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Abstract: The performance of micromirrors in terms of their maximum deflection is often limited
due to mechanical constraints in the design. To increase the range of achievable deflection angles, we
present a novel concept in which a free-lying sphere with a flat side as reflector can be rotated. Due to
the large forces needed to move the sphere, multiple electrostatic actuators are used to cooperatively
rotate the sphere in iterative steps by impacts and friction. A parameterized system-level model of
the configuration is derived, which considers arbitrary multi-contact scenarios and can be used for
simulation, analysis, and control design purposes. Due to the complex, indirect relation between the
actuator voltages and the sphere motion, model-based numerical optimization is applied to obtain
suitable system inputs. This results in rotation sequences, which can be understood as a sequence
of motion primitives, thus transforming the continuous time model into an abstract discrete time
model. Based on this, we propose a feedback control strategy for trajectory following, considering
model uncertainties by a learning scheme. High precision is achieved by an extension controlling
the angular change of each rotation step. The suitability of the overall approach is demonstrated in
simulation for maximum angles of 40°, achieving angular velocities of approximately 10 °/s.

Keywords: micromirror; system-level modeling; contact modeling; feedback control; learning control

1. Introduction

Optical actuators find numerous applications in industry and consumer markets,
especially in the field of laser scanners, which includes displays, projectors or barcode
scanners [1]. Due to their small dimensions, micro-electro mechanical systems make a
major contribution to this. Both resonant and non-resonant micromirror devices are used
for these applications. Resonant actuators are often used for raster-scan applications [2]
and non-resonant ones for vector-scan applications [3].

These actuations are performed electrostatically [4], electromagnetically [5] or piezo-
electrically [6]. Especially for optical applications, large deflection angles are required in
general. Comparing these actuation concepts, electromagnetic actuation is commonly used
for applications that allow a large deflection angle quasi-statically and are operated non-
resonantly [7]. Electrostatic micromirror devices are usually operated resonantly, as they
only provide low forces and the angular deflection is limited by construction. Compared
to electromagnetic concepts, small deflection angles can be achieved with digital mirror
devices [8].

In order to circumvent the constructional limitations of a micromirror, Bunge et al.
presented a concept in which a free-lying spherical cap, which is not connected to the
actuator, is rotated electrostatically [9]. This avoids the aforementioned angle limitation,
as there are no restoring forces due to mechanical connections. The stainless steel ball is
rotated using a combination of parallel plate actuation and comb-drives. By superimposing
these movements, a rotation of the ball is caused due to the stick-slip effect. When operated
in resonance, a mechanical deflection of ±35.2° could be achieved. As part of the research

Actuators 2022, 11, 90. https://doi.org/10.3390/act11030090 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act11030090
https://doi.org/10.3390/act11030090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-2869-8327
https://orcid.org/0000-0003-3885-3407
https://orcid.org/0000-0001-9420-022X
https://orcid.org/0000-0002-6396-4355
https://doi.org/10.3390/act11030090
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act11030090?type=check_update&version=1


Actuators 2022, 11, 90 2 of 24

project Kick and Catch [10], the concept proposed here is non-resonant and generates a
fast and large impulse on the sphere via multiple lever actuators. By actively controlling
the individual actuator movements, a kick and rotation phase can be initiated, in which
the sphere is kicked upwards with a spin. A free flight phase avoids unwanted crosstalk,
which means that the ball rotates freely. The flight phase is completed by a predefined
landing (catch).

A challenge of this actuation principle lies in the control of the sphere rotation since
there is no trivial relation between the voltages applied to the electrostatic actuators and
the resulting sphere motion. This is mostly due to the fact that the sphere can only be
influenced indirectly by impact and friction with the actuator tips. Moreover, there is no
intuitive method how to choose the time course of the applied voltages for each actuator in
an optimal way.

For a systematic approach, mathematical models for analysis and simulation are
therefore useful. While different modeling approaches have been proposed in literature,
the choice of the applied method often depends on the system to be modeled, as well
as the desired level of detail. In the case of purely mechanical systems, models can be
obtained based on vibration responses, which additionally allow fault detection [11]. For
the simulation and analysis of systems within different physical domains, bond graph
methods have shown to be useful [12]. However, an additional model based on differential
equations has to be derived for the design of controller or observer architectures. In the field
of microelectromechanical systems, these are commonly obtained by numerical methods
such as finite element modeling [13]. While such models can achieve high accuracy, their
suitability for extensive simulation and evaluation of control strategies may be limited
due to large computation times. Mathematical model order reduction can be applied to
reduce the model complexity, thus simplifying the control design [14]. In contrast, the
direct derivation of system-level models such as in [15] often yields a sufficient quality for
basic analysis and control design purposes. For the presented micromirror, this requires
modeling strategies for contact and friction dynamics.

A straightforward method to model contacts consists of a permanent evaluation of con-
tact conditions and subsequent application of the momentum conservation principle [16].
However, this assumes infinitesimal contact duration, which is not the case for lasting
contacts and sliding motions assumed to affect the sphere motion. This limitation does
not hold for the method of dimensionality reduction [17], in which a three-dimensional
contact surface is transformed into a one-dimensional expression. The subsequent force
computation is based on the Hertzian model [18], describing the contact surface as an array
of damped springs. While this method can achieve highly accurate results and is exact
for (visco-)elastic problems, its implementation is time-consuming and computationally
expensive for complex multi-contact systems with varying contact surfaces. Since the pre-
sented actuator is assumed to behave rigidly, the contacts may be reduced to single points.
We therefore apply the less accurate but significantly simpler approach of power-based
restriction functions by Specker et al. [19], in which also a viscoelastic approximation is
used. Its advantage lies in the low implementation effort and the direct integration within
the Lagrange formalism.

The model can then be used for the controller design. In case of the presented mi-
cromirror, this includes two steps: First, suitable voltages for the electrostatic actuation
have to be derived, leading to a successful rotation. Since the sphere stably remains in
its new position, the resulting system can then be interpreted as a discrete system with
a discrete set of inputs corresponding to different kick directions. In a second step, a
discrete feedback control approach successively drives the sphere such that the desired,
possibly time-varying, reference angles are followed. Suitable control concepts include
model-predictive control [20], supervisory control [21] by prior reformulation into a finite
state automaton, and approaches using machine learning such as state vector machines [22]
and reinforcement learning [23]. In contrast to purely model-based concepts, machine
learning has the advantage that systematic model errors can be compensated by either
learning the optimal state-input relation or the model directly.



Actuators 2022, 11, 90 3 of 24

The main goal of this work is to derive a system-level model of a complex, contact-
based micromirror for simulation, control design, and optimization purposes. This model
is subsequently used to design a feedback controller. An extension is proposed to efficiently
take into account model mismatch by adaptive direction parameters and neural networks,
and its suitability is shown in simulation with a non-ideal, perturbed model. The proposed
concept may be used as a digital micromirror with the advantage that any angular state
can be adopted instead of a set of discrete positions.

This work is organized as follows: In Section 2, the actuator design is presented and
a system-level model is derived in Section 3. Based on this model, an optimal actuation
principle and a feedback control strategy are described in Section 4. The simulation
results demonstrating the suitability of the approach are given in Section 5, followed by a
discussion in Section 6 and concluding remarks in Section 7.

