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Abstract

Classification of atmospheric circulation patterns (CP) is a common tool for down-

scaling rainfall, but it is rarely used for West Africa. In this study, a two-step classi-

fication procedure is proposed for this region, which is applied from 1989 to 2010

for the Sudan-Sahel zone (Central Burkina Faso) with a focus on heavy rainfall.

The approach is based on a classification of large-scale atmospheric CPs

(e.g., Saharan Heat Low) of the West African Monsoon using a fuzzy rule-based

method to describe the seasonal rainfall variability. The wettest CPs are further

classified using meso-scale monsoon patterns to better describe the daily rainfall

variability during the monsoon period. A comprehensive predictor screening for

the seasonal classification indicates that the best performing predictor variables

(e.g., surface pressure, meridional moisture fluxes) are closely related to the main

processes of the West African Monsoon. In the second classification step, the

stream function at 700 hPa for identifying troughs and ridges of tropical waves

shows the highest performance, providing an added value to the overall perfor-

mance of the classification. Thus, the new approach can better distinguish

between dry and wet CPs during the rainy season. Moreover, CPs are identified

that are of high relevance for daily heavy rainfall in the study area. The two wet-

test CPs caused roughly half of the extremes on about 6.5% of days. Both wettest

patterns are characterized by an intensified Saharan Heat Low and a cyclonic

rotation near the study area, indicating a tropical wave trough. Since the classifica-

tion can be used to condition other statistical approaches used in climate sciences

and other disciplines, the presented classification approach opens many different

applications for the West African Monsoon region.
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1 | INTRODUCTION

West Africa is one of the poorest regions in the world,
with an estimated total population of over 400 million

(UN, 2020). Monsoon rains are of utmost importance for
this region, as the society is highly dependent on the pro-
duction of rain-fed agriculture. The West African Mon-
soon (WAM) and its multi-scale atmospheric features
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have a significant impact on meteorological surface fluxes,
such as precipitation at different spatiotemporal scales
(e.g., Nicholson, 2001; Nicholson et al., 2018). Natural disas-
ters, such as the Sahel drought in the 1970s and 1980s (Dai
et al., 2004), the recent increase in flooding (Tazen
et al., 2019), and related extremes (Salack et al., 2016; Taylor
et al., 2017), have immediate and considerable macro-
socioeconomic consequences for the West African nations
(Markantonis et al., 2018). For instance, Munich RE
(Munich, 2019) registered 82 drought events in West Africa
with an estimated loss of more than US$3.6 billion between
1980 and 2018. During the same period, 255 flood events
were observed, causing over 200,000 inhabitants to become
homeless (EM-DAT, 2020).

To reduce the negative impacts of such extremes, the
hydro-meteorological services in West Africa need to pro-
vide reliable rainfall forecasts for different forecast hori-
zons that can be used for decisions in agriculture and
other disciplines. However, the current forecasting
methods of the West African hydro-meteorological ser-
vices are limited, as described, for example, by
Bliefernicht et al. (2019) for seasonal forecasts. Moreover,
state-of-the-art general circulation models (GCM) used in
numerical weather prediction (NWP), or climate model-
ling do not provide accurate rainfall information at the
local scale for West Africa. For instance, Vogel et al. (2018)
showed that precipitation forecasts of nine global ensem-
ble prediction systems were not able to outperform
climatology-based forecasts, although sophisticated statis-
tical postprocessing algorithms were applied. The study
was done for three regions in northern tropical Africa
using 1–5 day accumulated precipitation over a period of
7 years with a focus on point precipitation using common
verification methods. In general, the capability of GCMs
to simulate local rainfall is limited for many regions of the
world, but their simulation for large-scale atmospheric
circulation patterns (CPs) like the West African heat low
or pressure systems over Europe provides much higher
reliability (Smith et al., 2012). To overcome the GCM limi-
tations, downscaling approaches are developed, ranging
from dynamical (Giorgi and Gutowski, 2015) to statistical
methods (Hewitson et al., 2014; Maraun and
Widmann, 2018). Among the most common statistical
downscaling techniques are classification approaches.
These approaches classify the large-scale atmospheric cir-
culation over a geographical region, to link this informa-
tion to meteorological variables on the ground, such as
rainfall or near-surface air temperature. Thus, a func-
tional relationship is established between atmospheric
variables (e.g., geopotential height) simulated by a GCM
and locally observed meteorological variables on the gro-
und. CP classification is of high interest for decision-
making in water resources management and many other

disciplines (B�ardossy and Pegram, 2011). Hence, there is a
multitude of approaches and applications (Huth
et al., 2008; Philipp et al., 2016) which can be grouped
into subjective, objective and mixed classification methods
(Huth et al., 2008).

