Sparse
coding and deep belief networks do not imply a VQ step and are therefore not con-
sidered as representatives of BoAW. Su et al. discuss a two-level bag-structure, in
other words, two ‘levels of abstraction’, where the lower layer is called—in analogy
to the linguistic domain—‘bag-of-audio-alphabet’ and the second layer is the BoAW,
taking into account the histogram-like output from the first layer as LLDs. A sim-
ilar approach had been proposed before by Yeh et al. for the task of music genre
classification [190]. Su et al. conclude that two levels improve the recognition abili-
ties in, especially, high-level MIR tasks, such as predominant instrument and genre
classification. Moreover, the authors conclude that the TF-IDF weighting scheme
and energy/power normalisation are generally beneficial. Nevertheless, McFee et al.
found that TF-IDF weighting, in contrary, degrades the performance of their music
similarity-driven recommendation system, based on MFCCs [191].

Yeh and Yang compared different codebook generation and LLD-encoding tech-
niques with each other for the task of music genre classification [24]. The authors
found that there is no meaningful difference in performance between a random sam-
pling and k-means clustering, but both are outperformed by the online dictionary
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learning method. For the latter, they received some evidence that a supervised dic-
tionary learning, i. e., balancing the number of codewords for each class, improves
the performance. Moreover, they observed that mel-spectrogram LLDs are superior
to MFCCs for the given task.

Sundaram and Narayanan extended the concept and converted the term fre-
quency (histogram) feature space to a latent space by singular value decomposition
in 2008 [192]. The feature vectors in the latent space can be used for query-by-
example audio retrieval. Also ML-based audio retrieval has been proposed at the
same time, e. g., by Chechik et al. (‘bag-of-acoustic-words’) using an SVM [193].
Both approaches employ MFCCs, while the first one by Sundaram and Narayanan
employed an additional larger set of acoustic LLDs.

Using the magnitude STFT, transformed with a logarithmic frequency axis, as
LLDs in a BoAW approach for the application to measure music similarity was pro-
posed by Seyerlehner et al. [194]. They also suggested to use a multi-level clustering,
where k-means is performed first on the instance-level and then on the centroids from
all instances, which also reduces the computational complexity.

Marques et al. experimented with BoAW models for the task of music genre
classification [195]. In their work, a codebook is constructed for low-level feature
vectors of MFCCs, spectral descriptors, and ZCR. Histogram-based genre models
are then learnt with different ML algorithms. They find that a random sampling
instead of clustering is sufficient to generate a representative codebook of audio
words, even if the sampling is done only from the feature vectors of one class (one
music genre). The authors emphasise on the fact that the collection or distribution
of the LLDs carries more information w. r. t. the task than the individual LLDs.
Furthermore, they find that a Markov model, using the sequence of the audio words
as an input, outperforms models learning from the histogram, i. e., the BoAW. This
provides some evidence that the order of the LLDs is actually relevant, at least for
some audio recognition tasks.

Learning across modalities
Some works have been published using the audio modality of videos to learn video
categories [196] or detect video copies [197]. Zeng et al. [196] use a large number
of LLDs and compare the performance of three different classifiers, where SVM
performs best, outperforming a nearest neighbour classifier. Liu et al. [197] em-
ploy MFCCs and RASTA-PLP as LLDs and a non-ML detector. They introduce a
technique called ‘coherency vocabulary’ to speed-up the VQ process by generating
a different codebook for each low-level feature. Moreover, the authors claim that
this variant improves also the robustness of BoAW. A similar result of improved
performance using multiple codebooks instead of only one for the task of music
classification was found by Fu et al. [198].
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Multimedia event detection and n-grams
Pancoast and Akbacak use the audio component of videos for the task of multimedia
event detection based on BoAW and an SVM [26]. In their works, they employ
MFCCs 1–12, logarithmic energy, and corresponding deltas as LLDs to form a 39-
dimensional frame-level feature vector. K-means clustering is used throughout the
experiments to generate codebooks of variable sizes. They find that a codebook size
of 500 or 1 000 is more suitable than one of 2 000. Concerning the SVM, the authors
find that a histogram intersection kernel outperforms the standard linear kernel
(see Chapter 4) and that a L1-normalisation is not required. They conclude that
the usefulness of L1-normalisation depends on the given task, on the type of audio
word assignment, and if the length of the video is useful as a feature itself [199].
Pancoast and Akbacak extend their approach with audio word n-grams, by forming
codewords with n-tuples of audio words (cluster centroids) [200]. As the number of
codewords increases drastically by doing so, they introduce a term selection method
based on a minimum term frequency of the tuples. They find that, even though the
performance is generally improved by audio word n-grams—the original ‘unigram’
codewords need to be kept as well, adding n-grams with n > 2 does not improve
the performance any further. It has been shown that 2-grams (‘bigrams’) in most
of the cases simply consist of a doubled ‘unigram’. The same authors also proposed
two methods to create a histogram with a soft audio word assignment instead of
the default increment by one [199]. In contrast to the findings by Riley et al. [25],
they found evidence that a Gaussian encoding, i. e., an increment depending on the
distance between LLD and codeword, can actually be beneficial. Nevertheless, a soft
encoding, where the BoAW feature space is doubled and, depending on the distance,
the histogram bin in either of both halves is incremented by the difference between
the distance and a threshold, outperforms both a hard and a Gaussian encoding.

As it is already evident from this overview, BoAW offers many variants and
extensions, and requires input features, parameters, and hyperparameters to be
optimised. This is also pointed out by Rawat et al. [201], who conducted experi-
ments on the same task of multimedia event detection. As mentioned before, they
found as well that a random sampling to generate the codebook performs as good
as k-means clustering. Their reasoning is that using clustering, many audio words
are compressed into dense regions of the feature space, which are not informative
w. r. t. the classification task. Based on only MFCCs 1–20 and deltas, the clas-
sification performance gets better with an increasing codebook size, up to a size
of 16 000. Nevertheless, the authors find that using the dimensionality reduction
methods latent Dirichlet allocation and agglomerative clustering, the codebook size
can be reduced drastically, without loss in accuracy. The performance can be fur-
ther improved by fusing BoAW generated from the mentioned MFCCs with BoAW
generated from temporally stacked MFCCs and large-scale acoustic features with
temporal pooling (similar to the ComParE feature set, see Chapter 2). Finally,
the authors show that a soft encoding technique by selecting the NA closest audio
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words and increment the histogram counters by the inverse of their rank reduces
the error rate by up to 5 % for a large codebook size of 16 000 codewords, while the
improvement is lower for smaller codebook sizes.

Acoustic event detection
Plinge, Grzeszick, and Fink made research on BoAW applied to acoustic event detec-
tion (AED) [202], a task sharing some similarities with multimedia event detection
and where both, the class and the time stamp of acoustic events (such as, e. g.,
‘laughter’ or ‘phone ringing’), need to be recognised in an audio file of a duration
much longer than the event. Thus, BoAW-based histograms are generated w. r. t. a
sliding window of 0.6 s, which is shifted over the frames. The authors use the EM-
algorithm for clustering, obtaining a codebook of Gaussian means and variances,
instead of only means (centroids), similar to the mentioned approach by Barrington
et al. [187]. However, the codebook is not trained on the whole training data, but
a separate codebook is trained for each class and the class-specific codebooks are
then fused. The codeword assignment process is then a soft one, where each bin
in the VSM is incremented by the likelihoods of the corresponding Gaussian. They
call their approach bag-of-features, or bag-of-super-features, as the codebooks are
created in a supervised way, i. e., taking the known class labels of the training data
into account. Nevertheless, it can be considered as a representative of the BoAW
method. Besides, inspired by the ‘spatial pyramid’ from the visual domain [176], a
‘temporal pyramid’ scheme is introduced, where two (or more) sub-histograms are
created, one for each tile within the analysis window; in addition, one histogram
with a maximum-pooling of all sub-histograms is concatenated. As LLDs, they use
a concatenation of MFCCs and cepstral coefficients that are computed in a way very
similar to MFCCs, but using a gammatone scale instead of a mel scale. A maximum
likelihood classifier is trained, where one explicit class for the background noise is
trained as well.

The authors find that both the supervised codebook training and the temporal
pyramid improve the results and that 11 clusters per class (121 for 11 classes) are
optimum. In later work, it is shown that a ‘temporal augmentation’ instead of the
temporal pyramid gives slightly better results [203]. Here, the low-level feature vec-
tor is augmented with a discrete integer time index, depending on the position within
the window instance, which is subdivided into tiles, each carrying the same index.
However, the superiority of one over the other approach is only low and depending
on the number of tiles [204]. The authors claim that bag-of-features methods pro-
duce state-of-the-art results on acoustic event detection benchmark datasets, but
have a comparably low computational cost [204].

Lim et al. propose to use a combination of local binary pattern and histogram
of oriented gradient as LLDs for AED [205]. These local descriptors originate from
the image classification domain and can be extracted from the spectrograms. It
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is shown that BoAW based on these features outperform MFCC-based BoAW for
outdoor environments and low SNRs. Image descriptors applied to spectrograms as
input for BoAW were proven to be effective also for music genre classification [206].

Computational paralinguistics
Mangin et al. introduce BoAW for the recognition of speech invariants in an in-
cremental framework [207]. They call it bag-of-features, in order not to confuse it
with the bag-of-linguistic-words that are both the output and potential intermedi-
ate representations of an ASR model. Pokorny et al. introduced BoAW for emotion
recognition in speech in 2015 [208]. They used MFCCs, energy, F0, HNR, ZCR, and
the deltas of these LLDs and applied some functionals to them over a window of
200 ms. The resulting feature vector of a dimensionality of 384—the features from
ComParE 2009 [81]—is then split into several, equally sized, sub-vectors. The
(sub-)codebook generation and VQ are then first executed only on the features from
each sub-vector (‘split vector quantisation’). Then, the resulting feature vector of
word indexes is subject to another VQ, based on a dedicated codebook.

Crossmodal BoW
Crossmodal (multimodal) bag-of-words have been employed for multimedia event de-
tection [209] and depression monitoring [210]. As acoustic LLDs, also here, MFCCs
are used throughout, while for the depression task, also the prosodic features loud-
ness, intensity, and F0 have proven suitable. In both works, k-means clustering was
employed to generate the codebooks, which were learnt separately for each modality.
A crossmodal system using the idea of two cascaded layers of histograms [189, 190]
has been proposed by Bhatia et al., where the second layer is used to fuse the
first-level BoW representations from each single modality [211].

Finally, besides text, video, and audio domains, the BoW concept has also estab-
lished in other fields. For example, Baydogan et al. have adopted the idea for time
series classification and shown that a bag-of-features is able to handle time warping
to match time series of different durations [212].

Summary
In summary, it has been shown that the BoAW method has established in many
sub-fields of CA. It is striking that authors refer to the—more or less—same idea
and approach but naming their algorithms variously as ‘bag-of-feature-vectors’,
‘bag-of-features’, ‘bag-of-acoustic-words’, or ‘bag-of-frames’, while the latter is also
used for substantially different methods (see Section 3.4). Even though, based
on the review of the given literature, the term ‘bag-of-audio-words’ is used rather
for systems with a hard VQ and ‘bag-of-features’ is used rather for systems with
EM-based clustering and soft VQ, the cited authors do not seem to systematically
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differentiate between them, but seem to use the terminology they prefer personally.

The following findings can be drawn based on the literature from this section:

� Many different LLDs have been proposed to be used within a BoAW frame-
work, but MFCCs are the only ones used in (almost) all approaches, even
for non-speech/non-music tasks [204]. Nevertheless, also spectrogram-based
features seem to be promising [205], fusion of different LLD-types usually im-
proves the performance [204], and for musical tasks depending on keys and
notes, Chroma features are required [25].

� The size of the codebooks (number of audio words or cluster centroids)
seems to be a hyperparameter of the model that needs to be optimised for
each scenario (task, data, and LLDs).

� There is also some evidence that using multiple codebooks, fused at some
stages of the approach, and supervised codebook learning improve the re-
sults by trend.

However, there are still many questions partially or completely unclear:

� There is no final conclusion about the optimal codebook generation proce-
dure. Some authors observe no improvement of EM over k-means [25], while
others do [188]. In several works, a random sampling of templates was shown to
be superior to, or at least competitive with, k-means clustering [24, 195, 201].

� A soft encoding has proven to be beneficial in some works [187, 199, 201],
but seemed to be detrimental in others [25].

� There is also no common finding concerning the term frequency weighting,
e. g., on the general usefulness of TF-IDF ([189] vs [191]). The same applies
for the histogram normalisation.

� Concerning the classifier, which makes the decision based on the BoAW rep-
resentation, there is also no distinct insight on the optimum choice. As it is
a general experience in ML, there is no unique algorithm that always works
best. Even considering only SVM, it is not clear which kernel type is best ([26]
vs [190]).

It is obvious that findings vary fundamentally, depending on the task and also on
the corpus the research is based on, the codebook generation, the weighting scheme,
etc. All this calls for an open-source toolkit to standardise research on Bo(A)W,
letting researchers optimise all hyperparameters in a reproducible way and further
increase the insights into the method.
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3.3 Overview of the Bag-of-Audio-Words Ap-

proach

In the this section, just the basic BoAW approach is defined. All enhancements,
options, and details are further explained in Chapter 5 on the toolkit.

As pointed out earlier, the general idea is quite simple and illustrated in Fig-
ure 3.2. The sequence of LLDs is often normalised first. Normalisation of the
co-domain (ranges of values) of descriptors is especially required if different LLD
types, e. g., MFCCs and F0, with typically different orders of magnitudes are fused
on LLD-level. Otherwise, the distance measures used in the VQ step would suffer
from the higher weight of the expected larger differences of, e. g., F0 compared to an
MFCC. Normalisation can be done using the z-score [203, 213], also referred to as
standard score. Therefore, this type of normalisation is also called standardisation.
Given an LLD vector Dj, the z-score normalised version is computed as

Dz,j =
Dj − D̄
D̃

, (3.7)

with the sample mean D̄ and sample standard deviation D̃ as parameters. In ML
practice, these parameters are estimated from the LLDs in the training set L only
(see also Chapter 4) as

D̄ =
1

|D ∈ L|
∑
Dj∈L

Dj (3.8)

D̃ =

√
1

|D ∈ L| − 1

∑
Dj∈L

(Dj − D̄)2 (3.9)

using the corrected estimator for the standard deviation, with the number of frames
in the training set |D ∈ L|. The dashed lines in Figure 3.2 indicate that the
corresponding parameters are estimated only from the training set and applied to
all other instances processed.

The same is valid for the codebook generation which is typically done by either
a clustering or just a random sampling from the (normalised) LLDs in the training
set. This is more elaborated on in the following subsection. With a codebook given,
the assignment of the (normalised) LLDs is done, usually in terms of a simple
VQ (see Subsection 3.3.2). From the output of the assignment step, a histogram
or—depending on the type of assignment—a probability distribution vector can be
generated for each data instance. This vector is then object to a weighting scheme
and/or a histogram normalisation method, exactly as pointed out already in
Section 3.1 on BoW. Also here, parameters for, e. g., TF-IDF are estimated from
the training set only. The output from all these processing steps is then a set of
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Figure 3.2: Overview of the BoAW approach. The dashed lines represent data flows
that are only present for the estimation of model parameters during training. The
normalisation and weighting blocks are optional.

instance-level feature vectors in a VSM, which can be used as an input for ML (see
Chapter 4).

The following subsections will formalise the codebook generation and audio word
assignment procedures, and specify some properties of the BoAW representation.

3.3.1 Codebook generation

As mentioned previously, the codebook used for BoAW is typically generated via
a clustering approach or—even simpler—via random sampling of the LLDs in the
training set. Clustering, in general, is a representative of unsupervised learning,
i. e., a type of ML algorithms that do not employ any class label of the data. The goal
of clustering is to identify groups of data samples with similar properties, usually
measured in terms of a certain distance metric [123]. The output of the process is
then a set of clusters, usually defined given the cluster centroids, i. e., the means
of the clusters, and—depending on the clustering approach—further quantities. The
clustering can be performed in a hard way, i. e., a data instance is either part of a
certain cluster or not, or in a soft way, i. e., a data instance is part of all clusters,
with a given ratio for each cluster.

Different approaches for clustering exist and they are usually implemented as
an iterative optimisation algorithm. The most fundamental hyperparameter is al-
ways the number of clusters, which has to be manually defined for all common
approaches. Obviously, the number of clusters is then exactly the number of code-
words or templates used for the BoAW.

Probably the two most common clustering approaches are k-means clustering
and EM clustering. While the first produces a set of means (centroids) only, the
latter produces a set of means and covariances, implying a soft clustering. However,
also k-means can be interpreted as a special case of EM clustering. As most of the
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experiments in this thesis are based on codebooks generated by k-means clustering,
this will be the focus in the remainder of this subsection.

It must be mentioned that, even though clustering itself is an unsupervised
method, the codebook generation process can be performed in a supervised
way [24, 202], by performing clustering (or random sampling) separately on the
features from each class and then concatenating the class-specific codewords.

Many further clustering types exist, which might be suitable in the given context,
but they are not discussed here. For example, Passalis and Tefas found that, for
BoVW, spectral clustering and a corresponding assignment outperforms k-means
clustering [213].

3.3.1.1 K-means clustering

The idea of k-means was presented first by Steinhaus in 1956 [214]. Given the set
of LLD vectors Dj

3 with j ∈ L, the following term is minimised, to derive the k
cluster centroids bi of codebook B = {bi}LBi=1:

k∑
i=1

∑
Dj 7→Bi

||Dj − bi||22, (3.10)

where ||Dj − bi||22 is the squared Euclidean distance between LLD and codeword
vectors and Dj 7→ Bi is the set of LLDs for which the ith centroid is the closest
one. This means that the goal is to find a set of centroids for which the sum of the
squared distances between LLD samples and centroids is minimum, in other words,
the variance is minimised. Thus, k-means is also a representative of the least squares
methods.

As a direct solution of the minimisation problem is not efficient (NP-hard),
different optimisation algorithms exist, where Lloyd’s algorithm is probably the
most popular one. It has been published originally not to solve the k-means problem,
but with the focus on an optimised quantisation scheme for pulse-code modulation,
a standard digitisation method as described in the introduction of this thesis [215].

To perform Lloyd’s algorithm, after selecting k, the centroids bi must first be
initialised, by (randomly) choosing k samples from the LLDs in the training set.
The sampling from the LLDs must be performed without replacement, i. e., the same
LLD cannot be drawn more than once. Then, the iterative optimisation starts,
consisting of the following two steps, related to EM :

1. Expectation: Each sample (LLD) Dj in L is assigned to the cluster Bi with
the closest centroid bi w. r. t. the Euclidean distance:

Bi ← {Dj : ||bi −Dj||22 ≤ ||b∗i −Dj||22}, i∗ = 1, . . . , k (3.11)

3Usually, here and in the following, the z-score normalised version of the LLDs is chosen, i. e.,
Dz,j , but for simplicity, the subscript z is dropped.
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This ensures that the cluster assignment with the lowest variance is selected.

2. Maximisation: The centroids are updated, using the mean of all samples
currently assigned to the corresponding cluster:

bi ←
1

|Dj 7→ Bi|
∑
Dj 7→Bi

Dj (3.12)

These two steps are repeated until the assignment in the expectation step has
not changed from the last iteration. It is important to note that Lloyd’s algorithm
does not ensure that the global minimum of the term 3.10 is reached and that
the result depends on the chosen initialisation. In practice, a maximum number of
iterations is usually defined to reduce computational efforts as the changes of the
centroids are usually decreasing over time.

3.3.1.2 K-means++ clustering

Enhancements of the algorithm have been proposed, most importantly, k-
means++ [216], which is mainly speeding-up the convergence of the algorithm.
K-means++ is only modifying the initialisation step by selecting the initial cen-
troids in a way that their mutual distance is maximised and thus, the centroids are
distributed in a better way over the feature space. The first centroid b1 is selected
randomly. To select each further centroid, the squared Euclidean distance to the
closest centroid (from the already selected ones) is computed first for each sample
Dj ∈ L. Then, the probability of choosing a sample as a further centroid is propor-
tional to the squared Euclidean distance. After the initial centroids have been fixed,
the optimisation process is the same as with standard k-means.

3.3.1.3 Random sampling

Random sampling [195, 24, 201] can be interpreted as performing just the initialisa-
tion step of k-means (or k-means++) clustering without performing the optimisation
steps (expectations & maximisation) to update the centroids.

3.3.2 Audio word assignment

The audio word assignment is the central step of the BoAW approach, sometimes also
referred to as the encoding step, where the LLDs are mapped to the codewords. The
available methods for the assignment are closely connected to the type of codebook
generation. If k-means clustering or random sampling have been employed, a hard
VQ is the default method [26], but a soft encoding can be introduced by exploiting
the distance between LLD and codeword [25, 199]. In contrast, when EM-clustering
has been used, a soft VQ based on the likelihoods of the Gaussian distributions is
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straightforward [202]. For codebooks constructed with techniques based on other
assumptions, e. g., sparse coding, different encoding methods might be required [190].

As the variants of VQ based on k-means clustering are the ones most relevant for
the remainder of this thesis, the assignment step is defined only for this case. With
the LLDs from one audio instance I (entity to be classified), the BoAW feature
vector is given by

FBoAW,i =
∑
Dj∈I

a(bi, Dj), for i = 1, . . . , LB, (3.13)

with a(bi, Dj) = 1 if ||bi −Dj||22 ≤ ||b∗i −Dj||22, i∗ = 1, . . . , LB (3.14)

i. e., if i = arg min
i∗

||b∗i −Dj||22, i∗ = 1, . . . , LB (3.15)

and a(bi, Dj) = 0 otherwise. (3.16)

a(bi, Dj) is the assignment function and LB = |B| the length of the codebook. A
soft variant can be achieved by modifying the assignment function with a Gaussian
encoding [25, 199]:

a(bi, Dj) = e
−||bi−Dj ||

2
2

2σ2 if ||bi −Dj||22 ≤ ||b∗i −Dj||22, i∗ = 1, . . . , LB
(3.17)

and a(bi, Dj) = 0 otherwise, (3.18)

with a hyperparameter σ to be chosen manually. In case of multiple assignments
per LLD, an assignment a(bi, Dj) > 0 in Equations 3.14 and 3.17 is made if ||bi−Dj||22
is less or equal to the NA smallest distances ||b∗i −Dj||22.

3.3.3 Properties

The BoAW representation exhibits some commonalities with the BoW-based VSM,
where it is inspired from. Except for some special enhancements proposed, a BoAW
feature vector is invariant w. r. t. the order of the LLDs in the instance, as a
BoW does not take into account the order of the words. Moreover, a fixed length
feature vector is constructed for each instance, a property that is shared with the
functionals representation (see Section 2.2). As mentioned before, exactly the same
types of term frequency or TF-IDF weighting, and normalisation techniques can
be employed.

Some further correspondences exist, most importantly, the VQ step can be con-
sidered as an adoption of stemming [25], given that different but similar LLDs—
assuming that they have the same ‘meaning’—are mapped to the same codeword.
VQ can also be imagined as a step for noise removal, however, this largely depends
on the type and energy of the disturbances. Concerning noise robustness, it is
supposed that low levels of noise can be overcome by hard VQ, so that only large
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levels of noise remain problematic and hard VQ is not suitable [217]. In such cases,
a soft assignment might be preferable. Nevertheless, in the best knowledge of the
author, no systematic evaluation of how (low-level) noise impacts on the VQ and
audio word assignment exists.

The stop words typically used in BoW do not have a direct correspondence
with any of the BoAW variants introduced before. Nevertheless, one can imagine
removing ‘common’ audio words from the dictionary or defining out-of-codebook
audio words, i. e., not assigning any audio word if the distance of an LLD is above
a defined threshold. Besides, another idea to adopt ‘stopping’ is to remove LLDs
from the input where the short-time energy of the signal is below a threshold.

The sparseness typically found in BoW-VSMs is not always present in BoAW
feature vectors. To be specific, the sparseness depends on certain hyperparame-
ters, namely the codebook size and the number of assignments. The larger the
codebook size and the smaller the number of assignments, the larger is the level of
sparsity. Moreover, a soft VQ in combination with EM-clustering avoids sparseness
completely. Generally, it is evident that the codebook size is a very important
parameter of the approach. Choosing a low number of codewords increases the
generality of the representation, while a large number improves the selectivity [26].
Thus, as depending on the data, the LLDs, and the task, optimisation of the code-
book size is imperative.

In contrast to a representation based on functionals, the BoAW method does not
smooth out outliers of LLDs—no temporal pooling is done [24]. This means
that each LLD, in principle, has the same effect on the final feature vector. A
BoAW-based VSM captures the global distribution of an audio instance, in other
words, the “long-range characteristics” [205] or long-term statistics of the LLDs.

One major benefit of BoAW is that the VSM is scalable by modifying the
number of codewords (and/or number of assignments). This can also be done in an
automated process, analogously to the tuning of hyperparameters of a ML approach
(see Chapter 4). In contrast, when using functionals, the scaling of the feature vector
is more complicated as suitable statistics need to be identified and implemented.

3.4 Relationships with Other Techniques

The BoAW method (just as the BoVW method), as introduced, have some common-
alities with other popular approaches used in CA (or computer vision, respectively),
even though the resulting features and classifiers have only little in common.

For example, Perronnin and Dance describe Fisher kernels as an extension to the
BoVW model [218]. Similar to the mentioned approach by Barrington et al. [187],
a GMM is learnt, modelling the general distribution of the low-level features. In
contrast, however, not the (soft) mixture weights of the GMM components are used,
but the Fisher kernels are computed, describing the derivatives of the 0th- to 2nd-
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order statistics of the GMM. Thus, the distribution (posterior probabilities) of the
components is not (directly) part of the computed feature vector. Fisher kernels
have been successfully applied to CA tasks as well [219].

Furthermore, more or less similar approaches to audio recognition have estab-
lished that may not be confused with the BoAW method investigated in this thesis.
Popular methods have been employed called bag-of-frames, as proposed, e. g., by
West and Cox [220] and by Schuller and Rigoll [221]. In these works, a classifier is
trained on local features, i. e., LLDs, and the classification decision on instance level
is done by either a majority voting over the frame-level decisions or a hard decision,
returning a ‘positive’ output if at least one frame belongs to the ‘positive’ class. In
contrast to BoAW, the overall distribution is not directly taken into account when
training the model—a property which can be advantageous if the target, such as,
e. g., an emotional state, is not present throughout the whole chunk to be analysed
but only in either the majority [220] or only very few frames [221].

Another method referred to as bag-of-frames has been used by Aucouturier et
al. [222] and Lagrange et al. [223]. The parameters of a GMM modelling the LLD
distribution are learnt for each instance and their distributions are compared. In
contrast, for a BoAW model, a codebook is trained for the general distribution of
an audio corpus and only the mixture weights (speaking in the terminology of the
GMM, i. e., histogram frequencies) for each instance are taken into account, not
the distribution of the feature space. Nevertheless, the instance-level distribution
of LLDs is modelled in a certain way. The authors conclude that their approach
is—but only to a certain extent—suitable for classification of urban soundscapes,
but not for classification of music.

Finally, it must be noted that some authors employing BoAW in their work use
the term bag-of-frames as well [188, 189, 190, 194, 195]. This is just to sensitise
readers to pay attention on the actual methods when performing literature research
on this topic, as the terminology varies.
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Machine Learning

Machine learning (ML) [224] is a (highly topical) discipline in computer science,
concerning itself with learning from examples. Pattern recognition is a term often
used as a synonym for ML, originating from the engineering domain [224]. In con-
trast, artificial intelligence (AI) is a superordinate concept of principles to teach
machines adopting tasks humans can accomplish (weak AI [225]) or even behaving
like equipped with a mind (strong AI). The crucial point of (statistical) ML, to dis-
tinguish it from other sub-fields of AI, is that in ML, all learnt knowledge originates
from a given set of data. In other words, the decisions made by an ML model (e. g.,
classifying a recorded speaker as happy) are not programmed explicitly, but based
on generalisations from training samples (i. e., recordings from different subjects
speaking in a happy and further moods).

While unsupervised learning, more specifically clustering, has been introduced in
Chapter 3 for BoAW codebook generation, this chapter is dedicated to supervised
learning, i. e., learning a mapping between an input (usually, a feature vector) and
a target label (e. g., a class). For this, a fundamental requirement in supervised ML
is the availability of a ground truth annotation of labels, to both train and evaluate
a model. Referring to the example of the emotions in speech, unsupervised learning
might, under the assumption that suitable features are used, be able to identify
that different speech recordings belong to different categories of emotions, but only
supervised learning provides tools to derive a model (classifier) to map from the
features to the label in a robust way, even if redundant or irrelevant features are fed
into the classifier.

In the first section, an overview of the fundamental concepts and the generic
workflow in supervised ML are given. Then, in Section 4.2, the most important pre-
processing steps are quickly introduced. Afterwards, the two ML approaches most
relevant for this thesis are explained: support vector machine and neural networks, in
Sections 4.3 and 4.4, respectively. Finally in Section 4.5, the principles and metrics
that are used for the evaluation of ML models are introduced, with a focus on the
metrics used in the experiments presented in this thesis.
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Figure 4.1: A visualisation of a decision tree classifier for emotion recognition in
speech, based on three functionals of acoustic LLDs (mean energy, standard devia-
tion of F0, and mean jitter).

4.1 Overview of Supervised Machine Learning

A very simple example of an ML-based model is a decision tree classifier as shown
in Figure 4.1. A decision tree is easy to visualise in a tree graph. The given
example shows a model to predict emotion from a speech signal for which three
acoustic features (LLD with a specific functional) have been extracted: the mean
energy Fµ(E(h)), the standard deviation of F0 Fσ(F0(h)), and the mean jitter
Fµ(Jitter(h)) (see Chapter 2). The model evaluates Fµ(E(h)) first and based on a
given threshold of 0.6, either the left or the right branch is taken. Then, according
to the tree, either Fσ(F0(h)) or Fσ(Jitter(h)) is evaluated in the second step. Then,
as there are no further nodes in this example and a leaf of the tree is reached in
any case, the model predicts the corresponding emotional label as the one most
likely [1, 123].

It must be mentioned that this is just an example of a model given to illustrate
how emotions can be modelled based on acoustic features. Decision trees in practice
are much more complex, with more levels, branches, and thresholds, where certain
features can be queried several times. The point is that techniques of supervised ML
construct and optimise such model automatically, given just the acoustic features
from the instances of a training set and the corresponding labels. The learning algo-
rithm itself works without any theoretical background of the task or prior knowledge
of the features. It exploits just statistical dependencies (between features and la-
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bels) to generate a model that is able to make decisions based on the values of the
feature vector. In the case of decision trees, the learning algorithm to make decisions
about the pivotal features (and corresponding thresholds) at each node is based on
information theory [1].

Concerning decision trees, the method is not further amplified here as it is not
competitive with other approaches used in CA. Nevertheless, following the concept
of random forests, the robustness of decision trees can be improved by a fusion of
several trees, trained on randomised subsets of the features [123].

Another very simple example of supervised ML is the already mentioned nearest
neighbour, or more generally, the k-nearest neighbour classifier1. The model is, in
principle, the whole training set and given a new instance to be classified, the class of
the training sample with the lowest (e. g., Euclidean) distance is predicted [123, 224].
In case a k larger than 1 is chosen, the majority of the classes of the k training
instances with the lowest distance is predicted. As no training phase is required,
k-nearest neighbour is a representative of a ‘lazy learner’. However, common ML
approaches require an explicit (and often computationally expensive) training phase.

The common workflow applied to create a supervised ML model is illustrated
in Figure 4.2. As mentioned, a general concept is to subdivide the workflow into a
training phase and a test phase. In the training phase, the parameters of the chosen
model are optimised exploiting only a subset of the available data, the training
set. After the extraction of features from the training instances, as detailed in
the previous two chapters, a supervised ML algorithm, such as a decision tree,
support vector machine, or neural network learning algorithm generates a model,
optimising a function to map from the features to the given labels (targets). The
type of function may differ fundamentally, based on the chosen approach. In the
evaluation phase, or testing phase, the predictions, i. e., the model outputs for the
test set, are obtained. Exactly the same feature types as for training are extracted
from the instances of the test set and fed into the model. The ground truth labels are
not required to obtain the predictions, but are then compared to the model outputs
(predictions). For the evaluation, different metrics are in use (see Section 4.5).

It is of fundamental importance to split the data before model training and keep
a test partition aside. Evaluation on the training set itself cannot lead to a reliable
estimate of the performance as each ML algorithm tends to overfitting, i. e., tends
to adapt its model parameters to the training instances too much, losing the ability
to generalise. Overfitting occurs with any supervised ML algorithm. Thus, suitable
measures have to be taken to avoid or reduce it, besides a proper evaluation protocol.

In most current supervised ML approaches however, it is not sufficient to split
the corpus into only two disjunct partitions, as these approaches rely on one or more
hyperparameters that need to be optimised during model engineering. Hyperpa-
rameters are options to configure the training process of the learning algorithm,

1Not to be confused with the unsupervised k-means approach.
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Figure 4.2: Overview of the general workflow applied for supervised machine learn-
ing.

where meaningful improvements can be achieved. If models trained with differ-
ent hyperparameter settings were evaluated on the test set, there is the risk that
the configuration is adapted on the test set and the results are again not reliable.
Thus, it is common to select another set, usually referred to as development set
or validation set, which is employed to evaluate the model performance during
hyperparameter optimisation. Once the optimum setting is found, the final model
is evaluated on the test set, to receive a more reliable performance estimate. For the
training of the final model, it is legitimate to fuse training and development sets.
More details on data partitioning and performance metrics are found in Section 4.5.

To describe supervised ML approaches, in the remainder of this thesis, the fol-
lowing notation is used:

� x ∈ RI : a (numeric) feature vector (of dimensionality I), e. g., a BoAW-feature
vector (see Equation 3.13).

� y is the label/target, either a continuous number (regression, y ∈ R) or a
discrete class (classification, e. g., y ∈ {−1,+1})

� L, T : the training set, the development (validation) or test set,

� L: the number of instances in the training set (L = |L|),
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4.1. Overview of Supervised Machine Learning

� x(l), y(l): a feature vector/label of an instance in the training set2,

� x(t), y(t): a feature vector/label of an instance in the development (validation)
or test set3,

� ŷ(l), ŷ(t): the label predicted by a model (for a training or development/test
instance, respectively).

As it will be seen in the following, the definition of a classification task as a
mapping to {−1,+1}, i. e., a binary decision, makes the derivation of the ML algo-
rithms easier, but it can be easily extended to multiple classes. Moreover, models for
classification and regression are usually quite similar and the focus of the following
descriptions will be exemplified based on the binary classification task.

Supervised ML approaches can be roughly categorised into two paradigms,
concerning their statistical modelling: generative and discriminative models.
Though no consistent definition exists [226, 227], it is often considered that ap-
proaches modelling the joint probability of observations (feature vectors) and tar-
gets (labels), or, the conditional probabilities of the observations given the target,
are generative models. In contrast, whenever the conditional probability of a certain
target, given the observation, is (directly) modelled, it is considered a discriminative
classifier, a term that is also often used for models where no probabilistic modelling is
employed. Representatives of generative models are the already mentioned GMMs,
while examples for discriminative classifiers are k-nearest neighbour, support vector
machine, and most types of neural networks.

Practically more important is the distinction between static and dynamic mod-
els: static models predict (one or several) unique target(s) for a given instance, while
dynamic models predict a ‘sequence’ of targets given sequential input data. As men-
tioned in Section 2.2, instance-level feature representations, such as functionals or
BoAW, are designed for static ML models. When employed for a dynamic ‘task’, a
unique vector is computed for each interval—relating to the intervals of the target—
and each interval is considered as a separate instance. In contrast, dynamic models
of supervised ML might directly use the sequence of frame-level features as an input.
Finally, it should be noted that more recent systems in CA employ also end-to-end
(E2E) approaches, where the whole processing chain, usually in form of a neural
network, is learnt as one model, from the raw signal (audio waveform) to the tar-
get [228, 229]. This paradigm can be exploited for both static and dynamic tasks.

Generally, in (supervised) ML, it is a basic knowledge that there is no univer-
sally ‘best’ modelling approach for all tasks. In other words, the optimal type of
classifier must be determined for each task, where a certain approach might out-
perform approaches that are superior for different tasks. This is also referred to as

2l: learning
3t: testing
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the no-free-lunch theorem [230]. The fact that also the choice of input modalities,
pre-processing techniques, and the selection of features are degrees of freedom and
several models can be combined in multiple ways, makes CA such a dynamic and
large-scale research topic.

4.2 Pre-processing

Given the (numeric) feature vector x, as defined in the previous section, a few pre-
processing steps are usually undertaken before the actual learning process takes
place.

4.2.1 Balancing & upsampling

The classes present in a given corpus might not be equally distributed. This can
result in a bias of the model towards the majority class(es)—depending on the chosen
learning algorithm. As in most usage scenarios, a similar recognition performance
is desired for all classes, this needs to be handled when designing a system.

For the training set, a simple but powerful method is an upsampling of the in-
stances of the minority classes [116], so that a balancing between classes is reached.
Also more sophisticated techniques have been proposed, such as, e. g., SMOTE (‘syn-
thetic minority over-sampling technique’) [231], where a combination of upsampling
(of less represented classes) and downsampling (of more represented classes) and
generation of synthetic instances is used. For some ML methods, cost-sensitive
learning [123] is appropriate as an alternative, e. g., by assigning different weights
to the instances when training a neural network [232].

For the evaluation on development and test sets, in the case of imbalanced classes,
it is meaningful to take into account suitable (‘unweighted’) metrics (see Section 4.5).