2. Actuator Design and Working Principle

The micromirror system consists of four symmetrically arranged, suspended beams,
which sections close to the suspensions form parallel plate actuators with the ground plate.
The sphere is initially placed on the beam tips in the center of the setup and has a diameter
of 2 mm. The side view of the design is sketched in Figure 1 and illustrates the actuation
phases. Here, each lever actuator is connected to the substrate via solid state springs. These
allow a rotation of the lever, but also a linear and vertical deflection. This is intended to
both, to provide stable bearing and to achieve the necessary actuation. The force required
for the sphere to enter the kick and spin phase is generated by applying a voltage to the
actuator, pulling the movable beam downwards. Here, we deliberately make use of the
pull-in instability to achieve high beam velocities and large strokes. The energy generated
in this way is then transferred to the sphere with a mechanical lever. The contact point
between the beam and the ground plate thereby serves as center of rotation of the beam. By
asymmetrically actuating the four beams, a rotation of the sphere in a free flight phase is
achieved. In such a concept, the contact between the actuator and the sphere is of particular
importance, requiring precise analysis and modeling.

(a) resting position (b) kick and spin actuation

(c) flight and rotation phase (d) catch and resting position

Figure 1. (a) Resting position: The sphere remains in stable rest position. (b) Kick and spin actuation:
The sphere is transferred into a free flight phase, while a torque is transmitted to set it in rotation by
asymmetric actuation. (c) Flight phase: The sphere is not in contact with the beams and rotates freely
into the desired direction. (d) Catch and resting: The sphere lands in a deflected position and is kept
in a stable position.

3. Modeling

The sphere rotation can only be adjusted indirectly, i.e., by impacts and friction
between the electrostatically actuated beams and the sphere. For such complex systems,
data-based control approaches can be of advantage and the data may be obtained by
real measurements. However, the data generation process can be automated and largely
simplified by simulation of a system model.
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For the purpose of obtaining the rotational motion of the sphere, we first derive the
general equations of motion of the individual partial systems, i.e., the electrostatic actuators
and the sphere, by a Lagragian approach and then extend the dynamics by their coupling in
terms of contact and friction. We can describe each partial system by a vector of generalized
coordinates q, which correspond to the translatory and rotatory degrees of freedom. The
equations of motion are then obtained by(

d
dt

∂T
∂q̇
− ∂T

∂q
+

∂V
∂q

)>
= Q , (1)

with the kinetic and potential energies T (q, q̇), V(q) and the nonconservative or external
generalized forces Q.

3.1. Electrostatic Actuator Dynamics

The overall system consists of four electrostatic actuators with a movable beam, and
the respective electrode area has the dimension LES×wES. Here, the subscript (·)ES denotes
the electrostatic partial system. In order to simplify the model, we assume the beams to be
rigid and that their suspensions allow only vertical and torsional movements. We therefore
approximate each suspension by a vertical and rotational spring. The parameters necessary
for the following derivation are depicted in Figure 2. Note that the sketch is not to scale
and its true dimensions are given in Table A1.

ξCdcogz0

zG

zS,k

Lcog

LG

LB

ξB,k
ξT,kϕk

ξS

r

dB

(a)

LES

wBwES ξ0,k

δ2

δ3

δ4

(b)

Figure 2. System parameters used for the derivation of the motion equations. (a) Side view of
the actuator illustrating the sphere, movable beam, and ground plates parameters. The gray parts
correspond to the electrical contacts. (b) Top view of the electrostatic beams without sphere. The
beams are symmetrically arranged and the respective rotations around the z-axis are described by
parameters δk, k = 1, . . . , 4. The parts shaded in gray illustrate the dimensions of the parallel plate
actuators’ electrical contacts.

By using the generalized coordinates qB,k = [zS,k, ϕk]
> of the k-th beam, the coordinate

vector ξB,k of its center of gravity corresponds to

ξB,k =

xB,k
yB,k
zB,k

 = Lcog

cos δk cos ϕk
sin δk cos ϕk

sin ϕk

+

 0
0

zS,k − z0

+ ξ0,k (2)

with the suspension point

ξ0,k = −(LB + 0.5 dB)

cos δk
sin δk

0

+

 0
0
z0

 . (3)
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Given the gravitational constant g, mass mB, inertia JB, translatory and torsional
stiffnesses kz and kϕ, the respective energies can then be computed by

TB,k = 0.5 mB ξ>B,kξB,k + 0.5 JB ϕ̇2
k , (4)

VB,k = mB g zB,k + 0.5 kz (z0 − zS,k)
2 + 0.5 kϕ ϕ2

k . (5)

Note that although the torsional and translatory spring stiffnesses may be nonlinear
and will depend on both z and ϕ, we here assume an approximately linear, decoupled
relation due to the small range of motion. The beam motion also depends on external forces
QB,k resulting from electrostatic actuation by applying a voltage Vk (QES,k), the sphere
contact at its tip (QBS,k), and the impact with the ground plate (QBG,k). The latter two will
be derived later in Section 3.3. The electrostatic force is divided into a force FES,k acting in
negative vertical direction, and the electrostatic torque MES,k influencing the beam rotation.
These can be computed by the partial derivatives of the time-varying capacitance Ck over
the generalized coordinates, i.e.,

FES,k = 0.5 V2
k

∂Ck
∂zS,k

, (6)

MES,k = 0.5 V2
k

∂Ck
∂ϕk

, (7)

resulting in QES,k = −[FES,k, MES,k]
>. Here, we use the approximation

Ck =
ε0 wES

θk
ln

Rk
Lk

+ 2ε0 wES

(
ln 2π

θk

2π − θk
+

ln 2π
2π−θk

θk

)
(8)

as given in [24,25] with

Rk =
LES

2
+

2zS,k + LES sin(ϕk)

2 sin(|ϕk|)
(9)

Lk = Rk − LES (10)

θk = |ϕk| . (11)

Note that we further assumed that the effect of the 300 nm thick insulation layer can
be neglected in comparison with the 10 µm gap between the electrodes. Equation (8) and
its partial derivatives are numerically problematic when being evaluated at angles θk close
to zero. For simulation purposes, we therefore approximate the capacitance by a black-box
model. Here, we use a two-dimensional radial basis function network

Ck =
nz

∑
i

nϕ

∑
j

ai,j exp

(
− (zk − cz,i)

2

σ2
z

−
(ϕk − cϕ,j)

2

σ2
ϕ

)
(12)

consisting of the sum of nz × nϕ Gaussian functions with centers cz,i, cϕ,j and variance
σz, σϕ, weighted by coefficients ai,j. For this approximation, we used 25 × 25 equidis-
tantly distributed Gaussian functions with cz,i ∈ [−9.9, 3.3] µm, cϕ,j ∈ [−14.5, 4.5]× 10−3,
σz = 0.5 µm, and σϕ = 0.75× 10−3. The weighting parameters ai,j were obtained by a least
squares approach. Finally, we take into account linear damping of the beam by forces

DB,k = −
[

dB,z zS,k
dB,ϕ ϕk

]
(13)

with positive coefficients dB,z, dB,ϕ. In summary, the beam dynamics are described by

MB,k q̈ =

[
−mB g + 0.5 mB Lcog sin ϕk ϕ̇2

k
−0.5 mB g Lcog cos ϕk

]
− Kq + DB,k + QES,k + QBS,k + QBG,k (14)
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with mass and stiffness matrices

MB,k =

[
mB 0.5 mB Lcog cos ϕk

0.5 mB Lcog cos ϕk JB + 0.25 mB L2
cog

]
, K =

[
kz 0
0 kϕ

]
. (15)

3.2. Sphere Dynamics

In contrast to the beams, which movements only take place within a single plane, the
sphere motion has to consider all six degrees of freedom. As before, we define a vector of
generalized coordinates qS = [ξ>S , ψ>]>, describing the sphere position and rotation. Here,
we use the coordinates ξS = [xS, yS, zS]

> of the center of gravity of the spherical cap and
the Cardan angles ψ = [α, β, γ]>.