For the WAM region, very few studies have investigated
the relationship between large-scale atmospheric features
and meteorological variables with a CP classification on the
local level. This type of technique is usually used and
applied in mid-latitudes, where weather variability is
mainly determined by the dynamics of high- and low-
pressure systems. In contrast to mid-latitudes, weather vari-
ability in the WAM region is driven mostly by mesoscale
convective systems (MCS), which can be related to African
Easterly Waves (AEWs; Fink and Reiner, 2003; Moron
et al., 2008a). AEWs impact day-to-day rainfall variability
by facilitating the organization of MCSs. In addition, there
is an increased probability of squall lines and rainfall in
front of and in the trough of an AEW (e.g., Reed et al. 1977;
Fink and Reiner, 2003). To identify and track AEWs, mid-
tropospheric wind fields and their derived parameters, such
as stream functions, are used (Berry et al., 2007; Brammer
and Thorncroft, 2015). However, AEWs are not the only
type of tropical wave that influences rainfall variability in
this region. Schlueter et al. (2019a) and Schlueter, Fink and
Knippertz (2019b) did a systematic comparison of six wave
types and pointed out that Kelvin waves also play a role for
daily rainfall variability on the local scale.

For the Western Sahel, Moron et al. (2008a) proposed
an objective classification (k-means cluster analysis) of
regional circulation, to analyse the influence of the circu-
lation on local rainfall in Senegal. In this study, the clus-
tering scheme was based on three wind levels (200, 700
and 925 hPa) for the period from July to September. The
eight cluster-solution seems to be able to cover key fea-
tures of daily circulation variability. Furthermore, the
ability of GCMs to reproduce the mean seasonal cycle
and transitions between CPs is strong, and the ability of
GCMs to describe the interannual variability of CP occur-
rence, which affects the interannual variability of rainfall,
is moderate to strong (Moron et al., 2008b). Guèye
et al. (2011) identified nine CPs with self-organizing
maps to account for the daily variability of atmospheric
circulation over Senegal, using the mean sea level pres-
sure and the wind field at 850 hPa as predictors. The CPs
mainly show AEWs and the northward/southward dis-
placement of the Saharan Heat Low (SHL). In the second
part of the study, Guèye et al. (2012) investigated inter-
annual variability and partly explained the interannual
variation of summer rainfall over Senegal with their CPs.
Laux (2009) linked the onset of the rainy season in the
Volta basin of West Africa to large-scale atmospheric cir-
culation patterns using a fuzzy rule-based classification
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method. Camberlin et al. (2020) described six different
types of intense rainfall events and their associated atmo-
spheric circulation at the daily scale over southern West
Africa. A common feature of all types is the existence of
westward-propagating signals at the 700 hPa wind field.
Moron et al. (2018) used a cluster analysis of daily pres-
sure and wind anomalies to investigate to what extent
CPs are relevant for intra-seasonal and interannual tem-
perature variability in tropical North Africa.

The main objective of this study is the development of
a statistical downscaling approach that relates atmo-
spheric circulation patterns to heavy rainfall in the
Sudan-Sahel region of West Africa. For this purpose, the
fuzzy-rule based classification method (FRBCM) used by
Laux (2009) for the onset of the rainy season is adapted
and further advanced for daily precipitation extremes
using a two-step procedure for the classification of
daily CPs:

• First, a classification using large-scale atmospheric pat-
terns (e.g., SHL) is performed to describe the strong
seasonal rainfall variability in this region (hereinafter
referred to as seasonal classification).

• Second, we further classified the wettest CPs from the
seasonal classification to better describe the daily rainfall
variability and heavy rainfall within the rainy season, by
linking tropical wave features to regional rainfall (herein-
after referred to as subseasonal classification).

The FRBCM has been widely used for CP classifica-
tion in different climate regions of the world
(Wetterhall et al., 2006, 2008; Zehe et al., 2006a; Pringle
et al., 2015). In this study, a two-step procedure for this
classification approach for a climatologically challeng-
ing region is presented for the first time. The study
builds on outcomes of specific WAM process studies
(Diedhiou et al., 1998; Fink and Reiner, 2003; Berry
et al., 2007; Engel et al., 2017) relevant for rainfall
extremes to establish this downscaling approach for this
region. Moreover, the two-step classification allows to
incorporate additional predictor information like the
stream function for describing ridges and troughs of
tropical wave patterns over the study region. Since
many classifications and other statistical downscaling
studies carried out for this region were limited on cer-
tain monsoon periods (e.g., July–August–September),
the novel approach applies a dynamic temporal domain
based on atmospheric CPs for further refinement of the
downscaling process. The study is supplemented by a
comprehensive predictor screening and a sensitivity
and transferability analysis of important parameters of
the FRCBM, which has been not addressed in this level
of detail by other investigations, so far.