4.2.2 Feature normalisation

Besides a normalisation of the waveform (see Chapter 2) and a normalisation of
the LLDs when computing BoAW representations (see Chapter 3), also a normal-
isation of the ML input needs to be considered [123]. As discussed in Section 3.3
for the LLDs, also here, normalisation can be done using the z-score (standardis-
ation), where outliers have only a small impact on the process. Alternatively, a
min-max normalisation, i. e., an affine transform setting the minimum/maximum of
each feature type in a set to 0/1, or -1/+1, is often used.

In case no normalisation was used, features with a larger range would implicitly
have a larger weight in some approaches (e. g., in k-nearest neighbour classification).
For many optimisation algorithms, also the speed of convergence is much faster
after normalisation [233]. Feature normalisation is usually done ‘on-line’, i. e.,
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4.3. Support Vector Machine

that the corresponding parameters (e. g., sample mean and standard deviation for
z-score normalisation) are estimated from the training set only and stored to be
applied also to the development/test set [234]. If the whole corpus was considered
for parameter estimation, information on the distribution of the test data would
already be included in the model, and the performance estimate would be biased.

In some specific cases, also ‘off-line’ normalisation can be taken into account,
e. g., if a model needs to be transferred into another domain, with samples having a
distribution different from the training data. Then, parameters are estimated from
the test domain itself. However, in most applications, a model is required to work
directly without the opportunity to learn a new distribution. This is why ‘on-line’
normalisation is usually preferred.

4.2.3 Feature selection

In feature selection, a subset of features is identified, where

� irrelevant features, i. e., features that do not contain any information w. r. t.
the given task and

� redundant features, i. e., features whose information is covered by other fea-
tures

have been removed. As for ML itself, many approaches have been proposed [123,
235, 236], but no best practice exists. In the context of this thesis, the topic of
feature selection is of little importance as the mainly used methods have proven to
cope well with large-scale feature spaces [30, 116].

4.3 Support Vector Machine

One of the most employed supervised ML methods in general, and particularly in
this thesis, is the support vector machine (SVM) method. The idea of SVM has
been developed mainly by Vapnik [237, 238] and is actually related to artificial
neural networks (see Section 4.4).

4.3.1 Problem statement and solution

The basic problem to be solved by an SVM is a binary classification task, i. e., only
two classes are assumed. During training, the SVM optimisation algorithm fits a
hyperplane into the feature space, separating these two classes with the largest
margin between training instances of either class and the hyperplane. For this,
the classes must be linearly separable in the feature space, as it can be seen in
Figure 4.3 for a two-dimensional feature space (x = [x1, x2]T ) and classes ⊕ and 	.
In the two-dimensional case, the hyperplane is given as a straight line.
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h
x2

x1

Figure 4.3: A linearly separable binary decision problem solved by an SVM (h:
hyperplane).

In general, a hyperplane is given by the equation

wTx+ b = 0. (4.1)

with the weight vector w and the scalar bias b [224]. These are the parameters of
the model, which are learnt during the training process. For the training instances,
the hyperplane must fulfil the two conditions

wTx(l) + b ≥ +1, for x(l) where y(l) = +1, and (4.2)

wTx(l) + b ≤ −1, for x(l) where y(l) = −1. (4.3)

The terms ±1 in the inequations means that a channel without any instances around
the hyperplane is pursued. Multiplying both sides of the inequations with y(l) shows
that the two condition are actually the same:

y(l)(wTx(l) + b) ≥ 1. (4.4)

Maximising the minimum distance of a training instance from the hyperplane (see [1,
224]) can also be formulated as a dual problem [224], minimising the term

1

2
wTw. (4.5)
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Under the linear side condition given by Inequation 4.3, this can be done using
Lagrange multipliers. More information about this solution can be found in the
corresponding literature [224, 239].

It is obvious that the precondition of linearly separability will not be valid for
many real datasets. Even in cases where the feature space seems to be linearly
separable on the first view, outliers in the training set can lead to a non-separable
problem, or at least, they have an excessive influence on the fitting of the hyperplane.
This latter aspect usually results in the previously mentioned overfitting. To resolve
the problem of outliers, so-called slack variables have been introduced. The slack
variables ξ(l) model somehow a term of ‘allowed error’ for each training instance. By
this, the side conditions in Inequations 4.2 and 4.3 or 4.4, respectively, are adapted
as:

x(l)(wTx(l) + b) ≥ 1− ξ(l). (4.6)

Nevertheless, the optimisation problem can be solved analogously to the previous
one as

1

2
wTw + C ·

∑
L

ξ(l). (4.7)

with a free hyperparameter C, sometimes referred to as the complexity or cost. C
regulates the ‘allowed’ error, i. e., the amount of instances that can be misclassified in
the training set in order to avoid overfitting. A large value of the complexity implies
that outliers have a large influence on the error term on the right of Term 4.7, while
a low complexity allows a larger amount of error. Thus, optimising C, the overfitting
(large value of C) vs underfitting (low value of C) can be controlled. In practice,
the optimisation of the complexity is usually done evaluating on the development
set or using cross-validation (see Section 4.5) [240].

In order to obtain the parameters of the hyperplane, the following term is max-
imised [1, 224]:

L∑
l=1

al −
1

2

L∑
k=1

L∑
l=1

akaly
(k)y(l)(x(k)Tx(l)). (4.8)

For the Lagrange multipliers al, the following two conditions (‘box constraints’)
apply:

0 ≤ al ≤ C l = 1, . . . , L and (4.9)

L∑
l=1

aly
(l) = 0. (4.10)
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The first condition determines that all coefficients al are non-negative and not larger
than hyperparameter C, the second condition ensures that the coefficient weights
associated with positive and negative samples are balanced. The maximisation
problem itself is a quadratic optimisation problem and can be solved with
different quadratic programming algorithms [241]. Moreover, further solver types
and also further formulations of the problem have been proposed, such as the ν-SVM
by Schölkopf et al. [242].

Having learnt the optimal coefficients, the parameters of the hyperplane are given
by [1]

w =
L∑
l=1

aly
(l)x(l) and (4.11)

b = y(l∗)(1− ξ(l∗))− w(l∗)Tx(l∗). (4.12)

It is evident that w, the normal vector of the hyperplane, is a weighted sum over
the training instance feature vectors x(l) multiplied by the sign of the label y(l).
Depending on hyperparameter C, most of the learnt weighting coefficients al are
actually 0. The feature vectors corresponding to non-zero coefficients al are defining
the SVM hyperplane and are called ‘support vectors’. In Equation 4.12, instance l∗

is the one with the largest al.

The prediction ŷ(t) for a test instance x(t) is then given by

ŷ(t) = sgn(wTx(t) + b), (4.13)

with the sign-function sgn() returning +1 for a positive input and −1 for a negative
one. Instead of a binary classification problem, also regression problems can be
solved analogously. For more information on the derivation of support vector
regression (SVR), which is also employed in the third part of this thesis, the
reader is referred to the literature [1].

So far, for support vector classification, the assumption has been that only two
classes are present in the data. Nevertheless, more than two classes are often present
in CA tasks [13]. To tackle multi-class problems with an SVM, a ‘workaround’
needs to be employed, training an ensemble of SVMs. The most popular schemes
for this are one-vs-one (pairwise) and one-vs-all [243]. In the first scheme, for each
pair in the set of classes, an SVM is trained and predictions are combined. In the
second one, a single SVM is trained for each class, discriminating class instances
from instances of all other classes; then, the SVM with the maximum output of the
prediction function (see Equation 4.13 without the sign-function) is considered the
most likely class.
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4.3.2 Kernels

Finally, also classification (or regression) problems, where the feature space is in-
herently not linearly separable need to be taken into account. To tackle this,
kernels are employed, a concept which is used also for ML approaches other than
SVM, such as, e. g., k-nearest neighbour.

The idea is that the feature space is implicitly transformed into a higher-
dimensional space, in which it is linearly separable again. Putting w from Equa-
tion 4.11 into Equation 4.13, it is shown that the dot product of x(l) and x(t) is
required for the prediction function, but not the feature vectors themselves. The
same is valid for Equation 4.8 [224]. This means that it is not required to (explic-
itly) transform the feature vectors into another space, but it is sufficient to know
the result of the dot product between the transformed versions of x(l) and x(t), or all
pairs of x(l) for training, respectively. This is computationally much more efficient
and known as the ‘kernel trick’ [1].

Given a feature space transformation Φ, the corresponding kernel KΦ, given two
feature vectors x and x′, is defined as

KΦ(x, x′) = Φ(x)TΦ(x′). (4.14)

Valid kernels need to fulfil certain conditions [1] and need to be optimised for a given
task. Besides the linear kernel, which is implicitly given by just using the (linear)
dot product as in Subsection 4.3.1, the most popular kernel is probably the Gaussian
or radial basis function kernel [240], given by

KΦ(x, x′)σ = exp
||x−x′||2

2σ2 , (4.15)

with a tunable hyperparameter σ. It has been shown that a Gaussian kernel can
be tuned to have a behaviour similar to linear SVM [244], but it is able to separate
feature spaces with a highly non-linearly separable distribution [240].

Suitable kernels for histogram feature representations have been proposed with
the histogram intersection kernel (HIK) [245] and with the generalised histogram
intersection kernel (GHIK) [246]. The HIK is defined as

KΦ
HI(x, x

′) =
n∑
i=1

min{xi, x′i} (4.16)

and the GHIK as

KΦ
GHI(x, x

′) =
n∑
i=1

min{|xi|β, |x′i|β}, (4.17)

with a hyperparameter β.
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In the context of BoAW, it has been shown that a HIK is superior to the lin-
ear kernel [26, 190]. However, the authors of both works state that the performance
increase is not big in case of an L1-([26]) or L2([190])-normalisation of the BoAW his-
tograms and they conclude that a linear SVM is preferable when working with large
datasets and/or codebook sizes as more efficient optimisers can be employed [190].
Furthermore, it is not clear whether the complexity was optimised in the authors’
work.

4.4 Neural Networks

Artificial neural networks (ANNs) have promoted the success of ML and AI during
the last decade in a meaningful way. Though early works date from the 1940s
(McCulloch and Pitts [247]) and 1950s (Rosenblatt [248]), a major breakthrough has
not happened until the recent decade, where deep learning (DL) [249] started to
dominate the research on ML [250]. The huge impact and success of deep learning
has been triggered by three circumstances [251]: first, the technical progress in
computer hardware, most importantly graphics processing units, which allow for a
large degree of parallelisation (vectorisation), corresponding interfaces, and software
frameworks, such as Tensorflow [252] and PyTorch [253]. Second, large-scale
data could be stored and distributed easily, at minimum costs. Third, novel ANN
architectures and learning techniques [249] have improved recognition performances
in many ML tasks in computer vision, NLP, CA, and other fields.

While ANNs have clearly been inspired by the mechanisms in the human brain
and nervous system, they are not (yet) as capable as the human brain through-
out many tasks [254]. More specifically, ANNs require larger amounts of data to
be trained compared to humans. Moreover, it is assumed that humans perform
unsupervised or reinforcement learning [255], while many ML tasks, such as, e. g.,
emotion recognition in speech, are often solved by supervised learning [20].

This section gives a quick overview on the basics of ANNs and DL and the
model types or architectures that are used in the experiments of this thesis. A
comprehensive textbook on DL has been published by Goodfellow et al. [249].

4.4.1 Artificial neurons

All types of ANNs are typically built from basic units, the so-called neurons. Com-
mon definitions are similar to the model proposed by McCulloch and Pitts [247]; in
the following, the definition given in Figure 4.4 is assumed.

The neuron model consists of I + 1 inputs xi, where I is the number of features.
The extra input (with index 0) is a commonly used bias, which has a constant value
of 1. Each input is weighted with a specific weight wi. Then, all weighted inputs
are summed up (

∑
) and mapped by a non-linear activation function f(). The
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Figure 4.4: The neuron model.

output ŷ is then given by

ŷ(x) = f

(
I∑
i=0

wixi

)
= f(wTx), with x0 = 1. (4.18)

This equation is quite similar to the output prediction of an SVM with a linear
kernel (cf. Section 4.3, Equation 4.13).

4.4.2 Multi-layer perceptron

As it has been shown already for SVM that only few classification (or regression)
problems can be solved with this type of ‘linear’ model, several neuron units are
usually used in parallel and concatenated to layers. The neuron outputs are then
propagated and used as an input for all neurons in the succeeding layer. This
type of model is shown in Figure 4.5 and usually called (standard) feedforward
neural network or multi-layer perceptron (MLP) [249]. The activation function
is of fundamental importance when building neural networks from several layers
of neurons. Without a non-linearity, the final output of the network ŷ could be
represented equivalently by a simple linear model (as given in Equation 4.18). Yet,
with a non-linear activation function, also non-linearly separable problems can be
solved [249].

As illustrated in Figure 4.5, the first layer is called input layer and does typ-
ically not contain any weights, but their outputs are just identical with the input
features. For this, the number of neuron units in the input layer is always equal to
the number of (input) features. The succeeding layers are called hidden layers as
they contain an ‘internal’ representation and the neuron outputs (‘activations’) are
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Figure 4.5: Multi-layer perceptron with two hidden layers (h). The input dimen-
sionality (feature space) is 5. The 1st hidden layer has 6 nodes (neurons), the 2nd

hidden layer has 3 nodes, and the output layer has one unit. Each neuron of a layer
is connected to each neuron of the subsequent layer, scaled with a weight. Only a
few connections are shown in this illustration. The biases are not shown either.

neither the model input nor output, i. e., they are not observable from outside, when
considering the neural network as a black-box model. The final layer is called output
layer and the number of output neurons is equal to the number of outputs. More
specifically, this means that for a regression task or a binary classification problem,
the model has usually only one output neuron, where the co-domain of the output
activation function must be in the range of the expected outputs (regression), or, ei-
ther in the range of [−1,+1] or [0, 1] for binary classification, respectively. Of course,
also several regression targets or binary classification tasks can be learnt at the same
time. For multi-class tasks, however, the number of outputs is typically equal to the
number of classes. The targets are then represented in terms of a one-hot encod-
ing, i. e., classes A, B, & C would be converted into (1, 0, 0), (0, 1, 0), (0, 0, 1), as an
example. This ensures that the Euclidean distances between output representations
of two different classes are equal and that there is no ‘order’ of classes. During
inference (when using the model to make predictions), the class with the maximum
output is considered as the prediction of the model.

Each node (neuron) in a layer is connected with each node in the subsequent
layer, where the corresponding activation is scaled with a weight at the input of
each node and a bias is added (not shown). As recent neural network architectures
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usually incorporate at least two but usually (much) more hidden layers, the ter-
minology ‘deep neural network’ (DNN) and ‘deep learning’ is commonly used for
corresponding models. It has been shown theoretically that, in principle, any func-
tion can be approximated by an MLP with corresponding weights and activation
functions (‘universal approximation theorem’) [256]. The exact architecture of the
network and hyperparameters, i. e., the configuration of the training algorithm, need
to be designed and/or optimised depending on the task and data.

4.4.2.1 Activation functions

As discussed above, a non-linear activation function is normally required at the out-
put of each neuron node. The most common activation functions with corresponding
output ranges (co-domains) are listed in the following [257].

1. Sigmoid:

f(x) =
1

1 + e−x
, Range: (0, 1) (4.19)

2. Hyperbolic tangent:

f(x) =
e2x − 1

e2x + 1
, Range: (−1, 1) (4.20)

3. Rectified linear unit (ReLU):

f(x) = max(0, x), Range: [0,∞) (4.21)

4. Softmax:

f(x) =
exi∑K
j=1 e

xj
, Range: (0, 1) (4.22)

The softmax activation function is usually (but not only) used in output layers
in multi-class classification tasks, where only one class is correct for one instance. It
implies a normalisation of the activations (after the non-linear exponential function)
and thus, the output activations sum up to 1. All activation functions share the
property of monotony.

4.4.2.2 Training

During the training process, the optimal parameters of the ANN, i. e., the weights,
are learnt. As a mathematical term to decide how ‘good’ the learnt parameter set
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is, a loss function, also called objective function, is defined to measure the er-
ror between the model output (given the current weights) and the ground truth.
The weights of the ANN are then usually optimised using a gradient descent
approach. In this class of optimisation methods, the weights are initialised with
(pseudo-)random numbers and then updated iteratively in the direction of the neg-
ative gradient (derivative) of the loss function.

With the parameters of the ANN θ (weights, including biases), the loss function
J(θ) can be the mean squared error (MSE) [249], given as

JMSE(θ) =
1

2L

∑
l∈L

(
y(l) − ŷ(l)(x(l); θ)

)2
. (4.23)

MSE loss is the ‘default’ loss for regression problems but it can be applied in clas-
sification problems (one-hot encoding) as well. Nevertheless, the most commonly
used loss for classification is categorical cross-entropy (CCE) [249], defined as

JCCE(θ) = − 1

L

∑
l∈L

K∑
k=1

y
(l)
OH,k log ŷ

(l)
OH,k(x

(l); θ), (4.24)

where y
(l)
OH,k is the one-hot encoded ground truth label and ŷ

(l)
OH,k the corresponding

model output. Usually, the softmax activation function is used in the output layer,
but any other activation function returning an output in the range of [0, 1] could be
applied. When dealing with only two classes and one output neuron, the binary
cross-entropy (BCE) is more appropriate:

JBCE(θ) = − 1

L

∑
l∈L

(
y

(l)
OH,k log ŷ

(l)
OH,k(x

(l); θ) + (1− y(l)
OH,k) log(1− ŷ(l)

OH,k(x
(l); θ))

)
,

(4.25)

BCE can also be used for multi-label tasks, i. e., when one instances may belong to
(none or) multiple classes, usually with a sigmoid activation function in the output
layer. However, mean absolute error (MAE) loss has been shown to be a better
alternative for classification when facing datasets with noisy labels [258].

Once the loss is defined, the gradient of the loss ∇J(θ) can be computed and
the weights are updated iteratively. For this, the gradients need to be computed for
each training instance, i. e., ∇J (l)(θ), as defined before but without the averaging. In
each iteration, the following operation to update the model parameters is performed:

θ ← θ − η

L

L∑
l=1

∇J (l)(θ). (4.26)

The hyperparameter η is called the learning rate. It controls how fast the weights
are updated in each iteration and is usually chosen � 1. Usually, in the updates,
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a momentum term is added, which means that the parameter updates from the
previous iteration are added scaled with a certain factor [249]. This prevents that
the learning algorithm converges into local minima.

It is quite straightforward that the gradients of the loss can be directly utilised
to update the weights in the output layer. However, for the hidden layers, the
loss ‘before’ the output layer would be required. This is commonly done using
backpropagation. For this, the employed activation functions must be (at least
piecewise) differentiable. The equations are not derived here, but the reader is
referred to the corresponding literature [249, 259]. Very efficient implementations
on graphics processing units have been published as part of the previously mentioned
toolkits. For this, researchers and engineers are usually not required to implement
the training algorithm itself, but they need to take care only of feature design and
the optimisation of the ANN architecture and hyperparameters.

The update algorithm in Equation 4.26 is called batch gradient descent as the
neural network is updated at once based on the (averaged) gradients from the whole
training set (‘batch’). However, it is often beneficial to update the network already
using the gradients from each (randomly picked) instance. This procedure is called
stochastic gradient descent [260]. Nevertheless, the most common method is to
use so-called mini-batches of data in each update cycle, i. e., a randomly selected
subset of the whole training date. The learning algorithm is then called mini-batch
gradient descent [249].

Once all instances from the training set have been used for updates, this is
called one epoch. After this, the training cycle restarts using new mini-batches
from L, where each instance is used only once in each epoch. Though the number
of epochs is usually predefined as a hyperparameter, the ANNs tend to overfit after
training for a while. This is why early stopping is commonly employed as part of
the training procedure, which means that the training process is finished once the
loss (or another metric) does not improve anymore on the development set. As an
alternative, the network weights at the epoch where the minimum loss was achieved
can be restored.

In practice, more sophisticated training algorithms are applied, referred to as
optimisers, which improve and adapt the learning rate, such as RMSprop (‘root
mean square propagation’), or both learning rate and momentum, such as Adam
(‘adaptive moment estimation’) [261]. In fact, the learning rate is a very critical
hyperparameter and the mentioned optimisers make them adaptive w. r. t. both it-
erations and individual network weights, by this improving the robustness of the
training process. Thus, only an initial learning rate is typically set, together with
the (mini-)batch size and the (maximum) number of epochs.
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4.4.2.3 Regularisation techniques

As ANNs tend to overfit, training is usually enhanced by so-called regularisation
techniques. These are approaches with the goal to improve generalisation, i. e., re-
duce the error on the test set, without taking into consideration the (potentially
larger) error on the training set [249]. A large number of methods have been pro-
posed in this context. In the following, the ones most relevant for this thesis are
quickly introduced.

Weight decay A penalty term is added to the loss function, penalising large
weights in the ANN [249].

Dropout When using dropout, a certain percentage of outputs is set to 0 randomly
(‘dropped’) in corresponding layers [262]. To ensure the sum over the input to the
next layer remains at approximately the same magnitude, the remaining activations
are scaled. Dropout helps to prevent ‘co-adaptation’ of neuron weights in the same
layer and thus it can be considered as generating an ensemble of models [263]. When
the model is trained, during inference, dropout is not applied and activations remain
with their original scale.

Batch normalisation A very popular technique applied to the outputs of ANN
layers is batch normalisation. It is quite similar to (z-score) feature normalisation
as discussed in Section 4.2.2, but it is applied to the internal representations of
the ANN. During training, the parameters for normalisation (mean and standard
deviation) are estimated from the data in each mini-batch. During inference, the
averaged parameters learnt during training are used for normalisation. Besides
improved generalisation, batch normalisation mainly speeds-up the convergence of
the training process [264].

Data augmentation As datasets used in ML are usually relatively scarce, an
artificial augmentation of the training data can increase the robustness of the model.
A very generic way to do this is by simply adding noise to the features at the input
of the neural network [265]. When working with audio signals, domain-specific
augmentation techniques can also be applied directly to signals, prior to a potential
feature extraction step. This includes, e. g., time stretching [266], pitch shifting [267],
and random frequency filtering [268].

4.4.3 Convolutional neural networks

In recent years—mainly pushing ‘deep learning’ forward—novel architectures have
been proposed, which are much more efficient than the discussed MLPs, most im-
portantly, the so-called convolutional neural networks (CNNs) [249].
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In these types of networks, operations similar to sample-domain filtering (i. e.,
convolutions [43]) are executed. The specific characteristic of CNNs is weight shar-
ing, i. e., that overlapping patches in the input are processed with the same weights,
while the output remains with the same geometric shape (potentially sub-sampled).
Though most popular in image classification tasks [269], they have proven to be
very useful also in the audio domain, either using the spectrogram [270] or directly
the audio waveform [271] as their input.

The property of sharing weights between different regions of the input also pro-
vides a certain degree of shift invariance. This is meaningful because objects (in
images) or events (in audio) are commonly not present at always the same spot.
CNNs are composed of a series of convolutional layers and pooling layers, often
followed by batch normalisation. Convolutional layers consist of a predefined number
of kernels, where each kernel is shifted over the input with a certain stride (step size).
As an example, for a 2D-convolutional layer, a spectrogram given as a 3D-tensor of
size (nframes×nbins× 1) is transformed into a tensor of size (nframes

stride
× nbins

stride
×nkernels).

For each kernel (‘filter’), a feature map is generated. In subsequent layers, each
kernel uses the full set of feature maps as input, thus, resulting in a 3D-convolution.
Consequently, a 1D-convolutional layer maps from a two-dimensional input to a two-
dimensional output, where the first dimension is representing time (samples/frames)
and the second one representing the features. Convolutional layers are usually fol-
lowed by a ReLU activation function [249].

After each convolutional layer (and potential batch normalisation and activation
operations), pooling is applied [249]. Pooling is usually realised as max pooling,
where only the maximum activation over a certain neighbourhood is propagated to
the next layer. As an example, when working with 2D-convolutional layers, they are
typically followed by a max pooling operation with a neighbourhood of size (2, 2)
and a stride (step size) of the same size, resulting in a (non-linear) sub-sampling by
a factor of 2. Max pooling is usually done independently for each feature (map).
Pooling generally increases the shift-invariance of the model, while at the same time
compressing the information propagated through the neural network.

CNNs in the context of audio are usually employed for feature extraction, based
either on the raw signal or the spectrogram as a mid-level representation. CNNs as
a ‘feature extraction’ front-end are often combined with MLPs as a ‘back-end’ [270].
Generally, the same regularisation techniques, learning algorithms and optimisers
as discussed before can also be applied for CNNs.

It has been shown that pre-training of CNNs for feature extraction, i. e., training
them on data different from the task they are applied to in the end, can improve the
results of the model. Employing pre-trained CNNs can even be done across domains
(‘transfer learning’), e. g., from the image classification domain to CA, where either
only the neural back-end is re-trained for the given task or a different classifier (e. g.,
an SVM) is trained based on the outputs of a certain layer of the network [270, 272].
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4.4.4 Recurrent neural networks

While MLPs and CNNs are types of feedforward neural networks, another major
class of ANNs are the so-called recurrent neural networks (RNNs) [249]. The main
difference is that in RNNs, units hold an internal state which is propagated to units
of the subsequent, previous, and/or the same layer (‘feedback connections’). For
this, the information in RNNs is processed in terms of ‘time’ steps, which typically
requires a ‘sequential’ nature of the input data. For this, RNNs are suitable to
cope with time series, such as, e. g., financial data [273], natural language [274], or
audio [275].

Though many different types of RNNs, such as echo state networks [249] or Hop-
field networks [276] exist, the ones most commonly used in CA and speech recogni-
tion are the so-called gated RNNs [249], where the most famous representative is
the Long short-term memory (LSTM)-RNN.

4.4.4.1 Long short-term memory

LSTM-RNNs have been proposed by Hochreiter and Schmidhuber in the 1990s [277].
Instead of using standard neurons (as introduced in Subsection 4.4.1), they are
replaced by LSTM cells [249]. Each cell is composed of a cell memory, an internal
cycle (‘self-loop’), and four neurons, where one neuron processes the input and the
other three are gates controlling the flow of information within the cell, as illustrated
in Figure 4.6. All gates normally have a sigmoid activation as their output, which
is then multiplied with the corresponding activations in the cell. There are the
following three gates:

1. The input gate, to control the amount of the input activation that is propa-
gated into the cell memory.

2. The forget gate, to control the amount of activation in the cell memory that
is propagated to the next time step and added to the input of the next time
step.

3. The output gate, to control the amount of activation in the cell memory that
is present at the output of the cell.

LSTM-RNNs are one method to solve the vanishing gradient problem [249],
which is generally present in RNNs, resulting in gradients converging to zero (or
diverging, depending on the activation functions) when propagating the error back
through a large number of time steps (and layers) during training. In principle, the
same regularisation techniques and optimisers as introduced before can be used also
in the context of LSTM-RNNs. However, the training process is usually much more
complex than for feedforward neural networks [278].
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Figure 4.6: Long short-term memory cell. The arrows show the propagation of
information. The cell memory usually contains only a scalar, but also variants with
vectors have been proposed. t→ t+1 represents a time step (delay). × stands for a
multiplication (‘gate’), + for a summation, f stands for the input/output activation
function, e. g., tanh, and σ is the sigmoid activation function of the gates. The input
(vector) is x and the output (usually a scalar) is ŷ. The weights of the neurons are
not displayed explicitly.

In scenarios where both past and future data from a time series is available,
bidirectional LSTM-RNNs [279] (BLSTM-RNNs) can be employed, where two
RNNs are combined—one network propagating the data in the correct temporal
order and a second one processing it in the reverse temporal order.

While LSTM-RNNs generally output a sequence of the same rate as the input,
in the final LSTM layer, depending on the given ML task, it might be preferred to
output only the last output of the sequence, to end up either in a single feature vector
that can be further processed with an MLP or directly in the output. Otherwise, a
pooling across the time dimension is required after the LSTM-RNN.

Gated recurrent units (GRUs) [280] are a derivative of LSTM units, where
the output gate is dropped, leading to fewer parameters while keeping a similar
modelling ability.
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4.4.5 Final remarks

This section has just focussed on the essential fundamentals of ANNs and deep
learning that are required for the models employed in this thesis. Research in the
field has developed a very high dynamics during the last few years, with very suc-
cessful generative approaches, mainly generative adversarial nets [281] and vari-
ational autoencoders [282]. Furthermore, refinements in CNN-based models, such
as, e. g., residual neural networks [283] or capsule neural networks [284], networks
pre-trained on large amounts of data [285], and large numbers of (annotated) online
resources [286] have provided researchers and developers with an almost infinite set
of tools to create models and systems.

4.5 Evaluation of Models

In this section, the methods of evaluation that are used in this thesis are discussed.
In general, evaluation is done to optimise hyperparameters and to obtain a reliable
estimate of the performance of a finalised model.

4.5.1 Data partitioning

As mentioned before, prior to model training, the available data needs to be par-
titioned into (at least) a training and test set, and usually also a development set.
While the partitioning can be done in a random way for many tasks, for speech-
related tasks—or other kinds of subject-related tasks—, speaker-independence
(subject-independence) is an important aspect [1]. This means that all instances
from a subject must be assigned to the same partition. Otherwise, the performance
estimates would likely be overestimated as the model has knowledge about specific
personal specificities of the subjects’ voices. Disjunct splits are of particular im-
portance in cases where human traits are recognised, i. e., targets that are constant
for each subject. Another important aspect of partitioning is stratification, which
means that the class (or continuous) label distribution should be similar across par-
titions.

An interesting alternative to using fixed partitions, especially in cases of little
data, is cross-validation (CV) [123]. In (stratified) k-fold CV, a given dataset
is first split into k different (disjunct) subsets. Then, k models are trained on
k different combinations of the data, where one subset is withhold for evaluation
and the remaining k − 1 subsets are used for training. Finally, predictions on the
‘evaluation subsets’ are (concatenated and) evaluated. In case of hyperparameter
tuning, the CV can be used either for tuning only and a fixed test set is kept aside,
or more sophisticated techniques such as nested CV [287] can be utilised. To train
the final model which is evaluated on the test partition, all training and development
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A B C
A e1,1 e1,2 e1,3

B e2,1 e2,2 e2,3

C e3,1 e3,2 e3,3

Table 4.1: A confusion matrix (3 classes).

splits can be fused—if the optimum hyperparameter setting is expected to be similar
for the fused data.

Also when employing CV, speaker-independence should be respected. For this,
leave-one-speaker-out (LOSO) CV is often used, where each split consists of all
samples from one subject—consequently, each model is trained on the data from
all subjects but one and the performance estimate is representative for ‘unseen’
subjects. In general, in order to preserve comparability between ML experiments,
always the same partitioning should be used for a given dataset.

In the following, different metrics are discussed to assess the ‘correctness’ of
predictions, based on the available ground truth labels.

4.5.2 Metrics for classification

In the context of the evaluation of classifiers, the confusion matrix is the fun-
damental representation [123]. Given K classes, the confusion matrix has the size
K×K, where rows and columns are assigned to each class. Though different conven-
tions for the assignment of rows and columns exist, in this thesis, it is defined that
the rows contain the true instances while the columns contain the predictions.
An example with three classes (A, B, & C) is shown in Table 4.1.

The entries ei,j (row i, column j) specify the number of instances from class i
that have been classified as j. It is evident that the correctly classified instances are
those on the main diagonal (ei,i). To compress the information into a scalar metric,
the simplest option is to use the accuracy. It is defined as the sum of the entries
on the main diagonal (trace) divided by the number of instances in the respective
test set:

Acc =

∑K
i=1 ei,i∑K

i=1

∑K
j=1 ei,j

. (4.27)

The accuracy is a number between 0 and 1, usually expressed in percent. An accu-
racy of 100 % means perfect classification, while an accuracy of 0 % means that all
instances have been misclassified.

As the accuracy does not provide any information on the classification perfor-
mance of individual classes or the type of error, further measures are usually pro-
vided [1]. The most important ones are recall and precision. The recall is defined
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as

Reci =
ei,i∑K
j=1 ei,j

(4.28)

and the precision is defined as

Precj =
ej,j∑K
i=1 ei,j

. (4.29)

In other words, the recall expresses the ratio of instances from a class that has been
classified correctly, while the precision specifies the ratio of the instances predicted
as a class that actually belongs to this class. To combine recall and precision, the
harmonic mean of precision and recall is often reported, called F-measure:

F1j =
2 · Reci · Preci
Reci + Preci

. (4.30)

Recall, precision, and F-measure are class-specific measures, i. e., the respective
measure can be computed for all classes.

To summarise the class-specific metrics into a single one, the unweighted average
over all classes is often reported, most importantly, the unweighted average recall
(UAR). It is defined as

UAR =

∑K
i=1 Reci
K

, (4.31)

i. e., the arithmetic mean of the class-specific recalls. For this, the UAR is also
referred to as macro-average recall or unweighted accuracy. The UAR is
usually reported as the only metric, as a low precision in a certain class always results
in a low recall in another class and the information would be somehow redundant
to a certain extent. Furthermore, it must be noted that the precision is not defined
in cases where a class is never predicted by a model. The confusion matrix is also
very often presented in terms of percent, where each entry is divided by the row
sum. In this representation, the recalls are explicitly given as the entries on the
main diagonal and the UAR is their arithmetic mean.

The UAR is suitable for datasets with imbalanced classes as the recall of each
class has an equal weight (‘unweighted’), compared to the accuracy, where larger
classes have a larger influence on the result. The accuracy can also be computed as
the sum of the recalls weighted by the corresponding ratio of instances in each class
and is therefore sometimes referred to as weighted average recall.

For the UAR, the chance level of a classifier is 1
K

, i. e., a classifier predicting
always the same class (or making random decisions) will always lead to this UAR.
This is considered as the lowest baseline a classifier has to surpass in order to prove
that anything meaningful can be learnt at all.
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For binary decision problems, the same overall-metrics can be used as for
multi-class problems. However, when dealing with detection tasks (‘positive’ vs
‘negative’), the recall, precision, or F-measure are commonly defined as the one for
the positive class [1]. One reason for this is that the negative class usually has
much more instances and a prediction of ‘negative’ is considered the default and not
relevant to be reported. In this context, the correctly classified instances from the
positive class are also referred to as true positives, the ones misclassified as negative
as false negatives, while the negatives ones misclassified as positive are the false
positives. The recall is sometimes called sensitivity in this context.

Another representation relevant for binary decision tasks is the receiver oper-
ating characteristic (ROC) curve [123]. It exploits the confidences of a classifier
(probability estimate of ‘positive’) and not the binary predictions. For different
thresholds to make the binary decision based on the confidences, the true positive-
rate (=recall) is plotted over the false positive-rate (false positives divided by the
sum of ‘negative’ instances). As a scalar metric between 0 and 1, the area under
the curve (AUC) can be reported.

4.5.3 Metrics for regression

To evaluate regressors, the similarity between test labels and predictions is measured.
While the mean absolute error [1] or the mean squared error [123] can be
suitable measures for this, for the experiments in this thesis, correlation metrics are
utilised.

The simplest metric is the (linear) correlation [239], also called Pearson’s cor-
relation coefficient (PCC) [1]. With y and ŷ as the means (cf. Section 3.3, Equa-
tion 3.8) of y and ŷ over all test samples and the number of test samples |T |, the
(empirical) covariance is given by

sy,ŷ =
1

|T | − 1

|T |∑
t=1

(y(t) − y)(ŷ(t) − ŷ), (4.32)

and the variances by

s2
y =

1

|T | − 1

|T |∑
t=1

(y(t) − y) and (4.33)

s2
ŷ =

1

|T | − 1

|T |∑
t=1

(ŷ(t) − ŷ). (4.34)

With these definitions, the PCC is defined as

ρPCC =
sy,ŷ
sysŷ

. (4.35)
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Figure 4.7: Visualisation of a continuously valued target and corresponding predic-
tions. The predictions are a scaled and shifted version of the target. The PCC is
1.00 and the CCC is 0.15.

The PCC is a value in the interval of [−1, 1], where 1 is maximum correlation between
prediction and target and 0 stands for orthogonality (‘chance level’); negative values
imply a negative correlation. It must be noted that the PCC is a scale- and shift-
invariant metric, which means that it is also maximum (= 1) if the prediction is a
scaled and shifted version of the target (cf. Figure 4.7).

However, it might be required that the predictions directly meet with the targets.
Therefore, as a ‘combination’ of correlation and error, the concordance correla-
tion coefficient (CCC) has been proposed [288]. It can be defined as [289]

ρCCC =
2sy,ŷ

s2
y + s2

ŷ + (y − ŷ)2
. (4.36)

As the PCC, the CCC ranges from −1 to 1, but it is not scale- and shift-invariant
and therefore reaches the maximum only if predictions and targets are identical
(cf. Figure 4.7). The CCC has established itself as the main evaluation metric for
emotion recognition in continuous annotation spaces [18].

Finally, for evaluations where the numeric range, scale, and proportionality are
not relevant, a rank correlation metric, such as Spearman’s ρ is suitable [290].
It is also maximum (= 1) in cases where the predictions and corresponding labels
have a monotonous relationship.

4.5.4 Statistical significance testing

To complete this section on evaluation, the concept of statistical significance should
be mentioned [291]. In statistics, hypothesis testing is an omnipresent, yet con-
troversial, topic [292]. Loosely speaking, significance testing tells if the difference
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between two results (e. g., the classification performance of two models) is based on
coincidence or not.