For the purpose of simplifying some parts of the derivation, we will use both the
inertial and body frame coordinates. This means that we can describe an arbitrary vector
r either in inertial frame coordinates, denoted by the left subscript I, i.e., Ir, or in the
coordinates of the rotated sphere frame, denoted by the subscript S as in Sr. The vectors
can be transformed using the rotation matrix S AI(ψ) from the inertial into the body frame,
and back-transformed with its inverse I AS(ψ) = S A>I (ψ). Note that the same holds for
the rotation velocity vector ω, and a missing left subscript also corresponds to the inertial
frame. Moreover, it is important to mention that the Cardan angles ψ imply a subsequent
rotation of the single angles in an invariant order. Thus, its derivative ψ̇ is not identical
to Iω or Sω, which corresponds to the current angular velocity in direction of the rotation
axis. However, there is a transformation matrix ωTψ̇(ψ) = ψ̇T−1

ω (ψ) for the respective
conversion

Sω = ωTψ̇ ψ̇ (16)

and its inverse. The transformation matrices are given in the Appendix A.1. For a deeper
understanding, the interested reader is referred to [26].

We make use of the fact that the energy is independent of the coordinate system, in
which it is evaluated. Thus, we can define the translatory and kinetic energies in the inertial
and body frame, respectively. This results in

TS = 0.5 mS Iξ
>
S IξS + 0.5 Sω>S JS Sω , (17)

VS = mS g zS (18)

with sphere mass mS. Note that due to the body frame formulation, we have a constant,
diagonal inertia matrix S JS with respect to the center of gravity. Its detailed derivation is
given in Appendix A.2. It is then possible to compute the rotational motion within the
body frame, i.e.,

S JS Sω̇ = SDω + SQω (19)

and use the transformation (16) to obtain the Cardan angle derivative

ψ̈ = ψ̇Ṫω Sω + ψ̇Tω Sω̇ . (20)

The translatory motion is given by

mS ξ̇S = Dξ + Qξ − [0, 0, mS g]> . (21)

In the above Equations (19) and (21), SQω, Qξ are the external forces resulting from
the sphere-beam contact and SDω, Dξ correspond to the linear damping terms

SDω = −dω Sω , Dξ = −dξ ξ̇S . (22)

3.3. Contact and Friction Modeling

It remains to derive the coupling between the beams and the sphere in terms of friction
and contact forces QBS,k, SQω and Qξ , as well as the impact forces QBG,k between the
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movable beams and their respective ground plate. In the following, we will first explain
the general approach based on [19] for the straightforward beam-ground impact, and then
utilize the same concept for the beam-sphere contact including friction. One of the main
advantages of the method lies in the direct implementation within the Lagrange formalism.

3.3.1. Beam-Ground Contact

When a high voltage is applied to one of the electrostatic actuators, the beam is
attracted to the ground plate. Since the beam is longer than the ground plate, its tip then
moves upwards with high velocity due to the leverage effect, until its suspended rear end
impacts the ground plate. This suggests that the resulting contact forces are key elements
of the working principle and have to be contained within the model. For this purpose, two
contact points, namely at the rear and front end of the ground plate are investigated.

Instead of rigid contacts, which are problematic for numerical simulations due to
discontinuities within the dynamics, we use a viscoelastic approximation similar to [19].
To this end, a small overlap s of the beam and the ground plate is allowed but results in a
counteracting force, while energy loss during the contact is considered in dependence of
the impact velocity v = ṡ. Additional subscripts (·)R and (·)F denote the rear and front end
contacts, and will be replaced by (·)∗ when valid for both cases. The overlap can be defined
as the signed distance between the respective beam point and the ground plate as shown
in Figure 3. It is important to mention that due to the numerical approximation using
the overlap, a short circuit can occur within the simulation when the beam is in contact.
In order to prevent this, an additional space denoted as virtual insulation layer, which is
significantly thicker than the actual insulation layer, is inserted for numerical stabilization.

sR,k sF,k

zS,k

zG
dIso

sR,k > 0
sF,k > 0

(a)

zS,k

zG

sR,k > 0
sF,k < 0

(b)

Figure 3. Definition of the overlap between the ground plate and the beam. (a) A virtual insulation
layer with thickness dIso (red) is used for numerical stability, preventing a short circuit within the
simulation in case of an overlap. Since no contact occurs, the distances sR,k and sF,k are positive.
(b) The front part of the beam is in contact with the ground plate, resulting in sF,k < 0.

This results in

sR,k = zS,k − (zG + dIso) , (23)

sF,k = zS,k − (zG + dIso) + LG tanϕk . (24)

The counteracting force F∗,k is then obtained using an activation functionRa,∗(s) and
a power functionRp,∗(v) by

F∗,k = Ra,∗
∂Rp,∗
∂v∗,k

. (25)

Here, we use a slight adaptation of the definition in [19]. According to [27] the
activation function is then given by

Ra,∗ =


0 , if s∗,k ≥ 0
k2

c
4C s2
∗,k , if −2C

kc
< s∗,k < 0

−kc s∗,k − C , otherwise ,

(26)
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which can be interpreted as the force characteristic of a nonlinear spring that is zero when
no contact occurs (s∗,k ≥ 0), increases quadratically for s∗,k < 0 until Ra,∗ reaches the
transition parameter C, and then has a linear stiffness kc. The energy loss during the impact
is adjusted by the power function

Rp,∗ =
v∗,k

2
−

log(cosh(rd v∗,k))
2rd

(27)

with damping parameter rd. Each contact results in a generalized force Q∗,k which takes
into account the beam’s direction of action by a subsequent partial derivative with respect
to q̇B,k, i.e.,

Q∗,k =
∂Ra,∗Rp,∗

∂q̇B,k
= F∗,k

∂v∗,k
∂q̇B,k

, (28)

which is finally summarized into

QBG,k = QR,k + QF,k . (29)

Note that we here assumed negligibly low friction forces at the contact points due to
mainly vertical impacts between the beam and the ground plate.