2 | STUDY REGION AND DATA

2.1 | Target region and predictor domain

The study area is West Africa, specifically targeting
(heavy) rainfall in Central Burkina Faso (Figure 1).
This region belongs to the Sudan-Sahel zone, which is
characterized by a strong seasonal rainfall variability
(Laux et al., 2008; Laux et al., 2009; Bliefernicht
et al., 2018). Table 1 shows that around 97% of the
annual rainfall amount (741 mm/a) occurs from May to
October and the period from May to September is most
relevant for heavy rainfall in this region. In addition to
the strong seasonal cycle, rainfall varies considerably
during the rainy season. In this region, heavy precipita-
tion is often the result of MCSs. This was shown, for
instance, by Engel et al. (2017) for an extreme event in
September 2009, which caused severe inundations in
Ouagadougou, the largest city in Burkina Faso (Tazen
et al., 2019).

To relate atmospheric patterns to rainfall within the
study region, the CP classification is performed for two
different domains. Domain A is used for the first step of
the classification, that is, the seasonal classification, to
describe the dominant large-scale seasonal features of the
WAM processes, such as the SHL or the AEJ. It ranges
from 30�W to 40�E and 5�S to 40�N and therefore covers
most parts of Africa northward of the equator (Figure 1).
The domain size is based on other downscaling studies
done for West Africa (Dieng et al., 2018; Heinzeller
et al., 2018). Similar domains were also used by Lavaysse
et al. (2009) for analysing the seasonal movement of the
West African heat low and Nicholson (2013) for describ-
ing the WAM circulation. The second step of the classifi-
cation, the subseasonal classification, applies domain B,
ranging from 20�W to 20�E and 0�N to 20�N. Domain B
is smaller than domain A, and better targets meso-scale
synoptic features of tropical waves like AEWs. The choice
of domain B was mainly based on Berry et al. (2007) who
analysed a sequence of several strong AEWs for West
Africa.

2.2 | Precipitation data

The daily rainfall data used in this study comes from a
dataset established within the WASCAL (West African
Science Service Centre on Climate Change and Adapted
Land Use) project. A description of the rainfall dataset,
with data sources and applied quality algorithms, is given
in Bliefernicht et al., (2021). The rainfall dataset was also
the source of information used in several other studies
for this region, for example, for groundwater
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reconstruction using hydrological models (Ascott
et al., 2020) or validation of regional climate model sim-
ulations (Dieng et al., 2017). In this study, a subset of
26 stations was selected from the WASCAL database
with daily data records from 1989 to 2010. The selected
stations are in the middle of Burkina Faso and are
therefore surrounding Ouagadougou (Figure 1b). The

mean data availability for this subset is relatively high
(92.8%) with several almost complete time series
(>99%) and 18 stations that contained more than 90%
of the data records. The minimum data availability for
a station in this subset was 72%. Two daily areal rain-
fall indices are computed from these subsets and are
used as information for the development and evalua-
tion of the classification approach:

• The daily areal rainfall probability (DARP) [−] is the
number of wet stations divided by the total number of
observations. A wet station is defined as a site with
more than 1 mm/d rainfall.

• The daily areal rainfall amount (DARA) (mm/d) is
based on the stations' average rainfall amount and is
computed for each day as well.

2.3 | Reanalysis data

ERA-5 is the latest reanalysis dataset from the
European Centre for Medium-Range Weather Fore-
casts and is used as predictor information. ERA-5 pro-
vides a detailed dataset of atmosphere, land and
oceanic climate variables (Hersbach et al., 2020).
ERA-5 replaced ERA-Interim (Dee et al., 2011) in 2019.
Significant improvements compared with ERA-Interim
are the temporal (hourly vs. 3-hourly) and spatial reso-
lution (31 vs. 79 km), the number of vertical levels
(137 vs. 60) and the increase of the amount of data
assimilated, among many other issues (Hersbach
et al., 2019). The ERA-5 data for the predictor screen-
ing was retrieved for each day of the investigation
period (1989–2010) via the Climate Data Store of the
Copernicus Climate Change Service. The ERA-5 infor-
mation at 12 UTC was taken to preprocess the predic-
tor information.12 UTC was chosen as predictor time
step due to former downscaling studies for daily pre-
cipitation extremes (Bliefernicht, 2010), in which
12 and 18 UTC usually outperformed other 6-hourly
time steps and daily averages.