More precisely, a null hypothesis is made presuming that the samples (i. e., the
results provided by two different machine learning approaches) are actually drawn
from the same population. This means, the null hypothesis assumes that there is
no difference in performance. Then, a significance test is performed computing a
p-value, which tells the probability of receiving the actual experiment result (or
a result even more different from the baseline) under the assumption that the null
hypothesis is true [293]. In case the p-value is below a certain (predefined) level
of significance, the null hypothesis is rejected and the difference between two
distributions is considered statistically significant. The level of significance is fixed
usually as either 0.05 or 0.01.

In order to conduct significance testing, an ML experiment with one model (con-
figuration) needs to be repeated a certain number of times to simulate a population
of results. In case of BoAW or neural network models, this is quite easy setting a
different random seed in each run to generate new sequences of (pseudo-)random
numbers for codebook generation or weight initialisation, respectively.

As a significance test, under the assumption that the experimental results are
normally distributed and their variances are equal, the two-sample student’s t-
test can be used [294]. If the variances are different, the Welch’s t-test can be
employed [295]. The z-test is an alternative to student’s t-test if the population
variance is known [296]. In the experiments presented in Chapter 7, an omnibus test
by D’Agostino and Pearson is considered to check for the normality of the obtained
results [297].

93





Part III

EXPERIMENTS

95





5

The openXBOW Toolkit

This chapter introduces and describes in detail the openXBOW toolkit for mul-
timodal BoW processing. openXBOW1(cf. Figure 5.1) stands for open-source
X-modal (‘crossmodal’) Bag-Of-Words toolkit and has been developed in the con-
text of the research work of the author. As the name implies, the main purpose is
to evolve and disseminate a software tool to:

1. Unify approaches to generate BoW representations from both numeric and
symbolic input data, across modalities.

2. Integrate all different variants of the BoW processing chain, as introduced
in Chapter 3, into a single software.

3. Standardise a toolchain for BoW processing, promoting transparent and
reproducible research.

4. Provide a simple-to-use software to generate additional feature repre-
sentations (in addition to, e. g., functionals) and advance the state-of-the-art
of standardised feature representations.

OpenXBOW is written in the Java programming language [298] and published as
a repository on GitHub2 under the GNU General Public License v3 3. An accom-
panying article has been published in the Journal of Machine Learning Research in
2017 [29].

This chapter first introduces the main paradigms, the software architecture, and
the computational performance of openXBOW in Section 5.1. Then, an overview
of all features provided by the toolkit is given in Section 5.2. Finally, in Section 5.3,
the impact of openXBOW is presented.

1‘open crossbow’
2https://github.com/openXBOW/openXBOW
3https://www.gnu.org/licenses/gpl-3.0.html
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Figure 5.1: The logo of openXBOW.

5.1 Paradigms and Architecture

When developing openXBOW, the design decisions have been motivated by several
paradigms, as introduced in the following.

5.1.1 Simplicity

All configurations of openXBOW, including the definition of input and output
filenames and all options of the BoW approaches, are done through a command-
line interface. This has the advantage that no additional configuration files are
required and settings can be shared easily via e-mail, text messages, or websites.
Moreover, only a few options are needed, in fact, only the name of the input and
output files for the default configuration. A tutorial, explaining six different use
cases is provided on the website of the repository4.

As both the source code and an executable JAR (Java archive) file are available
in the repository, no installation or compilation is required to use openXBOW. This
is even possible across multiple platforms, such as Linux, Microsoft Windows, or
macOS, i. e, on each platform, where a Java runtime environment is available.

Furthermore, no external libraries are linked to openXBOW and it uses
solely the Java standard library.

5.1.2 Flexibility

As several standards for file formats have established in the ML research community,
users of openXBOW should have the option to use them with openXBOW right
away, without the requirement of converting files into a specific format. Therefore,
openXBOW supports the following file formats:

� ARFF (attribute-relation file format), as used by the ML toolkit Weka [161].

� CSV (comma-separated values), as a very common and simple format. Be-
sides the comma, also the semicolon is supported as a separator of the columns
in the feature files (as used, e. g., by openSMILE [23]). The type of the sep-
arator can be inferred automatically for the input and chosen for the output.

4https://github.com/openXBOW/openXBOW
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� Libsvm file format, as required by the open-source SVM toolkits Libsvm [299]
and Liblinear [300]. This format is only supported for the output files as it
is typically used by ML toolkits, not by feature extractors.

Furthermore, labels can be either included in the feature files or not and may be
optionally propagated to the crossmodal bag-of-words (XBOW) output files. Also
pre- and post-processing of the data can be done directly by the toolkit on request.
Moreover, it is even possible to provide openXBOW with a Liblinear model file
and write the SVM predictions directly into a JSON (JavaScript object nota-
tion) file. This avoids the requirement of providing the corresponding software and
documentation when deploying models based on openXBOW features.

5.1.3 Reproducibility

All routines where random numbers are used (mainly the initialisation of the clus-
tering) are seeded, i. e., the output of these (pseudo-)random processes is always
the same, when the program is run on the same files with the same command line
options; this even applies when the toolkit is run on different platforms. Moreover,
the seed that is used to generate the random numbers is adjustable. By this, it
is possible to run openXBOW several times with the same BoW configuration to
study the influence of random decisions for the model.

In order to ensure reproducibility across different versions of openXBOW, a
testing module has been published as part of the tool, using the JUnit frame-
work5 [301]. When running the automated test, it is checked whether certain
test files provided in different formats through the repository are read correctly
by the corresponding module of openXBOW. Then, in a regression test, the BoW-
representations are generated for some default configurations and it is assessed
whether the output is the same as expected and provided by previous versions of the
toolkit. Finally, for a variety of further options, the processing chain is run and it is
checked whether no errors are thrown by any module. Using this test, researchers
modifying the source code can quickly receive some evidence if their code changes
the behaviour of openXBOW or crashes the code.

5.1.4 Software architecture

An overview of the software architecture of openXBOW is shown in Figure 5.2.
The classes that are most important to understand the basic workflow and their
relations are illustrated in the figure, while minor components (helper classes) and
subclasses of the Codebook class are not explicitly illustrated in order to improve
the readability.

5https://junit.org/junit5/

99

https://junit.org/junit5/


5. The openXBOW Toolkit

  Preprocessor
● Activity detection
● Normalisation 

(z-score / min-max)

Numeric LLDs Symbolic LLDs

  DataManager
  Mapping from 
  LLD vectors to 
  instances

● Temporal 
segmentation

     HyperCodebook
● Save / load codebooks

  CodebookText
● Min/max term frequency
● Stop characters
● N-grams
● Character n-grams

  Bag (numeric)
● Multi-assignment
● Soft assignment
● GMM
● Off codebook words
● N-grams (NumGrams)

  Bag (symbolic)
● N-grams
● Character n-grams

     HyperBag

● Logarithmic term frequency weighting
● IDF-weighting
● Histogram normalisation

     Reader
● ARFF
● CSV

     CLParser
  Options
  Filenames, codebook 
  generation methods, 
  normalisation, etc.

     Writer
● ARFF
● CSV
● Libsvm

  CodebookNumeric
● Random sampling
● K-means(++)
● Expectation maximisation
● Generic

  Postprocessor
● Normalisation (z-score / min-max)

     PredictSVM
● JSON

Figure 5.2: The software architecture of openXBOW. Solid lines represent the
propagation of data through the components. Dashed lines represent exchange of
information on configurations, normalisation parameters, or codewords. Arrows on
two sides mean that information can be exchanged in both directions, depending
on if an existing codebook is loaded or stored, respectively. Helper classes and
subclasses of the Codebook class are not explicitly displayed.
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A command-line parser (CLParser) interprets the user-specified command line
arguments, adds default parameters and stores them in an Options object. The
Reader component then loads the data file (and labels) and updates the Options
with information that is evident from the data and not necessarily specified in the
command line, e. g., the number, type (numeric/symbolic) and index of input fea-
tures.

In the next step, a DataManager creates a mapping between the index of the
LLD feature vectors and the instances (e. g., one audio file—as specified by the first
column of the input file). In case a temporal segmentation is requested (‘sequence
labelling’, cf. Section 2.2.1), the mapping from each LLD feature vector to each
temporal block (over which a BoW-representation is generated) is already initialised.
This has the advantage that LLDs that contribute to several output instances (one
analysis block is one instance in the case of a sequence labelling task) need to be
vector quantised only once—a process that is computationally intensive.

As a first optional processing step of the numeric LLDs, a normalisation (z-
score ‘standardisation’6 or min-max normalisation) and/or an activity detection are
performed. The latter tags all LLDs—based on either energy thresholding or VAD
information from the LLDs—where the signal of interest (e. g., speech) is not present
and which should not be taken into account for the BoW-representation. This is
implemented in the Preprocessor class.

Next, a so-called HyperCodebook is initialised, which is a wrapper of all code-
books, i. e., a symbolic codebook and an arbitrary number of numeric codebooks
(for different LLD subsets), as defined by the user. This class also provides methods
to load and store all codebooks, together with the parameters for pre- and post-
processing, the type of assignment (see below) and information on IDF weighting.
This functionality is quite important as openXBOW needs to be called on test
sets without re-training codebooks or re-estimating normalisation parameters (‘on-
line normalisation’), obviously. Details on the implemented methods for codebook
generation are given in Section 5.2 in this chapter.

The class HyperBag wraps all methods for numeric and symbolic word assign-
ment. Furthermore, the class is responsible for the (optional) histogram normalisa-
tion, logarithmic term frequency weighting, and IDF weighting. For the latter, the
document frequency as a model parameter is stored/loaded using the HyperCodebook
class. Also here, more details are given in Section 5.2.

A Postprocessor class implements two options to normalise the output XBOW
feature vectors, analogously to the Preprocessor. Finally, with the Writer class,
the representations can be stored in one of the three mentioned file formats, with
some specific formatting options, depending on the file type (e. g., header line, in-
stance names, user-defined separator; see Appendix A). Instead (or in addition to)
outputting the features, they can directly be decoded by openXBOW and the

6as used by, e. g., Grzeszick et al. [203] (‘whitening’)
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predictions (class labels and confidences) are written to JSON files through the
PredictSVM class. For this, an SVM model file trained using the toolkit Liblin-
ear [300] must be provided.

To conclude this section on the software architecture, a short example is given
to exemplify how to work with openXBOW. Consider a CSV file in the format
shown in the following excerpt:

instance name , n f eat 1 , n f ea t 2 , n f ea t 3 , n f ea t 4 , symfeat , l a b e l
’ i n s tance 01 ’ ,=0.5615 ,=2.0867 ,=0.5095 ,=1.8624 , ’ ’ , pos
’ in s tance 01 ’ ,=0.0661 ,=2.1741 ,=0.4108 ,=1.7599 , ’ This ’ , pos
’ in s tance 01 ’ ,=0.2243 ,=1.2169 ,=0.2017 ,=1.6096 , ’ i s ’ , pos
’ in s tance 01 ’ ,=0.0797 ,=2.3057 ,=0.6106 ,=1.9149 , ’ i s ’ , pos
’ in s tance 01 ’ ,=0.0319 ,=2.0945 ,=0.3948 ,=1.6333 , ’ good ’ , pos
’ in s tance 01 ’ ,=0.1467 ,=2.1875 ,=0.4088 ,=1.7196 , ’ ’ , pos
’ in s tance 02 ’ , 0 .5563 ,=0.6476 , 0 .0919 ,=0.6839 , ’ I ’ , pos
’ in s tance 02 ’ , 0 .7485 ,=0.7040 , 0 .1001 ,=0.5700 , ’ r e a l l y ’ , pos
’ in s tance 02 ’ , 0 .7070 ,=0.8274 ,=0.1066 ,=0.5037 , ’ l i k e ’ , pos
’ in s tance 02 ’ , 1 .5221 ,=0.9025 ,=0.0244 ,=0.3836 , ’ that ’ , pos
’ in s tance 03 ’ , 0 .1581 ,=0.7246 , 0 .4406 , 0 . 7134 , ’Oh’ , neg
’ in s tance 03 ’ , 0 .3474 ,=0.5006 , 0 .5103 , 0 . 5582 , ’ no ’ , neg
’ in s tance 03 ’ , 0 .2366 ,=0.6574 , 0 .4297 , 1 . 0 1 5 7 , ’ ’ , neg
’ in s tance 04 ’ , 2 .1883 ,=0.3156 ,=2.1238 ,=0.7530 , ’ This ’ , pos
’ in s tance 04 ’ , 1 .9796 ,=0.1564 ,=2.1679 ,=0.7507 , ’ i s ’ , pos
. . .

The given file has 7 columns, where the first one specifies the name of the instance,
the corresponding line (input feature vector) belongs to. For each unique instance
name, a XBOW representation (VSM) is created. The 2nd to 5th column contain a
numeric LLD vector, the 6th column natural language (text, i. e., symbolic features)
and the last column contains the class label (either pos or neg, which must be unique
for all rows of the same instance).

With the following call of openXBOW, a XBOW representation can be gener-
ated:
java -jar openXBOW.jar -i example.csv -o output.csv

This ‘default’ configuration generates a numeric codebook of 500 codewords by ran-
dom sampling (see Section 5.2) and a symbolic codebook (dictionary) of all words
found in the text. For the given file, the meaning of the columns is inferred auto-
matically; in the case of, e. g., multiple labels or if the numeric LLDs should be split
into subsets with dedicated codebooks, this can be specified with the -attributes

command-line parameter.
If a different codebook size is requested, this can be set using the -size option,

as shown in the following:
java -jar openXBOW.jar -i example.csv -o output.csv -size 3

-c kmeans++ -B codebook.txt -writeName

This call creates the following output (output.csv):
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’ i n s tance 01 ’ ; 0 . 0 ; 0 . 0 ; 0 . 0 ; 0 . 0 ; 1 . 0 ; 0 . 0 ; 0 . 0 ; 2 . 0 ; 1 . 0 ; 6 . 0 ; 0 . 0 ; 0 . 0 ; pos
’ in s tance 02 ’ ; 1 . 0 ; 0 . 0 ; 1 . 0 ; 1 . 0 ; 0 . 0 ; 1 . 0 ; 0 . 0 ; 0 . 0 ; 0 . 0 ; 0 . 0 ; 4 . 0 ; 0 . 0 ; pos
’ in s tance 03 ’ ; 0 . 0 ; 1 . 0 ; 0 . 0 ; 0 . 0 ; 0 . 0 ; 0 . 0 ; 1 . 0 ; 0 . 0 ; 0 . 0 ; 0 . 0 ; 3 . 0 ; 0 . 0 ; neg
’ in s tance 04 ’ ; 0 . 0 ; 0 . 0 ; 0 . 0 ; 0 . 0 ; 1 . 0 ; 0 . 0 ; 0 . 0 ; 1 . 0 ; 0 . 0 ; 0 . 0 ; 0 . 0 ; 2 . 0 ; pos
. . .

In order to ensure the readability of the output, a relatively small codebook size
of 3 (-size 3) has been chosen7. Instead of the default random sampling, a k-
means++ clustering is chosen (-c kmeans++). The codebook is written to a file as
well (-B codebook.txt); for creating the VSM on a test set, this codebook can be
loaded using the option -b codebook.txt (lowercase ‘b’). Moreover, the instance
name is added to the output (-writeName); the labels are added by default (if
present in the input).

This example gives only a rough impression of the usage of openXBOW and
does not reflect many more advanced options. For a more comprehensive tutorial,
the reader is referred to the repository8, where six different usage scenarios are
explained.

A full list of all command-line parameters is given in the manual of openXBOW,
which is found in the Appendix A. Section 5.2 highlights some of the most important
features.

5.1.5 Computational performance

The computational performance of openXBOW is respectable. The code was opti-
mised to speed-up the XBOW generation process as much as possible. Nevertheless,
in case of handling large data files, the platform is required to provide sufficient mem-
ory. However, except for the clustering process (see Subsection 5.2.1), data files can
also be processed incrementally (option -append).

In the following, the processing speed is exemplified for two usage scenarios:
crossmodal time-continuous emotion recognition and sentiment analysis of tweets.
The experiments were conducted on a workstation with an Intel Core i7-4770
(3.4 Ghz) CPU, 16 GB RAM, and Windows 10 operating system with Java
Version 8, Update 121.

For the first task, the SEWA (‘Automatic Sentiment Analysis in the Wild’)
database was exploited [302]. The partitioning and evaluation setup from the affect
analysis task of AVEC 2017 [18] was used. Detailed information on this challenge
task is given in Section 6.5 in the next chapter. In short, the data consists of audio-
visual recordings from 64 German subjects discussing an advertising spot through a
video chat. The data, with a total duration of approximately 89 minutes, has been
partitioned into a training (34 subjects), a development (14 subjects), and a test set

7This applies only to the numeric codebook, the size of the symbolic codebook is configured
differently, see Appendix A

8https://github.com/openXBOW/openXBOW
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(16 subjects). Besides the audio and video modalities, manual transcriptions of the
speech are provided.

As numeric low-level features, the 65 acoustic LLDs from the ComParE feature
set (see Section 2.3.1) and 49 facial landmarks9 extracted from the videos using the
Chehra Face Tracker [303] were employed. The numeric LLDs from acous-
tic and visual domains were fused (cf. LLD-level fusion in Figure 5.3) at a step
size of 10 ms10. As symbolic input, the textual transcription was used. A numeric
BoAW/BoVW representation with a codebook size of 1 000 was created using the
default random++ sampling (see Section 5.2); for the text domain, a symbolic code-
book (dictionary) of 346 words was created based on the text data available in
the training set. A XBOW output using overlapping blocks of 8 s, with a hop size
of 100 ms, was computed, resulting in approximately 53 000 instance-level feature
vectors of size 1 346 each.

The whole process on the mentioned machine took 263 s for the training set
(including the codebook generation) and 67 s for the development and the test set
altogether. Generating only a single XBOW feature vector for a chunk of 8 s duration
took 0.57 s.

For the second usage scenario, the runtime of the 4th tutorial in the openXBOW
repository11 was measured (‘Sentiment analysis in tweets using Bag-of-Words’).
Tweets are short messages of up to 280 characters shared by the users of the micro-
blogging service Twitter 12. Sentiment analysis [304] on Twitter is one of the most
investigated tasks in NLP [305]. In the given example, a BoW representation is
created for each of the 1 578 627 tweets in the Twitter Sentiment Analysis Training
Corpus [306]. The dictionary is generated from the first 1 000 000 instances in the
corpus, where a minimum term frequency of 2 000 is taken into account, which re-
sults in a dictionary of 1 875 terms. Generating the BoW CSV file for this whole set
(1 M instances × 1 875 features) took only 118 s.

5.2 Features

In the following, the techniques for codebook generation and word assignment (encod-
ing) of numeric LLDs that have been implemented in openXBOW are explicated.
This section is focussed on these functionalities as these are considered the most rel-
evant ones for the topic of this thesis. Thus, all options concerning symbolic features
and NLP are not further discussed at this point.

9Coordinates from defined points of reference in the face.
10The facial landmarks needed to be upsampled by a factor of 2.
11https://github.com/openXBOW/openXBOW
12https://twitter.com/
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5.2.1 Codebook generation

Generally, either a single or several numeric codebooks can be configured in
openXBOW. In case of several codebooks, the XBOW feature extraction process is
run independently for each subset of LLDs. This is exemplified in Figure 5.3. In the
top of the figure, the ‘standard’ processing chain is executed, where a single code-
book is generated for the full LLD feature space (‘LLD-level fusion’). In contrast,
at the bottom of the figure, the LLD space is first split into a defined number of
subsets, where codebooks and VSMs are generated for independently. These VSMs
are then concatenated to form the final VSM (‘bag-level fusion’). In the given ex-
ample, for three acoustic feature groups (prosodic, MFCCs, formant frequencies),
a separate codebook/VSM is built. However, it is also possible to realise the split
between different modalities (e. g., acoustic vs visual), to perform VQ on a single
LLD, or to use overlapping subsets.

For codebook generation, the techniques given in the following are available in
openXBOW. It must be pointed out that all methods are using an adjustable
random seed, so that the generation process can be both reproduced and ran-
domised.

Random sampling The simplest method to generate a codebook is a random
sampling (cf. Chapter 3, option -c random). From all LLDs in the given dataset
(usually, the training set), a number (specified by -size, 500 by default) of LLDs is
selected to form the codebook. It is ensured that there are not two equal codewords
(Euclidean distance is 0), but there are no further conditions.

To increase the diversity and avoid selecting codewords that are too similar in
terms of the Euclidean distance, an advanced version is integrated with random
sampling ++ (-c random++). This method reflects the cluster initialisation of the
k-means++ algorithm [216], as already introduced in Section 3.3.1.

K-means As a very common clustering method, both the k-means (-c kmeans)
and the k-means++ (-c kmeans++) algorithm (Lloyd’s algorithm) are available, as
defined in Section 3.3.1.

EM EM clustering (cf. Section 3.3.1) is available as an alternative for cluster-
ing, where the feature space is modelled as a GMM [224] (-c em / -c em++ / -c

em-kmeans / -c em-kmeans++). More specifically, the feature space is modelled as
a probability distribution defined as a mixture of k Gaussian distributions, i. e.,

p(x) =
k∑
i=1

πiN (x|µi,Σi), (5.1)
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Figure 5.3: Visualisation of the LLD-level fusion (top) compared to the bag-level
(VSM-level/histogram-level) fusion (bottom). In LLD-level fusion, a unique code-
book is generated for the whole LLD feature space. In bag-level fusion, a codebook
is generated for each defined subset of the LLD feature space first (‘sub-codebooks’).
The VQ is performed individually for each subset and VSMs, i. e., BoW representa-
tions, are created separately for each sub-codebook. In this example, the acoustic
LLDs are grouped into three classes: prosodic (green), MFCCs (blue), and formants
(cyan). Different codebook sizes are employed for each group. The resulting VSMs
are concatenated to form the final VSM.

where πi are the mixture weights and N (x|µi,Σi) is the multivariate Gaussian den-
sity [224] with mean vector µi and covariance matrix Σi.

Along the lines of Section 3.3.1, the centroids can be initialised with either ran-
dom sampling or k-means (either with or without the ‘++’ initialisation). The
mixture model is then updated iteratively with a series of expectation and maximi-
sation steps, according to Bishop [224]. In order to speed-up the clustering process
and as it is a common way in speech processing [307], the covariance matrices are
assumed to be diagonal. As the EM algorithm returns not only the cluster centroids
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but also mixture weights and covariances, more advanced assignment techniques
can be employed (see Subsection 5.2.2).

Random sampling from a Gaussian probability density function As a
first method to create data-independent codebooks, a random sampling from a
univariate Gaussian probability density function (PDF) with mean 0 and variance 1,
i. e., N (x|0, 1), as used by Pandit et al. [308], is available (-c pdf). Each component
of a codeword is selected independently from the others. To use this method in a
meaningful way, a z-score normalisation (‘standardisation’) of the LLDs is strongly
advised, in order to fit the distribution of each input feature to the given Gaussian
PDF.

Generic Finally, a ‘generic’ method to create codebooks is implemented (-c
generic). Also this method does not take into account the actual distribution
of the data and is thus assumed to generate codebooks that are data-independent.
Given the number of LLDs n, a codebook of the fixed size 2n is generated, where
the entry j of the codeword with index i is given by

bi,j = (−1)b
i−1

2n−j
c+1, i = 1, 2, . . . , 2n, j = 1, 2, . . . , n. (5.2)

As an example, for 3 LLDs, the following codebook is created:

=1 =1 =1
=1 =1 +1
=1 +1 =1
=1 +1 +1
+1 =1 =1
+1 =1 +1
+1 +1 =1
+1 +1 +1

In analogy with the previous method, a z-score normalisation of the input is
appropriate (-standardizeInput). Instead of the fixed offset of 1, a configurable
number can be chosen (-gen). In a generic codebook, the codewords are uniformly
distributed over the feature space and each codeword has n nearest neighbours with
the same distance.

For each of the random sampling and clustering-based methods—i. e., all code-
book generation methods except for the data-independent ones, the following three
refinement options are available.

Supervised If openXBOW is provided with class labels, the codebook gen-
eration can be done in a supervised way, by creating codebooks from the LLDs
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of each class separately, first, and then concatenating the class-specific codebooks
(-supervised). This approach has been employed by Yeh and Yang [24] and Plinge
et al. [202].

Pre-selection In order to speed-up the clustering process—especially on large
data and/or feature sets—it can be performed not on the whole training corpus,
but only on a subset of the input LLDs (-numTrain). This kind of a ‘random
downsampling’ has been used before, e. g., by Sivic and Zisserman [170].

Reduction Finally, it might be beneficial in terms of the robustness to reduce
the set of codewords by fusing similar ones. This can be done with the option
-reduce, where similar codewords are identified by evaluating the pairwise PCC
(see Section 4.5) and then fusing them by taking their mean.

5.2.2 Encoding

In the following, the openXBOW options for word assignment are presented.

Vector quantisation (hard assignment) The ‘standard method’ for assignment
is the VQ of the LLD vectors, i. e., a nearest neighbour assignment, as discussed in
Section 3.3.2 (Equation 3.13). As an enhancement, multi-word assignment is
available, where each LLD vector can be assigned to the set of NA closest codewords
(-a NA) [25].

Furthermore, a method to exclude off-LLDs has been implemented. With this
option (-off with a threshold to be specified) LLDs where the closest codeword has
an Euclidean distance above a threshold are discarded from the VSM.

Soft assignment In contrast to the so far described hard assignment methods,
where the histogram counter is only incremented by 1, the following two soft assign-
ment techniques can be used in openXBOW.

Firstly, a Gaussian encoding as employed by Pancoast and Akbacak [199] and
defined in Equation 3.17 is available (-gaussian).

Secondly, a GMM-like encoding has been implemented. This method requires
that the codebook is generated using an EM-clustering (see Subsection 5.2.1) as not
only the cluster centroids are necessary but also the mixture weights and covariance
matrices. Referring to Equation 3.13, the increment for each codeword i is the a
posteriori probability

a(bi, Dj) =
πiN (Dj|µi,Σi)∑LB

i∗=1 π
∗
iN (Dj|µ∗i ,Σ∗i )

. (5.3)
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Figure 5.4: Visualisation of the numeric n-gram option of openXBOW. A code-
book of size 10 and a 3-gram codebook of size 8 are used. A standard VQ is
performed for the LLDs. Then, the n-gram sub-sequences of codebook indexes are
matched with the templates in the numeric n-gram codebook.

Thus, each LLD vector increases the counter of each codeword. The GMM-like
encoding can be done by using either uniformly distributed mixture weights (-gmm
1) or the ‘correct’ ones obtained from the EM-clustering (-gmm 2).

Numeric n-grams As a further alternative encoding method, the n-gram ap-
proach, well-known for symbolic features and introduced in Section 3.1.3.3, has been
adopted for numeric features following the work by Pancoast and Akbacak [200].
Figure 5.4 illustrates the process of the numeric n-gram generation in openXBOW.
In the given example, 3-grams (-trigram) are generated, but also 2-grams are avail-
able (-bigram), as well as combinations of these and the ‘standard’ XBOW features.
As a first step, a codebook is generated from the training set, using one of the previ-
ously introduced methods. In this example, a codebook of size 10, indexed from 0 to
9, is employed. Then, a hard VQ is performed in the ‘usual’ way. Now, a dedicated
n-gram codebook is trained, by counting the frequencies of n-gram (n = 3 in
the example) sequences of codebook indexes over the whole training set. A user-
defined number of n-grams with the highest number of occurrences in the training
set is considered as the n-gram codebook. In the example from Figure 5.4, eight
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3-grams (indexed from 0 to 7) are taken into account. Finally, a matching (==) be-
tween n-grams in each instance and the n-gram codewords is performed. Only exact
matches are taken into account. In the given example, the 3-grams (2,4,2), (4,2,1),
and (1,7,5) occur also in the codebook and are counted in the final histogram. The
3-gram (2,1,7), however, does not occur and is disregarded in the histogram. This
corresponds to the off-LLDs introduced before, but is used by default for numeric
n-grams.

Also the multi-word assignment can be used for the VQ prior to the numeric
n-gram method, but not the soft encoding methods. Exactly the same weighting
and post-processing techniques as for the standard XBOW approach can be applied
to the numeric n-gram histograms.

Weighting For weighting of the XBOW-histograms, three common methods have
been implemented that are performed prior to a potential (z-score or min-max) nor-
malisation of the output feature vectors and can be employed either in combination
or exclusively:

� Logarithmic term frequency weighting (-log)

� Term frequency-inverse document frequency weighting (-idf)

� A histogram normalisation (-norm) in one of the three following variants:

1. Divide the term frequencies by the number of LLDs in the instance (-norm
1),

2. L1-normalisation (absolute length equals 1, -norm 2), or

3. L2-normalisation (Euclidean length equals 1, -norm 3).

For numerical reasons, in each of the normalisation options, the resulting term
frequencies are multiplied by the codebook size.

Details on these methods are found in Section 3.1.3.2. openXBOW stores the
options -log and -idf, along with the corresponding document frequencies of the
terms in the codebook file, while the normalisation options can also be used for either
training or testing only, to create more flexibility.

5.3 Impact

To conclude this chapter on the openXBOW toolkit, its impact in the research
community is presented, with reference to some key statistics and usage examples.
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5.3.1 Key statistics

By the beginning of May 202113, the openXBOW repository14

� has received 71 stars, and

� has been forked 16 times.

The paper on the toolkit [29], published in 2017, has received 111 citations, ac-
cording to Google Scholar15.

The social network ResearchGate16 counts 116 citations, 360 reads on the
platform, including 100 full-text reads. A research interest score of 66.1 is
achieved, which is higher than the score of 99 % of the ‘research items’ published
in 2017 and registered on ResearchGate.

5.3.2 Usage examples

In addition to the research work presented in this thesis, mainly in Chapters 6 and
7, some further examples of research works, where openXBOW has been utilised
by the authors, are presented in the following. In some of the works, interesting
combinations and advancements are proposed, partially with the involvement of
the author of this thesis.

Han et al. proposed to use ‘bags in bag’ or ‘bag-of-context-aware-words’ on
the emotion dataset RECOLA, outperforming the ‘basic’ BoAW approach in Sec-
tion 6.1 [309, 310]. This approach is similar to the hierarchical two-level BoAW, as
employed by Su et al. [189] and Yeh et al. [190].

Amiriparian et al. introduced ‘bag-of-deep-features’ [311], using intermediate
layer outputs from pre-trained neural networks for image classification as input for
BoAW generation. These features are referred to as DeepSpectrum features [272,
312], which are found to be robust to noise present in the audio. In a similar way,
Gosztolya et al. [313, 314] extended BoAW using neural network posteriors, where
the neural network is trained on, e. g., a dataset for phoneme modelling [314].

Qian et al. employ wavelet features (see Section 2.1.3) to obtain so-called ‘bag-
of-wavelet-features’ for audio classification [57, 315]. Moreover, ‘bag-of-behaviour-
words’ have been proposed by the same first author for the task of depression moni-
toring, using LLDs from activity sensors [316]. Pandit et al. proposed the mentioned
way to generate data-independent codebooks by sampling from a Gaussian PDF to
be used for cross-corpus emotion recognition in speech [308].

13Statistics retrieved on May 4, 2021.
14https://github.com/openXBOW/openXBOW
15https://scholar.google.de/citations?user=bTLclOYAAAAJ
16https://www.researchgate.net/
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5. The openXBOW Toolkit

Elbarougy et al. applied feature selection on features generated with
openXBOW and an LSTM-RNN for audio-visual emotion recognition[317].
Syed et al. recently showed that BoAW representations of both hand-crafted and
deep CNN-based LLDs outperform the Fisher vector representation [318].

Due to the competitive results, openXBOW has established as a toolkit to
generate baseline acoustic feature sets for various tasks: Amiriparian et al. employed
it as a baseline for the classification of heart sounds [319] and for various further
paralinguistic tasks [320]. Moreover, it was used as a baseline for classification of
children’s vocalisations by Zhang et al., outperforming functionals (ComParE and
eGeMAPS) in terms of the UAR [321].

BoAW features were used to create a baseline for a pain database by Ren et
al. [322], and by Cummins et al. for emotion recognition in speech [323] and detection
of upper respiratory tract infections from the subjects’ speech [5]. BoAW has shown
to outperform traditional acoustic features (i. e., functionals) for some sub-tasks
in a database of emotional dog barks [324], namely, aggression, despair, and fear.
Recently, openXBOW was employed to generate baseline features for the task of
detecting gibbons’ calls by Tzirakis et al. [325] and classifying sleep quality, fatigue,
and anxiety in the speech of patients suffering from COVID-19 by Qian et al. [326].

Furthermore, openXBOW is an integral part of the MixedEmotions
open-source toolbox for multimodal emotion analysis [327]. It is also part of the
automatic emotion recognition module of EmotAsS [328], a speech-driven system
that assists cognitively impaired individuals at their workplace.

Most importantly, the demonstrated success of openXBOW has been largely
triggered by its usage for the baseline approaches of the following scientific chal-
lenges:

� the ComParE editions from 2017 to 2020 ([11, 12, 13, 116]),

� the AVEC editions from 2017 to 2019 ([17, 18, 19]), and

� the ICMI EAT challenge in 2018 [84].

All of these events have had a big impact on the research in the field of CA and/or
affective computing. For the ComParE challenge, BoAW has been three times
(i. e., for three sub-challenges) the best approach out of three or more approaches
provided to the participants. In two of these cases, the official challenge baseline,
which was given by a late fusion of a BoAW-based model and two or three other
models, was not surpassed by any of the challenge participants (see Section 6.4).
For the AVEC challenge baseline in 2018, BoAW features with an LSTM-RNN-
based regressor outperformed the two other acoustic representations across
all tasks and partitions. In 2019, BoAW was the best out of three acoustic repre-
sentations in 7 out of 12 evaluations—across two dimensions (arousal/valence),
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three cultures (languages), and two partitions (see Section 6.5). In the baseline of
the ICMI EAT challenge, features from openXBOW with an SVM outperformed
the E2E-baseline across audio and video modalities and for all three sub-tasks (see
Section 6.7).

The features utilised for training of the baseline models, i. e., BoAW (and BoVW)
computed by openXBOW, have been provided to the participants, to enable them
to re-use them and work on ML models only. Nevertheless, as the scripts for feature
extraction were issued as well, it was also possible to optimise the configuration
and/or input features of openXBOW only. As an example, in the context of
the EAT challenge, Guo et al. found that BoAW features outperform functionals,
but a fusion of both improves the performance; the results were even better when
fused with deep features extracted from cochleagrams with pre-trained deep image
networks [329]. Gosztolya made the similar discovery that BoAW features are com-
plementary to other feature types and can improve the robustness of the model [330].
Vlasenko et al. emphasised on the importance of codebook training and proposed
to train it on all partitions [331]. Concerning the usage of codebooks across cor-
pora, Vetráb and Gosztolya found that a codebook trained on emotional speech of
a language other than the target one can even improve the results [332]. Features
from openXBOW have been re-used by various contributions to ComParE and
AVEC [333, 334, 335].
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6

Case Studies

As announced in the introduction, the experimental evaluation is subdivided into
two chapters: This chapter reports on case studies that have already been published
by the author and focus on certain tasks and datasets in CA, where the BoAW
approach can be employed, and on certain aspects or enhancements of the approach.
The second part, which is presented in Chapter 7, offers a systematic cross-corpus
analysis of the BoAW method, focussing on research questions where no definite
conclusion could be made, based on the case studies.

This chapter on case studies is subdivided into the following sections, each one
highlighting a certain publication or a related series thereof: In the first section, the
author’s work on BoAW for prediction of emotion in speech is reported. This publi-
cation has been the first one employing the approach on a time-continuous emotion
recognition task. Then, in Section 6.2, the openXBOW toolkit is applied to a
preliminary version of the Munich-Passau snore sound corpus (MPSSC), a public
dataset for classification of human snore sounds w. r. t. their location of vibration
in the throat. In this work, several LLD groups and fusion types are compared to
each other. In Section 6.3, the BoAW method is applied to the task of classifying
audio effects present in short recorded chunks. This work focusses on the relevance
of acoustic LLDs for this task and the suitability of normalisation strategies. Sec-
tions 6.4, 6.5, and 6.7 summarise the work on the challenge series of ComParE and
AVEC, and the EAT challenge, respectively. In all of these events, where the au-
thor has been involved and which partially have been co-organised by the author,
openXBOW has been utilised as a toolkit to generate feature sets used in the
baseline provided to the participants. In Section 6.6, a supplementary work by the
author on the emotion recognition task of AVEC is presented, with a focus on the
suitability of RNN input representations.
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6.1 Time-continuous Emotion Recognition in

Speech

The first peer-reviewed work by the author employing openXBOW was published
at the Interspeech conference in 2016: ‘At the Border of Acoustics and Linguistics:
Bag-of-Audio-Words for the Recognition of Emotions in Speech’ [112]. After Poko-
rny et al. [208] had showcased their implementation of BoAW for a binary emotion
classification task (negative vs positive), the motivation for this work was to apply
the method to an emotion recognition task that is continuous in time and value,
i. e., time-continuous regression.

The multimodal database RECOLA (REmote COLlaborative and Affective in-
teractions) was employed throughout the experiments [336]. RECOLA consists of
audio, video, and physiological signals recorded during a dyadic conversation of
French subjects. A gold standard for the emotion is provided in terms of the two-
continuously valued dimensions arousal and valence following the circumplex model
by Russell [89]. Arousal describes the level of the ‘activation’ of the human nervous
system, while valence describes whether the emotion is a positive or a negative one.
Each dimension is typically valued in the range of [−1,+1]. For example, happiness
is an emotion of high arousal and positive valence, anger has a high arousal, but a
negative valence, and sadness has both negative arousal and valence. The gold stan-
dard for each dimension was generated by the authors of the database by fusing the
time-continuous ratings from six annotators using an evaluator weighted estimator
(EWE) [1]. Labels are provided for each time step of 40 ms (25 Hz). RECOLA was
used as a benchmark for the AVEC editions in 2015 [337], 2016 [338], and 2018 [19].
For the discussed work, however, only the audio modality is taken into account. In
total, recordings from 46 subjects were given, with a duration of 5 min per subject,
i e., a total duration of 3 h and 50 min.