3.3.2. Beam-Sphere Contact

The same procedure can now be used for the beam-sphere contact by modifying the
overlap sS,k of the k-th beam with the sphere. Here, we choose the penetration depth of
the beam tip into the sphere surface. For this purpose, we define the center ξC of the full
sphere and the beam tip ξT,k, which can be described as

ξC = ξS + rSC = ξS + I AS [0, 0, dcog]
> (30)

and

ξT,k =

xT,k
yT,k
zT,k

 = LB

cos δk cos ϕk
sin δk cos ϕk

sin ϕk

+

 0
0

zS,k − z0

+ ξ0,k . (31)

Note that for the sphere center we made use of the fact that the vector rSC from the
center of gravity to the full sphere center corresponds to a displacement dcog in z-direction
of the body frame and can be back-transformed using the rotation matrix I AS. Given the
sphere radius r it follows that

sS,k =
√
(ξT,k − ξC)

>(ξT,k − ξC)− r , (32)

and for its timed derivative

vS,k =
1

sS,k + r
(ξT,k − ξC)

>(ξ̇T,k − ξ̇C) . (33)

The overlap (32) allows us to compute the contact force FBS,k using (25)–(27), and for
the calculation of QBS,k by (28), it remains to determine the partial derivative of (33) over
q̇B,k. For the nonconservative sphere forces Qξ , SQω, it is of advantage to derivate the
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overlap velocity over [ξ̇S, Sω] instead of q̇S = [ξ̇S, ψ̇] due to their direct dependence within
the dynamics (19) and (21). To this end, we can write ξ̇C as

ξ̇C = ξ̇S + Iω× rSC

= ξ̇S + I AS (Sω× SrSC)

= ξ̇S − dcog I AS

 0 1 0
−1 0 0

0 0 0


Sω (34)

from which follows that

∂vS,k

∂ξ̇S
=

∂vS,k

∂ξ̇C
(35)

∂vS,k

∂Sω
=

∂vS,k

∂ξ̇C

−dcog I AS

 0 1 0
−1 0 0

0 0 0

 . (36)

The overall force moving the sphere corresponds to the sum of the single generalized
forces induced by each beam, i.e.,

[Qξ , SQω ] = ∑
k

FBS,k

[
∂vS,k
∂ξ̇S

∂vS,k
∂Sω

]
. (37)

3.3.3. Beam-Sphere Friction

So far, we considered the mere impact driven motion. However, particularly for the
sphere rotation, tangential friction between the beam and the sphere may have a large
effect. In order to extend the previous generalized force formulation accordingly, we first
derive the relative tangential velocity vt,k between the beam tip and the sphere surface, and
subsequently use the Lagrange implementation described by Specker et al. [19].

Let us assume that the beam tip ξT,k is in contact with the sphere. Then there is a point
ξP,k lying on the sphere with the same coordinates ξT,k = ξP,k. Since both points lie on
different bodies, however, their velocities are computed differently. The beam tip velocity
can again directly be computed from (31), while ξ̇P,k is derived similar to (34), i.e.,

ξ̇P,k = ξ̇S + Iω× rSP,k

= ξ̇S + I AS (Sω× SrSP,k)

= ξ̇S − I AS SRSP,k Sω , (38)

where the cross product was replaced by a multiplication with the matrix

SRSP,k =

 0 −zSP,k ySP,k
zSP,k 0 −xSP,k
−ySP,k xSP,k 0

 (39)

resulting from the vector

SrSP,k =

xSP,k
ySP,k
zSP,k

 = S AI (ξP,k − ξS) = S AI (ξT,k − ξS) (40)

from the sphere center to the contact point in body frame coordinates. The relative velocity
is then given by

vr,k = ξ̇P,k − ξ̇T,k , (41)
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which can be split up into two parts: The velocity v⊥,k perpendicular to the sphere surface,
and the tangential velocity vt,k. The perpendicular part is obtained by mapping vr,k onto
the unit vector

eTS,k =

xe,k
ye,k
ze,k

 =
ξS − ξT,k

|ξS − ξT,k|
(42)

pointing from the beam tip to the full sphere center, i.e.,

v⊥,k = (v>r,k eTS) eTS = ETS,k vr,k . (43)

From the superposition principle it follows for the tangential velocity that

vt,k = (I3×3 − ETS,k) vr,k (44)

with the 3× 3 unit matrix I3×3. Given the friction velocity, it is now possible to define a
dissipation function

Dk = Dv,k +Dc,k +Ds,k (45)

depending on the absolute value |vt,k|, which include viscous (Dv,k), Coulomb (Dc,k), and
Stribeck (Ds,k) friction according to the definition in [19]:

Dv,k = 0.5 dv |vt,k|2 (46)

Dc,k = µc vc FBS,k log
(

cosh
( |vt,k|

vc

))
(47)

Ds,k =

(
dv v̂s −

(
µs − µc tanh

(
v̂s

vc

))
FBS,k

)
v̂s exp

(
0.5− 0.5

( |vt,k|
v̂s

)2
)

. (48)

For a detailed understanding of the origin of (46)–(48), we refer to [19]. It should
be noted, however, that the coefficients dv, µc, vc, µs, and v̂s can be chosen such that the
corresponding friction force

FDk =
∂Dk

∂|vt,k|
(49)

matches the setup. The generalized friction force vectors can then be computed by[
QDB,k QDξ,k SQDω,k

]
= FDk

[
∂|vt,k |
∂q̇B,k

∂|vt,k |
∂ξ̇S

∂|vt,k |
∂Sω

]
. (50)

It remains to mention that the partial derivatives in (50) are problematic since any
derivative of |vt,k| results in a singularity at zero. Therefore, Specker et al. [19] propose to
approximate the absolute velocity by

|vt,k| ≈
√

ε + v>t,k vt,k (51)

with a small numeric stabilization variable ε > 0.

4. Control Approach

In order to rotate the sphere according to a possibly time-dependent reference, con-
secutive kick and spin sequences are applied. Closed-loop control ensures that the motion
converges to the desired rotation angles by choosing suitable inputs for the electrostatic
actuators based on measurements of the current state. For the overall control design, we
propose the following two-part approach. First, we aim to find suitable voltage signals for
the electrostatic actuators to achieve a sphere rotation into the desired direction. Applying
one of these predefined inputs results in a single kick motion, during which the sphere
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is transferred from one stable position into the next. These state transitions can now be
understood as the discrete dynamics

xt+1 = f (xt, at) (52)

of a model with a higher abstraction level with state xt at discrete time step t. The dynamics
define the next stable position after applying the discrete action at ∈ A, e.g., a kick around
the x- or y-axis, and we can choose from any action within the action set A that has been
pre-calculated in the first step. The trajectories corresponding to each action can be seen
as motion primitives, which are used e.g., in path planning algorithms for robots [28]. In
the second step, we make use of this model to design a discrete closed-loop controller of
the sphere angles, and finally extend the algorithm by a step width control for additional
precision.