TABLE 1 Rainfall indices (RI) based on the daily areal rainfall amount for the study region

RI Unit Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Pm (mm/m) 0.0 0.5 3.7 16.3 56.9 97.3 173.5 225.4 129.2 36.9 1.1 0.3

Q99 (mm/d) 0.0 0.4 3.1 7.5 16.8 20.1 25.6 28.3 22.1 11.3 0.7 0.0

Max (mm/d) 0.6 3.4 8.8 8.6 44.3 25.8 38.4 54.8 83.9 19.8 8.2 6.1

Nex (−) 0 0 0 0 5 7 26 46 15 1 0 0

P1 (%) 0.1 0.7 1.8 5.4 14.2 21.2 31.7 39.5 28.6 10.4 0.9 0.5

Abbreviations: Max, maximum daily rainfall amount; Nex, number of extremes; Nex is based on the 100 largest daily events (>19.6 mm/d); P1, rainfall

probability (%), 1989–2010; Pm, mean monthly rainfall amount (mm/m); Q99, 99%-quantile.

FIGURE 1 The upper panel shows domains A (30�W 5�S to

40�E 40�N) and B (20�W 0�N to 20�E 25�N) of the predictor
variables used for the classification and the target region Central

Burkina Faso (red ellipse). The lower panel shows a more detailed

picture of the target region with the selected rainfall stations and

the capital of Burkina Faso, Ouagadougou [Colour figure can be

viewed at wileyonlinelibrary.com]
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3 | METHODOLOGY

An overview of the dataflow and different components of
the applied classification approach can be found in
Figure 2. The core of the methodology is the fuzzy rule-
based classification method (FRBCM), used for the classifi-
cation of atmospheric CPs. The ERA-5 reanalysis and the
WASCAL rainfall database provide the input for CP classifi-
cation. First, a pool of predictor candidates for several atmo-
spheric levels are tested for the classification and evaluated
using an entropy-based information gain (Quinlan, 1986).
Second, the predictor screening is supplemented by a sensi-
tivity and transferability analysis, focusing on the number
of CPs and number of grid points relevant for fuzzy rules.
The different classification configurations are again evalu-
ated using the information gain, and the best classification
is chosen for further analysis.

The two-step procedure of our classification is
implemented as follows. In the first step, the seasonal classi-
fication is performed to determine CPs that describe the
large-scale circulation (e.g., SHL) over the study area. Since
this classification is done for every day, a daily time series
of CPs is generated for the investigation period. The sea-
sonal classification is done for the predictor candidates
listed in Table 2. The performance of the different predictor
is evaluated how well the classification can discriminate
between dry and wet days, and the best predictor candidate
is selected. In the second step of the classification process,
only the periods with wet CPs are chosen to perform the
sub-classification. The subclassification is done using
domain B and the predictor candidates of Table 2. Thus,
the daily time series of the seasonal CPs are further refined
based on the subseasonal classification.

The model development (classification) was done using
reanalysis information provided by GCM which is very
common for statistical downscaling (Brands et al., 2012;
Maraun and Widmann, 2018). This makes it possible to
evaluate the performance of a downscaling approach under
“best” conditions (Brands et al., 2012). It has also the advan-
tage that a direct functional relationship (without any time
lag) between predictor (e.g., mean sea level pressure, stream
function) and predictand (precipitation) can be established,
in contrast to classical statistical forecasting (Wilks, 2011).

In the following, the different steps of the classifica-
tion approach are explained in more detail.

3.1 | Fuzzy rule-based classification
of circulation patterns

The fuzzy rule-based classification consists of three compo-
nents: the calculation of anomalies for the selected predictor
variable, the definition of fuzzy rules, and a simulated

annealing approach to optimize the functional relationship
between predictor and predictand. For a detailed descrip-
tion of the fuzzy methodology, we refer to B�ardossy et al.
(B�ardossy and Borgardi, 1995) and B�ardossy et al. (2002).
The fuzzy classification has been applied by many other
studies for different target variables and geographical
regions of the world (Wetterhall et al., 2008; Pringle
et al., 2015; Rau et al., 2020). In this study, a brief descrip-
tion of the different components is given.

For our application, it is assumed that the predictor
variables are available in a regular grid at a daily resolu-
tion. The standardized anomalies g i, tð Þ are calculated
from the gridded predictor data x i, tð Þ as:

g i, tð Þ= x i, tð Þ−x ið Þ
s ið Þ , ð1Þ

where i=1,…,I are the grid points, t=1…,T is the
timestep in days, x ið Þ is the long-term mean and s ið Þ is
the long-term standard deviation over the entire time
series.