6.1.1 Acoustic LLDs

As implied in Section 2.1, MFCCs are not particularly suited to capture affective (or
more generally, paralinguistic) information, given that prosody (e. g., F0) is partially
suppressed. Nevertheless, in practice they have proven to be even more meaning-
ful for emotion recognition in spontaneous speech than F0 or microprosody [339].
Moreover, as MFCCs have established as LLDs to be employed in the context of
GMMs, they closely follow a normal distribution [340, 341], and they have a low di-
mensionality, there is some justification to consider them also suitable for VQ using
clustered or sampled codebooks.

Motivated by this, only MFCCs 1–12 and the logarithmic short-time en-
ergy are used as LLDs in this work. They have been extracted by openSMILE,
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6.1. Time-continuous Emotion Recognition in Speech

with a Hamming window, a frame length of 25 ms, and a hop size of 10 ms, after
performing a pre-emphasis with k = 0.97.

6.1.2 BoAW

LLD vectors are z-score normalised in an on-line strategy, i. e., estimating nor-
malisation parameters from the respective training partition (see below) only. Code-
books are generated using the random++ option of openXBOW, as kmeans++ pro-
vided only a small improvement in previous experiments. Both the codebook size
(CS) and the number of assignments (NA) are optimised in the experiments. A
logarithmic term frequency weighting is applied to the resulting term frequency
histograms.

As instance-level features are required for each time step of 40 ms (‘sequence
labelling’), a temporal segmentation is done by openXBOW providing a ‘time-
continuous’ BoAW representation. The amount of context, i. e., the block size
(BS) or the amount of frames over which the bag is created, is optimised considering
the following range: [4 s, 6 s, 8 s, 10 s, 12 s].

6.1.3 Regressor

In initial experiments, the performances of SVM regressors with different kernels
were compared to each other. As found also by Pancoast and Akbacak [26], Gaussian
and polynomial kernels did not outperform linear kernels. In contrast to their work,
also an histogram intersection kernel [245] did not perform any better.

Thus, an SVM regressor with a linear kernel is trained for each BoAW con-
figuration using the toolkit Liblinear [300]. The default solver type for regres-
sion tasks is chosen, i. e., an L2-regularised L2-loss solving the dual formation
of the SVM’s quadratic optimisation problem; a bias of 1 is added to the fea-
ture space. The complexity hyperparameter C is optimised in the range of
[1e−5, 2e−5, 5e−5, 1e−4, . . . , 1e0], i. e., with a step size close to a logarithmic scale.

6.1.4 Experimental setup

The RECOLA corpus is partitioned into 3 disjoint (speaker-independent) and
gender-balanced partitions: training set (16 subjects), development set (15 sub-
jects), and test set (15 subjects). It must be noted that, due to legal reasons, this
experimental dataset is larger than the dataset released for AVEC [337], but bench-
marks using exactly the same set exist as well, e. g., [228, 309]. The CCC (see
Section 4.5.3 is used as the metric for evaluation throughout.

To speed-up the training process, BoAW instances are created only for each step
of 800 ms on the training set, which seemed not to deteriorate the performance due
to the high correlation between subsequent time steps. As the gold standard—due to
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NA
CS 1 2 5 10 20 50 100 200 500 1 000
10 .750|.358 .716|.332 .715|.222
20 .751|.355 .750|.353 .744|.314 .739|.319
50 .776|.447 .773|.463 .775|.410 .782|.393 .765|.425

100 .771|.469 .777|.477 .786|.477 .784|.440 .784|.422 .768|.382
200 .766|.474 .774|.502 .779|.491 .785|.458 .786|.431 .782|.388 .769|.399
500 .761|.480 .760|.477 .779|.519 .787|.518 .790|.512 .788|.466 .789|.442 .784|.383
1 k .763|.444 .760|.471 .777|.501 .783|.522 .789|.539 .789|.509 .787|.490 .788|.462 .785|.402
2 k .746|.459 .752|.459 .770|.494 .779|.505 .783|.528 .787|.541 .790|.530 .790|.515 .788|.449 .789|.406
5 k .742|.423 .746|.423 .760|.482 .768|.493 .772|.504 .785|.525 .791|.540 .793|.543 .792|.514 .791|.491

10 k .747|.373 .750|.373 .761|.484 .761|.484 .764|.494 .780|.515 .787|.522 .790|.532 .791|.520 .791|.509

Table 6.1: CCC (arousal|valence) for the given codebook size (CS) and number
of assignments (NA) on the development set of the RECOLA database. The SVM
complexity C and the block size BS are optimised as denoted in the text. A constant
delay D of 3.2 s is taken into account to compensate the reaction time of the raters.
Three pairs of CS and NA are selected for further optimisation (printed in bold).

the reaction time of the human raters—is not perfectly aligned with the affect present
in the recordings, a delay compensation needs to be taken into account [342]. This
is especially necessary for static ML approaches such as, e. g., SVM, in contrast to
dynamic approaches such as, e. g., RNNs, which are capable of modelling sequences.
The delay compensation is realised by shifting each gold standard sequence backward
in time before model training and shifting model predictions forward in time for
evaluation on development and test sets. The optimisation is performed on a grid
between 0 s and 8 s, with a step size of 0.4 s. Evaluation is done at the original
sample rate of 25 Hz (40 ms step size).

The hyperparameters (D, BS, CS, NA, & C) are optimised to obtain the best
performance (in terms of the CCC) on the development set. For the final evaluation
on the test set, the SVM regressor is trained again on fused training and development
sets. The same (supervised) post-processing chain as in the work by Trigeorgis et
al. [228] is applied to the predictions, in order to account for a potential mismatch
in terms of scale and bias.

6.1.5 Results

Given the 5-dimensional hyperparameter space, the optimisation is done iteratively
in two steps. Furthermore, results obtained for a fusion of BoAW and functionals
are reported.

6.1.5.1 Optimisation of codebook size and number of assignments

Initial experiments have shown that a delay D = 3.2 s and a block size between
BS = 6 s and BS = 8 s provide the highest CCC on the development set. Optimising
only the block size between these two values and the complexity C as defined above,
an exhaustive evaluation for different configurations of codebook size and number
of assignments is performed as presented in Table 6.1.
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6.1. Time-continuous Emotion Recognition in Speech

Dimension NA CS D BS C CCC
[s] [s] Devel Test

1 200 4.0 8.0 10−3 .768 .716
Arousal 20 1 000 3.6 8.0 10−4 .789 .738

200 5 000 3.2 6.0 10−5 .793 .753
1 200 4.8 12.0 10−2 .490 .417

Valence 20 1 000 4.4 10.0 10−3 .550 .430
200 5 000 5.2 12.0 10−1 .558 .378

Table 6.2: Optimised hyperparameters and results (in terms of CCC) for the devel-
opment set (Devel) and the test set (Test) for preselected combinations of codebook
size (CS) and number of assignments (NA). Delay (D), block size (BS) and SVM
complexity (C) are optimised on the development set for each of the six experiments.

On the first view, there is some evidence that there is a dependency between the
optimum settings for CS and NA, respectively, while at the same time, an improved
performance can be observed for larger values of CS and NA (provided a suitable
ratio); this applies especially for valence. For the next optimisation steps, three
combinations of CS and NA are selected and further evaluated:

1. CS = 200, NA = 1, as a suitable single-assignment configuration,

2. CS = 1 000, NA = 20, as a configuration reaching almost the best results with
a comparably low computational complexity, and

3. CS = 5 000, NA = 200, as the best overall configuration.

6.1.5.2 Optimisation of delay and block size

Table 6.2 shows the results for the three selected combinations and each affective
dimension after optimisation of delay D, block size BS, and SVM complexity C.

The results show that the prediction of valence benefits from a larger block size
(10 s–12 s) compared to arousal (6 s–8 s). This can be seen as some evidence that
the subjects’ arousal (or at least its annotation) is changing more rapidly over time
than their valence. The larger optimum complexity for valence can be regarded as
an indicator that this dimension is the more complex one to train a model for. This
hypothesis is further supported by the fact that a larger delay compensation seems
to be beneficial, representing a more challenging decision process by the raters.

Figure 6.1 exhibits more insights into the optimal ratios of delay and block size.
This figure shows the CCCs obtained on the development set for five different block
sizes over the optimisation range of the delay; a fixed combination of CS = 1 000
and NA = 20 was selected. The plots indicate that a proper configuration of delay
and block size is more critical for valence than for arousal.
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Figure 6.1: Performances for arousal (left) and valence (right) on the development
set of RECOLA with different delays and block sizes (BS); NA = 20, CS = 1 000, C
optimised for each configuration.

Dimension D BS CCC
[s] [s] Devel Test

Arousal 4.0 8.0 .790 .720
Valence 4.0 10.0 .459 .402

Table 6.3: Emotion recognition results on RECOLA using functionals (mean +
standard deviation). Reported are the CCCs for arousal and valence on the devel-
opment set (Devel) and the test set (Test) with delays (D) and block sizes (BS)
optimised on Devel; C is also optimised on Devel for each configuration.

6.1.5.3 Fusion with functionals

Finally, an evaluation for a fusion of BoAW and functionals is performed. As func-
tionals, mean and standard deviation of the 13 LLDs are computed. First, to
report a baseline, the results using only the functionals are reported. For delay,
block size, and SVM complexity, exactly the same optimisation as for the BoAW is
performed; Table 6.3 shows the corresponding results.

While the results in terms of CCC for functionals are slightly worse than the
results with BoAW, an improvement can be reached for some configurations by an
early fusion of them, as shown in Table 6.4. As the combination (NA = 200, CS =
5 000) results in a feature vector of a quite large dimensionality (i. e., 5 000) compared
to the 26-dimensional functionals-based feature vector and the performance is not
much better, only the two preselected BoAW configurations of lower dimensionality
are taken into account for the fusion. For delay and block size, the optima from
Table 6.3 are considered. To mitigate the effects of potential deviations of feature
ranges, results are computed with and without a z-score normalisation of the fused
feature vectors in Table 6.4.
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Dimension NA CS BS z-score CCC
[s] norm. Devel Test

Arousal 1 200 8.0 no .799 .738
20 1000 8.0 no .677 .511
1 200 8.0 yes .796 .728
20 1000 8.0 yes .535 .384

Valence 1 200 10.0 no .518 .457
20 1000 10.0 no .309 .234
1 200 10.0 yes .521 .465
20 1000 10.0 yes .245 .196

Table 6.4: Emotion recognition results on RECOLA using a early fusion of function-
als and BoAW. Reported are the CCCs for arousal and valence on the development
set (Devel) and the test set (Test). The optimum delay D = 4.0 s from the results
with functionals and the optimum block size (BS) for each dimension are consid-
ered; C is optimised on Devel for each configuration. Results are reported with and
without z-score normalisation of the fused feature vector.

However, the normalisation of the fusion leads to an improvement mainly for
valence on the test set. Surprisingly, fusing the BoAW with the smallest codebook
size (and single-assignment, i. e., NA = 1, CS = 100) improves the model, but
fusing the larger feature vector (NA = 20, CS = 1 000) impairs the performance
drastically, independent from the normalisation. A possible reason for this might be
the meaningful deviation of the feature space dimensions between functionals and
BoAW for this configuration.

6.1.5.4 Summary

In summary, it was found that BoAW representations outperform functionals,
that they are partially complementary, and that multi-assignment, by trend,
improves the model (especially for valence). More precisely, the configurations for
codebook size and number of assignments need to follow a certain ratio;
small values for both hyperparameters are required when fusing with function-
als. Generally, it can be observed that hyperparameters need to be tuned more
carefully for valence than for arousal.

Statistical significance (p < 0.05) w. r. t. Fisher’s z-transformation [343] (a
hypothesis test for correlation coefficients), between functionals and BoAW is ob-
tained for all results of valence, except for the test set result with the largest
codebook size. In contrast, a significant improvement for arousal is only observed
for the BoAW features with the largest codebook size.

Table 6.5 shows a comparison of the presented BoAW models and the fusion
models performing best for each dimension with other approaches evaluated on
RECOLA. The audio-only models by the winners of AVEC 2015 [344] are signifi-
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Model Reference CCC
Arousal Valence

Devel Test Devel Test

Large acoustic LLD set, BLSTM-RNN [344] .800 .398
CNN + BLSTM-RNN (end-to-end) [228] .741 .686 .325 .261
BoAW, SVM Table 6.2 .793 .753 .550 .430
BoAW + functionals, SVM Table 6.4 .799 .738 .521 .465
Bag-of-context-aware-words, SVM [309] .800 .750 .603 .465

Table 6.5: Comparison of the proposed model for emotion recognition on RECOLA
with other approaches. Reported are the CCCs for arousal and valence on the
development set (Devel) and the test set (Test).

cantly (p < 0.05) outperformed for valence by the BoAW-based models1. However,
it must be noted that He et al. [344] were working on the reduced challenge version
of the dataset, featuring fewer subjects. The end-to-end approach by Trigeorgis et
al. [228], concatenating a CNN with a BLSTM-RNN trained on the raw waveform,
is significantly (p < 0.05) outperformed in both dimensions of emotion.

This makes the proposed BoAW-based approach—up to this point—the best
published model for speech-based emotion recognition on the RECOLA database.
The reported metrics are achieved using only MFCCs (and log-energy) as acoustic
LLDs and a static regressor. In 2018, the previously mentioned bag-of-context-aware-
words by Han et al. [309], which is also using openXBOW and is an extension of
the proposed approach, outperforms the set milestone.

6.2 Snore Sound Excitation Localisation

In the work entitled “A Bag-of-Audio-Words Approach for Snore Sounds’ Excitation
Localisation” [345], openXBOW was applied to a chunk-level audio classification
task, namely, the classification of snore sounds. This task from the health care
domain is highly relevant as habitual snoring is prevalent in society [346] and can
lead to obstructive sleep apnea, a syndrome where the airflow during sleep is partially
or fully blocked [347]. Cardiovascular diseases or stroke can result from this [348].
Moreover, the sleep quality of the snorer’s bed partner can be affected [349]. As
the exact medical treatment of habitual snoring depends on the location of the
vibration or excitation in the upper airways, a drug induced sleep endoscopy is the
typical means of diagnosis [350]. However, as this kind of intervention is stressful
for the patient, an automatic localisation during natural sleep is preferable.

One typical classification scheme for excitation localisations is ‘VOTE’, discrim-
inating between the following locations in the upper airways:

1The authors did not evaluate their audio-only model on test as there was a limited number of
trials during the challenge.
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Figure 6.2: Sketch of the sagittal plane (longitudinal plane) of the human head with
the four locations of excitation considered in the VOTE scheme.

Class V O T E Total

Subjects 14 4 2 5 24
Events 66 20 10 21 117

Table 6.6: Number of subjects and snore events per class. The numbers of subjects
do not add up to 24 as one subject showed both E-type and V-type snoring events.

1. V: velum or soft palate level,

2. O: oropharyngeal level,

3. T: tongue base level,

4. E: epiglottis level.

An anatomic illustration of these locations is provided in Figure 6.2. The dataset
used in this study is an early version of MPSSC [117], with less samples than in the
released corpus. All data has been collected during drug induced sleep endoscopy
and manually labelled by an expert.

From each of the 24 subjects’ recordings (sample rate 16 kHz, bit depth: 16 bit),
up to 5 snoring events were selected. This process resulted in 117 events. The dis-
tribution of the subjects and events per class is shown in Table 6.6. Their durations
range from 0.31 s to 2.17 s, with a mean duration of 1.24 s.

In order to perform a CV, the patients were split into two partitions of 12 subjects
each, with their corresponding snore events. As the given data was considered too
scarce to train and evaluate a classifier on, the events were segmented into instances
of a fixed length of 200 ms, with 50 % overlap between adjacent segments. This leads
to the distribution of instances shown in Table 6.7.

6.2.1 Acoustic LLDs

The following LLD types have been taken into account in the experiments:
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Class V O T E Total

Partition 1 376 132 18 125 651
Partition 2 434 111 46 141 732
Total 810 243 64 266 1 383

Table 6.7: Number of snore instances per partition and class.

1. MFCCs 1–12 + logarithmic energy extracted with openSMILE, employ-
ing exactly the same configuration as used in Section 6.1.

2. Formants F1, F2, & F3, using their frequencies and amplitudes in the
short-time spectrum as LLDs. The implementation by Qian et al. written in
Matlab2 is used [351].

3. Wavelet descriptors based on the WPT (see Section 2.1.3) employing the
multiscale wavelet transform features by Khushaba [352], which consist of en-
ergy, variance, waveform length, and entropy of the decomposed signal. For
decomposition, wavelets from the ‘symlets’ family are used. This results in 28
frame-level descriptors.

This selection has been motivated mainly from the work by Qian et al. [353],
who found for the same dataset that these three feature types were suited for classi-
fication, whereas energy-based and F0-based features performed worse. In contrast
to the work discussed in the following, Qian et al. used functionals instead of BoAW
for supra-segmental representation.

6.2.2 BoAW

All LLDs are on-line min-max normalised by openXBOW, which prove to per-
form better than z-score normalisation in initial experiments. The random++ option
is used for codebook generation. The codebook is reduced (see Section 5.2.1) by
combining pairs of codewords with a correlation above a threshold TC to be op-
timised. Also the number of assignments (NA) and the codebook size (CS) are
optimised in an exhaustive search considering all values shown in Table 6.8. It must
be noted that the codebook size defines only the initial number of codewords
and the actual size might be lower as a result of the reduction. Supervised codebook
generation and Gaussian encoding were tried in initial experiments but they did not
improve the results.

BoAW features are computed with and without logarithmic term frequency
weighting (log-TF weighting). Finally, the histogram normalisation option of
openXBOW normalising by the number of LLDs (-norm 1) is applied for numer-
ical reasons only, as due to the fixed-length instances the normalisation factors are
constant.

2https://de.mathworks.com/products/matlab.html
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Hyperparameter Values

NA 1, 2, 5, 10, 20
CS 100, 200, 500, 1 000, 2 000
TC 0.8, 0.85, 0.9, 0.95, 1.0
C 1e−11, 1e−10, . . . , 1e0

Table 6.8: Considered values for the exhaustive search through BoAW configu-
rations and hyperparameters. Besides, the usage of a logarithmic term frequency
weighting is optimised.

6.2.3 Classifier

An SVM classifier with a linear kernel is employed, as the histogram intersection
kernel performed worse. In analogy with the work presented in the previous section,
Liblinear [300] is used with the default solver and a complexity hyperparameter
(C) optimised according to Table 6.8. Prior to SVM training, the BoAW feature
vectors are z-score normalised.

6.2.4 Experimental setup

The experiments are run for each feature type separately, for a fusion of each pair
of feature types, and a fusion of all three feature types. This results in the following
7 LLD sets:

1. MFCCs

2. Formants

3. Wavelet

4. MFCC + Formants

5. MFCC + Wavelet

6. Formants + Wavelet

7. MFCC + Formants + Wavelet

For each of the sets consisting of different features types, both the LLD-level fusion
and the bag-level fusion are evaluated, resulting in 11 feature setups in total.

Experiments are run in a 2-fold CV setup, with the two partitions defined in
Table 6.7. All four hyperparameters from Table 6.8 and the log-TF weighting are
optimised for each feature setup (LLD set + fusion option) and partition, maximising
the UAR.
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LLD set Fusion log NA CS TC C UAR [%] Acc [%]

MFCCs yes 10 500 0.8 1e−3 72.5± 6.6 75.4± 10.6
Formants (F123) no 2 500 0.95 1e−5 76.4± 2.2 78.0± 11.6
Wavelet (Wt) yes 5 500 - 1e−5 73.7± 0.2 75.5± 7.5
MFCCs + F123 bag yes 5 500 - 1e−11 75.3± 6.0 75.6± 12.1
MFCCs + F123 LLD yes 10 1 000 0.9 1e−3 78.3± 9.2 78.9± 11.5
MFCCs + Wt bag yes 1 200 - 1e−5 77.3± 0.3 77.5± 8.0
MFCCs + Wt LLD yes 10 1 000 - 1e−5 78.8± 4.4 78.2± 11.1
F123 + Wt bag yes 5 500 - 1e−5 78.1± 4.3 77.4± 12.8
F123 + Wt LLD yes 5 2 000 - 1e−11 78.3± 1.0 78.7± 9.0
MFCCs + F123 + Wt bag yes 10 2 000 - 1e−6 77.9± 5.4 77.5± 12.9
MFCCs + F123 + Wt LLD yes 5 1 000 0.95 1e−5 79.5± 1.2 79.7± 9.3

Table 6.9: Results for the task of snore sound classification using BoAW with
different LLD sets and fusion techniques. The mean and the standard deviation of
UAR and Accuracy (Acc) over both partitions are given. All hyperparameters are
optimised w. r. t. the mean UAR.

6.2.5 Results

The mean and standard deviation of UAR and accuracy (Acc) over both partitions
are presented for each feature setup in Table 6.9. Generally, it is evident that a
fusion of all three LLD sets performs best on average. In correspondence with the
results by Qian et al. [353], formant-based and wavelet-based features seem to be
more meaningful for the task, given that MFCCs achieve the lowest mean UAR with
the highest standard deviation of all single LLD set experiments.

Except for the ‘Formants’-only LLD set, log-TF weighting (‘log’) improves the
results throughout. Except for the ‘MFCCs+Wavelet’ feature set with bag-level fu-
sion, multi-assignment and a codebook size of at least 500 are optimal. More-
over, there is the tendency that a larger number of LLDs requires a larger codebook
size, which is not surprising. The same is valid also for the LLD-level fusion (except
for the fusion of all LLD types), which requires a larger codebook size, while for the
bag-level fusion, the given codebook size applies for each LLD set. In this context,
it must be noted that the codebook sizes have not been optimised for each LLD set
separately in the case of bag-level fusion, however, the results with only one LLD
type show that the optima are quite similar. Generally, the results show that LLD-
level fusion outperforms bag-level fusion, i. e., based on these experiments,
splitting the LLD sets into separate codebooks degrades the performance.

A codebook reduction3 is found to be beneficial only in few cases; for the
best result, a threshold of 0.95 is determined, which results in only few codewords
to be merged.

3TC = − stands for TC = 1.0, i. e., the codebook is not reduced.
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V O T E Recall
V 699 86 3 22 86.3 %
O 117 104 0 22 42.8 %
T 0 0 64 0 100.0 %
E 12 14 0 240 90.2 %

Table 6.10: Confusion matrix for the best model in terms of the UAR from Table 6.9.
The instances of both partitions are summed up in the matrix.

The baseline set by Qian et al. [353], UAR=71.2 %, Acc=78.2 % is clearly sur-
passed, with the best result given in the last row of Table 6.9 representing an LLD-
level fusion of all three LLD sets: UAR= 79.5 %, Acc=79.7 %. This improvement
in terms of the UAR is statistically significant (one-sided z-test, p < 0.001).

Table 6.10 shows the confusion matrix of the optimum model, summing up the
predictions on both partitions. It might be surprising that the recall for class ‘T’ is
100 %, even though this class is the one least represented in the data. In compari-
son, there is much confusion between ‘V’ and ‘O’ types, even though there are more
samples available for these classes. A possible explanation for this is that the exci-
tation locations of these two snoring types are relatively close in the upper airways
and thus, they might result in a similar acoustic spectrum. Moreover, there is the
limitation that the data for class ‘T’ originate from only two patients (one patient
per partition) and the reliability of this result needs further proof.

6.3 Audio Effect Classification

In the publication “Recognising Guitar Effects – Which Acoustic Features Really
Matter?” [354], the importance of acoustic descriptors for the recognition of audio
effects present in recordings of electric guitar and bass guitar is studied. Functionals
and BoAW as two types of instance-level representations are directly compared to
each other.

Audio effects [355], generally speaking, are applied to raw recordings of musical
instruments to enhance the sound, e. g., to produce a certain mood or to simulate a
certain environment. Especially for electric guitar or bass guitar, dedicated effects
are part of the common recording and playing setup. The task of audio effect classi-
fication is relevant in the context of other MIR tasks, such as, e. g., augmented auto-
matic music transcription [356], music indexing [357], or genre classification [340].

The experiments are run on the IDMT-SMT-Audio-Effects database [358].
These data comprise monophonic and polyphonic guitar recordings and monophonic
recordings of electric bass guitar, provided in chunks with isolated tones or chords
(in the polyphonic case) present. The recordings originate from the following four
instruments, each of them recorded in two different configurations:
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1. Yamaha BB604 (bass guitar)

2. Warwick Corvette (bass guitar)

3. Schecter Diamond C-1 Classic (guitar)

4. Chester Stratocaster (guitar)

In the monophonic case, each note between the 0th and the 12th fret was recorded
for each string4 using two (guitar) or three (bass) different plucking styles5.
In the polyphonic case (only for guitar), a number of chords (2 to 6 notes each) were
recorded (using plectrum). The recordings have an approximate duration of 2 s
each. All chunks have been processed in a digital audio workstation, applying 10
different audio effects:

� 5 modulating effects: tremolo, vibrato, chorus, flanger, phaser

� 3 ambience effects: reverb, slapback delay, feedback delay

� 2 nonlinear distortion effects: overdrive, distortion

Each chunk is processed with each audio effect in 3 different settings. Details
on the characteristics and differences of these effects are given in the book by
Zölzer [355] and in the original publication [354]. In addition to that, the clean,
unprocessed chunks (noFX) are present in the database, augmented with two am-
plifier simulations, resulting in perfectly balanced data across all 11 classes.

By this, the IDMT-SMT-Audio-Effects database consists of 55 044
chunks, including 10 296 monophonic instances for each of the four instruments
and 6 930 polyphonic instances for each of the two guitars.

6.3.1 Acoustic LLDs

The ComParE feature set, as introduced in Section 2.3.1, is employed throughout
the experiments. All 65 LLDs and the corresponding 65 deltas are taken into ac-
count. The features are grouped into the categories of 10 feature types according
to Table 6.11 and evaluated separately and combinedly. This categorisation follows
the division shown in Table 2.1, but with all spectral features grouped together and
RASTA and loudness + modulation loudness features grouped together.

The instance-level features (functionals) present in Table 6.11 are those defined
in the ComParE feature set and used as a baseline approach to compare the BoAW
features to. For BoAW, only the frame-level features (LLDs) are relevant.

4bass: 4 strings, guitar: 6 strings
5bass: finger plucked soft, finger plucked hard, and plectrum, guitar: finger and plectrum
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Feature type # Frame-level # Instance- # Instance- # Instance-
features level features level features level features
(LLDs) (from LLDs) (from deltas) (sum)

RMS (energy) 1 54 46 100
ZCR 1 54 46 100
Spectral features 15 810 690 1 500
RASTA + Loudness 28 1 512 1 288 2 800
MFCCs (1–14) 14 756 644 1 400
F0 1 44 39 83
logHNR 1 39 39 78
Voicing probability 1 39 39 78
Jitter (local + DDP) 2 78 78 156
Shimmer (local) 1 39 39 78
Total 65 3 425 2 948 6 373

Table 6.11: Features present in the ComParE feature set, grouped into 10 feature
types with corresponding numbers of frame-level features and instance-level features
(subdivided into instance-level features originating from the raw LLDs only, those
derived from deltas, and their sum).

6.3.2 BoAW

All LLDs get on-line z-score normalised. Aligned with the previous case studies,
codebooks are generated by random++ sampling. The codebook size is optimised
in initial experiments (see below), in terms of multiples of the size of the baseline
feature set with functionals.

The number of assignments is 1. A logarithmic term frequency weighting
is applied to the histograms.

6.3.3 Classifier

As in previous experiments shown, an SVM classifier with a linear kernel is em-
ployed. Training is done using the Liblinear toolkit with the L2-regularized

L2-loss (primal) solver and adding a bias of 1 to the feature space. The com-
plexity hyperparameter is optimised in the range of [1e−6, 1e−6, . . . , 1e0] in a 2-fold
CV setup as explained in the following subsection.

Concerning feature normalisation, in this particular case study, on-line and
off-line z-score normalisation are compared to each other for the original Com-
ParE feature set with functionals. The reason for this is that, as shown below,
the experimental setup following the work by Stein at al. [358] includes an evalu-
ation across conditions, such as, e. g., training on monophonic data and testing on
polyphonic data. In order to align the feature distributions between such different
training and test conditions, it is evaluated whether off-line normalisation, i. e., es-
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ID Acronym Train Test
[358]

A1 BS-MO Yamaha BB604 Warwick Corvette
A2 Warwick Corvette Yamaha BB604
B1 GIT-MO Schecter Diamond Chester Stratocaster
B2 Chester Stratocaster Schecter Diamond
C1 BS-GIT Yamaha BB604 + Warwick Corv. Schecter Diamond + Chester Strat.
C2 Schecter Diamond + Chester Strat. Yamaha BB604 + Warwick Corv.
D1 GIT-MP Schecter + Chester (monophonic) Schecter + Chester (polyphonic)
D2 Schecter + Chester (polyphonic) Schecter + Chester (monophonic)

Table 6.12: Overview of the experiments conducted on the IDMT-SMT-Audio-
Effects database.

timating the normalisation parameters on the test data, might be more appropriate
for this scenario.

BoAW features are not normalised throughout the experiments.

6.3.4 Experimental setup

Referring to the work by Stein et al. [358], the setup follows their experiment 4,
which means that only the 11-class ML task is taken into account. Table 6.12 shows
the 8 experiments that are conducted, where each letter (A,B,C,D) denotes one out
of 4 selections of instruments or condition (monophonic/polyphonic) and the digit
(1,2) denotes the permutation, i. e, that each split is used for training or testing,
respectively, and vice versa.

Concerning the complexity optimisation, a 2-fold CV is performed on the re-
spective training set; for experiments A and B, each split consists of one particular
instrument configuration (as mentioned above), for experiments C and D, each split
consists of all samples from one instrument. The classifier is then re-trained on the
whole training set with the optimum complexity.

All results reported are on the corresponding test set in terms of the UAR. This
evaluation is aligned with the results reported for the ‘contextual CV’ by Stein et
al. [358].

6.3.5 Results

First, the original ComParE features with functionals are evaluated as a baseline.
Results are displayed in Table 6.13 with on-line normalisation and in Table 6.14
with off-line normalisation. In each table, the UARs obtained for each feature
group alone, for all features (‘ALL’), for all features but without those derived from
deltas (‘ALL, raw LLDs-only’), and for all features derived from deltas only (‘ALL,
deltas-only’) are shown.

130



6.3. Audio Effect Classification

Feature type A1 A2 B1 B2 C1 C2 D1 D2

RMS (energy) 64.1 62.0 74.0 77.3 59.3 53.8 9.2 23.9
ZCR 29.0 29.9 33.7 37.5 24.6 22.8 9.9 9.3
Spectral features 72.9 70.7 84.7 88.1 65.2 52.2 9.1 17.4
RASTA + Loudness 61.1 59.0 81.4 82.2 50.4 49.6 10.6 9.3
MFCCs (1–14) 43.6 50.0 58.6 65.1 36.0 37.5 17.1 21.4
F0 41.2 36.6 58.8 56.7 36.2 35.8 14.6 21.6
logHNR 55.7 53.8 66.7 67.9 45.3 49.2 4.7 10.4
Voicing probability 44.4 43.5 64.9 64.9 45.3 34.9 13.6 11.3
Jitter (local + DDP) 37.7 35.0 61.8 58.2 33.5 29.7 13.9 15.3
Shimmer (local) 48.9 43.7 63.3 62.5 45.1 46.5 12.9 16.0
ALL 72.5 77.0 89.3 94.8 61.5 56.5 9.1 13.6
ALL, raw LLDs-only 67.5 70.9 86.3 90.5 56.0 52.4 9.4 12.2
ALL, deltas-only 73.5 74.5 87.9 95.3 60.3 55.7 9.1 12.9

Table 6.13: Results for audio effect classification (UAR [%]) based on ComParE
(with functionals) and on-line z-score normalisation.

While for experiments A and B (i. e., ‘bass vs bass’ and ‘guitar vs guitar’), the
combination of ALL features achieves usually the highest UAR or at least approx-
imately, for experiments C and D (i. e., ‘bass vs guitar’ and ‘monophonic vs poly-
phonic’), better results are achieved using only a particular feature group (except
for C2, and also D2 for off-line normalisation). Concerning on-line normalisation,
most interestingly, the features derived from the deltas only seem to be more
meaningful than the LLDs itself, achieving always the higher UAR in experiments
A and B and even the highest overall UAR in A1 and B2. Nevertheless, the per-
formance for experiments D is not much above chance level (= 9.1 %) for on-line
normalisation, while it is above 50 % for off-line normalisation, which also achieves
the higher UARs throughout.

Particularly in the experimental setup D, the advantages of off-line normalisation
are evident, based on the previously described differences in training vs evaluation
conditions (‘monophonic’ vs ‘polyphonic’). However, off-line normalisation requires
an adaptation of the normalisation parameters on the test domain.

Looking at particular feature groups, it seems that spectral features are most
discriminative for audio effect classification whereas ZCR is least. This is expected,
as ZCR is only a single LLD and highly depends on the ‘pitch’ of the played note.
This finding is valid for both normalisation types. However, it is quite surprising
that the RMS energy alone achieves already a UAR of 77.3 % for experiment B2
with on-line normalisation (and similar results with off-line normalisation), which is
higher than the UAR achieved by MFCCs (65.1 %). This might be explained by the
laboratory settings under which the database was produced, where the application
of audio effects resulted in similar ‘energy patterns’ over time. This hypothesis is
confirmed by the comparably low results in setup D.
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Feature type A1 A2 B1 B2 C1 C2 D1 D2

RMS (energy) 64.2 62.8 76.1 77.0 57.4 44.4 25.5 36.5
ZCR 30.5 30.8 34.5 38.9 29.8 24.3 1.6 11.3
Spectral features 75.7 73.4 92.0 93.3 73.1 54.9 40.9 45.4
RASTA + Loudness 71.2 66.2 85.6 87.7 57.3 56.1 66.0 36.5
MFCCs (1–14) 52.5 50.8 65.8 67.7 37.2 40.0 31.2 25.4
F0 32.4 33.8 55.1 55.1 33.0 27.8 15.3 21.9
logHNR 52.1 51.0 63.1 62.7 42.3 28.3 13.7 11.3
Voicing probability 43.4 43.0 63.1 63.7 42.7 34.6 18.1 30.2
Jitter (local + DDP) 35.4 32.9 57.8 54.2 30.2 20.1 12.3 15.8
Shimmer (local) 46.7 43.1 63.3 62.3 36.7 31.9 15.9 16.0
ALL 83.3 82.0 96.7 97.8 70.5 63.7 59.8 50.7
ALL, raw LLDs-only 79.4 78.0 95.1 96.7 68.7 58.4 56.4 46.0
ALL, deltas-only 79.5 78.3 94.9 96.3 71.9 63.2 63.5 51.1

Table 6.14: Results for audio effect classification (UAR [%]) based on ComParE
(with functionals) and off-line z-score normalisation.

For a BoAW-based model, the codebook size is one of the key hyperparame-
ters. Initial experiments showed that the results improve if the BoAW feature vector
size is larger than the size of the ComParE feature set (6 373). The question is how
to make a fair comparison between the two studied feature representations. On the
one side, SVM classifiers (with a linear kernel) usually perform better in a larger fea-
ture space. On the other side, the codebook selection is a randomised and scalable
process that can be tuned automatically, increasing ‘only’ the computational com-
plexity, whereas functionals need to be defined manually. Thus, results with BoAW
features of the same dimensionality and larger dimensionalities, in comparison with
the baseline set, are reported in the first BoAW experiment.

Table 6.15 shows the UARs obtained with BoAW features in experiment B,
where the UAR measures of the two permutations (B1 & B2) are averaged. Re-
sults are reported, as before, for all feature groups and a fusion of the LLDs. In
addition to that, results for raw LLDs-only and deltas-only are provided now for
each feature group. For each of these ‘LLD-sets’, 3 different codebook sizes are
selected, as specified, as multiples of the corresponding functionals-based feature
vectors, as displayed before in Table 6.11. The factors 1, 2, and 4, are used. For the
fusion of feature types (‘ALL’), a bag-level fusion is performed, i. e., the BoAW
representations from each feature vector are concatenated.