4.1. Step 1: Electrostatic Actuation

In order to choose the inputs for the electrostatic actuation, it is useful to understand
the behavior of the beam-sphere interaction when applying a voltage to the actuators.
Initially, the sphere is on top of the beam tips, which are bent downwards and are in
contact with the insulated ground plate due to the sphere mass. If we now apply identical
voltages to the actuators, the electrostatic forces pull the actuators’ rear ends in direction
of the ground plate. Due to the leverage effect, the beam tips push the sphere upwards.
Since the electrostatic forces increase quadratically with the voltage according to (7), the
force transmitted to the sphere also becomes larger with higher inputs. This is shown in
Figure 4. The parameter values used for this and the remaining simulations are given in
Appendix A.3.
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Figure 4. Model-based simulation of the beam and sphere motion when applying rectangular voltage
pulses with amplitudes between 30 V–70 V to all beams. After 5 ms, the input is reduced to zero.
(a) The electrostatic force pulls the actuator beam downwards (top figure). Due to the leverage effect
at the front end of the ground plate, the beam angle increases (bottom figure). For voltages larger
than 44 V a pull-in occurs, leading to a fast kick motion. (b) The upwards motions of the beam tips
result in a change in the z-position of the sphere. For high voltages, a flight phase of the sphere is
achieved.

It can be seen that the kick intensity drastically increases between 40 V–45 V. This is
due to the fact that the electrostatic force increases with decreasing plate distance, leading
to instability for high voltages, which is called the pull-in. For the sake of completeness,
note that this pull-in voltage changes when no sphere is placed on the beams, since lower
forces are necessary to move the beams in that case.

To achieve a rotational sphere motion, different inputs have to be applied to the
individual actuators. The goal is to find input voltages that achieve a maximum rotation
in a predefined direction. Let us denote the single beam actuators as beams 1–4, starting
with the left actuator and proceeding in a clockwise direction according to Figure 2b. The
configuration suggests that applying identical voltages to two adjacent actuators will result
in a diagonal rotation, e.g., actuating beams 1–2 will lead to a rotation from the hind left
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to the right front. Additionally, it may have a positive effect to use different voltages for
the remaining two actuators. Suitable time courses of these inputs can be determined by
numerical optimization.

In order to keep the number of optimization variables low and possibly allow for a
simple implementation within the later hardware setup, we again use rectangular voltage
pulses. Here, we use fixed amplitudes of 35 V and 80 V for each pair of actuators, where
we defined 80 V to be the maximum voltage, and the lower voltage was found to be
close to optimal by preliminary simulations. The inputs are then parameterized by the
respective pulse width and the time delay between both positive voltage flanks. Next, these
parameters are optimized using a genetic algorithm by maximizing the resulting rotation.
As a result, we achieve an angular change of

√
α2 + β2 = 0.54° in diagonal direction for

a zero initial rotation of the sphere. The time course of the voltages, beam motion and
resulting sphere rotation for this case are shown in Figure 5.

As can be seen, the sphere rotation is minimal during most of the actuation phase,
and the actual rotatory motion starts at the first impact after the kick. This is not intuitive,
since it was expected that the angular change is directly initiated by the pull-in motion of
beams 3–4. Instead, this results in a translatory motion and the rotation results indirectly
from the oblique impact with beams 1–2 during the negative voltage flank of V3, V4. This
demonstrates not only the usefulness of the optimization, but also the importance of a
mathematical model for preliminary analyses.
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Figure 5. The optimized rectangular voltages (bottom) are applied to the actuators, resulting in a
delayed pull-in motion for beams 2–3 (second last). Due to this force, the sphere is kicked upwards,
drifting into the hind left (second). The sphere rotation (top) is then induced by a complex combination
of the impact with beams 1–2 as well as releasing beams 3–4 from the pull-in. After a settling time of
approximately 50 ms, the sphere achieves a diagonal rotation of α = β = 0.39°.

So far, we assumed that the initial state of the sphere corresponds to zero rotation
angles, i.e., its center of gravity lies symmetrically in the center of the gap between the
beam tips. It is now important to investigate the kick behavior for an initially deflected
sphere. For evaluation purposes, we introduce a different representation of the rotational
state than the Cardan angles. Since we are interested in the direction of the surface normal
vector of the flat sphere part, we will use its x- and y-coordinates[

xsn
ysn

]
=

[
sin(β)

− cos(β) sin(α)

]
(53)

to visualize the kick behavior. Now consider an initial rotation α = −20°, i.e., xsn = 0,
ysn = 0.342. When we now apply the optimized inputs, neither the surface normal
trajectory, nor its final state will lie on the diagonal −45°-line as it was the case before. This
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is depicted in Figure 6 and is, among others, a consequence of the displacement of the
center of gravity, trying to converge to a state with zero rotation.
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Figure 6. Trajectory of the surface normal vector when applying the optimized inputs for spheres
with different initial angles. The desired direction corresponds to a −45°-line (dashed). (a) The
sphere is initialized with zero angles (blue circle) and the surface normal trajectory lies on the line of
the desired direction. The final deflection corresponds to 0.54° (red circle). (b) Applying the same
inputs for an initial rotation of α = −20° (blue circle) leads to an additional motion in the direction
perpendicular to the −45°-line. The final state is marked by a red circle.

For a successful feedback controller design, it is useful to construct the discrete model
(52) such that a specific action at leads to a similar outcome, i.e., the same rotation direction
and amplitude. While this may be achieved with considerable effort by optimizing the
inputs for each possible initial sphere deflection, we found that a sufficient solution is given
by increasing the voltage of a single beam such that the sphere motion in direction of the
zero angle state is partially compensated. Due to the symmetry of the setup, it suffices to
consider the initial states with ysn ≥ −xsn and the kick from the hind left to the front right,
since all other combinations result from either mirroring or rotating the state and actuated
beams accordingly, as depicted in Figure 7.

Recall that assuming a kick from the hind left we applied V1 = V2 = 35 V and
V3 = V4 = 80 V, which is the maximum voltage. To compensate for the sphere rotation in
zero angle direction, we can add an offset voff to the voltage V1 of the actuator on the right
hand side when the surface normal directs into the upper right half-space, and V2 in case
of the lower left half-space. This offset depends on the initial sphere rotation and is found
to be an approximately continuous function. In this work, we generated a grid of initial
rotations and use the iteratively computed voltage offsets in terms of a lookup table. The
effect of this offset is shown in Figure 8 for the same initial deflection as in Figure 6b. The
actuator inputs derived in this section can now be summarized within the discrete action
set A. The resulting discrete model can now be used for a feedback controller design.

[xsn, ysn]>

[xsn, ysn]
>

(a)

[xsn, ysn]>

[xsn, ysn]
>

(b)

[xsn, ysn]>

[xsn, ysn]
>

(c)

[xsn, ysn]>

[xsn, ysn]
>

(d)

Figure 7. Exploitation of the symmetry in terms of the surface normal coordinates. (a) Applying
a kick from the hind left (depicted as arrow) with current state [xsn, ysn] (black dot) leads to the
identical motion as for a state [xsn, ysn], mirrored at the diagonal axis (red dot). (b–d) The same
relative behavior is obtained when the state and kick direction are rotated and mirrored accordingly.
Thus, all combinations of states and kick directions can be determined, given the motion of each state
within the upper right half-space when applying a kick from the hind left is known.
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Figure 8. Effect of the voltage offset voff for beam 1 for an initial deflection of α = −20°. The goal is
to achieve a resulting rotation direction of −45° (dashed line). (a) A voltage offset up to 5.5 V reduces
the rotation direction error with small oscillation in its perpendicular direction. (b) A further increase
of the voltage up to approximately 6.2 V leads to a change in the overall behavior, including larger
oscillations in undesired directions, but achieves higher accuracy of the final state.