It is evident that overall, the largest BoAW dimensionality (x4) performs best.
Similar findings as for the functionals-based experiments with on-line normalisation
can be made: overall, deltas of the LLDs seem to be more meaningful than the LLDs
themselves and spectral descriptors are most discriminative, based on these results.
Also here, energy alone achieves relatively good results, while ZCR, F0, and jitter
perform worst in the case of BoAW.
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Feature types BoAW BoAW BoAW
raw LLDs-only deltas only

CS factor CS factor CS factor
x1 x2 x4 x1 x2 x4 x1 x2 x4

RMS (energy) 59.5 62.1 62.9 34.8 34.2 33.5 50.9 51.6 51.6
ZCR 33.1 32.8 33.5 27.7 27.7 27.7 26.5 27.2 27.1
Spectral features 58.2 59.0 61.6 41.8 41.7 43.7 61.9 63.6 67.9
RASTA + Loudness 53.7 56.9 58.1 42.4 45.2 48.1 51.8 54.3 56.7
MFCCs (1–14) 48.5 50.7 51.8 34.3 34.4 35.1 50.3 52.2 53.8
F0 23.3 26.9 29.9 21.0 24.5 25.8 19.4 34.4 38.1
logHNR 50.8 56.9 60.5 36.3 37.4 37.2 45.2 52.7 53.6
Voicing probability 43.4 48.5 50.9 30.3 29.9 29.0 39.2 46.1 48.0
Jitter (local + DDP) 28.7 28.6 33.0 34.4 37.3 39.3 12.9 21.5 29.4
Shimmer (local) 45.2 48.7 50.5 34.9 35.2 35.1 37.6 40.2 40.3
ALL 83.8 86.2 87.9 70.5 72.0 75.6 85.9 90.5 90.8

Table 6.15: Results for audio effect classification (mean UAR [%] over experiments
B1 & B2) based on ComParE-LLDs with BoAW. The codebook size (CS) is spec-
ified as a multiple (with given factor) of the functionals feature space.

Feature type A1 A2 B1 B2 C1 C2 D1 D2

ALL 72.0 69.4 87.2 88.0 64.9 55.1 41.1 45.7
ALL, raw LLDs-only 64.0 58.9 73.6 76.8 49.4 41.8 22.4 40.1
ALL, deltas-only 76.5 72.4 90.9 92.8 67.7 58.2 35.8 62.1

Table 6.16: Results for audio effect classification (UAR [%]) based on ComParE-
LLDs with BoAW. A fixed codebook size of 2 000 is employed for each of the 10
feature types (bag-level fusion).

Results for all experiments A–D are shown in Table 6.16. Here, a fixed code-
book size of 2 000 was chosen for each feature type. The BoAW representations
of all of the 10 feature types are then concatenated (bag-level fusion). The measures
show that this configuration provides even better results than the configuration with
variable codebook sizes depending on the number of LLDs and functionals for each
feature type.

It is evident that throughout the experiments, BoAW based on deltas pro-
vides better results than BoAW based on only the raw LLDs. With the exception
of experiment D1, deltas even perform better alone than together with the LLDs.
This finding shows that by the application of audio effects, the short-term evolution
of the signal is more affected than its static properties.

Overall, it can be concluded that the BoAW approach, which only employs an
on-line normalisation of the frame-level input features, outperforms functionals
with on-line normalisation for most of the experiments. This is especially true
for experiments D, where BoAW outperforms functionals by a large margin (D1:
24.0 %, D2: 38.2 %).
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For off-line normalisation, the functionals-based approach performs better,
except for experiment D2 (training: polyphonic, test: monophonic), where the UAR
with BoAW is more than 10 % higher. This is remarkable as the comparison is
not really ‘fair’, because off-line normalisation always requires enough data in the
test domain to tune the normalisation parameters on. The superior performance
of BoAW can be explained by the fact that the energy or level of a signal, which
differs between the polyphonic and monophonic cases, has a more direct impact on
the functionals than on the BoAW, where only the word assignment step is affected
and not the ‘energy’ of the BoAW representation. This might also be the reason for
the better performance using deltas as input, which are not as much level-dependent
as the raw LLDs. While off-line normalisation of functionals provided better results,
also an off-line normalisation of the frame-level features was tried for BoAW, but
the performance was slightly lower.

Generally, it must be noted than experiments C and D are the most chal-
lenging ones. For experiment C (bass vs guitar), different effect settings were
applied for each instrument type by the authors of the database. For experiment D,
in addition to the expected level differences, some audio effects have a different effect
on polyphonic samples, especially overdrive and distortion, where harmonics are
added to the signal. Thus, these particular experiments, where the BoAW approach
performs comparably well, can be considered the most realistic ones.

The achieved measures are lower than those obtained by Stein et al. [358], how-
ever, they employed a pre-processing step of the samples, where only the sustain
part [38] of the samples is analysed; a pre-processing step, which might introduce
further error when deployed in a realistic setting with non-isolated tones or chords.
Moreover, the BoAW approach in general and openXBOW in particular offer some
room for improvement, especially the number of assignments and codebook sizes
could be adapted specifically for each feature type.

The original publication of the author [354] offers more results in terms of the
class-specific recalls and feature types, i. e., which audio effect is recognised how
well and which feature type is most discriminative. An analysis shows that the
audio effects distortion and tremolo achieve the highest recalls, while phaser is
recognised the worst. However, the classification of the similar effects chorus and
flanger shows only a low level of confusion.

6.4 The ComParE Series

The series of the Computational Paralinguistics ChallengE (ComParE) promoted
the usage of BoAW features and the toolkit openXBOW by employing them for
the corresponding baseline approaches provided to the participants. BoAW features
and scripts to extract them with openXBOW were provided, so far, in all recent
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editions of ComParE from 2017 to 2020, throughout all sub-challenges launched in
these years.

ComParE6 has been organised as an annual event, starting in 2009. Prior to the
Interspeech conference in the corresponding year, usually in January (8–9 months be-
fore the conference), research teams (academic and industrial) may start to register
for participation and get access to 3 or 4 packages (one for each sub-challenge), con-
taining data in terms of audio files, labels for training (and development) set, acoustic
feature sets (see below), and scripts to both (re-)extract acoustic features and run an
ML experiment to reproduce the baseline results. Participating researchers are free
to work on features, ML models, algorithms, etc. in order to improve the measure
(depending on the task) on the test set, where only data is provided for but not the
labels. Participants may submit predictions of up to 5 models (per sub-challenge)
and their best result is counted. In addition to that, they need to submit a regular
paper to a special session at the conference, dedicated to ComParE. All submissions
need to pass the regular reviewing process of the conference in order to be presented
at the event. For each sub-challenge, the team achieving the best result receives a
prize—given that their model outperforms also the baseline result.

During the recent years, classification, regression, and detection tasks were or-
ganised. In detail, in the years 2017—2020, the following sub-challenges (tasks) were
launched:

1. Addressee [11] (10 886 instances, 2 classes: parents speaking directed to their
child / between themselves)

2. Cold [11] (28 652 instances, 2 classes: infection in the upper respiratory tract
/ no infection)

3. Snoring [11] (828 instances, 4 classes: V /O/T /E (see Section 6.2), introduc-
ing MPSSC [117])

4. Atypical Affect [12] (10 627 instances, 4 classes:
anger/happiness/sadness/neutral for mentally or physically disabled
subjects)

5. Self-assessed Affect [12] (2 313 instances, 3 classes low/medium/high va-
lence, assessed by the subjects themselves)

6. Crying [12] (5 587 instances, 3 classes: neutral/fussing/crying vocalisations
of babies)

7. Heart Beats [12] (845 instances, 3 classes: normal/mild/moderate-severe
health condition of the heart)

8. Styrian Dialects [13] (9 732 instances, 3 classes: northern Styrian/urban
Styrian/eastern Styrian)

6http://www.compare.openaudio.eu/
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9. Continuous Sleepiness [13] (16 462 instances, 9 classes: according to the
Karolinska Sleepiness Scale[359])

10. Baby Sounds [13] (11 304 instances, 5 classes: canoni-
cal/crying/junk/laughing/non-canonical)

11. Orca Activity [13] (13 409 instances, 2 classes: orca present or not)

12. Elderly Emotion [116] (261 instances, 2 × 3 classes: low/medium/high
arousal/valence)

13. Breathing [116] (49 speakers, time-continuous regression task)

14. Masks [116] (36 554 instances, 2 classes: mask/no mask)

6.4.1 BoAW

For all the listed sub-challenges, a unique BoAW configuration was chosen. Only the
codebook size was optimised for each task as a hyperparameter. As input features,
the 65 acoustic LLDs from the official ComParE feature set (see Section 2.3.1)
have been used throughout, in combination with the 65 deltas of the LLDs. The
frame-level features are z-score normalised, using the corresponding option in
openXBOW.

One BoAW representation was learnt for the raw LLDs and another one for the
deltas, fused on bag-level. For both representations, the same codebook sizes
were employed, optimised in the range of 125 and 8 000. Throughout all of the
challenges, the number of assignments was fixed as 10 and a logarithmic term
frequency weighting was applied.

6.4.2 Other feature sets

Besides BoAW features generated by openXBOW, the following further feature
sets were taken into account for the baselines presented in the accompanying pub-
lications [11, 12, 13, 116]:

ComParE The official ComParE feature set, extracted with openSMILE [23],
consisting of 6 373 acoustic features, originating from 65 LLDs and corresponding
deltas. Statistical functionals are applied to LLDs and deltas to generate the fixed-
length instance-level feature vectors. The ComParE feature set was first used in
ComParE 2013 [20]. A detailed description is given in Section 2.3.1 in this thesis.

auDeep Since 2018, auDeep features were added, extracted with the homony-
mous toolkit [360, 361]. They are learnt—as BoAW features—in an unsupervised
way, using a recurrent sequence-to-sequence autoencoder. This is a special type of
recurrent neural network (see Section 4.4.4), mapping the input—in this case, the
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mel-spectrogram of the audio signal—to itself, learning a lower-dimensional rep-
resentation of fixed length, independent of the duration of the signal. Clipping
at 4 different levels [dB] is applied to the mel-spectrograms, resulting in a 1 024-
dimensional feature vector for each clipping level. In addition, also a fusion of these
is evaluated.

DeepSpectrum In the 2020 edition of ComParE, DeepSpectrum features [272]
were considered for the Elderly Emotion and Masks sub-challenges. Mel-
spectrograms are extracted as a first step and then propagated through
ResNet50 [283], a pre-trained DNN from the image recognition domain. The
2 048-dimensional internal representations from the ‘avg pool’ layer are used as a
fixed-length feature vector.

LiFE For the Elderly Emotion sub-challenge in 2020, where also transcriptions
were provided for, linguistic features were taken into account additionally. A
state-of-the-art LinguistIc Feature Extractor (LiFE) pipeline was implemented, em-
ploying a so-called Transformer model (BERT)[362] to extract context embeddings
for the words of each recording. The 768-dimensional context embedding sequence
is then compressed in two ways in order to obtain a fixed-length feature vector:
1) a global maximum pooling and 2) a bidirectional LSTM-RNN with an attention
mechanism and two feedforward layers resulting in a 512-dimensional output; in
addition, a part-of-speech embedding was trained.

E2E An End-to-end system, learning audio representations as internal repre-
sentations of a DNN, consisting of a CNN and an LSTM-RNN, with an optimised
number of layers, similar to the pioneering work by Trigeorgis et al.[228]. The whole
network is trained in a supervised way, using the audio signal as input and the
provided labels as a target. Thus, the features are not used explicitly. In the 2018
edition of ComParE, the toolkit End2You [363] was employed for the end-to-end
approach. In the 2019 and 2020 editions, an E2E system was not provided, except
for the Breathing sub-challenge, which is a sequence labelling task.

6.4.3 Machine learning

All extracted feature types—except for the internal representations of the E2E
approach—are fed into an SVM classifier or regressor (depending on the task). In
2017 and 2018, the toolkit Weka [161] was employed, using the function ‘SMO’
(sequential minimal optimisation). From 2019 onwards, the organisers switched
to the Python library Scikit-learn [364], with the functions LinearSVC and
LinearSVR, for classification or regression, respectively. These functions are based
on Liblinear [300], which is used also in other experiments presented in this thesis.
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Given this, nothing but a linear kernel has been used throughout. This decision
was based on the compelling experience made in previous editions of ComParE [20,
21, 22, 85] with linear kernels in large-scale feature spaces.

For most of the sub-challenges, the available data was split into disjunct training,
development, and test sets. Only for the Crying sub-challenge in 2018, a LOSO CV
was preferred, given the relatively low number of subjects. In the ComParE editions
of 2017 and 2018, a z-score normalisation was applied; in the editions of 2019
and 2020, a min-max normalisation was applied. There were no obvious reasons
for this change, as there was no clear superiority of one or the other method, but it
was connected to the switching from Weka and Bash scripts to Scikit-learn and
Python. Furthermore, a min-max normalisation seemed more appropriate at least
for BoAW features, as the log-term frequency histograms are typically not normal
distributed, but biased towards zero term frequencies (‘sparse’). The normalisation
was always performed on-line, i. e., normalising the features of all partitions based
on the parameters derived from the training set (for evaluation on the development
set and LOSO CV) or derived from training+development sets (in the case of three
partitions given).

The complexity hyperparameter was optimised in the range of [1e−6, 1e−5,
1e−4, 1e−3, 1e−2, 1e−1, 1e0] to obtain the best performance on the development
set (or in LOSO CV). The final model for prediction of the test set labels is trained
on fused training and development sets (on the training set in case of LOSO CV)
using the optimised complexity.

An upsampling of instances of the minority classes, in order to balance class
distributions, was used in the case of imbalanced datasets. A detailed overview
over class distributions and the key statistics of the data is found in the original
publications [11, 12, 13, 116].

6.4.4 Results

An overview of the results from all sub-challenges and feature types is given in the
following. The metrics for all classification tasks is the UAR, taking into account
the sometimes imbalanced class distribution in the test sets. For the Sleepiness
sub-challenge, Spearman’s correlation coefficient is the official metric. For the
Orca Activity sub-challenge, which is a (binary) detection task, the ROC-AUC
is noted. Finally, for the Breathing sub-challenge in 2020, PCC is employed. All
these metrics are introduced in Section 4.5.

As mentioned, besides the SVM complexity, only the codebook size was adapted
for all tasks. The main reason for this procedure was that, performing too much
optimisation, the baseline results would have been too competitive for the partici-
pants of ComParE. Also a late fusion of the ‘n-best’ models was provided. From
each approach, the model performing best on the test set was selected for the fusion.
The results of a majority voting has always been reported and in years 2017 and
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TASK Addressee Cold Snoring Atypical Self- Crying Heart
assessed Beats
Affect

Classes 2 2 4 4 3 3 3
Metric UAR [%] UAR [%] UAR [%] UAR [%] UAR [%] UAR [%] UAR [%]
Partition Dev / Test Dev / Test Dev / Test Dev / Test Dev / Test Lo / Test Dev / Test

CS BoAW
125, 125 63.2 / 67.5 55.9 / 62.8 43.8 / 48.7 38.7 / 36.4 56.5 / 61.7 75.6 / 73.2 43.1 / 43.4
250, 250 61.4 / 66.6 62.8 / 66.5 46.6 / 49.9 40.5 / 36.5 55.8 / 59.1 75.9 / 71.8 42.3 / 47.2
500, 500 62.4 / 68.2 63.9 / 66.7 44.2 / 51.2 39.8 / 38.1 52.5 / 63.2 76.9 / 67.7 43.7 / 41.0
1 k, 1 k 62.2 / 67.2 64.2 / 67.3 42.8 / 50.0 38.1 / 41.3 51.1 / 62.2 75.5 / 69.8 42.6 / 52.3
2 k, 2 k 63.4 / 67.7 64.1 / 67.3 41.0 / 48.3 37.9 / 39.2 56.7 / 60.9 75.4 / 68.8 39.9 / 43.3
4 k, 4 k 63.4 / 68.2 63.8 / 67.2 39.8 / 48.2
8 k, 8 k 63.3 / 68.3 64.0 / 69.7 36.6 / 47.8

Other approaches
ComParE 60.5 / 67.7 64.0 / 70.2 40.6 / 58.5 37.8 / 43.1 56.5 / 65.2 75.6 / 71.9 50.3 / 46.4
E2E 59.8 / 60.1 59.1 / 60.0 40.3 / 40.3 41.8 / 28.0 48.2 / 46.6 — / 63.5 41.2 / 37.7
auDeep 40.4 / 35.6 49.9 / 57.3 73.2 / 71.1 38.6 / 47.9

Late fusion (Majority voting)
2-best — / 42.9 — / 65.4 — / 70.4 — / 56.2
3-best 64.0 / 68.0 65.2 / 71.0 43.4 / 55.6 — / 42.0 — / 66.0 — / 74.6 — / 51.1
4-best — / 41.0 — / 62.2 — / 71.3 — / 53.0

Late fusion (Confidence-based)
2-best 62.8 / 68.7 64.2 / 70.1 42.1 / 52.4 — / 43.4 — / 64.6 — / 73.1 — / 49.3
3-best 66.4 / 70.2 66.1 / 70.7 43.5 / 53.0 — / 42.0 — / 64.7 — / 73.9 — / 53.6
4-best — / 42.0 — / 64.7 — / 73.9 — / 53.6

Table 6.17: Results of ComParE 2017 & 2018 with different feature sets / ML ap-
proaches. Dev: Development. CS: Codebook size of Bag-of-Audio-Words (BoAW),
splitting the input into two codebooks (ComParE-LLDs,ComParE-LLD-Deltas),
with 10 assignments per frame. E2E: end-to-end learning (CNN + LSTM). All
approaches (except for E2E) use an SVM classifier/regressor, where the complex-
ity hyperparameter is optimised on the development set/through LOSO CV (Lo).
Figures of empty cells were not computed for the original publications [11, 12].

2018, also a fusion based on the confidence outputs was given additionally. For a
majority vote of the two best approaches (2-best), the output is the label that is
predicted most often for the whole partition in case of contradictory predictions of
the two underlying models. For the Continuous Sleepiness and the Breathing
task, the means of the predictions were used for the fusion.

Table 6.17 shows the results for all sub-challenges of ComParE editions 2017 &
2018 and Table 6.18 shows the corresponding results for ComParE editions 2019
& 2020. Except for BoAW, where the evaluation measures are given for different
codebook sizes, only the configuration achieving the highest measure on the test set
for each approach is given. The official baselines, i. e., the approach obtaining the
best result on the test set for each sub-challenge, are highlighted in bold. For
most of the sub-challenges, a late fusion, combining the predictions of two or more
approaches achieves the best result.

For three tasks (Addressee, Crying, Heart Beats), the best BoAW config-
uration outperforms all other approaches on the test set. For the 12 other
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TASK Styrian Cont. Baby Orca Elderly Breath- Masks
Dialects Sleepiness Sounds Activity Emotion ing

Classes 3 9 5 2 3 A | 3 V 2
Metric UAR [%] Spearman UAR [%] ROC-AUC UAR [%] PCC UAR [%]
Partition Dev / Test Dev / Test Dev / Test Dev / Test Dev / Test Dev / Test Dev / Test

CS BoAW
125, 125 38.2 / 31.9 .240 / .291 51.5 / 52.7 .772 / .815 42.0|38.9/40.6|37.7 .185 / .357 59.8 / 58.7
250, 250 38.2 / 32.4 .236 / .268 51.0 / 54.3 .763 / .822 40.5|33.3/49.1|31.5 .201 / .349 61.5 / 62.7
500, 500 38.2 / 31.2 .250 / .304 51.2 / 53.7 .762 / .831 41.0|38.9/46.6|31.7 .209 / .367 63.1 / 65.0
1 k, 1 k 37.4 / 32.2 .265 / .286 51.1 / 54.3 .770 / .823 39.0|38.7/42.2|32.4 .226 / .366 63.6 / 66.1
2 k, 2 k 38.0 / 32.0 .269 / .260 51.0 / 54.9 .771 / .836 39.7|40.6/42.2|33.8 .215 / .355 64.2 / 67.7

Other approaches
ComParE 38.0 / 36.0 .251 / .314 54.0 / 57.7 .810/.866 39.1|40.4/47.9|41.7 .244 / .442 62.3 / 67.8
E2E .507 / .731
auDeep 44.4 / 47.0 .243 / .325 51.6 / 48.1 .740 / .798 34.9|36.7/44.3|33.8 64.4 / 66.6
DS 35.0|31.6/50.4|40.3 63.4 / 70.8
LiFE 40.6|44.0/49.2|49.0

Late fusion (Majority voting)
3-best — / 40.0 — / .343 — / 58.7 — / .866 — / .621
4-best — / 71.8
5-best — /47.9|39.8

Table 6.18: Results of ComParE 2019 & 2020 with different feature sets / ML
approaches. A: Arousal. V: Valence. Dev: Development. CS: Codebook size of
Bag-of-Audio-Words (BoAW), splitting the input into two codebooks (ComParE-
LLDs,ComParE-LLD-Deltas), with 10 assignments per frame. E2E: end-to-end
learning (CNN + LSTM). DS: DeepSpectrum. All approaches (except for E2E)
use an SVM classifier/regressor, where the complexity hyperparameter is optimised
on the development set/through LOSO CV (Lo). Figures of empty cells were not
computed for the original publications [13, 116].

tasks, BoAW is the second best approach (on the test set) in 6 cases. In 10 out of 15
tasks, a late fusion of models outperforms the single models. This is an indication of
the complementarity of different feature representations, which has already been
observed in Section 6.1 for an early fusion of functionals and BoAW features.

For the Addressee and the Heart Beats sub-challenges in 2017 and 2018, re-
spectively, the baseline was not surpassed by any of the participants of the challenge.
Here, a late fusion of all single models (Addressee) and a confidence-based fusion
of BoAW and auDeep features (Heart Beats) provided the best performance, i. e.,
the BoAW approach was involved in all unbeaten systems.

To underpin this and as already mentioned at the end of Chapter 5, where exam-
ples for openXBOW usage by other researchers were given, further improvement
on the Continuous Sleepiness, Baby Sounds, and Orca Activity tasks (but
not on the Styrian Dialect task) were achieved by a late fusion of ComParE,
BoAW, and the previously introduced Fisher vectors [330].

The results for BoAW features show further that the codebook size needs to
be tuned for each dataset, even though exactly the same set of LLDs are used
throughout. It is also evident that the performance on the development set is not
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a robust indicator of the performance on the test set, i. e., a codebook size that is
optimal for a model trained on the training set only might not be the best choice
for a model trained on fused training and development sets. However, looking at
the complete results tables ([11, 12, 13, 116]), a mismatch between development and
test set results can be observed also for the other approaches.

After the challenge, some of the baselines have been outperformed by a large
margin using BoAW representations based on other frame-level feature types. For
the Snoring task (MPSSC), BoAW computed from Wavelet descriptors achieve a
UAR of 69.4 % on the test set [315], which is considerably higher than the baseline
of 58.5 %. Nevertheless, also a refined end-to-end model [229], as published by the
author of this thesis, reaches a competitive UAR of 67.0 %.

6.5 The AVEC Series

The Audio/Visual Emotion Challenge and Workshop (AVEC) is, just like
ComParE (see Section 6.4), an annual scientific competition in the field of affective
computing, ML, CA, and computer vision. In contrast to ComParE, however, AVEC
is a multimodal challenge and the focus of the tasks is on such with an emotional
context. Typical modalities are—as the name suggests—audio and video, but
also physiological signals [337] and manual transcriptions [18] were provided for
some sub-challenges in the past. The main task has usually been the recognition of
emotion in terms of the continuously-valued dimensions arousal and valence [337], as
introduced in Section 6.1; but also the detection or monitoring of depression [338]—
as a health condition affecting mood—was studied as a challenge task. For this,
more than one sub-challenge based on several datasets were offered in some editions.
The main event of AVEC was normally held as a satellite workshop7 at the ACM
Multimedia conference. Similar to ComParE, participants were provided with the
data and scripts to reproduce baseline results a few months prior to the paper
submission deadline.

BoAW features, generated by openXBOW, have been employed for the baseline
approach in the AVEC editions of 2017 [18], 2018 [19], and 2019 [17]. In these
years, an annual sub-challenge was time-continuous emotion recognition on
the SEWA (‘Automatic Sentiment Analysis in the Wild’) database [302],
which was already mentioned in Section 5.1.5 on the computational performance of
openXBOW. In total, audio-visual recordings from 6 cultures8 are present
in the corpus, balanced across age groups from 18 to 60+. In the ‘video chat’ subset
of the database, which was taken into account for AVEC, pairs of subjects are
discussing a commercial, recorded by consumer webcam and microphones at the
subjects’ workplaces or homes. A video chat of a duration of up to 3 minutes is

7https://sites.google.com/view/avec2019/home
8British, Chinese, German, Greek, Hungarian, & Serbian
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Culture Years Partition Number of Duration
Subjects [h:min:s]

German 2017 + 2018 + 2019 Training 34 1:33:12
2017 + 2018 + 2019 Development 14 0:37:46
2017 + 2018 + 2019 Test 16 0:46:38

Hungarian 2018 / 2019 Test / Training 34 1:08:24
2018 / 2019 Test / Development 14 0:28:42
2018 / 2019 Test / Test 18 0:36:06

Chinese 2019 Test 70 3:17:52
All 200 8:28:50

Table 6.19: Overview of the key statistics of the SEWA corpus as used in AVEC
2017–2019 [17, 18, 19]. The German subset is used with the same partitioning in
each year. The Hungarian subset is used entirely as a Test set in AVEC 2018 and
split into Training, Development, and Test partitions in the 2019 challenge. The
Chinese subset is only used in AVEC 2019 as a Test set.

available for each pair. As the recording equipment and conditions (background
noise, etc.) varies across recordings, SEWA is considered an ‘in the wild’ database.
More details are found in the article introducing the corpus [302].

Several incremental subsets of the full SEWA database were introduced during
the years, adding a new culture/language each year and different training and testing
conditions. In the 2017 challenge, only German subjects were included and used
for training, development, and testing. In 2018 and 2019, cross-cultural emotion
recognition tasks were set, with recordings of Hungarian subjects forming the test
set in 2018 and recordings of Chinese subjects for testing in 2019, while training on
the first two cultures.

Table 6.19 shows the key statistics of the SEWA data used in AVEC 2017–2019,
with the numbers of subjects and durations of each partition. The German subset
of SEWA was always used with the same partitioning into training, development,
and test set. The Hungarian subset was used only for testing in the 2018 challenge
and with the split into three partitions (training, development, & test) in the 2019
challenge. The Chinese subset was only used as a test set in its completeness in
2019. It must be mentioned, however, that the official ranking of the participants
was depending only from the measures obtained on one culture in each year (2017:
German, 2018: Hungarian, 2019: Chinese).

The SEWA corpus was annotated by 5 (Hungarian) or 6 (Chinese, German)
annotators from the corresponding subjects’ culture, respectively, in terms of the
emotional dimensions arousal (high/low), valence (positive/negative), and liking as
a third dimension. While arousal and valence are affective measures [89] that are
commonly used in the field of affective computing, e. g., for the annotations of the
RECOLA corpus used in the experiments presented in Section 6.1, the dimension
of liking is a measure specifically used in SEWA. It describes whether a subject
seems to ‘like’ or ‘dislike’ either the product advertised in the commercial or the
commercial itself. All three dimensions are measured on a scale from −1 to +1,
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separately and independently by each of the annotators, using the vertical axis of a
joystick. To generate a unique gold standard for each dimension and each recording
(i. e., subject), an EWE is utilised, similar to the approach applied for RECOLA
(see Section 6.1) and described in detail in the publication on AVEC [18].

While in AVEC 2017 [18], openXBOW features were employed exclusively in
the baseline scripts of the Emotion sub-challenge, i. e., the task using the SEWA
database for benchmarking, in the subsequent years, BoW representations across
modalities were taken into account for all tasks. These were, in 2018 [19], the

� Bipolar Disorder (3 classes) sub-challenge, using the Turkish Audio-Visual
Bipolar Disorder Corpus [365], and the

� Gold-standard Emotion sub-challenge, where participants were asked to
propose novel methods of computing the gold standard (time-continuous
arousal & valence), based on the annotations from six individuals. For this
task, the RECOLA corpus, as introduced in Section 6.1, was exploited.

In 2019 [17], besides the Cross-cultural Emotion sub-challenge, the other tasks
were the

� State-of-Mind sub-challenge (regression) with the Ulm State-of-Mind cor-
pus [366], which had already been featured in the 2018 ComParE [12], and
the

� Detecting Depression sub-challenge, using the Extended Distress Analysis
Interview Corpus [367], with a regression task on a scale of 8 scores.

All corpora were partitioned into reasonable sets for training, development, and test,
where the labels for the test partition have not been disclosed.

However, given that a systematic analysis of BoAW features and their comparison
with functionals is only available for the Cross-cultural Emotion tasks, the results
for the other sub-challenges are not reported in this thesis. As the focus of this thesis
is on BoAW, i. e., on the audio modality, visual/facial features and corresponding
results using BoVW are not presented in the following, but the reader is referred
to the above mentioned publications on AVEC, where also the key statistics of all
corpora are given.

6.5.1 BoAW and other acoustic features

AVEC 2017 For the baseline of AVEC 2017 [18], only the LLDs from eGeMAPS
(see Section 2.3.2) are used and a BoAW representation is generated with a fixed
codebook size of 1 000, after z-score normalisation of the LLDs. Also a loga-
rithmic term frequency weighting is applied; all other options of openXBOW
are the default ones. One BoAW feature vector is computed over a block of 6 s
length, with a hop size of 100 ms to align with the labels.
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AVEC 2018 In AVEC 2018 [19], a larger variety of acoustic descriptors and
instance-level features are taken into account and evaluated to create the baseline.
Again, the LLDs from eGeMAPS are considered and additionally, MFCCs 1–13,
their deltas, and double-deltas. The BoAW features are computed using exactly
the same configuration as in AVEC 2017, but with a codebook size of 100 and a
block length of 4 s for the Cross-cultural Emotion sub-challenge.

Besides BoAW representations, the performance is also evaluated for the ‘official’
eGeMAPS set with functionals (88 features in total) and the mean and standard
deviation of the MFCCs, generating instance-level features. They are computed
over the same fixed block size as the corresponding BoAW features.

Furthermore, DeepSpectrum features, as already introduced in Section 6.4.2,
are considered for the AVEC 2018 baseline.

AVEC 2019 In AVEC 2019 [17], very similar to AVEC 2018, eGeMAPS and
MFCCs with deltas and double-deltas are employed. Analogously, a sliding window
of 4 s length, with a hop size of 100 ms, is used to segment the input into overlapping
blocks. BoAW features are generated with a fixed codebook size of 100, one
assignment per LLD frame, and also the other options as in AVEC 2018. Besides,
for the MFCCs, an alternative representation is provided by computing the func-
tionals mean and standard deviation. Finally, DeepSpectrum features are
considered again, this time using a larger variety of pre-trained DNN architectures.

6.5.2 Experimental setup

The baseline approach(es) were implemented using exclusively open-source feature
extraction and ML toolkits, to enable participants to reproduce the full processing
pipeline.

AVEC 2017 In AVEC 2017, an SVM regression model was utilised for the
baseline approach. All code was provided in Python, using the toolkit Scikit-
learn [364], whose SVM implementation is based on Liblinear [300]. To take
account of the inherent delay of annotations obtained through a real-time rating
(cf. Section 6.1), a delay compensation is done. For this, the LLD sequence
is shifted towards the back for each recording, while simply padding the missing
frames at the front with the first LLD vector. A delay in the interval of [0 s, 5 s]
with a step size of 0.2 s is considered and tuned on the development set, together
with the SVM complexity, which is optimised in the range of [2−15, 2−14, . . . , 20]
(following a logarithmic scale). The optimisation is done independently for each
dimension (arousal, valence, & liking). All further hyperparameters are the default
ones of the LinearSVR ML model in Scikit-learn. For the final model, which
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is evaluated on the test partition, the model is re-trained on the fusion of training
and development sets, using the optimised delay and complexity.

AVEC 2018 The baseline scripts for AVEC 2018 were published as a GitHub
repository9. A 2-layer LSTM-RNN regressor is employed for the given sequence
labelling task. The Keras framework10 is used for the implementation and training
of the model. The number of LSTM units is chosen as 64 for the 1st layer and as 32
for the 2nd, with 10 % dropout in each RNN layer, followed by an output layer with
one node for each target. All three targets (arousal, valence, & liking) are learnt
together (‘multi-task learning’), optimising a CCC-based loss function. The
neural network is trained for a maximum of 50 epochs, where—independently
for each target—the network weights are restored for the epoch achieving the highest
CCC measure on the development set. In analogy with the findings for RECOLA
(see Section 6.1 and SEWA in AVEC 2017, a delay compensation by time-shifting
the labels was found to improve the results, even though the RNN model as a
dynamic regressor has access to all past input. Nevertheless, the optimum of 2 s
seems to be a lower value than the optimum for the static SVM regressor employed
in AVEC 2017.

AVEC 2019 Also the baseline scripts for AVEC 2019 were published as a GitHub
repository11. As in AVEC 2018, a 2-layer LSTM-RNN (64 units & 32 units) is
employed for the Cross-cultural Emotion task. The network architecture and
hyperparameters for model training are exactly the same, however, the model for
AVEC 2019 is trained and optimised on both the German and the Hungarian
training and development sets. In contrast to AVEC 2018, all input features are
z-score normalised.

6.5.3 Results

For the emotion recognition sub-challenges of AVEC, using the SEWA database,
the CCC, as defined in Section 4.5.3, is taken into account for the ranking of the
participants, while also PCC and MSE were computed during the evaluation of the
submissions.

It must be noted that the results shown in the following are only those from the
models trained on acoustic features. The official baselines for all sub-challenges
of AVEC take into account all the modalities present in the data, i. e., also video
and, for AVEC 2017, additionally transcriptions. Different fusion techniques have

9https://github.com/AudioVisualEmotionChallenge/AVEC2018
10https://keras.io/
11https://github.com/AudioVisualEmotionChallenge/AVEC2019
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Dimension Culture Partition BoAW
eGeMAPS

Arousal German Development .344
German Test .225

Valence German Development .351
German Test .244

Table 6.20: Results of the AVEC 2017 affect recognition sub-challenge (SEWA
database, German) for the acoustic modality. BoAW representations of eGeMAPS
are used together with an SVM regressor. All results are in terms of CCC.

Dimension Culture Partition Functionals BoAW Deep
MFCCs eGeMAPS MFCCs eGeMAPS Spectrum

Arousal German Development .279 .124 .282 .421 .332
German Test .216 .112 .246 .247 .101
Hungarian Test .218 .189 .185 .226 .238

Valence German Development .253 .112 .306 .398 .276
German Test .259 .111 .229 .268 .106
Hungarian Test .080 .128 .098 .166 .040

Table 6.21: Results of the AVEC 2018 cross-cultural emotion sub-challenge (SEWA
database) for the acoustic modality. A 2-layer LSTM-RNN is used for regression
throughout. All results are in terms of CCC.

been employed for the sub-challenges across the years and for some sub-tasks, the
acoustic modality is more meaningful than for others.

As shown in the AVEC 2017 baseline paper [18], the dimension of liking is not
recognised at all through the acoustic modality alone. In fact, only the linguistic
domain, based on the manual transcriptions of the dialogues, provides meaningful
results across partitions. For this reason, in order to ensure clarity in the results
tables, the performance measures achieved for liking are not shown in the following.

The results for the sub-challenges on the SEWA database are shown in Ta-
bles 6.20 to 6.22. For AVEC 2018, it can be seen that BoAW features based on
eGeMAPS perform best consistently across all partitions and both German and
Hungarian speech. Comparing the measures achieved for AVEC 2018 (Table 6.21)
with the ones for AVEC 2017 (Table 6.20), there is some evidence that an LSTM-
RNN outperforms an SVM regressor across both emotional dimensions.

In contrast to this, for arousal in AVEC 2019 (Table 6.22), the eGeMAPS-
based BoAW is the best representation only for the German development set and
the fused German and Hungarian development sets. For all test partitions, the func-
tionals representation outperforms BoAW for this model trained on fused German
and Hungarian training data. However, the main reason for this may be the fea-
ture normalisation, as described in the previous section. Nevertheless, for valence,
the BoAW features based on eGeMAPS-LLDs are again those achieving the high-
est CCC, except for the Hungarian test partition, where DeepSpectrum features
perform better.
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Dimension Culture Partition Functionals BoAW Deep
MFCCs eGeMAPS MFCCs eGeMAPS Spectrum

Arousal Ger. + Hung. Development .326 .371 .298 .398 .312
German Development .389 .396 .323 .434 .380
Hungarian Development .326 .305 .237 .291 .156
German Test .296 .293 .164 .276 .133
Hungarian Test .160 .272 .233 .250 .257
Chinese Test .145 .100 .082 .107 .035

Valence Ger. + Hung. Development .187 .286 .134 .352 .233
German Development .344 .405 .190 .455 .317
Hungarian Development .017 .073 .042 .135 .084
German Test .288 .309 .066 .325 .105
Hungarian Test -.019 .166 .083 .151 .173
Chinese Test .166 .267 .160 .281 .024

Table 6.22: Results of the AVEC 2019 cross-cultural emotion sub-challenge (SEWA
database) for the acoustic modality. A 2-layer LSTM-RNN is used for regression
throughout. All results are in terms of CCC.

Concerning the cross-cultural emotion recognition, for valence, it might be sur-
prising that the results for the Chinese culture are better than those obtained for
the Hungarian culture, even though no Chinese data is used for training. However,
based on this study alone, there is no clarity whether this can be explained rather
by the complexity of the emotions typical for the one or the other culture, or by the
diversity of emotional states present in the research corpus.

Regarding the delay compensation, for AVEC 2017, it was shown that for a static
SVM-based regressor, the optimum shift is between 2 and 3 seconds for both arousal
and valence [18], which is slightly less than the delay that was found optimum for
RECOLA (see Section 6.1).

6.6 Input Representations for Emotion Recogni-

tion with LSTM

A follow-up work on time-continuous emotion recognition in speech, using BoAW
features and the SEWA corpus [302] in the version exploited in AVEC 2017 [18],
was published by the author under the title “Deep Recurrent Neural Networks
for Emotion Recognition in Speech” [368]. The motivation for this research was
the question—based on the success of eGeMAPS-LLDs based BoAW (see Sec-
tion 6.5)—which would be the optimal input representation for a deep LSTM-
RNN. Unless raw LLDs are fed into a DNN, besides the type (functionals or BoAW )
and the corresponding degrees of freedom (e. g., the codebook size for BoAW), also
the block length/window size, over which the summarisation is made, is a critical
factor. In the extreme case of a block covering only a single frame (LLD), the
corresponding BoAW feature vector is a one-hot encoded representation (see Sec-
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tion 4.4)—in case of a single audio word assignment per frame. The block size can
be controlled with the option -t in openXBOW.

In contrast to static ML models, such as SVM [18, 112], LSTM-RNNs are in-
herently suited for sequence labelling tasks, as they learn the required amount of
context by themselves and have—in theory—access to all past and (in the bidi-
rectional case) future information. The superiority of this architecture over SVM
for the given task was—besides the insights from the AVEC baseline presented in
the previous section—also found by the winners of AVEC 2017 [369] and earlier
by Eyben et al. [370]. The authors of these works also made the observation that
multi-task learning outperforms single-task learning, fitting a network to predict
up to five emotional dimensions at the same time. The reasoning for this is that
cross-dependencies between the targets can be expoloited. Furthermore, Eyben et
al. arrive at the conclusion that summarising LLDs in a supra-segmental approach
is better than using raw LLDs as input for the LSTM-RNN [370]. This is the
justification for the experimental setup described in the following [368].

6.6.1 Supra-segmental features

Three types of supra-segmental features, i. e., approaches to summarise LLDs in
overlapping blocks, with a hop size aligned with the target sequences (arousal &
valence), are compared to each other:

1. The official 88-dimensional eGeMAPS feature set, with the functionals as
described in Section 2.3.2.

2. The functionals mean and standard deviation applied to all 23 LLDs from
eGeMAPS, resulting in a 46-dimensional feature vector for each block.

3. BoAW representations with codebooks generated by random++ sampling on
the training partition, logarithmic term frequency weighting, and the following
four configurations for codebook size (CS) and number of assignments (NA):

(a) CS: 100, NA: 1

(b) CS: 100, NA: 10

(c) CS: 1 000, NA: 1

(d) CS: 1 000, NA: 10

Each feature space is augmented by a an additional uni-dimensional feature, based
on the manual speaker turn annotations, indicating if the target speaker is audible
or not (1 or 0). The reason for this is that in the SEWA database, the speech of
both speakers is present in the audio and encoding target speaker information is
meaningful. This is also referred to as ‘mark method’ by Huang et al. [371]. The
supra-segmental features are computed for each time step of 100 ms, in order to
match with the step size of the targets.
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Figure 6.3: Recurrent neural network architecture for time-continuous emotion
recognition on the SEWA corpus. The step size of features and labels is 100 ms
in each layer of the network. Activation functions are tanh, except for the output
layers, where one feedforward unit with a linear activation is used. In the first layer,
the number of units is optimised (either 1 000 or 200).

6.6.2 Neural network

Experiments are based on the neural network architecture shown in Figure 6.3. The
network consists of four layers, where the first one is a (time-distributed) feedforward
layer (fully-connected) with tanh activation and an optimised number of neurons.
1 000 and 200 are taken into account, respecting the differences in the dimensionality
of the input feature space. Next, three LSTM layers with tanh activation, which is
default for LSTM, are employed, each layer with a constant amount of 32 LSTM
units. For each target (arousal & valence), an output layer is present in the form
of a feedforward layer with a single unit and a linear activation. A dropout with a
rate of 10 % is employed in each layer.

Initial experiments have shown that the performance is approximately the same
when utilising an LSTM layer instead of the first feedforward layer or using more
units in the LSTM layers, but at the cost of a higher complexity and a larger
number of parameters. Moreover, all LSTM layers are unidirectional, as the quality
of the predictions has proven to be similar; a finding that has already been made by
Trigeorgis et al. [228].

6.6.3 Experimental setup

As done for the AVEC baseline [18], a delay compensation is taken into account.
In initial experiments, it was found that the optimum time interval for the shift
can be approximated by the half of the block size for the functionals and BoAW
computation. This block size-dependent delay is used throughout the experiments.

The neural network is trained by optimising a CCC-based loss function, more
precisely, 1−ρCCC is minimised, where the loss is averaged across all sequences from
the training set (full batch). Training is run for a maximum of 300 epochs with
RMSprop optimiser, considering early stopping with a patience of 10 epochs, but
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Figure 6.4: Results for emotion recognition on the SEWA corpus (test partition
of AVEC 2017), using an LSTM-RNN architecture and multi-task learning. All
measures are CCC. Results are shown for six different supra-segmental feature rep-
resentations of the eGeMAPS-LLDs and three block sizes; two of the feature rep-
resentations are based on functionals (original eGeMAPS functionals / mean and
standard deviation [Mean+Stddev] for each LLD), four of them are BoAW represen-
tations with different codebook sizes (CS) and numbers of assignments (NA) [BoAW
(CS/NA)].

weights from the epoch achieving the highest CCC on the development set are
restored. Besides this, also the learning rate is optimised on the development set
[range between 2−4 and 2−3] and, as mentioned above, the number of neurons in the
first layer [200 or 1 000].

6.6.4 Results

The whole training and hyperparameter optimisation process, as described in the
previous section, is conducted for all six feature representations (defined in
Subsection 6.6.1) and three block sizes for the summarisation: 0.1 s, 0.5 s, & 2.0 s.
Results on the test partition with multi-task learning are shown in Figure 6.4.
It is observable that a short block size of 0.1 s or 0.5 s leads to better results, except
for the BoAW features with a codebook size of 1 000 for the prediction of valence. A
potential reason for this behaviour might be the large degree of sparsity when using
a large codebook size; an effect that is attenuated when summarising over a longer
block. Similar to the findings in Section 6.1 with the RECOLA corpus, by trend,
valence seems to require a larger codebook size than arousal. Nevertheless, the best
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Figure 6.5: Results for emotion recognition on the SEWA corpus (test partition
of AVEC 2017), using an LSTM-RNN architecture and single-task learning. All
measures are CCC. Results are shown for six different supra-segmental feature rep-
resentations of the eGeMAPS-LLDs and three block sizes; two of the feature rep-
resentations are based on functionals (original eGeMAPS functionals / mean and
standard deviation [Mean+Stddev] for each LLD), four of them are BoAW represen-
tations with different codebook sizes (CS) and numbers of assignments (NA) [BoAW
(CS/NA)].

results are obtained without BoAW features, for arousal by using all eGeMAPS
functionals and for valence using only the mean and the standard deviation. As
described in Section 2.3.2, the main difference is that in the full set, the coefficient
of variation is used instead of the standard deviation, and some more functionals
(e. g., percentiles) are computed for F0 and loudness.

The results with single-task learning in Figure 6.5 show a similar picture
overall. The superiority of employing mean + standard deviation only is more ev-
ident here. On average, the results with single-task learning are even better than
those achieved by multi-task learning, which is contrary to the findings in related
works [115, 370].

Table 6.23 shows the results for both development (Dev) and test partition. The
results for the proposed LSTM-based model are reported for both multi-task and
single-task learning and have been selected by strictly choosing the combination
of feature representation and block length that is optimum on the development set.
The optimum feature representation is mean + standard deviation in all cases except
for valence with single-task learning, where the original eGeMAPS set performs
best.
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Method Ref. Arousal Valence
Dev Test Dev Test

AVEC 2017 Baseline – audio-only [18] .344 .225 .351 .244
AVEC 2017 Baseline – multimodal [18] .373 .375 .507 .466
AVEC 2017 Winner (Chen et al.) – audio-only [369] — .437 — .494
AVEC 2017 Winner (Chen et al.) – multimodal [369] .823 .672 .796 .756
Proposed LSTM model, multi-task – audio-only [368] .586 .460 .506 .490
Proposed LSTM model, single-task – audio-only [368] .607 .467 .549 .452
BLSTM model with uncertainty modelling (Han et al.) – audio-only [115] .356 .275 .396 .292
BLSTM model with uncertainty modelling (Han et al.) – multimodal [115] .559 .450 .575 .515
CNN model – audio-only [372] .564 .536 .547 .479

Table 6.23: Results for emotion recognition on the SEWA corpus, comparison with
AVEC baseline, AVEC winners, and two further approaches with involvement of the
author (Dev: Development). All measures are CCC.

The measures achieved with the proposed model clearly outperform the mul-
timodal AVEC 2017 baseline and the audio-only results of the AVEC 2017
winners for arousal and are competitive with their results for valence. They used
a combination of hand-crafted acoustic features and SoundNet, which are deep
features learnt frow the audio waveform in a kind of transfer learning approach on
multimedia data [285, 369].

The proposed model performs in the same range as the multimodal 2-layer
BLSTM-RNN model by Han et al. [115], while outperforming the audio-only one,
using ComParE-LLDs, by a large margin. Also their approach employs multi-
task learning, taking into account not only the emotional dimensions as targets but
also the uncertainty, i. e., the standard deviation between the ratings of the single
annotators.

An extension of the proposed approach was published by the author in the work
entitled “Continuous Emotion Recognition in Speech—Do We Need Recurrence?”
at the Interspeech conference in 2019 [372]. It is challenged that the recurrence prop-
erty of LSTM is actually not of fundamental importance for time-continuous emotion
recognition and that a fully convolutional neural network performs even better,
based on the experiments. As acoustic features, also here, the 23 eGeMAPS-LLDs
were employed and summarised in blocks of 100 ms length by computing their mean
+ standard deviation. Also the additional feature marking the target speaker is
concatenated. A 4-layer CNN is employed as a model, with increasing filter lengths
(5–50 steps, corresponding to 0.5 s–5 s) and (200, 64, 32, 32) filters in the correspond-
ing layers. The results in Table 6.23 show that the LSTM model is outperformed
for both arousal and valence on the test partition.

6.7 The EAT Challenge

Finally, openXBOW was providing baseline features for the Eating Analysis
and Tracking (EAT) challenge [84], a one-time event organised as part of the
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International Conference on Multimodal Interaction in 201812. As the name of the
conference suggest, the used database, iHEARu-EAT [373], contains audio-visual
recordings of subjects speaking while eating certain types of food. The audio part of
the database had already been exploited as the Eating Condition task of ComParE
2015 [21]. Three sub-challenges were offered in the EAT challenge:

1. Food Type, a 7-class task, to recognise the following food types: Apple,
Banana, Biscuit, Crisps, Gummibear, Nectarine, and a No Food class. This
task had already been set for ComParE 2015.

2. Likability, a binary classification task: Neutral or Like.

3. Difficulty, a classification or regression task on a 5-point Likert scale, where
subjects rated the effort of speaking while eating.

In total, 30 German speaking subjects (15 female, 15 male; mean age of 26 years)
were recruited and recorded in a low reverberant office room. The subjects were
allowed to leave out food types they did not want to eat for any reason. Chunks
of both read and spontaneous speech are included in the recordings; in total, 2 h
53 min of audio. More details on the experiments are found in the corresponding
references [84, 373]. After each experiment, the subject themself rated the Lika-
bility and Difficulty. The speaker-disjunct partitioning of ComParE was reused
and is shown in Table 7.1 in Chapter 7, where more results are shown, denoting the
numbers of instances for the ‘main task’ of recognising Food Type. No develop-
ment set is provided for the data but subject IDs for the training set (20 speakers)
as hyperparameter optimisation is supposed to be done using LOSO CV. As before,
the presentation of models and results in this thesis is focussed on the audio domain.

6.7.1 BoAW

The BoAW representation is based on the 130 ComParE-LLDs (including
deltas) (see Section 2.3.1). They are z-score normalised and—different from
ComParE (see Section 6.4)—split into 8 feature groups. For each group, a BoAW
feature vector is generated and then fused on histogram-level (bag-level fusion):

1. RMS energy, ZCR, F0, jitter, shimmer, voicing probability

2. RASTA

3. Spectral descriptors

4. MFCCs

12https://icmi-eat.ihearu-play.eu/
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Food Type Likability Difficulty
UAR [%] UAR [%] CCC

CS Lo Test Lo Test Lo Test
200 58.6 65.6 64.8 51.7 .439 .506
400 63.1 66.8 64.0 50.9 .432 .482
600 61.5 68.3 64.6 51.5 .455 .530
800 63.1 66.7 64.5 50.6 .446 .500
1 000 63.7 67.1 64.7 49.8 .440 .503
1 200 64.3 67.2 66.5 54.2 .451 .515
1 400 63.5 68.2 65.7 52.2 .470 .506
1 600 63.5 67.1 65.7 53.5 .466 .505
1 800 63.8 66.7 65.4 53.0 .466 .510
2 000 63.1 68.1 65.3 53.4 .469 .505

Table 6.24: Results for the EAT challenge, optimising the BoAW codebook size.
The model performing best in LOSO CV (Lo) is chosen for each sub-challenge (in
bold).

Groups 5–8 consist of the deltas of feature groups 1–4. The number of assign-
ments is fixed at 1, the codebook size is optimised in the range between 200
and 2 000, with a step size of 200. It should be pointed out that the codebook size
applies to each feature group and the final feature vector is 8-times larger than the
employed codebook size. As usually, the term frequencies are transformed applying
a logarithmic weighting.

6.7.2 Experimental setup

The baseline scripts for the EAT challenge are provided as Python scripts. The
ComParE feature set is extracted using openSMILE [23], the BoAW features are
generated with openXBOW, and Scikit-learn [364] is utilised for ML model
training. An SVM classifier is learnt for each task, using LinearSVC with default
options. The complexity hyperparameter is optimised using LOSO CV in the
range [1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1e0].

Besides the BoAW+SVM approach, also an E2E system was provided by the
organisers. The E2E model takes the raw signals (audio waveform and/or video) as
input and consists of a stack of convolutional layers and LSTM layers. The toolkit
End2You [363] is employed; more details on the domain-specific pre-processing and
the architecture are found in the paper on the challenge [84].

6.7.3 Results

The models for Food Type and Likability are evaluated in terms of the UAR
metric and the models for Difficulty are evaluated in terms of the CCC. Table 6.24
shows the results for all tasks and the codebook sizes in the considered range. The
optimum codebook size is between 1 200 and 1 400 for all three tasks (1 400 for the
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Modality openXBOW End2You
Lo Test Dev Test
Food Type

Audio-only 64.3 % 67.2 % 35.2 % 32.8 %
Video-only 28.0 % 27.0 % 27.1 % 24.5 %
Audio+Video 63.9 % 67.0 % 34.8 % 33.6 %

Likability
Audio-only 66.5 % 54.2 % 55.1 % 53.7 %
Video-only 55.9 % 58.3 % 52.9 % 50.9 %
Audio+Video 65.5 % 51.8 % 55.1 % 54.2 %

Difficulty
Audio-only .470 .506 .342 .323
Video-only .246 .252 .264 .220
Audio+Video .481 .501 .345 .311

Table 6.25: Results for the EAT challenge, comparing the BoAW/BoVW approach
with E2E, considering single modalities (audio/video) and their fusion. Models
based on openXBOW are optimised with LOSO CV (Lo), E2E models are opti-
mised on a development split consisting of 5 subjects (Dev). Metrics: UAR for Food
Type and Likability, CCC for Difficulty. The official baseline result for each task is
highlighted in bold.

Difficulty task), however, the performance is quite similar over the whole considered
range and drops only with the lowest size of 200 for the Food Type task.

Table 6.25 shows the results for both approaches; for the sake of completeness,
also the results achieved with the visual modality and an early fusion of both
are shown here. The BoAW approach outperforms E2E learning in all three tasks.
While for the Food Type and Difficulty tasks, the acoustic domain provides the
best results on the test set, for the Likability task, the visual domain in terms of
BoVW features (based on facial landmarks as LLDs) is best; however, the general
‘accuracy’ of the predictions is worse than for the Food Type task, given that it is a
binary classification problem. A fusion of BoAW and BoVW does not improve the
results.

In the EAT challenge, baseline results were surpassed only for the Food Type
task. The best result was achieved by a research group with involvement of one
of the organisers, by Sertolli et al. [374]. They extracted features generated by a
CNN pre-trained for the task of ASR and employed compact bilinear pooling [375] to
combine information from different layers. With a (unidirectional) 2-layer LSTM-
RNN, a UAR of 73.3 % on the test set is obtained for the Food Type task. The
official winner of the challenge, Pir [376], reached a UAR of 69.1 % using a novel
‘functional-based acoustic group feature selection’ method.

Furthermore, Guo et al. [329] showed that the provided BoAW features are in-
deed complementary with both functionals-based representations and deep repre-
sentations and that an early fusion of all three results in the highest UAR. In a
work outside of the context of the EAT challenge, Gosztolya proves that also a late
fusion of ComParE, BoAW computed on different MFCCs, and BoAW computed
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from DNN posteriors improves the Food Type recognition performance on the EAT
database [314].
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Systematic Evaluation

Based on the findings in the survey on BoAW in Section 3.2.2 and the results from
the case studies in Chapter 6, some fundamental aspects of the BoAW method still
remain unclear. This is the motivation for a more systematic evaluation of BoAW
configurations and hyperparameters, across four different datasets.

The following section sets out the open research questions. In Section 7.2, the
considered datasets and their key statistics are introduced. Section 7.3 describes the
experimental setup that applies to all experiments. Then, in Section 7.4, the results
of a number of experiments on certain aspects are presented and shortly discussed.

7.1 Open Research Questions

A central step of the BoAW approach is the codebook generation method.
In the experiments presented in the previous chapter, the random++ method of
openXBOW was used throughout, i. e., the codebooks were constructed from the
centroids resulting from the initialisation step of k-means++ clustering [216]. Never-
theless, as mentioned in Section 3.2.2, there is not enough evidence that this method
is superior to either a pure random sampling from the training set or to clustering.
Moreover, previous works obtained contradictory results on the usefulness of EM
clustering (cf. [25] and [188]).

Generally, the suitability of one or another method might also depend on the
codebook size, the LLD set, or the data itself. For this reason, a comparison of
codebook generation techniques evaluated across datasets, input features, and
configurations is performed in the 1st experiment, in Section 7.4.1. This corre-
sponds to RQ 1 defined in the introduction (Section 1.3).

Concerning the SVM kernel, as mentioned in Section 4.3.2, only a non-
significant performance gain was recognised with HIK or GHIK, compared to the
standard linear kernel, yet depending on the type of histogram normalisation. No
strong conclusion has been drawn so far. In the 2nd experiment in Section 7.4.2,
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evaluations comparing linear kernel and GHIK [246] are offered, employing sim-
ilar configurations as in the 1st experiment.

In the 3rd experiment, presented in Section 7.4.3, it is investigated if the finding
from Section 6.3 that the deltas of LLDs are more meaningful than the LLDs
themselves generalises also to the datasets and tasks taken into account in this
chapter.

The method of encoding is investigated in Section 7.4.4 in the 4th experiment,
by comparing hard (single- & multi-assignment) and soft assignment with each
other. In related works (Section 3.2.2), some authors have found that a GMM [187]
or other methods of soft encoding [199, 201] provide better representations than a
hard VQ. Nevertheless, there are also works concluding that a soft quantisation gives
worse results [25]. Moreover, the influence of a logarithmic term frequency (log-TF)
weighting is examined.

In the 5th experiment, presented in Section 7.4.5, BoAW generated from dif-
ferent LLD sets and two ways of splitting the large-scale ComParE feature set into
subsets, is evaluated.

Finally, in the 6th experiment in Section 7.4.6, the BoAW method is com-
pared to the classical functionals-based instance-level features. Moreover, results
achieved for a fusion of both are reported and compared to further approaches.
This experiment is a basis for answering RQ 2 and RQ 3 defined in the introduc-
tion (Section 1.3).

7.2 Description of the Datasets

The experiments are performed across the following four corpora:

1. iHEARu-EAT [21, 84, 373]

2. Berlin EmoDB [47]

3. MPSSC: The Munich-Passau Snore Sound Corpus [11, 117]

4. MASC: The Mask Augsburg Speech Corpus [116]

The key statistics of all datasets are shown in Tables 7.1 to 7.4. The following
criteria were taken into account in the selection of these datasets:

� All tasks are classification tasks and measured in terms of the UAR, which
means that the same training and evaluation protocol can be applied.

� The selected corpora are well-studied and public, with various publications
using them.

� The corpora show a large variety in terms of number of speakers/sub-
jects, instances, classes, and chunk durations.
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Food Type Training Test Total
Apple 140 56 196
Banana 140 70 210
Biscuit 133 70 203
Crisps 140 70 210
Gummibear 119 70 189
Nectarine 133 63 196
No Food 140 70 210
Total 945 469 1 414
Number of subjects 20 10 30
Total duration (h:mm:ss) 1:52:22 1:00:39 2:53:01

Table 7.1: Key statistics of the iHEARu-EAT database. The number of instances
of the training and test partition are given for each Food Type class.

Emotion Training Test Total
Anger 78 49 127
Boredom 54 27 81
Disgust 36 10 46
Fear 50 19 69
Happiness 45 26 71
Neutral 45 34 79
Sadness 39 23 62
Total 347 188 535
Number of subjects 6 4 10
Total duration (h:mm:ss) 0:16:10 0:08:36 0:24:46

Table 7.2: Key statistics of Berlin EmoDB. The partitioning is done by the
author, using subjects with IDs 03, 08, 09, & 10 for testing and the remaining ones
for training and optimisation (LOSO CV).

� Different types of audio data are present in the corpora: Three of them
contain speech (spontaneous and/or read), one (MPSSC) contains sounds
produced in the vocal tract.

The iHEARu-EAT [84] corpus has already been introduced in Section 6.7 in
the context of the EAT challenge, where it was used for as a benchmark database.
Only the 7-class Food Type task is taken into account in this chapter.

In Berlin EmoDB [47], speech in six ‘basic’ emotional states (anger, boredom,
disgust, fear, happiness, sadness) and a neutral reference are present, i. e., seven
classes. Classification on this corpus is a relatively simply task and high accuracies
are expected as the emotions are acted (not natural as, e. g., in SEWA [302]) and
recorded in a laboratory setting. The speech is scripted, i. e., the chunks contain
utterances from a pool of 10 sentences. Berlin EmoDB does not come with a
partitioning, thus, speakers with IDs 03, 08, 09, & 10 form the test set while the
other six speakers are used for training and optimisation (LOSO CV).

MASC is a relatively large corpus and was first used in ComParE 2020 [116]
(see Section 6.4). In total, 32 subjects (16 female, 16 male) were recorded with and
without wearing a surgical mask. A variety of free speech and scripted utterances
were collected in both scenarios and segmented into chunks of 1 s each, totalling up
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Class Training Development Test Total
No mask 5 353 6 666 5 553 17 572
Mask 5 542 7 981 5 459 18 982
Total 10 895 14 647 11 012 36 554
Number of subjects 12 10 10 32
Total duration (h:mm:ss) 3:01:35 4:04:07 3:03:32 10:09:14

Table 7.3: Key statistics of MASC.

Type Training Development Test Total
V 168 161 155 484
O 76 75 65 216
T 8 15 16 39
E 30 32 27 89
Total 282 283 263 828
Number of subjects 219
Total duration (h:mm:ss) 0:07:02 0:07:15 0:06:32 0:20:49

Table 7.4: Key statistics of MPSSC. Four types of snoring are discriminated: V,
O, T, E; see Section 6.2.

to 36 554 instances. The chunks were split into subject-disjunct and gender-balanced
partitions, as shown in Table 7.3. MASC is the only one of the four datasets in this
chapter with a fixed instance length (1 s).

MPSSC was first used in ComParE 2017 [11] (see Section 6.4). Similar to the
corpus discussed in Section 6.2, it contains recordings from subjects snoring during
drug-induced sleep, annotated by experts according to the location of excitation in
the throat. Analogously, four levels or classes are distinguished: V, O, T, & E (see
Figure 6.2).

All audio data is given uncompressed as mono files, with a bit depth of
16 bit and a sample rate of 16 kHz, except for the samples from iHEARu-EAT,
which are given in 44.1 kHz. More details on the corpora, recording protocols, and
subjects present are found in the corresponding publications mentioned above.

7.3 Experimental Setup

The BoAW are based on the LLDs from ComParE and eGeMAPS feature sets as
introduced in Section 2.3, extracted with openSMILE [23]. Scikit-learn [364]
is used to train and evaluate the ML models. As classifier, an SVM is employed
throughout; the kernel is, except otherwise noted, a linear one, i. e., LinearSVC
(which is based on Liblinear [300]), with the default configuration: the dual prob-
lem is solved, using squared hinge loss and L2 penalisation. A one-vs-all scheme
is applied to handle the given multi-class classification problems. The reasoning for
choosing only SVMs in the following experiments is as follows:
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� As already mentioned by Joachims [27], SVM is well suited for BoW fea-
tures, and more generally, for classification in high-dimensional, and poten-
tially sparse feature spaces.

� Most of the related works listed in Section 3.2.2 utilise SVM.

� SVMs, especially with a linear kernel, a relatively fast to train while still
achieving competitive results. The only critical hyperparameter to be opti-
mised is the complexity ; thus, much less tuning and training is required, most
importantly, in comparison with DNN models.

� A fast and robust classification method is necessary as the focus of this chapter
is the evaluation and comparison of BoAW features, suppressing the effect of
the classifier.

As a pre-processing, all instances are first balanced, by duplicating the instances
of all minority classes in the given order until they exactly match the number of in-
stances of the majority class. Then, an on-line min-max normalisation (between
0.0 and 1.0) is performed, by estimating the parameters from the training set only
(for the databases where LOSO CV is used and for the optimisation process on the
development set), or, from fused training and development sets (for the final model
for the databases with three partitions), respectively.

The complexity hyperparameter is optimised in the following range: [1e−5,
1e−4, 1e−3, 1e−2, 1e−1, 1e0]. As mentioned, for the experiments on iHEARu-
EAT and Berlin EmoDB, which expose a relatively low number of subjects and
samples at the same time, a LOSO CV is taken into account for the optimisation.
For MASC and MPSSC, the complexity is optimised on the development set.

In previous experiments, it has been found that the performance of ML models
based on BoAW features depend on the random seed used for codebook generation,
i. e., a meaningful variance is observed when re-running the same experiment with
different seeds (option -seed in openXBOW). Thus, in the following experiments,
for each BoAW configuration, the process is run 10 times, employing random seeds
10 (default) to 19 in openXBOW. The mean and the standard deviation of the
UARs for each configuration are reported.

7.4 Experiments and Results

Six experiments that seek to answer the open questions posed are presented in the
following.

7.4.1 Codebook generation method

In the 1st experiment, the influence of the codebook generation method is studied.
Two sets of acoustic LLDs are taken into account:
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� MFCCs 1–14 + RMS energy (15 LLDs)

� eGeMAPS [31] (23 LLDs)

These LLD sets have already proven to achieve suitable representations for vari-
ous tasks, as shown in Chapter 6. For each LLD set, based on experience gained
in previous experiments [112], two configurations of codebook size and number of
assignments are considered:

〈1〉 CS = 100, NA = 1

〈2〉 CS = 1 000, NA = 10

The corresponding codebooks are generated comparing 8 different methods,
as explained in Section 5.2.1:

1. Sampling from a Gaussian PDF (pdf).

2. Random sampling from the training set (random).

3. Random++ sampling from the training set (random++), considering two sub-
samplings (numTrain) of the training LLDs: (a) 50 000 and (b) 10 000.

4. K-means++ clustering on the training set (kmeans++), considering two sub-
samplings (numTrain) of the training LLDs: (a) 50 000 and (b) 10 000.

5. EM clustering on the training set with k-means++ initialisation
(em-kmeans++), considering two sub-samplings (numTrain) of the training
LLDs: (a) 50 000 and (b) 10 000.

A z-score normalisation (‘standardisation’) of the input (LLDs) and a log-
TF weighting of the BoAW features are performed throughout. The motivation
for considering two types of sub-samplings for ‘random++’ and the two clustering
methods is that sub-sampling increases the codebook training time significantly and
a negligible influence would be beneficial when dealing with large-scale datasets.
The results in terms of the UAR, averaged over 10 random seeds, are reported in
Figure 7.1.

Overall, a pure random sampling (option random in openXBOW, without
the initialisation from k-means++) from the training LLDs is the best option.
Only for the MFCCs, an EM or k-means++ clustering might be preferred,
which is especially evident for configuration 〈1〉 (CS = 100, NA = 1), i. e., a small
codebook size. Concerning EM clustering, it is evident that it works relatively
well for MFCCs, but worse for eGeMAPS in most cases. A potential reason
for this is that MFCCs, as mentioned before (Section 6.1), are normally distributed,
i. e., it is straightforward to model them with a GMM (EM clustering), whereas this
property does not apply to all LLDs in eGeMAPS. This is further supported by
the observation that sampling from a Gaussian PDF seems to be a reasonable
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choice for the MFCC-based LLD set. This is a meaningful finding as this codebook
generation method is the only one discussed here that is fully data-independent
and thus, suitable also for cross-corpus recognition tasks.

It must be noted that all findings are relatively consistent across databases.
Only for MPSSC, the results differ evidently: Especially for configuration 〈1〉 and
MFCCs, there is a mismatch for evaluation between development and test condi-
tions. While a clustering-based codebook generation seems to perform better on
the development set, the sampling methods perform better on the test set. This is
surprising as the codebooks are kept constant between these conditions and are not
re-trained. Anyway, it must be noted that the error bars are generally larger for the
small MPSSC than for the other corpora.

There is no conclusion whether a clustering on more (50 000) or less (10 000)
data leads to better results; however, it can be stated that the sub-sampling of
the training data has less influence on the final result than the codebook generation
method itself.

It may be noted that for the test partitions of iHEARu-EAT and MASC, with
eGeMAPS, statistical significance w. r. t. Welch’s t-test (p < 0.05) is achieved
for the random sampling (random) method, compared to all other methods. A dis-
tinct ‘winning’ approach, however, cannot be identified for the other two databases
and the MFCC-based LLDs.

7.4.2 SVM kernel

In the 2nd experiment, the performance of SVMs with GHIK are compared to
those with the linear kernel employed so far. Again, the same two sets of acoustic
LLDs from the 1st experiment and configurations 〈1〉 and 〈2〉 are taken into account
(see Section 7.4.1). Codebooks are generated with the random sampling (random)
method, as this method provided the best overall results.

A z-score normalisation of all LLDs is performed. The term frequency his-
tograms are subject to a logarithmic weighting (log-TF), as this procedure has
shown a consistent performance gain in the experience of the author. As described
above, min-max normalisation is done as the final processing step before SVM
training, however, the findings in the following experiments were qualitatively the
same without normalisation.

Besides the complexity, also the hyperparameter β of the GHIK is optimised in
the same way. The following range is taken into account for β: [0.5, 1.0, 1.5, 2.0, 2.5,
3.0]. The results in terms of the UAR, averaged over 10 random seeds, are reported
in Figure 7.2.
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Figure 7.1: Results of the 1st experiment, comparing the influence of the codebook generation
method. The UARs (mean and standard deviation over 10 random seeds in openXBOW) achieved
for the Development set (Devel) or LOSO CV and Test set, respectively, for each of the four
considered datasets, are reported. Eight codebook generation methods (in different colours) are
compared to each other. Experiments are run for two LLD sets (MFCCs: MFCCs 1–14 + RMS
energy and eGeMAPS) and two configurations of CS and NA: 〈1〉 & 〈2〉 as specified in the main
text.
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Figure 7.2: Results of the 2nd experiment, comparing linear kernel and GHIK for SVM. The
UARs (mean and standard deviation over 10 random seeds in openXBOW) achieved for the
Development set (Devel) or LOSO CV and Test set, respectively, for each of the four considered
datasets, are reported. Experiments are run for two LLD sets (MFCCs: MFCCs 1–14 + RMS
energy and eGeMAPS) and two configurations of CS and NA: 〈1〉 & 〈2〉 as specified in the main
text.
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GHIK outperforms a linear kernel significantly (Welch’s t-test, p < 0.05,
test set) only for iHEARu-EAT with MFCCs and configuration 〈2〉. Nevertheless,
GHIK performs worse than a linear kernel1 for MPSSC. For Berlin EmoDB
and MASC, the differences are not statistically significant. Furthermore, for
configurations with a higher degree of sparseness, i. e., increasing the ratio between
codebook size and number of assignments, GHIK performs rather worse (not shown
here). In summary, previous findings [26, 190] are confirmed, concluding that a
linear kernel is usually preferable, as the training and optimisation process is
faster.

7.4.3 Deltas

In the 3rd experiment, the relevance of the deltas (see Section 2.1.7) is evaluated.
Only MFCCs 1–14 + RMS energy (15 LLDs) are taken into account in the
following experiments, and/or, their deltas, as defined in the ComParE feature set
(see Section 2.3.1). Consequently, the following four LLD sets are compared to each
other:

1. (Raw) LLDs-only (15-dimensional)

2. Deltas-only (15-dimensional)

3. An LLD-level fusion of LLDs + deltas (30-dimensional)

4. LLDs + deltas (2 × 15-dimensional) with a bag-level fusion

In order to respect the larger dimensionality of the input space with LLDs + deltas,
four configurations of codebook size and number of assignments are evaluated, taking
larger codebooks into consideration:

〈1a〉 CS = 100, NA = 1

〈1b〉 CS = 400, NA = 1

〈2a〉 CS = 1 000, NA = 10

〈2b〉 CS = 4 000, NA = 10

A single codebook is trained for the LLD-level fusion and two codebooks are
trained for the bag-level fusion, using the random sampling (random) method, as
this method provided the best overall results in the 1st experiment. For the bag-level
fusion, the shown codebook sizes (CS) are halved for each of the two bags, resulting
in the same BoAW feature dimensionality, in order to improve the comparability.
As before, a z-score normalisation of all LLDs/deltas is performed and the term
frequency histograms are subject to a logarithmic weighting (log-TF), prior to
a min-max normalisation. The results in terms of the UAR, averaged over 10
random seeds, are reported in Figure 7.3.

1Statistically significant for eGeMAPS 〈2〉.
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Figure 7.3: Results of the 3rd experiment, comparing the relevance of MFCC-deltas. The UARs
(mean and standard deviation over 10 random seeds in openXBOW) achieved for the Development
set (Devel) or LOSO CV and Test set, respectively, for each of the four considered datasets, are
reported. Experiments are run for four configurations of CS and NA: 〈1a〉, 〈1b〉, 〈2a〉, & 〈2b〉 as
specified in the main text.
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It is evident that the relevance of MFCC-deltas highly depends on the
given task. While for iHEARu-EAT and MASC, BoAW generated from deltas
performs worse than the BoAW generated from the raw LLDs and even an LLD-
level fusion of both leads to worse results, for Berlin EmoDB and MPSSC, the
LLD-level fusion is at least superior to raw LLDs only.

In contrast, with a bag-level fusion, the detrimental effect of the deltas is less
distinctive for iHEARu-EAT and MASC, but only for Berlin EmoDB, the best
results are achieved with bag-level fusion on average. However, for MPSSC, it
results in a worse performance than using raw LLDs.

Compared to the findings in Section 6.3, MFCC-deltas are generally less
meaningful than the raw LLDs for the four CA tasks investigated in this chapter.
The configuration of codebook size and number of assignments does not result in
qualitatively different findings w. r. t. the given research question. Nevertheless, a
better performance using a larger codebook size can be observed for all corpora
except for MPSSC.

7.4.4 Audio word encoding

In the 4th experiment, hard assignment and soft assigment are compared. For
hard assignment, also the influence of multi-assignment, i. e., NA > 1 is evaluated.
In addition to that, the importance of log-TF weighting is examined by computing
all results with and without it. Based on the previous experiments, only MFCCs 1–
14 + RMS energy (15 LLDs) are taken into account, as defined in the ComParE
feature set (see Section 2.3.1), without the deltas. As the performance of different
assignment methods might depend on the codebook size, two different codebook
sizes are taken into account, in analogy with the 1st and 2nd experiment:

1. CS = 100 and

2. CS = 1 000.

Throughout the experiments, an EM clustering is performed, using the outcome
of a k-means++ clustering for initialisation (em-kmeans++). To speed up the
training process and as no meaningful differences in performance have been found,
the clustering is performed on a sub-sampling of 10 000 instances. The 8 following
configurations are considered for the audio word encoding (cf. Section 5.2.2):

1. NA = 1 (single-assignment),

2. NA = 2 (multi-assignment),

3. NA = 5 (multi-assignment),

4. NA = 10 (multi-assignment),

5. NA = 20 (multi-assignment),
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6. NA = 50 (multi-assignment),

7. GMM-like soft encoding without priors (-gmm 1), and

8. GMM-like soft encoding with priors (-gmm 2).

All these configurations have been applied with and without a log-TF weighting
(-log). An IDF weighting (-idf) is not considered further as it is, according to
Equation 3.5, a feature-wise linear transform and its effect is nullified by feature
normalisation anyway. As before, a z-score normalisation of LLDs is performed
and the output is subject to a min-max normalisation prior to SVM training.
The results in terms of the UAR, averaged over 10 random seeds, are reported in
Figure 7.4.

It is obvious that a soft assignment is better than single-assignment in
most cases. As already found before, multi-assignment performs better than
single-assignment, but the exact number of assignments (NA) needs to be
optimised as it is depending not only on the codebook size but also on the
given data. There is no clear conclusion whether soft assignment is superior to hard
assignment. Also this seems to depend highly on the task or data at hand. Based
on the experiments, the soft GMM-like encoding tends to work better for smaller
codebook sizes, especially with MASC. This contradicts the findings by Rawat et
al. that a soft quantisation is particularly beneficial for large codebooks [201].