4.2. Step 2: Feedback Control

Given the discrete model derived in the previous section, we achieve rotations into
pre-defined directions according to the chosen action. We now present a feedback controller,
which subsequently selects from these actions, such that the sphere follows a time-variant
reference rotation based on the error between the current and reference state. Let us first
define the cartesian error vector ex

ey
ez

 = ξr − ξn (54)

between the surface normal vector ξn of the flat surface and the reference ξr. In order
to choose an action that reduces this error, it is beneficial to know the direction of the
error, as well as the angular difference, i.e., the theoretically optimal kick direction and the
absolute angle between the surface normal vectors. These can be described by the polar
angle Θ ∈ [0, 2π] of [ex, ey] and the absolute error angle Φ ∈ [0, π] given by

Φ = acos(ξ>n ξr) (55)

Θ =

{
Θ̃ ey ≥ 0
2π − Θ̃ otherwise

(56)

Θ̃ = acos

 ex√
e2

x + e2
y

 . (57)

In general, Θ will not coincide with the actual kick direction, further denoted as σt.
Thus, we need to find a control law Π : Θ→ at mapping each possible direction error to a
discrete state. We here use the kick, which direction is closest to Θ, i.e.,

at = arg min
i
|σi −Θ| . (58)

So far, this control law excludes the possibility to remain in a certain position by not
kicking the sphere at all. Especially since each kick has an overshoot with a transient
oscillation, it may be reasonable to allow a small constant angular error Φ, instead of
rotating the sphere when close to the reference. For this purpose, we apply (58) only when
Φ is smaller than a design parameter Φmin.

This controller has two disadvantages: First, due to an approximately constant kick
angle, the sphere will either oscillate around the desired state when Φmin is chosen to
small, or will result in a steady state error otherwise. Secondly, even with high modeling
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effort, the hardware configuration can behave differently than the model due to the high
complexity of the system, processing-related mechanical issues, and wear after some time
of usage. As a result, the controller performance may be reduced. We therefore propose to
extend the basic controller by a rotation width control to improve the actuator precision,
and learning mechanisms to compensate for differences between the model and the actual
actuator. The overall control loop is illustrated in Figure 9, in which the part shaded in gray
corresponds to the extension explained in the remainder of this section.

Let us start with the adaption of the rotation width. So far, we assumed that the
angular change per kick is fixed to the optimized value of approximately 0.54°. However,
it is possible to adjust the kick intensity by suitably adapting the voltages applied to the
electrostatic actuators. This has the advantage that both small and large angular changes
are enabled, allowing for either precise rotations or fast angular velocities. Consider the
case of a kick from the hind left, which we demonstrated in the previous section. We can
achieve smaller rotation widths by reducing the voltages V3 = V4 = 80 V. This is shown in
Figure 10 for initial states with α = 0, 20, 35°.

State Trans-
formation

Action
Controller

Rotation Width
Controller

Sphere
System

Error Trans-
formation

Motion
Primitive
Generator

Neural
Networks

ξr ξn

Θ Φ

at

uK

σat Ψ

V ξS

Figure 9. Block diagram of the basic control loop (white background) and an extension for higher
precision (gray background). The measured sphere state ξS is transformed into surface normal
coordinates ξn, and its deviation from the reference coordinates ξr is transformed into angular errors
Θ, Φ. The action controller then chooses a suitable action at, based on which the motion primitive
generator computes the corresponding input sequences V for the beam actuators. The extension
consisting of neural networks and a rotation width controller enable an improved angular resolution.
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Figure 10. Rotation width for different beam voltages for initial deflections α = 0, 20, 35°. This can
be used to obtain a higher accuracy. The rotation width slightly decreases with larger initial rotation
of the sphere.
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Besides the fact that we can achieve smaller rotation angles by adjusting the actuator
voltages, the rotation width also decreases for larger sphere angles, and can even become
negative. Let us assume that the characteristic Ψ = hat(Vk) is known. We can then achieve
arbitrarily small angular changes by evaluating its inverse function, i.e., determining the
necessary voltage for the desired rotation width. Since the exact characteristic of the setup
is unknown and depends on the sphere state, as well as possible model uncertainty, we
obtain this function by using an adaptive method. Note that we need such a function
approximation for each kick action at, hence the subscript. In the remainder of this work,
we will moreover map the voltage Vk to the intensity parameter uK ∈ [0, 1]. As function
approximators, we use neural networks given by

hat(uK) = bat +
nK

∑
i=1

wat ,i ζi(uK) (59)

with bias bat , weightings wat = [wat ,1, . . . , wat ,nK ], and the activation functions

ζi(uK) =

{
uK − uK,i uK ≥ uK,i
0 otherwise .

(60)

This corresponds to a piecewise linear network with nK linear segments. It is important
to understand that eventually, we will need an inverse expression uK = h−1

at (Ψ). However,
during the process of learning the characteristic, we cannot guarantee that the function
will always be injective, i.e., that a unique intensity parameter exists for a given rotation
width. However, the piecewise linear function can efficiently be analyzed, finding a
suitable intensity even if there is more than a single option or no option at all: In case the
desired rotation Ψ∗ is larger than the maximum of hat , the respective kick intensity of this
maximum is used. Similarly, if smaller angles are necessary, the intensity corresponding to
the minimum rotation width is applied. When there are several intensities leading to the
identical result, the one needing the minimum voltage is used.

Now let us assume that hat is known and we can evaluate the optimal intensity u∗K if
the desired rotation width Ψ∗ is given. It remains to compute this rotation from the current
and reference state using the kick direction σat of the chosen action. Consider the following
scenario depicted in Figure 11 in the x-y-plane.

x

y

ξr

ξ∗n

ξn

ξ̃n

σat

Figure 11. Starting with normal vector ξn and kick direction σat , any point ξ̃n lying on the line can be
reached by a sufficient kick intensity. The goal is to find the optimal kick intensity to reach ξ∗n, which
is closest to the reference ξr.

Initially, the surface normal has the coordinates ξn. By definition of the kick direction,
the line between ξn and any point ξ̃n resulting from a kick with intensity uK must enclose
the angle σat with the x-axis. Assuming that σat is known, the ideal normal vector ξ∗n closest
to the given reference ξr can be determined. It is then straightforward to compute the
sphere rotation angle Ψ∗ necessary to reach ξ∗n from ξn, which completes the derivation of
the adaptive rotation width.
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As suggested before, the assumption of knowing σat may not be true due to model
uncertainties, but it is necessary for both the basic controller, as well as the rotation width
extension. Here, we solve this issue by also using an adaptive parameter σat for each
kick direction. The learning procedure for this parameter and the neural networks can
be described as follows: After each kick with intensity uK, compute both the actually
achieved direction σ̃at and the sphere rotation Ψ̃, which are then used to update the
characteristics using

σat ← σat − ασ (σat − σ̃at) , (61)

bat ← bat − αb (Ψ− Ψ̃) , (62)

wat ← wat − αw (Ψ− Ψ̃)
∂h−1(Ψ̃)

∂wat

, (63)

with learning rates ασ, αb, αw. In summary, the optimal kick direction based on the angular
deviation between the current state and the reference is chosen. Given the estimation of σat ,
the ideal rotation width is then computed, its corresponding kick intensity is obtained from
the neural network and the kick is subsequently applied. The information from the kick is
then used to update the adaptive parameters. This overall procedure is shown in Figure 12.