Generally, it must be noted that this comparison is not completely fair as the
random sampling is the optimum codebook generation used with a hard assignment
(as shown in Section 7.4.1) and EM clustering is used here. Furthermore, the large
error bars of the soft encoding for the test set of MPSSC show that it might not
be very robust when applied to small datasets. Concerning taking into account
GMM-priors, there is no preference, given the results, compared to the findings by
Barrington et al. [187], claiming that uniform priors work better. In any case, a
log-TF weighting is always to be preferred.

7.4.5 Optimisation of LLD splits and codebook size

In the 5th experiment, a comparison of the performances achieved with different
sets of LLDs, including those from the large ComParE feature set, is made. More-
over, experiments are run with two different ways of splitting this relatively large
number of LLDs into subsets (‘bag-level fusion’). Results are reported for varying
codebook sizes. The following four LLD sets and splits are taken into account:

� MFCCs 1–14 + RMS energy (15 LLDs)

� eGeMAPS [31] (23 LLDs)

� ComParE (see Section 2.3.1) with two different splits into subsets:
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– a split into 2 subsets (2-split), exactly as done for ComParE 2017–2020
(see Section 6.4):

1. raw acoustic LLDs (65 LLDs)
2. deltas (65 ‘LLDs’)

– a split into 12 subsets (12-split), according to the following 6 feature
groups

1. prosody-related: F0 + Voicing probability + RMS (3 LLDs)
2. microprosody: Jitter (local + DDP) + Shimmer (3 LLDs)
3. noise-related: logHNR + ZCR (2 LLDs)
4. RASTA auditory band energies 1–26 + Loudness + Modulation loud-

ness (28 LLDs)
5. Spectral descriptors (15 LLDs)
6. MFCCs 1–14 (14 LLDs)

and exactly the same grouping for all corresponding deltas.

Generally, a fair comparison of results obtained with different splits of the LLD
feature space is difficult, as different configurations of codebook size and number of
assignments will be optimal. In the first three experiments, fixed codebook sizes have
been employed, independent from the number of LLDs. In this series of experiments,
the codebook size for each subset of LLDs is a multiple of the number
of LLDs. Also the number of assignments is depending linearly on the
codebook size, with a fixed ratio of 1

50
, motivated by the findings in Section 6.1.

The following three multiples of the number of LLDs, NLLDs are evaluated:

1. CS = 50×NLLDs, NA = 1×NLLDs

2. CS = 100×NLLDs, NA = 2×NLLDs

3. CS = 200×NLLDs, NA = 4×NLLDs

Also here, a z-score normalisation of all input LLDs is performed, random sam-
pling (random) is employed for codebook generation, and a log-TF weighting is
applied. The results in terms of the UAR, averaged over 10 random seeds, are
reported in Figure 7.5.

Generally, it is evident that all tasks benefit the large-scale ComParE set.
Nevertheless, for two tasks, MFCCs and eGeMAPS are outperformed only when
using the split into 12 subsets. A larger codebook size leads to higher UARs, by
trend. In summary, taking into account a large number of LLDs, split into reasonable
subsets, seems to be more meaningful than optimising the codebook size and number
of assignments.
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Figure 7.4: Results of the 4th experiment, comparing audio word encoding techniques and term
frequency weighting, as specified in the main text. The UARs (mean and standard deviation over
10 random seeds in openXBOW) achieved for the Development set (Devel) or LOSO CV and
Test set, respectively, for each of the four considered datasets, are reported.
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Figure 7.5: Results of the 5th experiment, comparing different LLD sets and splits. The UARs
(mean and standard deviation over 10 random seeds in openXBOW) achieved for the Development
set (Devel) or LOSO CV and Test set, respectively, for each of the four considered datasets, are
reported. Experiments are run for three configurations of CS and NA as a multiple of the number
of LLDs, with a fixed ratio of 50 between CS and NA.

172



7.4. Experiments and Results

7.4.6 Comparison and fusion with functionals

Finally, in the 6th experiment, it is evaluated how good the BoAW features perform
in comparison with functionals. In addition to that, results for an early fusion, i. e.,
concatenating BoAW and funcionals-based feature vectors prior to SVM training,
are shown.

For BoAW, both eGeMAPS and ComParE LLD sets are evaluated, where
the ‘12-split’ is taken into account for ComParE, as explained in Section 7.4.5.
Exactly the same configuration as in this section is reused, with a codebook size
corresponding to 200 times the number of LLDs (and the number of assignments 4
times the number of LLDs). The corresponding call to openXBOW reflecting all
chosen options is shown at the end of Appendix A. It must be noted that optimisation
on the development set of MPSSC would return a codebook size lower than optimal,
but in order to make a consistent evaluation, a fixed setup is chosen.

As a baseline, the original eGeMAPS and ComParE sets with functionals (see
Section 2.3) are considered. The results are shown in Table 7.5, with BoAW-based
experiments averaged across 10 random seeds. In addition to the results from the ex-
periments, also the baseline results from the corresponding challenges are reported,
except for Berlin EmoDB, where no official test split exists. Nevertheless, in the
literature an accuracy of up to 85.2 % is reported for speaker-independent experi-
ments on Berlin EmoDB with a 2-fold CV [377], which closely matches with the
experimental results found for a fusion of functionals and BoAW. For MPSSC, the
outcomes of further experiments from the literature are given.

First of all, it must be noted that BoAW features outperform functionals
in most of the experiments, except for eGeMAPS-LLDs on Berlin EmoDB.
For iHEARu-EAT and MASC, the improvement over the functionals-baseline is
between 3.9 % and 7.3 % throughout partitions and LLD sets. For MPSSC,
there is no meaningful improvement over functionals. Statistical significance testing
on the test partitions, performing a one-sample t-test (p < 0.05), shows that in all
experiments where the UAR is higher for BoAW than for functionals2, this gap is
significant. Normality of the results has been checked according to Section 4.5.4.

Concerning the early fusion of BoAW and functionals, it is evident that
even better measures are achieved than with functionals or BoAW alone for more
or less all experiments with iHEARu-EAT and MASC. For ComParE, these
improvements are statistically significant (p < 0.05) w. r. t. Welch’s t-test (see
Section 4.5.4). Also for Berlin EmoDB with ComParE-LLDs, fusing the func-
tionals with BoAW now provides a small improvement over the baseline for both
LOSO CV and the test set. This shows that, similar to the findings in Section 6.1
on time-continuous emotion recognition, functionals and BoAW representations are

2I. e., all experiments except for Berlin EmoDB with eGeMAPS and MPSSC with Com-
ParE.
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complementary with each other, each conveying meaningful and exclusive infor-
mation on the task.

The baselines of the ‘EAT’ and ‘ComParE 2017 Snoring’ challenges are outper-
formed, while achieving almost the same result for ‘ComParE 2020 Masks’. However,
it must be noted that the baseline of the ‘Masks’ challenge is a late fusion of the
predictions of four different approaches [116]. With a UAR of 72.3 % (average over
10 seeds), the official winning approach of the EAT challenge [376] is surpassed by
3.2 %, while achieving almost the same performance as the best results reported
with 73.3 % [374]3.

A large number of works have been published on MPSSC. As mentioned be-
fore, Qian et al. [315] extended the BoAW approach using wavelet descriptors
(see Section 2.1.3) as LLDs (‘bag-of-wavelet-features’). This model, also based on
openXBOW, outperforms the baseline by more than 10 %, achieving almost the
highest known measure. Demir et al. obtain the best results reported on MPSSC so
far (a UAR of 72.6 % on the test set), with a fusion of histograms of oriented gra-
dients and local binary patterns extracted from the spectrogram and decoded with
an SVM [379]. A similar performance has been achieved in a work by the author of
this thesis [229], with neural network-based end-to-end learning. It is shown that
a fully convolutional (one-dimensional) network with a global pooling outperforms
a DNN consisting of both convolutional and LSTM layers. A very good perfor-
mance is already achieved on the development set, using only the official training
set, while also the baseline on the test set (from ComParE 2017) is outperformed
by a large margin. The same UAR is achieved as with the DeepSpectrum (see
Section 6.4) + SVM approach by Amiriparian et al. [272]. Overall, it must be stated
that ‘non-deep’ approaches have obtained the best two results so far, with the ‘bag-
of-wavelet-features’ approach [315] and the approach by Demir et al. [379], which
employs histogram-like features as well and consequently shares some similarities
with BoAW.

Generally, it must be emphasised that the proposed BoAW, or BoAW + func-
tionals, approach for audio classification has not been optimised specifically for a
certain task or dataset, but for a collection of four heterogeneous tasks. Exactly
the same configuration of openXBOW has been applied throughout all experi-
ments. Only the complexity hyperparameter of the SVM is tuned on each dataset.
Also the codebooks are sampled from the LLDs of each respective corpus, but this is
a relatively inexpensive procedure and not a limitation, as this is exceeded by the re-
quirements of the classifier training, which requires data anyway and—in addition—
the labels. Thus, the proposed method can be considered as task-independent, in
contrast to most of the further approaches reported in Table 7.5, where the model
architectures and processing pipelines have presumably been tuned on a specific
task.

3The authors were not officially participating at the challenge due to an overlap with organisers.
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Approach Devel / LOSO CV Test
UAR [%] UAR [%]

iHEARu-EAT
eGeMAPS – Functionals 52.4 51.0
eGeMAPS – BoAW 56.7± 0.9 56.1± 1.0
eGeMAPS – Functionals + BoAW 56.8± 0.6 56.6± 1.1
ComParE – Functionals 61.5 63.5
ComParE – BoAW (12-split) 67.8± 0.6 70.7± 0.8
ComParE – Functionals + BoAW 68.7± 0.4 72.3± 0.7
Baseline EAT Challenge [84] 64.3 67.2
Official winner EAT Challenge [376] 68.2 69.1
Best result EAT Challenge [374] 75.0 73.3

Berlin EmoDB
eGeMAPS – Functionals 80.2 75.2
eGeMAPS – BoAW 75.3± 0.4 74.5± 1.8
eGeMAPS – Functionals + BoAW 75.7± 0.4 74.4± 1.8
ComParE – Functionals 85.0 80.8
ComParE – BoAW (12-split) 85.1± 0.4 84.7± 1.1
ComParE – Functionals + BoAW 86.4± 0.3 85.9± 1.3

MASC
eGeMAPS – Functionals 60.5 62.3
eGeMAPS – BoAW 64.4± 0.3 69.6± 0.3
eGeMAPS – Functionals + BoAW 64.6± 0.3 69.8± 0.3
ComParE – Functionals 62.6 66.5
ComParE – BoAW (12-split) 67.2± 0.2 70.5± 0.2
ComParE – Functionals + BoAW 67.1± 0.3 71.0± 0.3
Baseline ComParE 2020 Masks [116] 64.4 71.8
Official winner ComParE 2020 Masks [378] 70.5 80.1

MPSSC
eGeMAPS – Functionals 41.4 51.8
eGeMAPS – BoAW 40.9± 0.9 54.2± 1.9
eGeMAPS – Functionals + BoAW 41.6± 0.8 55.3± 1.9
ComParE – Functionals 37.5 58.9
ComParE – BoAW (12-split) 42.2± 0.4 58.1± 1.5
ComParE – Functionals + BoAW 39.3± 0.5 59.0± 1.9
Baseline ComParE 2017 Snoring [11] 40.6 58.5
Official winner ComParE 2017 Snoring [333] 50.1 64.2
DeepSpectrum [272] 44.8 67.0
Spectrogram-based image features [379] 37.8 72.6
Bag-of-wavelet-features [315] 35.0 69.4
End-to-end CNN [229] 59.1 67.0

Table 7.5: Results of the 6th experiment, showing UARs achieved for functionals,
BoAW, and an early fusion of both. The UARs (mean and standard deviation
over 10 random seeds in openXBOW) achieved for the Development set (Devel)
or LOSO CV and Test set, respectively, for each of the four considered datasets,
are reported. In addition, further results published for the respective datasets are
included in the table.
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Discussion

After having presented a large number of experiments in the previous two chapters,
in this chapter, the main findings are first summarised. Then, the benefits and
the limitations that come with BoAW as an acoustic feature representation, supple-
mented by the limitations resulting from the experiments carried out, are discussed.
Finally, ethical implications are addressed.

8.1 Findings

Most importantly, it was shown that BoAW is an effective method to represent acous-
tic LLDs on a supra-segmental level, be it a chunk of audio to be classified (e. g.,
Chapter 7) or a time interval in a continuous stream of audio (e. g., Section 6.1).
For the relatively small dataset MPSSC, recent deep learning approaches are
outperformed by an SVM model based on BoAW features (Section 7.4.6). In the
majority of the studies presented in Chapters 6 and 7, a classifier or regressor trained
on BoAW representations as input outperforms a model trained on statisti-
cal functionals. This was shown especially for the ComParE and eGeMAPS
feature sets (see Section 2.3) in Section 7.4.6. The remarkable performance was
achieved using a fixed configuration of openXBOW for each set of LLDs, without
any further optimisation on the task or the data. Additionally, it was proven that
an early fusion of BoAW and functionals by a simple concatenation is beneficial
(Sections 6.1 and 7.4.6). This is some evidence for the complementarity of both
representations. This hypothesis is also confirmed by the benefit of a late fusion
of predictions from models based on different acoustic (hand-crafted and learnt)
feature representations (Section 6.4). Further proofs for the complementarity, also
with representations extracted by a DNN, were given by Guo et al. [329] and Gosz-
tolya [330].

In fact, the only scenario where BoAW performs worse (on average) is when
used as input for an LSTM-RNN (Section 6.6). Nevertheless, as shown for AVEC
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(Section 6.5), for the task of time-continuous dimensional emotion recognition with
BoAW features, a better performance is achieved with an LSTM-RNN than with a
static SVM regression model. Furthermore, at least when tuning the block length,
for valence, BoAW representations of eGeMAPS-LLDs outperform the functionals
representation. It was shown that, for this particular task, a larger block length is
required for BoAW than for functionals.

Moreover, the experiments in Section 6.3 showed that BoAW features are robust
against differences between training and testing conditions. Generally, only
an on-line normalisation of the LLDs is required, while a normalisation of the BoAW
features is not essential.

8.1.1 Notes on acoustic LLDs

The results presented in Section 6.3 have exemplified that the choice of suitable
frame-level descriptors is highly task-dependent. In comparison with the experi-
ments from Section 7.4.3, it is evident that the deltas of LLDs are relevant only for
very specific tasks, such as the classification of audio effects, where they are more
meaningful than the actual LLDs. However, for the paralinguistic tasks investigated
in Chapter 7, the deltas are less meaningful or even detrimental when fused in some
of the cases. This applies to both LLD-level fusion and bag-level fusion; neverthe-
less, the latter should be preferred if no detailed analysis can be done as the negative
effect is softer.

As shown in Section 7.4.5, a large LLD set, such as the LLDs from Com-
ParE, is generally beneficial for all tasks—even for emotion recognition, where
eGeMAPS typically gives good results. Furthermore, it was proven that when
splitting the 65 LLDs and deltas each into 6 subsets (and corresponding codebooks),
the performance of the classifier is often better and thus, should be preferred.

While in Section 6.2, an LLD-level fusion of MFCCs, formants, and wavelet
descriptors was found to provide better results throughout for the task of snore
sound classification, contradictory findings were made in Sections 6.7, 7.4.3 and 7.4.5
for the ComParE features. Thus, it must be concluded that the optimal fusion type
depends—at least—on the type and size of the LLD set.

8.1.2 Notes on codebook generation

Extensive comparisons of BoAW representations based on codebooks generated with
eight different methods are given in Section 7.4.1. Based on these results, it can be
declared that a pure random sampling of LLDs from the training set is the best
choice overall.

The performance of clustering methods, especially of EM clustering, depends
on the type of LLDs. A potential dependency is the distribution of the LLDs in the
feature space. Based on the experiments, there is some evidence that EM clustering
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is suitable in cases where also a codebook sampled from a Gaussian PDF leads to
good results. As this is the case mainly for MFCCs, there is the strong suspicion that
the similarity of the LLDs with a normal distribution is an appropriate indicator.

Generally, it could be seen that sampling from a Gaussian PDF is a good
compromise for codebook generation, as the performance is usually close to that
achieved by random sampling and, most importantly, it has the big advantage of
data-independence. This means that a codebook is defined only by its size, the
number of LLDs, and the seed. The training data is not required to be loaded by the
employed software at once, compared with clustering, which comes with technical
benefits; however, the parameters for normalisation of the LLDs still need to be
estimated, which is essential in case of a data-independent codebook.

It must be concluded that a clustering is generally not required, which has
already been found in some of the related works (Section 3.2.2), and that it has
even a negative effect on the performance when compared to random sampling,
based on the experiments (Section 7.4.1). Moreover, a codebook reduction by fusing
similar codewords as investigated in Section 6.2 has not proven to be beneficial, as
well as a supervised codebook generation.

An example of the outcome of codebook generation is shown in Figure 8.1
for the iHEARu-EAT dataset. In analogy with Section 7.4.1, MFCCs 1–14 and
RMS energy are employed as LLDs and z-score normalised, but—for the purpose
of visualisation—only 20 codewords are defined using each of the four methods:
sampling from a normal distribution (pdf), random sampling (random), random
sampling with k-means++ initialisation (random++), and k-means++ clustering
(kmeans++). For visualisation, the LLD space from the training set is reduced to its
two main components via a principal component analysis [224], a very common tech-
nique for dimensionality reduction. The two components are linear combinations of
the 15 input dimensions, maximising the variance.

Figure 8.1 shows that the codewords from the simpler sampling techniques, espe-
cially from the data-independent sampling from a Gaussian PDF (pdf), are situated
in the ‘denser’ area of the plane, i. e., where the majority of the LLDs are concen-
trated in. The more complex techniques random++ and kmeans++ cover the whole
LLD space in a better way, giving a larger weight to ‘outliers’. However, considering
the results, the importance of a wide coverage is questionable. This is, in particular,
objecting the claims by Rawat et al. [201], who assume that clusters converge to
denser regions of the input space and that random samples cover also the more in-
formative (i. e., sparsely populated) regions. As shown by the relatively competitive
performance with sampling from a Gaussian PDF, where ‘outlier regions’ are not
covered at all, the relevance of these might have been disproved.
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Figure 8.1: Visualisation of codebooks generated with four different techniques for
the iHEARu-EAT database. The codebook size is 20 for each of the four techniques
(pdf, random, random++, kmeans++), in analogy with Section 7.4.1. As LLDs, z-score
normalised MFCCs 1–14 and the RMS are used. 2 000 LLDs from the training set
are randomly selected to be visualised as dots. The 15-dimensional LLD space is
reduced to two dimensions (PC1 & PC2) via a principal component analysis.

8.1.3 Notes on codebook size and audio word encoding

Generally, a tendency can be observed that larger codebook size and number of
assignments work better, but not for all LLD sets and tasks (Section 7.4.5). It
is noteworthy that a large codebook proves to be suitable especially for MASC,
which is the largest dataset investigated (more than 36 000 samples and 10 hours
of speech), and a small codebook is on average the best option for MPSSC, the
smallest corpus in terms of the total duration. This consolidates the claims made
in Section 3.3.3 that smaller codebooks are known to be more robust and better
generalise, a property which is beneficial in scenarios with a lack of training data.

In Section 6.4 on the Computational Paralinguistics ChallengE (ComParE), it
was nevertheless shown that optimising the codebook size might result in a better
performance and that even for a relatively small size of 125, top results can be
achieved, depending on the task and data. For other corpora, such as iHEARu-
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EAT, the size of the codebook is not a very critical hyperparameter over a large
range (Section 6.7). Moreover, suitable codebook sizes seem to be independent from
the target, the classifier is trained on, given a fixed dataset.

The experiments carried out, mainly in Sections 6.1 and 6.2, showcase that
multi-assignment, i. e., a number of assignments for each frame larger than 1, is
beneficial and important. In general, a certain ratio must be fulfilled between
the codebook size and the number of assignments. Based on the findings in the
corresponding sections, a ratio between 1 % and 5 % seems to be suitable over a
larger range of codebook sizes. Though these two are critical hyperparameters of
the approach, it is evident that they require to be increased when dealing with a
larger number of LLDs (Section 6.2).

It must be noted that a soft encoding in terms of assigning an audio word to
each Gaussian of a GMM-codebook is superior also to a hard multi-assignment in
some cases (see Section 7.4.4). Nevertheless, the performance differs depending on
the given data and also on the codebook size, where a tendency for the soft encoding
was found to work better with smaller codebook sizes. Finally, it must be mentioned
that a soft assignment in terms of a ‘Gaussian encoding’ (Equation 3.18) was not
found to provide a meaningful improvement of the performance (Section 6.2), con-
tradicting the findings made in related works 3.2.2.

Concerning a logarithmic weighting of the term frequency BoAW features (log-
TF), this post-processing step was found to be beneficial throughout all configu-
rations when using an SVM model, while an IDF weighting is not relevant in this
case.

8.1.4 Notes on the classifier

For the reasoning given in Section 7.3, the ML experiments presented in this thesis
have been based mainly on SVM for classification or regression, except for the time-
continuous emotion recognition as a sequence labelling task (Sections 6.5 and 6.6).
For this given task and setup of the Audio-Visual Emotion Challenge (AVEC), an
LSTM-RNN prove to be more suitable than an SVM regressor.

Concerning the SVM, previous comprehension that a linear kernel is adequate
to classification in a large feature space—such as BoAW—has been confirmed [30].
Moreover, it has been reassured by the experiments in Section 7.4.2 that a (gen-
eralised) histogram intersection kernel (GHIK) is usually not superior to a linear
one [26, 190], also with optimised complexity hyperparameter, except for particular
setups and tasks. Generally, optimisation of the complexity is an essential procedure
when employing SVM.
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8.2 Benefits

The BoAW approach comes with some benefits. First of all, the representation is
scalable, most importantly, w. r. t. to the codebook size, which directly translates to
the dimensionality of the BoAW feature space. As seen in the previous section, an
adaptation to the employed dimensionality of frame-level features is required and the
optimum depends also on other factors, such as the amount of training data. One
advantage, compared with functionals, is that the dimensionality can be modified
and optimised in an automatic way, whereas each statistical functional needs to be
defined and implemented beforehand.

In fact, as shown in Section 7.4.6, exactly the same fixed configuration is em-
ployed for all investigated tasks, outperforming the baseline throughout. Thus, it
can be claimed that BoAW is task-independent. The deployment of the method
requires solely that normalisation parameters and—depending on the generation
method—codebooks are adapted to the training data, in addition to potential hy-
perparameters of the classifier, such as the complexity. Nevertheless, this procedure
is typically much less time-consuming than optimisation and training of deep learn-
ing models. In fact, is was proven that for small datasets, such as MPSSC,
approaches based on learnt features and SVM classifier outperform deep learning
methods.

BoAW is an unsupervised representation learning methodology. Unsuper-
vised learning has generally the benefit of generating representations not biased
towards the task [380], as opposed to supervised representation learning or super-
vised end-to-end learning [229]. This can be useful when multiple labels are to be
predicted (cf. Section 6.7).

The BoAW method is further flexible—demonstrated by the openXBOW
toolkit, as it can be used to fuse different modalities, which can be represented
by either symbolic or numeric descriptors. As in the example of the EAT chal-
lenge in Section 6.7, audio and video domains can be fused into a ‘comparable’,
histogram-like representation. The fact that typically, acoustic LLDs are extracted
at a higher frequency (e. g., 100 Hz) than video frames (e. g., 25 Hz) is not an issue
here, as low-level information is summarised over longer blocks and the final BoAW
and BoVW representations can match with an arbitrary target frequency (usually
the frequency of the labels).

Finally, it must be pointed out that BoAW (or BoVW) representations are rela-
tively data efficient. From a technical point of view, the histogram is represented
by just a set of integers1 denoting the assignment frequency of each audio word.
This means that, in principle, the number of integers to be stored for one instance is
equal to the codebook size. However, given that low term frequencies are typically

1Alternatively, floating point numbers, depending on potential soft assignment, scaling, or nor-
malisation, where the latter two are, however, independent from the particular instance.
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represented more often, and, depending on the actual codebook size, BoAW his-
tograms usually show a certain degree of sparseness, lossless compression techniques
could be applied, when transferring BoAW representations via low-bandwidth chan-
nels. When a continuous stream of audio data is transferred, only the (integer)
indexes of the audio word sequence need to be known. The feasible ‘compression
rate’ depends on the number of LLDs, the number of assignments, the codebook size
and the entropy of the assignment process2

8.3 Limitations

Besides the discussed benefits, the BoAW approach comes also with some limitations.
As concluded from the experiments, mainly those in Sections 6.3 and 7.4.3, the
selection of LLDs is still task-dependent. This is especially true for the deltas and
the type of fusion (LLD-level or bag-level). Nevertheless, overall, the performances
tend to be better for a larger set of LLDs and bag-level fusion.

As shown in Section 7.4.1, data-independent codebooks in terms of sampling from
a normal distribution does not work well for all types of LLDs and datasets. It has
not been proven if the distribution or the sampling process is the reason for this.

Concerning the top results from Section 7.4.6, it must be noted that the feature
space is relatively large. More precisely, for 130 LLDs (including deltas), the BoAW
representation has a dimensionality of 26 000. It is evident that an SVM with linear
kernel can handle such large inputs, however, other models might have difficulties
in handling these. In particular, it could be seen in Section 6.6 that LSTM-RNN
performs worse with BoAW than with simple functionals. More advanced neural
network architectures or processing steps might be required to tackle this issue.
As an example, the feature space might be reduced by embedding techniques as
known from the large-dimensional BoW representations in NLP [143]. However,
this somehow contradicts the vector quantisation principle of the audio words and
can be performed on the actual LLDs as well.

Finally, it must be noted that the BoAW method does not increase the inter-
pretability of ML approaches, which is a relevant aspect for many use cases [381].
This lack of transparency is due to the fact that vectors of LLDs are quantised,
obliterating the information of single, semantically meaningful descriptors.

Concerning the presented systematic experiments, it must be noted that the opti-
misation of some BoAW-related modifications has not been taken into account. This
is mainly due to the great effort required to optimise in the large hyperparameter
space. As an example, the numeric n-grams option of openXBOW (Section 5.2.2)
using only 2-grams showed to provide competitive results that were, however, not
superior to the default 1-grams, in the considered range of hyperparameters. Op-
timisation of the employed LLD sets can provide some room for improvement for

2Given that less bits are required for more frequent audio words.
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n-grams because their performance, as a method modelling temporal dependencies,
might depend on the smoothness of the descriptors over time.

8.4 Ethical Considerations

In 2021, AI already has a meaningful impact on the whole society, on most industries,
and on medicine. The number of applications that are including AI technologies and
especially, ML-based components, is continuously growing. These applications can
have positive, negative, or also controversial implications or even a combination
thereof [382]. As an example, voice forgery (‘deep fakes’) can be misused to spread
fake news [381], but the same technology can be used for the potentially benefi-
cial application of voice dubbing in movies [383], i. e., translating actors’ speech to
another language, but keeping the characteristics of their voice. Medical diagnosis
or health monitoring can be used both in a positive and negative context, when
thinking of clinical research to optimise a treatment on the one side and selection
criteria in job interviews on the other side [381].

Generally, also from applications that are considered to be mostly positive, many
ethical questions arise and are subject to ongoing evaluations and discussions [382],
e. g.:

� Data privacy and anonymity is a big topic when recording and publishing
data for ML, also for research purposes. This is highly problematic for speech
and visual data [302], as anonymity cannot be achieved in the raw data. More-
over, when working on a personalised medical treatment, complete metadata
are typically required [382].

� The minimum performance that must be achieved until an AI system can
come to practice is subject to discussion [382]. This is closely connected to
the question, if technologies that diagnose the likelihood of future diseases,
such as, e. g., Parkinson’s Disease from speech, should be used [381], as false
positive decisions might have a harmful psychic impact. Furthermore, it is an
open question if a human may override decisions of an AI system (even if the
system has proven to provide more reliable results) [382].

� Explainability of AI-based decisions is often required legally, especially in
health-related applications [382] or whenever an impact on the user is ex-
pected [381].

� Fairness includes the question whether or not systems have a bias when deal-
ing with certain (ethnic, gender, or age) groups [382]. A typical example in this
context is pedestrian detection and protection in autonomous vehicles [384],
which calls for legislatory regulations.

� Finally, acceptance of AI in everyday life is an important aspect and of
particular relevance for applications in the field of care and social robots [382].
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All these questions are omnipresent when working on ML-based applications in
the speech domain and not specially related to BoAW. However, researchers in the
field should always be aware of all potential implications.

Nevertheless, the BoAW approach does also present a benefit that could be useful
in terms of data protection. As mentioned in Section 8.2, the vector quantisation
step leads to an LLD representation that is not only very efficient but has also
very little semantic meaning, as long as the codebook is protected, i. e., kept secret.
Thus, the privacy of an audio signal to be transmitted through an insecure channel
is preserved in a better way compared to using the raw LLDs, e. g., MFCCs, from
which a speech waveform can be reconstructed to an extent that the spoken words
are intelligible [385, 386].
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Conclusion

To conclude this thesis, a brief summary of its content and the achievements are
given, followed by the answers to the research questions defined in the introduction
and an outlook on potential future research directions that tie in with the presented
work.

9.1 Summary

After the introduction in the first part of this thesis, the theoretical backgrounds
of the employed methods were presented in the second part. This started with the
description of a large variety of acoustic low-level features, how they are computed
and what they represent, and an overview of the application of statistical function-
als to summarise them over a whole audio instance. Then, the foundations and
properties of the bag-of-audio-words (BoAW) method, which are the central topic
of this thesis, were introduced, giving also an overview of related approaches and a
survey on related works. The second part is concluded with the presentation of the
machine learning (ML) methods that were employed in the experiments.

The third part started with the specification of the toolkit openXBOW, which
has been developed within the framework of this thesis. The software is able to
generate ‘bag-of-words’ instance-level representations of arbitrary modalities, such
as audio, video, text, or physiological signals, either represented by numeric or
symbolic descriptors. The architecture and functionalities of openXBOW were
explained and some notes on usage examples and its impact were given. Overall, the
toolkit has been—so far—part of eight scientific challenges in the field of computer
audition (CA) and affective computing and the accompanying article has received
more than 100 citations.

The two succeeding chapters present a large number of experiments on the BoAW
method. In Chapter 6, experimental setups and results of previously published works
focussing on certain tasks were described, while in Chapter 7, a systematic evaluation
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of the methodology was performed across four different datasets, answering some of
the open research questions.

The experiments are followed by the fourth part of this thesis, with a discussion of
the results, mentioning also the limitations of the approach and ethical implications.

In summary, BoAW has proven to be an alternative instance-level representa-
tion of acoustic LLDs that is superior to the standard method of applying statistical
functionals. Moreover, it was shown that both representations are complementary
and an either early or late fusion of both further improves the performance of the
audio classification. Convincing results have been achieved with a fixed set of LLDs
and configuration of the processing chain, without an expensive optimisation on the
task, which is typical for neural network-based approaches. Especially for appli-
cations where only small datasets are available, recent deep learning methods can
be outperformed by the proposed method. Given this, the BoAW approach is a
relatively simple yet promising way of unsupervised representation learning.

The latter has been exemplified by the very competitive performances of the
BoAW-based models throughout the baselines designed for the scientific challenges,
as described in Chapter 6. In ComParE, the BoAW approach has been three times
the best single approach provided to the participants, outperforming both the Com-
ParE set of functionals and an end-to-end model. For two sub-challenges between
2017 and 2020, the official baseline, given by a fusion of the predictions of the BoAW
model and one or two other models, was not surpassed by any of the participants. In
AVEC 2018 and 2019, three different acoustic feature representations (ComParE,
BoAW, DeepSpectrum) were employed as an input for an RNN model, where
BoAW provided the best performance across all sub-tasks and partitions in 2018
and the best performance in 7 out of 12 experiments across sub-tasks and parti-
tions in 2019. In the ICMI EAT challenge in 2018, openXBOW outperformed the
end-to-end model baseline for all three sub-tasks.

9.2 Answers to the Research Questions

The research questions defined in the introduction (Section 1.3) could be answered:

� RQ 1: It can be concluded that a simple random sampling is the best
choice for codebook generation. It is computationally much cheaper than a
clustering and usually superior in terms of the performance achieved by the
classifier. Data-independent codebooks in terms of sampling from a Gaussian
PDF can be employed as well but usually, they provide a lower performance.

� RQ 2: It was shown in Section 7.4.6 that a fixed configuration for the
BoAW (in terms of codebook generation, codebook size, number of assignments,
split of the LLDs, and term-frequency weighting) outperforms the baseline
using functionals.
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� RQ 3: Despite the superior performance of BoAW compared to functionals, it
could be seen that both representations are still complementary and should
be fused to retrieve the best performance.

Although the experiments described in this thesis have brought ‘light into the dark-
ness’ and improved the understanding of BoAW representations in audio classifi-
cation, there are still some interesting aspects that justify more research on the
topic.

9.3 Outlook

One interesting question that has not yet been fully answered is if completely data-
independent codebooks can be generated, achieving the same optimum perfor-
mance as codebooks generated by the proposed random sampling. As shown in
Section 7.4.1, the performance of a data-independent codebook depends on the type
of LLDs employed. Thus, it might be feasible to define a fixed and reusable set
of codewords for some sets of acoustic descriptors, such as, e. g., MFCCs. This
would continue the work on RQ 1 with the goal of integrating BoAW features into
acoustic feature extraction tools like openSMILE [23], which process data on-the-
fly, i. e., file-by-file, without loading all data at once—a requirement for learning
data-dependent codebooks.

In addition to that, room for improvement could be found in the optimisation
of the fusion-level in large LLD spaces, i. e., a more optimal selection of subsets of
LLDs that are combined for the vector quantisation. Moreover, ‘overlapping’ audio
words could be investigated, meaning that an LLD is part of more than one codebook
and corresponding encodings, an option that is already integrated in openXBOW.

This will also motivate further analysis of the noise robustness, an aspect where
BoAW have been shown to outperform other methods [217], and of the capability
of domain adaption, i. e., differing training and test conditions. As novel tasks
and new datasets in CA are introduced almost every day, with an increasing level of
complexity and the demand of also understanding the decisions of a classifier [387],
a systematic investigation of the reasons why BoAW or other representations
work better or worse for a particular data type, task, or domain, could be a step
towards a more interpretable ML.

From a technical point of view, the implementation of the whole method can
be massively parallelised, as distance computations between LLDs and codewords
(and quantisation operations for an arbitrary number of frames) can be executed
concurrently. Thus, porting the software to Python, for which up-to-date libraries
providing fast computation on both CPU and GPU exist and interoperability with
both feature extraction and machine learning tools is ensured, will be a promis-
ing concept. This would also encourage and, most importantly, facilitate further
research on the open questions.
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openXBOW manual

The following listing shows the manual of openXBOW, which can be printed by
calling the toolkit with option -h.

openXBOW = ve r s i o n 1 . 3 . 1 ( pub l i shed under GPL v3 )

OpenXBOW genera t e s an ARFF, CSV, or LibSVM f i l e conta in ing a bag=of=words
r e p r e s e n t a t i o n from an ARFF or CSV f i l e o f numeric low=l e v e l d e s c r i p t o r s
and/ or symbol ic f e a t u r e s ( e . g . , t ex t ) .

Input format :
The f i r s t a t t r i b u t e /column must always conta in an i d e n t i f i e r f o r the cor r e s=
ponding f i l e / ins tance , i . e . , a s t r i n g conta in ing the f i l ename or an index ,
e . g . ’ i n s t ance 001 . wav ’ .
In a CSV f i l e , the l a s t column may be a nominal or numeric c l a s s l a b e l .
In t h i s case , the re must be a header l i n e , o the rw i se i t i s op t i ona l .
I f the c l a s s l a b e l s are not g iven in the input data f i l e , an a d d i t i o n a l CSV
f i l e with c l a s s l a b e l s can be given : the f i r s t l i n e can be a header l i n e ,
the f i r s t column conta in s the i d e n t i f i e r s t r i n g f o r each instance ,
the second column the cor re spond ing c l a s s l a b e l .

Example o f a CSV input f i l e :
’ i n s t ance 001 . wav ’ ; 1 . 0 4 E+01;2.3E+00;2.7E=01; c lassA
’ i n s t ance 001 . wav ’ ; 9 . 0 2 E+00;7.0E+01;1.1E=01; c lassA
’ i n s t ance 001 . wav ’ ; 5 . 1 9 E+01;4.4E+00;2.7E=01; c lassA
’ i n s t ance 002 . wav ’ ; 1 . 2 4 E+00;1.3E+01;2.8E=01; c la s sB
’ i n s t ance 002 . wav ’ ; 2 . 5 1 E+01;6.7E+00;3.1E=01; c la s sB
’ i n s t ance 002 . wav ’ ; 4 . 2 4 E+01;2.2E+01;8.0E=02; c la s sB
’ i n s t ance 003 . wav ’ ; 1 . 2 3 E+01;4.3E+00;1.6E=01; c lassA
. . .

openXBOW opt ions

=h Pr int t h i s he lp text

= i p Name/Path o f an input (ARFF or CSV) f i l e p conta in ing low=l e v e l
f e a t u r e ve c t o r s ( over time ) . The f i r s t f e a t u r e must be a s t r i n g
or number which s p e c i f i e s a l l f e a t u r e v e c t o r s which belong to
one in s t anc e .

=a t t r i b u t e s p An opt i ona l s t r i ng , s p e c i f y i n g a l l input a t t r i b u t e s /columns
( mandatory in case o f mu l t ip l e l a b e l s or i f mu l t ip l e codebooks
are reques ted ) :
n=name , t=time stamp , 0=symbol ic f ea ture , 1=9=numeric f ea ture ,
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A. openXBOW manual

c=c l a s s l a b e l /numeric l abe l , r=remove a t t r i b u t e
Using d i f f e r e n t numbers f o r numeric f e a t u r e s w i l l c r e a t e a
s epara te codebook and bag f o r a l l f e a t u r e s be long ing to the same
index . The codebook index can be f o l l owed by bracket s [ ] spec i=
f y i ng the number o f con s e cu t i v e input f e a t u r e s be long ing to t h i s
index .
Example : =a t t r i b u t e s nt1 [ 1 4 ] 2 [ 1 4 ] c

Input f i l e with the s t r u c t u r e : name , timestamp ,28 numeric
f e a t u r e s s p l i t i n to two codebooks
(14 f e a t u r e s each ) and one l a b e l .

=a t t r i b u t e s A l t p An a l t e r n a t i v e opt ion to s p e c i f y a l l input a t t r i b u t e s :
This opt ion supports s p l i t t i n g the input f e a t u r e space in to
more than 9 numeric codebooks ; a l s o over lapp ing codebooks are
supported .
Spec i f y the input a t t r i b u t e s f i r s t : n=name , t=time stamp ,
0=text f ea ture , m=numeric f ea ture , c=c l a s s l a b e l /numeric l abe l ,
r=remove a t t r i b u t e

Consecut ive a t t r i b u t e s o f the same type may be noted in brackets ,
s p e c i f y i n g the number o f cons e cu t i v e a t t r i b u t e s .
The a t t r i b u t e s are f o l l owed by a ’ ’ and the d e f i n i t i o n o f the
input f e a t u r e s f o r each codebook . The f e a t u r e s are l i s t e d in
bracket s [ ] s p e c i f y i n g the indexes o f input f e a t u r e s that are
cons ide r ed f o r the codebook .
Indexes s t a r t with 1 ( f o r the f i r s t numeric f e a t u r e ) and are
separated by a +; ranges are de f ined with a =.
Example : =a t t r i b u t e s a l t ntm [ 2 8 ] c [ 1+2 ] [ 3+4 ] [ 5 =7 ] [ 8 ] [ 9 =11 ] [ 12+13 ] . . .

[ 14 =20 ] [ 1+21 ] [22 =24 ] [25 ] [ 2+26 ]
Input f i l e with the s t r u c t u r e : name , timestamp ,28 numeric f e a t u r e s
and one l a b e l . The numeric f e a t u r e s are s p l i t i n to 11 codebooks ,
each one cover ing a d i f f e r e n t s e l e c t i o n o f input f e a t u r e s .

=o p Name / Path o f an output ARFF, CSV or LibSVM f i l e p conta in ing
the bag=of=words r e p r e s e n t a t i o n . The output f i l e format i s chosen
depending on the g iven f i l e ending ( * . a r f f , * . csv or * . l ibsvm ) .

=csvHeader Pr int a header l i n e i f a CSV output f i l e i s r eques ted ( by de fau l t ,
the output CSV f i l e i s without a header ) .

=csvSep p Use s epa ra to r p f o r the CSV output f i l e ( d e f a u l t : ; ) .
=o i p Name / Path o f an output CSV f i l e p conta in ing the word indexes .
=svmModel p Name / Path o f a L i b l i n e a r model ( must be L2R LR DUAL) to

decode the BoW. p s p e c i f i e s the model f i l e . openXBOW outputs a
JSON f i l e with the same name ( u n l e s s g iven by oJson opt ion ) .

=oJson p Name / Path o f the JSON output f i l e i n c l u d i n g the p r e d i c t i o n s
o f the L i b l i n e a r model ( must be g iven by the opt ion svmModel ) .

=writeName Output the id s t r i n g /number in the output f i l e ( only ARFF & CSV) .
=writeTimeStamp Output the time stamp in the output f i l e ( only ARFF & CSV; the

opt ion =t must be provided ) .
=noLabels Do not output the l a b e l s in the output f i l e .

This opt ion i s u s e f u l in two ca s e s :
1) The input f i l e (= i ) conta in s l a b e l s , but they are not d e s i r e d

in the output (=o ) .
2) A l a b e l s f i l e (= l ) was g iven only to r e s t r i c t the output (=o )

to a c e r t a i n i n t e r v a l in time ( see = l ) .
=a r f f L a b e l s p St r ing conta in ing a l l p o t e n t i a l c l a s s l a b e l s ( s epa ra to r comma

without whi te spaces ) f o r ARFF output f i l e . Only r equ i r ed i f not a l l
l a b e l s are found in the input data or (?=unknown ) .
Example : =a r f f L a b e l s c l a s s 1 , c l a s s 2 , c l a s s 3

=append Append output to f i l e ( i f output f i l e a l r eady e x i s t s ) .
= l p CSV f i l e p with the c l a s s l a b e l s f o r each a n a l y s i s window/ in s t ance .

In case a l a b e l f i l e i s given , the output i s r e s t r i c t e d to the
in s tance s , where l a b e l s are g iven . Both nominal and numeric c l a s s e s
are supported .
Format :
1 s t l i n e ( op t i ona l ) : name ( accord ing to the input f i l e ) ; l a b e l 1 ;

l a b e l 2 ; . . .
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2nd l i n e : ’ f i l e 1 . wav ’ ; c l a s s 1 ; . . .
[ and so on ]

=t p1 p2 Segment the input f i l e s with a windows s i z e ( segment width ) o f
p1 seconds and a hop s i z e ( s h i f t ) o f p2 seconds
I f t h i s opt ion i s used , the second column o f the input f i l e must
be a time index ( in seconds ) o f the cur rent frame and the
( op t i ona l ) l a b e l s f i l e must have the corre spond ing time stamp as
the 2nd column (name ; time ; l a b e l ) .

=e p1 p2 Remove a l l f e a t u r e ve c t o r s from the input , where the a c t i v i t y ( or
energy ) i s below p2 . Index p1 s p e c i f i e s the index o f the a c t i v i t y
a t t r i b u t e ( f i r s t index : 1 ) .

=s tandard i ze Input Standard ize ( z=s c o r e ) a l l numeric input f e a t u r e s .
The parameters are s to r ed in the codebook f i l e (=B) and then used
f o r s t anda rd i z a t i on o f t e s t data (=b) in an o n l i n e approach .

=normal ize Input Normalize a l l numeric input f e a t u r e s (min=>max i s normal ized
to 0=>1).

The parameters are s to r ed in the codebook f i l e (=B) and then used
f o r norma l i za t i on o f t e s t data (=b) in an o n l i n e approach .

=s i z e p Set the ( i n i t i a l ) s i z e p o f the codebook . ( d e f a u l t : s i z e =500)
In case o f s e v e r a l codebooks ( s ee =a t t r i b u t e s ) d i f f e r e n t s i z e s can
be s p e c i f i e d us ing s epa ra to r comma, e . g . , =s i z e 200 ,500 ,100

=c p Method o f c r e a t i n g the codebook :
p=random : Generate the codebook by a random sampling o f the input

f e a t u r e ve c t o r s .
p=random++ ( d e f a u l t ) : Generate the codebook by a random sampling

o f the input f e a t u r e ve c t o r s with a weighting , i d e n t i c a l to the
i n i t i a l i z a t i o n o f kmeans++.

p=kmeans : Employ kmeans c l u s t e r i n g ( Lloyd ’ s a lgor i thm ) .
p=kmeans++: Employ kmeans++ c l u s t e r i n g ( Lloyd ’ s a lgor i thm ) .
p=em: Employ EM ( expec ta t i on maximization ) c l u s t e r i n g with a random

sampling f o r c l u s t e r i n i t i a l i z a t i o n .
p=em++: Employ EM ( expec ta t i on maximization ) c l u s t e r i n g with a

random++ sampling f o r c l u s t e r i n i t i a l i z a t i o n .
p=em=kmeans : Employ EM ( expec ta t i on maximization ) c l u s t e r i n g with

kmeans f o r c l u s t e r i n i t i a l i z a t i o n .
p=em=kmeans++: Employ EM ( expec ta t i on maximization ) c l u s t e r i n g with

kmeans++ f o r c l u s t e r i n i t i a l i z a t i o n .
p=pdf : Generate a data=independent codebook with e n t r i e s sampled

from a one=dimens iona l Gaussian pdf ( ze ro mean , un i t var i ance ) .
The opt ion ’= s tandard ize Input ’ i s h igh ly recommended when us ing
t h i s opt ion .

p=g e n e r i c : Generate a g e n e r i c codebook ( independent from data ,
s ee opt ion ’=gen ’ ) . The parameter ’= s i z e ’ i s not r e l e v a n t when
s e l e c t i n g t h i s method .

=gen p O f f s e t p f o r the va lue s in the g e n e r i c codebook ( ’= c gener i c ’ ) .
Example : A codebook with two input f e a t u r e s w i l l look l i k e t h i s :
=p,=p =p,+p +p,=p +p,+p

=reduce p Reduce the s i z e o f the codebook by merging words which are
c o r r e l a t e d with each other . PCC with th r e sho ld p i s cons ide r ed .

=supe rv i s ed Generate a codebook f o r each c l a s s s epara te ly , f i r s t , then merge
a l l codebooks . ( Not a v a i l a b l e f o r numeric l a b e l s . )

=seed p S e l e c t the random seed p used f o r codebook c r e a t i o n .
( Has no e f f e c t on t r a i n i n g s e l e c t i o n con f i gu r ed by =numTrain . )

=numTrain p Randomly choose p f e a t u r e ve c t o r s from the input data f o r the
c r e a t i o n o f the codebook ( should not be used f o r random sampling ) .
This opt ion i s u s e f u l to speed=up the c l u s t e r i n g proce s s .

=unigram p Apply the n=gram approach to numeric f e a t u r e s us ing unigrams .
Only the p most f r equent codewords are taken in to account .

=bigram p Apply the n=gram approach to numeric f e a t u r e s us ing bigrams .
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The p most f r equent codewords are taken in to account .
=tr igram p Apply the n=gram approach to numeric f e a t u r e s us ing t r ig rams .

The p most f r equent codewords are taken in to account .
The uni=/bi=/tr igram codebooks are s to r ed in the codebook
f i l e (=B) and used when load ing a codebook (=b ) .
In case o f s e v e r a l codebooks ( s ee =a t t r i b u t e s ) d i f f e r e n t s i z e s
can be s p e c i f i e d us ing s epa ra to r comma, e . g . , =bigram 200 ,600
In case o f us ing only bi=/t r ig rams ( no unigrams ) , the standard
BoW are no longe r generated f o r the r e s p e c t i v e codebook .
p=0 r e s u l t s in the standard BoW approach .

=b p Load codebook p ( do not c r e a t e one ) .
=B p Save the c rea ted codebook as a f i l e p .

=minTermFreq p Gives a minimum thre sho ld f o r the number o f occur r ence s o f each
word/n=gram to be cons ide r ed f o r symbol ic codebook gene ra t i on
( d e f a u l t : minTermFreq=1)

=maxTermFreq p Gives a maximum thre sho ld f o r the number o f occur r ence s o f each
word/n=gram to be cons ide r ed f o r symbol ic codebook gene ra t i on
( d e f a u l t : maxTermFreq=0( i n f ) )

=stopChar p S p e c i f i e s c h a r a c t e r s which are removed from a l l input
i n s t a n c e s ( d e f a u l t : . , ; : ( ) ? ! * )

=nGram p N=gram ( symbol ic ) ( d e f a u l t : nGram=1)
=nCharGram p N=character=gram ( symbol ic ) ( d e f a u l t : nCharGram=0)

=a p When c r e a t i n g the bag=of=words , a s s i g n each input f e a t u r e
vec to r to p c l o s e s t words from the codebook . ( d e f a u l t : a=1,
only c l o s e s t word )
In case o f s e v e r a l codebooks ( s ee =a t t r i b u t e s ) , a d i f f e r e n t
number can be s p e c i f i e d f o r each codebook us ing s epa ra to r comma,
e . g . , =a 5 ,2
This parameter i s s to r ed in the codebook f i l e (=B) and used when
the r e s p e c t i v e codebook i s loaded (=b ) .

=gauss ian p So f t ass ignment us ing Gaussian encoding with standard dev i a t i on
( stddev ) p .
In case o f s e v e r a l codebooks ( s ee =a t t r i b u t e s ) , a d i f f e r e n t
stddev can be s p e c i f i e d f o r each codebook us ing s epa ra to r comma,
e . g . , =a 2 5 . 0 , 3 0 . 0
This parameter i s s to r ed in the codebook f i l e (=B) and used when
the r e s p e c t i v e codebook i s loaded (=b ) .

=gmm p So f t ass ignment us ing a GMM= l i k e method .
p=0 ( d e f a u l t ) : Normal hard assignment ( s ee opt ion =a ) i s used .
p=1: GMM=ass ignment WITHOUT p r i o r s .
p=2: GMM=ass ignment WITH p r i o r s .
In case o f s e v e r a l codebooks ( s ee =a t t r i b u t e s ) , a d i f f e r e n t opt ion
can be s p e c i f i e d f o r each codebook us ing s epa ra to r comma,
e . g . , =gmm 0 ,2 ,1
This opt ion r e q u i r e s that a l l cor re spond ing codebooks have been
generated by an EM c l u s t e r i n g method ( see opt ion =c ) !
This parameter i s s to r ed in the codebook f i l e (=B) and used when
the r e s p e c t i v e codebook i s loaded (=b ) .

=o f f p Off codebook words : Features with an Eucl idean d i s t anc e above
th r e sho ld p to codewords are not be cons ide r ed in the ass ignment
s tep .
In case o f s e v e r a l codebooks ( s ee =a t t r i b u t e s ) , a d i f f e r e n t
stddev can be s p e c i f i e d f o r each codebook us ing s epa ra to r comma,
e . g . , =o f f 2 5 . 0 , 3 0 . 0
This parameter i s s to r ed in the codebook f i l e (=B) and used when
the r e s p e c t i v e codebook i s loaded (=b ) .

=l og Logar ithmic term weight ing ’ l g (TF+1) ’ o f the term frequency .
This parameter i s s to r ed in the codebook f i l e (=B) and used when
the r e s p e c t i v e codebook i s loaded (=b ) .
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= i d f Inve r s e document f requency trans form : Mult ip ly the term
frequency (TF) with the logar i thm of the r a t i o o f the
t o t a l number o f i n s t a n c e s and the number o f i n s t a n c e s where the
r e s p e c t i v e word i s pre sent .
This parameter i s s to r ed in the codebook f i l e (=B) and used
when the r e s p e c t i v e codebook i s loaded (=b ) .

=norm p Normalize the bag=of=words (3 opt ions o f norma l i za t i on ) .
p=1: Div ides the term f r e q u e n c i e s (TF) by the number o f input

frames .
p=2: Div ides the TF by the sum of a l l TFs .
p=3: Div ides the TF by a f a c t o r so that the r e s u l t i n g Eucl idean

length i s 1 .

=standardizeOutput Standard ize ( z=s c o r e ) a l l output bag=of=words f e a t u r e s .
The parameters are s to r ed in the codebook f i l e (=B) and then
used f o r s t a nda rd i z a t i on o f t e s t data (=b) in an o n l i n e approach .

=normalizeOutput Normalize a l l output f e a t u r e s ( term f r e q u e n c i e s , min=>max i s
normal ized to 0=>1).
The parameters are s to r ed in the codebook f i l e (=B) and then
used f o r norma l i za t i on o f t e s t data (=b) in an o n l i n e approach .

Example :
java = j a r openXBOW. j a r = i f e a t u r e s . a r f f =o boaw . a r f f = l l a b e l s . csv =s i z e 100

In Section 7.4.5, the BoAW features are generated using the following command:

java -jar openXBOW.jar -i llds.csv -o boaw.csv

-attributesAlt ntm[130] [1-2+9][3-5][6+10][7-8+11-36][37-51][52-65]

[66-67+74][68-70][71+75][72-73+76-101][102-116][117-130]

-seed 10 -c random -standardizeInput

-size 600,600,400,5600,3000,2800,600,600,400,5600,3000,2800

-a 12,12,8,112,60,56,12,12,8,112,60,56

-log -B codebook.txt

This command presumes that llds.csv contains the ComParE LLDs
(for the training set) as generated by openSMILE [23] with the included
ComParE 2016.conf configuration file. The BoAW output is written into the file
boaw.csv and the codebooks (including the parameters for z-score normalisation)
are written into the file codebook.txt. For development and test sets, the codebook
can be loaded with -b codebook.txt.
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Acronyms

ACF . . . . . . . . . . . Autocorrelation function

AED . . . . . . . . . . . Acoustic event detection

AI . . . . . . . . . . . . . Artificial intelligence

ANN . . . . . . . . . . . Artificial neural network

ASC . . . . . . . . . . . Acoustic scene classification

ASR . . . . . . . . . . . Automatic speech recognition

AUC . . . . . . . . . . . Area under the curve

AVEC. . . . . . . . . .Audio/Visual Emotion Challenge

BCE . . . . . . . . . . . Binary cross-entropy

BLSTM . . . . . . . . Bidirectional long short-term memory

BoAW . . . . . . . . . Bag-of-audio-words

BoVW . . . . . . . . . Bag-of-visual-words

BoW . . . . . . . . . . . Bag-of-words

CA. . . . . . . . . . . . .Computer audition

CCC . . . . . . . . . . . Concordance correlation coefficient

CCE . . . . . . . . . . . Categorical cross-entropy

CNN . . . . . . . . . . . Convolutional neural network

ComParE . . . . . . Computational Paralinguistics ChallengE

CV. . . . . . . . . . . . .Cross-validation

DCT . . . . . . . . . . . Discrete cosine transform

DDP . . . . . . . . . . . Difference of differences of periods (jitter)
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Acronyms

DFT . . . . . . . . . . . Discrete Fourier transform

DL . . . . . . . . . . . . . Deep learning

DNN . . . . . . . . . . . Deep neural network

DWT . . . . . . . . . . Discrete wavelet transform

E2E . . . . . . . . . . . . End-to-end

EAT . . . . . . . . . . . Eating Analysis and Tracking (challenge)

EM . . . . . . . . . . . . Expectation-maximisation

EWE. . . . . . . . . . .Evaluator weighted estimator

F0 . . . . . . . . . . . . . Fundamental frequency

FT . . . . . . . . . . . . . Fourier transform

GHIK . . . . . . . . . . Generalised histogram intersection kernel

GMM . . . . . . . . . . Gaussian mixture model

GRU . . . . . . . . . . . Gated recurrent unit

HIK. . . . . . . . . . . .Histogram intersection kernel

HNR . . . . . . . . . . . Harmonics-to-noise ratio

IDF . . . . . . . . . . . . Inverse document frequency

LLD . . . . . . . . . . . Low-level descriptor

log-TF . . . . . . . . . Logarithmic term frequency

LOSO . . . . . . . . . . Leave-one-speaker-out

LPC . . . . . . . . . . . Linear predictive coding

LSTM. . . . . . . . . .Long short-term memory

MAE. . . . . . . . . . .Mean absolute error

MFCCs . . . . . . . . Mel-frequency cepstral coefficients

MIR . . . . . . . . . . . Music information retrieval

ML. . . . . . . . . . . . .Machine learning

MLP . . . . . . . . . . . Multi-layer perceptron

MPSSC . . . . . . . . Munich-Passau snore sound corpus

MSE . . . . . . . . . . . Mean squared error

NLP . . . . . . . . . . . Natural language processing

PCC . . . . . . . . . . . Pearson’s correlation coefficient
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Acronyms

PDF . . . . . . . . . . . Probability density function

PLP . . . . . . . . . . . Perceptual linear prediction

RASTA-PLP . . . Relative spectral transform perceptual linear prediction

ReLU . . . . . . . . . . Rectified linear unit

RMS . . . . . . . . . . . Root mean square

RNN . . . . . . . . . . . Recurrent neural network

ROC . . . . . . . . . . . Receiver operating characteristic

RQ. . . . . . . . . . . . .Research question

SHS . . . . . . . . . . . . Subharmonic summation

SNR . . . . . . . . . . . Signal-to-noise ratio

STFT . . . . . . . . . . Short-time Fourier transform

SVM . . . . . . . . . . . Support vector machine

TF-IDF . . . . . . . . Term frequency-inverse document frequency

UAR . . . . . . . . . . . Unweighted average recall

VAD . . . . . . . . . . . Voice activity detection

VQ. . . . . . . . . . . . .Vector quantisation

VSM . . . . . . . . . . . Vector space model

WPT . . . . . . . . . . Wavelet packet transform

WT . . . . . . . . . . . . Wavelet transform

XBOW. . . . . . . . .Crossmodal bag-of-words

ZCR . . . . . . . . . . . Zero-crossing rate
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List of Symbols

Acc . . . . . . . . . . . . . . . Accuracy

ACF(h, d) . . . . . . . . . Short-time autocorrelation function

al . . . . . . . . . . . . . . . . . Coefficient for training instance l (SVM)

ap . . . . . . . . . . . . . . . . .Linear predictive coding (LPC) coefficient

a(bi, Dj) . . . . . . . . . . Audio word assignment function

b . . . . . . . . . . . . . . . . . . Bias term (SVM)

β . . . . . . . . . . . . . . . . . Hyperparameter of GHIK

B . . . . . . . . . . . . . . . . . Number of spectral bands (Mel scale)

BS . . . . . . . . . . . . . . . . Block size / amount of context (BoAW, supra-segmental fea-
tures)

B . . . . . . . . . . . . . . . . . Codebook used for BoAW

bi . . . . . . . . . . . . . . . . . Codeword (audio word) in codebook B
C . . . . . . . . . . . . . . . . . Complexity (SVM)

CS . . . . . . . . . . . . . . . . Codebook size (BoAW)

C . . . . . . . . . . . . . . . . . Corpus (dataset)

CEP(h) . . . . . . . . . . . Short-time cepstrum

d . . . . . . . . . . . . . . . . . .Delay (autocorrelation function)

D . . . . . . . . . . . . . . . . . Delay compensation

di . . . . . . . . . . . . . . . . . Word in dictionary DW

D(h), Dj . . . . . . . . . . Low-level descriptor (LLD) (of frame h, with index j)

Dsma(h) . . . . . . . . . . . Smoothed LLD of frame h

Dz,j . . . . . . . . . . . . . . . z-score normalised LLD
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Acronyms

∆D(h) . . . . . . . . . . . . Delta regression coefficient of LLD D(h)

∆∆D(h) . . . . . . . . . . Double delta regression / acceleration coefficient of LLD D(h)

∆diffD(h) . . . . . . . . . Temporal difference of LLD D(h)

D̄, D̃ . . . . . . . . . . . . . . Sample mean/standard deviation of LLDs

DW . . . . . . . . . . . . . . . Dictionary for BoW-based VSM

ei,j . . . . . . . . . . . . . . . . Entry in the confusion matrix

e(n), E(z) . . . . . . . . . Excitation signal in the source-filter model

E(h) . . . . . . . . . . . . . . Short-time energy

Enorm(h) . . . . . . . . . . Normalised short-time energy

Erms(h) . . . . . . . . . . . RMS (root mean square) short-time energy

f . . . . . . . . . . . . . . . . . Frequency

f() . . . . . . . . . . . . . . . .Activation function

F0(h) . . . . . . . . . . . . .Fundamental frequency

Fi(h). . . . . . . . . . . . . .Frequency of the i-th formant

Fs . . . . . . . . . . . . . . . . Sample rate

FB,i(h) . . . . . . . . . . . . Bandwidth of the i-th formant

FBoW . . . . . . . . . . . . . BoW feature vector / VSM

FBoAW . . . . . . . . . . . . BoAW feature vector

FBoW,log . . . . . . . . . . . BoW feature vector / VSM with logarithmic term frequency
weighting

FBoW,TFIDF . . . . . . . . BoW feature vector / VSM with TFIDF weighting

FBoW,L2 . . . . . . . . . . . BoW feature vector / VSM with L2-normalisation

FFunc(D) . . . . . . . . . . Functional of the LLD contour D(h)

η . . . . . . . . . . . . . . . . . .Learning rate

h . . . . . . . . . . . . . . . . . Index of the frame (hop)

Hs . . . . . . . . . . . . . . . . Hop size, frame step

Hvoc(z) . . . . . . . . . . . Vocal tract filter function

I . . . . . . . . . . . . . . . . . .Number of features

I . . . . . . . . . . . . . . . . . One data instance (sample, entity to be classified)

IDFi . . . . . . . . . . . . . . Inverse document frequency of the term with index i
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Acronyms

j . . . . . . . . . . . . . . . . . . Imaginary unit; index of an LLD vector

J(θ) . . . . . . . . . . . . . . Loss function

k . . . . . . . . . . . . . . . . . .Index of the frequency bin; number of cluster centroids (k-
means)

kc . . . . . . . . . . . . . . . . . Mel-frequency cepstral coefficient index (see below
MFCCkc(h))

kemph . . . . . . . . . . . . . .Pre-emphasis coefficient

K . . . . . . . . . . . . . . . . .Number of classes

KΦ(x, x′) . . . . . . . . . Kernel

L . . . . . . . . . . . . . . . . . Number of training instances (samples)

L . . . . . . . . . . . . . . . . . Training set

Lc . . . . . . . . . . . . . . . . Liftering coefficient (MFCC)

LB . . . . . . . . . . . . . . . . Length of the bag-of-audio-words codebook

LD . . . . . . . . . . . . . . . .Length of the bag-of-words dictionary/the feature vector of
the VSM

LS . . . . . . . . . . . . . . . . Length of word sequence SW

m . . . . . . . . . . . . . . . . . Index of the samples within one frame

M . . . . . . . . . . . . . . . . Frame/window length (in samples)

MFCCkc(h) . . . . . . . Mel-frequency cepstral coefficient kc

n . . . . . . . . . . . . . . . . . Index of the discrete time

N . . . . . . . . . . . . . . . . .Number of samples of a signal

Nh . . . . . . . . . . . . . . . . Total number of frames

NA . . . . . . . . . . . . . . . .Number of assignments (BoAW)

ξ(l) . . . . . . . . . . . . . . . . Slack variable for instance l

p . . . . . . . . . . . . . . . . . .p-value (hypothesis testing)

πi . . . . . . . . . . . . . . . . . Mixture weight (GMM)

pi . . . . . . . . . . . . . . . . . Pole of a polynomial or filter in z-transform representation

P . . . . . . . . . . . . . . . . . Order of the linear predictive coding (LPC) model

Prec . . . . . . . . . . . . . . Precision

q . . . . . . . . . . . . . . . . . .Quefrency (cepstrum)

ρPCC, ρCCC . . . . . . . . Pearson/concordance correlation coefficient
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Acronyms

Rec . . . . . . . . . . . . . . . Recall

s(n). . . . . . . . . . . . . . .Signal (discrete-time, one-dimensional)

ŝ(n). . . . . . . . . . . . . . .Approximated signal s(n)

st(t) . . . . . . . . . . . . . . Time-domain signal

sf (h,m). . . . . . . . . . .Framed signal

sw(h,m) . . . . . . . . . . Windowed signal

s2
y . . . . . . . . . . . . . . . . .Variance

sx,y . . . . . . . . . . . . . . . Covariance

S(z) . . . . . . . . . . . . . . Z-transform of a signal s(n)

SFT(f) . . . . . . . . . . . . Fourier transform

SDFT(k) . . . . . . . . . . .Discrete Fourier transform (DFT)

SSTFT(h, k). . . . . . . .Discrete short-time Fourier transform (STFT)

SSTFT,norm(h, k) . . . Normalised STFT

SSTFT,P,norm(h, k) . . STFT-based power spectral density

SW . . . . . . . . . . . . . . . Word sequence

σ . . . . . . . . . . . . . . . . . Standard deviation/hyperparameter for Gaussian encoding

θ . . . . . . . . . . . . . . . . . .Model parameters (ANN)

tf (h) . . . . . . . . . . . . . . Frame time of a frame with index h

T . . . . . . . . . . . . . . . . . Development/test set

Ts . . . . . . . . . . . . . . . . .Sampling period (Ts = F−1
s )

w . . . . . . . . . . . . . . . . . Normal vector / weight vector (SVM / neural network)

wi . . . . . . . . . . . . . . . . Weight (neural network)

wj . . . . . . . . . . . . . . . . Word in sequence SW

w(m) . . . . . . . . . . . . . Windowing function

whamming(m) . . . . . . .Hamming window function

whann(m) . . . . . . . . . .Hann window function

wGaussian(m) . . . . . . . Gaussian window function

W∆ . . . . . . . . . . . . . . . Length of the context window of the delta regression

Wsma . . . . . . . . . . . . . .Length of the context window for smoothing with a moving
average filter
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Acronyms

x . . . . . . . . . . . . . . . . . Feature vector

x(l), y(l) . . . . . . . . . . . Feature vector/label of a training instance

x(t), y(t) . . . . . . . . . . . Feature vector/label of a test instance

y . . . . . . . . . . . . . . . . . .Label

ŷ(l), ŷ(t) . . . . . . . . . . . .Predicted label of a training or test instance, respectively

zmel . . . . . . . . . . . . . . . Critical band rate (Mel)

ZCR(h) . . . . . . . . . . . Zero-crossing rate

Φ . . . . . . . . . . . . . . . . . Feature space transformation
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[43] J.-R. Ohm and H. D. Lüke, Signalübertragung: Grundlagen der digitalen und analo-
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[87] J. McCann and S. Peppé, “Prosody in autism spectrum disorders: a critical review,”
International Journal of Language & Communication Disorders, vol. 38, no. 4, pp.
325–350, 2003.

[88] R. B. Grossman, R. H. Bemis, D. P. Skwerer, and H. Tager-Flusberg, “Lexical
and affective prosody in children with high-functioning autism,” Journal of Speech,
Language, and Hearing Research, vol. 53, no. 3, pp. 778–793, 2010.

[89] J. A. Russell, “A circumplex model of affect,” Journal of Personality and Social
Psychology, vol. 39, no. 6, p. 1161, 1980.

[90] H. S. Cheang and M. D. Pell, “The sound of sarcasm,” Speech communication,
vol. 50, no. 5, pp. 366–381, 2008.

[91] A. Chen, “Perception of paralinguistic intonational meaning in a second language,”
Language Learning, vol. 59, no. 2, pp. 367–409, 2009.

218



Bibliography

[92] M. P. Gelfer and V. A. Mikos, “The relative contributions of speaking fundamental
frequency and formant frequencies to gender identification based on isolated vowels,”
Journal of Voice, vol. 19, no. 4, pp. 544–554, 2005.

[93] P. Vary and R. Martin, Digital Speech Transmission: Enhancement, Coding and
Error Concealment. John Wiley & Sons, 2006.

[94] W. Han, C.-F. Chan, C.-S. Choy, and K.-P. Pun, “An efficient mfcc extraction
method in speech recognition,” in IEEE International Symposium on Circuits and
Systems. Island of Kos, Greece: IEEE, 2006, pp. 145–148.

[95] E. Loweimi, S. M. Ahadi, T. Drugman, and S. Loveymi, “On the importance of
pre-emphasis and window shape in phase-based speech recognition,” in Proceedings
of the International Conference on Nonlinear Speech Processing (NOLISP). Mons,
Belgium: Springer, 2013, pp. 160–167.

[96] P. Boersma, “Praat, a system for doing phonetics by computer,” Glot International,
vol. 5, no. 9, pp. 341–345, 2001.

[97] R. C. Snell and F. Milinazzo, “Formant location from lpc analysis data,” IEEE
Transactions on Speech and Audio Processing, vol. 1, no. 2, pp. 129–134, 1993.

[98] J. W. Picone, “Signal modeling techniques in speech recognition,” Proceedings of
the IEEE, vol. 81, no. 9, pp. 1215–1247, 1993.

[99] F. Zheng, G. Zhang, and Z. Song, “Comparison of different implementations of
mfcc,” Journal of Computer Science and Technology, vol. 16, no. 6, pp. 582–589,
2001.

[100] B. P. Bogert, M. J. R. Healy, and J. W. Tukey, “The quefrency alanysis of time series
for echoes; cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking,”
in Proceedings of the Symposium on Time Series Analysis. John Wiley & Sons,
1963, pp. 209–243.

[101] A. M. Noll, “Short-time spectrum and “cepstrum” techniques for vocal-pitch detec-
tion,” The Journal of the Acoustical Society of America, vol. 36, no. 2, pp. 296–302,
1964.

[102] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, G. Moore, J. Odell,
D. Ollason, D. Povey, V. Valtchev, and P. Woodland, “The HTK Book,” Cambridge
University Engineering Department, vol. 3.4, 2009.

[103] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Trans-
actions on Computers, vol. 100, no. 1, pp. 90–93, 1974.

[104] V. Britanak, P. C. Yip, and K. R. Rao, Discrete Cosine and Sine Transforms:
General Properties, Fast Algorithms and Integer Approximations. Elsevier, 2010.

219



Bibliography

[105] M. Dorfer, B. Lehner, H. Eghbal-zadeh, H. Christop, P. Fabian, and W. Ger-
hard, “Acoustic scene classification with fully convolutional neural networks and
i-vectors,” in Proceedings of the Detection and Classification of Acoustic Scenes and
Events Workshop, Surrey, U. K., 2018.

[106] F. De Leon and K. Martinez, “Enhancing timbre model using mfcc and its time
derivatives for music similarity estimation,” in Proceedings of the 20th European
Signal Processing Conference (EUSIPCO), EURASIP. Bucharest, Romania: IEEE,
2012, pp. 2005–2009.

[107] B. Schuller, “Automatische Emotionserkennung aus sprachlicher und manueller In-
teraktion,” Ph.D. dissertation, Technische Universität München, 2006.

[108] F. Weninger, F. Eyben, and B. Schuller, “On-line continuous-time music mood re-
gression with deep recurrent neural networks,” in Proceedings of the 39th Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP). Florence,
Italy: IEEE, 2014, pp. 5412–5416.

[109] R. Kehrein, “The prosody of authentic emotions,” in Proceedings of the International
Conference on Speech Prosody. Aix-en-Provence, France: ISCA, 2002, 4 pages.

[110] M. Schmitt and B. W. Schuller, Machine-Based Decoding of Paralinguistic Vocal
Features. Oxford University Press, 2018, ch. 33, pp. 719–742.

[111] M. Schmitt, E. Marchi, F. Ringeval, and B. Schuller, “Towards cross-lingual auto-
matic diagnosis of autism spectrum condition in children’s voices,” in Proceedings of
the 11th ITG Symposium on Speech Communication (ITG SC), VDE. Paderborn,
Germany: IEEE, 2016, pp. 264–268.

[112] M. Schmitt, F. Ringeval, and B. Schuller, “At the border of acoustics and linguistics:
Bag-of-audio-words for the recognition of emotions in speech,” in Proceedings of
INTERSPEECH. San Francisco, CA, USA: ISCA, 2016, pp. 495–499.

[113] T. L. Nwe, S. W. Foo, and L. C. D. Silva, “Speech emotion recognition using hidden
markov models,” Speech Communication, vol. 41, no. 4, pp. 603–623, 2003.

[114] B. Schuller, G. Rigoll, and M. Lang, “Hidden markov model-based speech emo-
tion recognition,” in Proceedings of the 28th International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), vol. II. Hong Kong, China: IEEE, 2003,
pp. 1–4.

[115] J. Han, Z. Zhang, M. Schmitt, M. Pantic, and B. Schuller, “From hard to soft:
Towards more human-like emotion recognition by modelling the perception uncer-
tainty,” in Proceedings of the 25th ACM International Conference on Multimedia
(ACM MM). Mountain View, CA; USA: ACM, 2017, pp. 890–897.

[116] B. W. Schuller, A. Batliner, C. Bergler, E.-M. Messner, A. Hamilton, S. Amiriparian,
A. Baird, G. Rizos, M. Schmitt, L. Stappen, H. Baumeister, A. D. MacIntyre, and

220



Bibliography

S. Hantke, “The interspeech 2020 computational paralinguistics challenge: Elderly
emotion, breathing & masks,” in Proceedings of INTERSPEECH. Shanghai, China:
ISCA, 2020, 5 pages, to be published.

[117] C. Janott, M. Schmitt, Y. Zhang, K. Qian, V. Pandit, Z. Zhang, C. Heiser, W. Ho-
henhorst, M. Herzog, W. Hemmert, and B. Schuller, “Snoring classified: The
Munich-Passau snore sound corpus,” Computers in Biology and Medicine, vol. 94,
pp. 106–118, 2018.

[118] R. Banse and K. R. Scherer, “Acoustic profiles in vocal emotion expression,” Journal
of Personality and Social Psychology, vol. 70, no. 3, pp. 614–636, 1996.

[119] P. N. Juslin and P. Laukka, “Communication of emotions in vocal expression and
music performance: Different channels, same code?” Psychological Bulletin, vol.
129, no. 5, pp. 770–814, 2003.

[120] J. Sundberg, S. Patel, E. Bjorkner, and K. R. Scherer, “Interdependencies among
voice source parameters in emotional speech,” IEEE Transactions on Affective Com-
puting, vol. 2, no. 3, pp. 162–174, 2011.
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Lizaranzu, M. I. Relimpio-López, M. E. Dorado, M. J. Mayorga-Buiza, G. Izquierdo-
Ayuso, and L. Capitán-Morales, “Artificial intelligence in medicine and healthcare:
a review and classification of current and near-future applications and their ethical
and social impact,” arXiv preprint arXiv:2001.09778, pp. 1–20, 2020.

[383] M. Federico, Y. Virkar, R. Enyedi, and R. Barra-Chicote, “Evaluating and optimiz-
ing prosodic alignment for automatic dubbing,” in Proceedings of INTERSPEECH.
Shanghai, China: ISCA, 2020, pp. 1481–1485.
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