Initialize
hat , σat , ξn

Compute optimal
rotation width,

u∗K and apply kick

Update
hat , σat , ξn

Choose action
arg min

at

|σat −Θ|

Figure 12. Outline of the control algorithm combining adaptive direction parameters and neural
networks for the rotation width control.

5. Results

We now want to demonstrate the performance of the control algorithm based on the
derived mathematical model. We will first compare the basic non-adaptive controller with
the extended version in a setpoint control, i.e., where the reference is constant, and then
show their applicability to time-variant tracking problems. For the sake of computational
time, we simulated the single kick trajectories for a grid of states and kick intensities
beforehand, and use the discretized model in terms of a linearly interpolated lookup
table. The simulations were realized with MATLAB® [29] and the corresponding model
parameters are given in Appendix A.3.

5.1. Setpoint Control

In this section, we will compare the behavior of both controllers when the objective
is to reach a fixed state and remain in this resting position. Concerning the extended
controller, we investigate the cases where the controller is simulated directly after the
initialization and after a pre-learning phase. We assume that the spheres are initially in
a state with zero rotation, and the reference surface normal vector has the coordinates
ξref = [0.01, 0.02, 0.9997]>. The result is seen in Figure 13.

As expected, the basic controller tends to oscillate for too small minimum resting angles
Φmin, since the step width is too large for the error to get small enough. Enlarging this
minimum angle, this oscillation disappears and a steady state error occurs. The trajectories
with the extensions achieve high accuracy in only a few time steps. It is apparent, however,
that these controllers cannot make use of their inherent advantages for larger minimum
angles.
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Figure 13. Trajectories (left) from the zero rotation state (black circle) to the reference (gray circle) and
the respective errors (right) for the basic (red), extended (blue), and pre-learned extended (black)
controllers. The minimum angle Φmin is 0.05° on the top and 0.25° on bottom. (a) While the basic
controller is not able to achieve a steady state due to a too small Φmin, the extended controllers
achieve high accuracies with fewer time steps. (b) The quadratic errors confirm the expectation
of an oscillating basic controller and show the advantage of the extension. (c) If Φmin is larger,
the controllers converge to similar solutions. (d) A larger minimum angle leads to higher steady
state errors, but improves the basic controller due to the missing oscillation. The advantages of the
extension do not take effect.

Besides the increased accuracy, one reason for the controller extension lies in its ability
to adapt to model errors to some extend. In order to demonstrate this, we repeat the
experiment, but with an error in the simulated system. In the simplest case, the kick
directions do not correspond to the ideal ones. Here, we assume that each kick direction
has an error of 12°. The trajectories are illustrated in Figure 14. For a larger Φmin, a similar
result as in the previous case can be expected.

As before, the extended controllers show satisfactory results in terms of accuracy. It
is interesting to see that the pre-learned controller seems to perform only slightly better
than the one used with initialization parameters. However, the results visualized in this
simulation study only show the terminal states after each kick, so that the transient behavior
is not seen. If only the terminal state is important, the transient behavior may not be critical.
Otherwise, it is important that the resting state is achieved using as few kicks as possible,
which is only the case for the pre-learned controller. Moreover, it should be mentioned, that
the basic controller is also able to achieve an acceptable behavior when being appropriately
parameterized. Its advantage lies in the simplicity of its implementation, when no high
accuracy is necessary.
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Figure 14. The basic (red), extended (blue), and pre-learned extended (black) controllers are now
applied to the same setpoint problem, but the kick directions do not coincide with those of the ideal
model (a) The basic controller now oscillates in two dimensions, while the extended controllers
quickly adapt to the new kick directions. (b) The error decreases slower than in case of the ideal
model for all controllers, but a similar number of steps is needed for the extended controllers to
converge to the desired position.

5.2. Trajectory Following Control

The setpoint control simulations have shown some advantages of the extended algo-
rithms in terms of their steady state accuracy and their adaptability. In a second simulation,
we now aim to analyze the behavior when the reference is a continuous function of time.
The reference to be tracked is given in terms of x-, y− coordinates by[

xref
yref

]
= Amax cos(2π f1t)

[
cos(2π f1t)
sin(2π f1t)

]
, (64)

with Amax = 0.44 and f1 = 0.02 Hz. This function is designed to move within a large range
of the state space. As before, we initialize the sphere to start with zero angles. Instead of
simulating the ideal system behavior first, we directly use the perturbed system model, but
with a mismatch of 33° kick direction. The results are visualized in Figure 15.

Both controllers show the ability to follow the trajectory with small errors, whereby
the extended approach performs with a fifth of the basic controller error. Although both
approaches may be reasonable choices, depending on the requirement on the controller,
further studies on the limitations should be made to guarantee a satisfactory behavior. In
case of the extended controller, a critical aspect is the rotation measurement quality, since
this influences the ability to estimate the kick direction and rotation width characteristic.
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Figure 15. Following of a time-dependent reference trajectory using a simulation system with
different kick direction than the model. The tracking errors correspond to the quadratic x-y-deviation
of the surface normal vector from the reference. (a) The best result of the basic controller (left)
is compared with the extended one (right). Although the basic controller is not able to learn the
deviating kick direction, its result is comparable to that of the extended controller. (b) The quadratic
errors between the trajectories deviate by a factor of approximately 5, showing that the extended
controller is more accurate.

6. Discussion

The presented micromirror can achieve large rotation angles due to the lack of restoring
forces from springs. As a consequence, classical approaches for driving the mirror, which
are based on fixed mechanical contacts, cannot be used. Instead, the rotation is achieved
indirectly by applying inputs to electrostatic actuators, which in turn move the sphere by
impacts and friction. The derived mathematical model can be understood as preliminary
work used to study the complex mechanism and find suitable system inputs for later
hardware experiments. It is important to mention that for such complex systems, we cannot
assume perfect accordance with the real hardware setup, especially when using simplified
system-level models. However, we expect that the general behavior coincides well enough,
such that findings in simulation are transferable to the actual system to some extent.
The advantage of such a model is its relatively low simulation time in contrast to more
sophisticated approaches such as finite element modeling. For a successful comparison
with a hardware setup, it will moreover be necessary to apply system identification to
obtain optimal model parameters, which result in a dynamic behavior close to the actual
micromirror. In the future, the model will therefore be compared to a hardware setup, and
the results presented in this work have to be verified in experiment.

One of the main achievements corresponds to the optimized inputs maximizing the
rotation angle, in combination with the perturbation of some actuator voltages, such that
the sphere rotation direction is almost identical within the investigated state space of 40°
rotation. This result is important, since it largely simplifies the controller design. Moreover,
adapting the rotation width by reducing the applied voltages is a useful addition, allowing
for precise motions. It is important to mention that for the ideal system, it is possible to
reach any desired rotation angle without error. However, this may not be the case for
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the later hardware setup due to disturbances and measurement noise. Instead, it can be
reasonable to remain in a certain position when the error is small enough, thus leading
to a resolution of the specified error bound. The main problem of the current actuation
principle lies in the oscillation of the sphere angle during and after the kick, which can
in some cases be larger than the achieved final angular change. This is problematic if the
mirror surface is supposed to transit smoothly between the resting states, as it may be
the case for laser applications. Additionally, the maximum achievable angular velocity
is limited by the fact that the oscillation has to stop before the next kick is applied. Both
problems can be reduced by the implementation of active damping, e.g., by additional
magnetic actuation. In the ideal case the oscillation can then be stopped at the point of
its maximum rotation, i.e., shortly after applying the kick. This would lead to both larger
angles and reduced transient times for each kick.

Faster angular velocities with less overshoot are also beneficial for the performance of
the feedback controller. In this work, we described a control strategy which can adapt to
model mismatch in terms of the kick direction. The advantage of this controller lies in its
simple basic implementation and the extension to adapt the rotation width for increased
precision. The capabilities of the approach were demonstrated in simulation in terms of
setpoint control and trajectory following. So far, the controller could choose between four
diagonal kick directions. These suffice to transfer the sphere in any rotational position.
However, this results in a significantly slower motion for rotations in direction of the x-
or y-axis, since two kicks are necessary for an exactly parallel motion. To overcome this,
different input voltages need to be found, such that the sphere can directly be actuated in
this direction. Its implementation within the control algorithm is then straight forward.

A possible issue of the presented configuration lies in the implementation of a free-
lying sphere within practical applications, since the sphere is only held by its gravitational
force. To increase this holding force, a permanent magnet below the setup may be used.
During each kick and spin motion, this force can then be counteracted by additional
electromagnetic solenoids.

Finally, it is necessary for a feedback controlled motion to measure the current state. A
promising and cost-efficient method considers magnets below the actuator, and measuring
the rotation via stray magnetic fields due to the flat side of the sphere. A challenge lies in the
evaluation of these fields, as well as possibly high sensitivity due to magnetic disturbances.
To reduce these effects, the use of state estimation algorithms like Kalman filters can be
investigated.

7. Conclusions

In this work, we presented the system-level modeling approach for a novel microactu-
ator, which achieves large deflection angles by rotating a freely moving, flattened sphere.
The rotation is realized by impacts and friction with four electrostatic parallel plate actua-
tors, where the pull-in effect is exploited to achieve the required forces. This results in a
large variety of different multi-contact scenarios and leads to a complex relation between
the actuator inputs and the sphere motion, which is challenging for both the modeling and
control design approach. The contacts are considered within the model by a viscoelastic
approximation, which is directly implementable within the Lagrange formulation. As a
result, the complexity of the overall model is appropriately low to enable its use within
numerical optimization methods for the determination of suitable inputs. For this purpose,
sequences of system inputs maximizing the final rotation angle are found by a genetic
algorithm. Based on the resulting motion primitives, an intuitive feedback controller design
is proposed, such that the sphere follows a time-varying reference rotation. In order to
take into account possible model uncertainty, and to increase the precision, the approach is
extended by neural networks. The performance of the controller is evaluated in simulation,
showing high accuracy even for initial model mismatch. In the future, a hardware configu-
ration will be set up and the results of this work will be verified in experiment. In order
to achieve a high level of agreement between the model and the hardware setup, system
identification will be necessary to obtain the physical values for the model parameters.
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Appendix A

Appendix A.1. Transformation Matrices

The transformation from the body frame of the sphere into the inertial frame is
given by

I AS(ψ) =

 cβcγ −cβsγ sβ

cαsγ + cγsαsβ cαcγ − sαsβsγ −cβsα

sαsγ − cαcγsβ cγsα + cαsβsγ cαcβ

 , (A1)

where we abbreviated the sine and cosine functions of a variable x by sx = sin(x) and
cx = cos(x). The sphere angle derivatives ψ̇ can be expressed as the rotation velocity vector

Sω in sphere frame coordinates using the transformation matrix

ωTψ̇(ψ) =

 cβcγ sγ 0
−cβsγ cγ 0

sβ 0 1

 . (A2)

Appendix A.2. Sphere Inertia Tensor

Let the sphere have a flat surface enclosing an angle φ ≤ π with the center. The inertia
tensor S JO regarding to the full sphere center is given by

S JO = ρ
∫ π

0

∫ 2π

0

∫ r

0
(r>r) I3×3 − r r>dx dϑ dθ (A3)

− ρ
∫ 0.5φ

0

∫ 2π

0

∫ r

R(φ,θ)
(r>r) I3×3 − r r>dx dϑ dθ

with the mass density ρ, lower integration bound R(φ, θ) = r cos(0.5φ)/ cos(θ), and the
vector r = x [sin θ cos ϑ, sin θ sin ϑ, cos θ]>. This results in

S JO = ρ

Θxx 0 0
0 Θyy 0
0 0 Θzz

 (A4)

with elements

Θxx = Θyy =
1
60

r5π
(

cosφ/2 +1
)2(

16− 9 cos3
φ/2 +18 cos2

φ/2−17 cosφ/2

)
, (A5)

Θzz =
8
15

r5π cos6
φ/4

(
10 + 6 cos4

φ/4−15 cos2
φ/4

)
. (A6)

The inertia tensor S JS regarding to the center of gravity of the sphere can be computed
using the parallel axis theorem, resulting in

S JS = S JO −mS d2
cog

1 0 0
0 1 0
0 0 0

 . (A7)
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Appendix A.3. Simulation Parameters

Table A1. Design and simulation parameters used throughout the paper.

Parameter Explanation Value

z0 Beam suspension position 0 µm
dB Beam tip distance 800 µm
LB Beam length 1400 µm
wB Beam width 200 µm
mB Beam mass 96.695 µg
JB Beam inertia 0.2665 g cm2

Lcog Distance to beam center of gravity 319 µm
LES Capacitor plate length 500 µm
wES Capacitor plate width 1300 µm
dIso Virtual insulation layer thickness 1.5 µm
kz Vertical beam spring stiffness 35 N
kϕ Rotational beam spring stiffness 20 µN m
dB,z Vertical beam damping coefficient 30 µN s
dB,ϕ Rotational beam damping coefficient 5 nN m s
zG Ground plate position −10 µm
LG Ground plate length 1000 µm
r Sphere radius 1000 µm
φ Sphere cutting angle 90°
mS Sphere mass 30.973 mg
dcog Full sphere center and center of gravity distance 49.7642 µm
dω Rotational sphere damping coefficient 0.1 nN m s
dξ Translatory sphere damping coefficient 5 mN s
kc Contact modeling parameter (linear stiffness) 5× 106

C Contact modeling parameter (transition parameter) 0.25
rd Contact modeling parameter (impact loss parameter) 10
dv Friction parameter (viscous friction) −0.05
µc Friction parameter (Coulomb friction) −2
vc Friction parameter (Coulomb friction) 0.1
µs Friction parameter (Stribeck friction) 0.5
v̂s Friction parameter (Stribeck friction) 0.1
ασ Learning rate (kick direction) 0.9
αb Learning rate (neural network bias) 0.1
αw Learning rate (neural network weights) 0.1
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