Each CP is defined by a fuzzy rule. This implies that
to each grid point i, membership functions are defined as
triangular fuzzy numbers. Five different options for the
degree of the anomaly at grid point i are considered:
“very low”, “medium low”, “medium high”, “very high”
and “indifferent.” The first four classes describe locations
(grid points) with relevance to the CP, the fifth class indi-
cates locations that have no influence on the classifica-
tion. A CP with the fuzzy rule k is represented using the
vector v kð Þ=v 1,kð Þ,…,v I,kð Þ, where v i,kð Þ are the anom-
aly degree indices corresponding to grid point i for CP k.
Membership function values are used in combination
with the anomaly fields to compute the degree of fulfil-
ment (DOF) for each CP (rule k). The rule with the
highest DOF is assigned as CP for a given day.

The purpose of the optimization algorithm is to define
fuzzy rules for each CP, for which the objective function
O ϑð Þ is maximum. As the objective function for the SA
process, the following equation is used:

O ϑð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

t=1
p CP tð Þð Þ−pð Þ2,

r
ð2Þ

where T is the number of days, p CP tð Þð Þ is the DARP
exceeding the threshold ϑ within a given CP and p is the
mean DARP (exceeding threshold ϑ) without classifica-
tion. For the threshold, ϑ=1mm=d is used. A detailed
description of the simulated annealing algorithm is also
given in Appendix A.

A relevant model parameter of the classification
approach is the number of CPs, as shown by
B�ardossy (2010) and Pringle et al. (2015). In addition, the

BLIEFERNICHT ET AL. 6519

 10970088, 2022, 12, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7613 by U
niversitaetsbibl A

ugsburg, W
iley O

nline Library on [10/08/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



number of grid points relevant for the fuzzy rules (ANC)
plays an important role for the classification. Thus, at these
grid points, one of the four fuzzy rules “very low”, “medium
low”, “medium high” and “very high” is assigned by the
algorithm. By changing both parameters, an optimal num-
ber of CPs and ANC value can be determined for the
classification.

3.2 | Performance measures

The basis of the performance measures used in this study
is the entropy E, proposed by Shannon (1948):

E=−
Xn

i=1
pi log2 pi, ð3Þ

TABLE 2 List of predictor variables used for the seasonal (domain A) and subseasonal classification (domain B, see Figure 1 for the

domains)

Variable Abbreviations Pressure levels (hPa) Classification Study

Geopotential height GPH 200, 500, 700, 850, 1000 Seasonal b

Temperature TEMP 1000 Seasonal b

Zonal wind U 200, 500, 700, 8501000 Seasonal a,b,d,e

Meridional wind V 200, 500, 700, 850, 1000 Seasonal a,b,c,d,e

Specific humidity SH 850, 1000 Seasonal –

10 m zonal wind 10 mU – Seasonal –

10 m merid. wind 10 mV – Seasonal –

2 m air temperature 2 mT – Seasonal

Mean s.l. pressure MSL – Seasonal b, c, d

Zonal moisture flux MFU 850, 1000 Seasonal b

Merid. moisture flux MFV 850, 1000 Seasonal b

Stream function SF 700, 850 Subseasonal –

Relative vorticity RV 700 Subseasonal –

Curvature vorticity CV 700 Subseasonal –

Shear vorticity SV 700 Subseasonal –

Zonal wind U 700 Subseasonal –

Meridional wind V 700 Subseasonal –

Note: a, Moron et al. (2008a); b, Laux (2009); c, Guèye et al. (2011); d, Moron et al. (2018); e, Camberlin et al. (2020).
Abbreviations: merid., meridional; s.l., sea level.

FIGURE 2 Flowchart of the

classification approach followed in this

study to determine atmospheric

circulation patterns (CP)
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where pi is the rainfall frequency for n rainfall categories.
A rainfall data set containing only the same values has a
very low (zero) entropy, whereas a data set with very dif-
ferent rainfall values has a relatively high entropy. The
Shannon entropy is widely used in many different disci-
plines and has been also used for CP classification
(Pringle et al., 2015).

The entropy function is used to compute the
corresponding information gain IG (Quinlan, 1986; Li
and Claramunt, 2006):

IG=E−
XK

k=1
f kEk, ð4Þ

where K is the number of CPs, f k is the relative CP fre-
quency and Ek the entropy of each CP. IG indicates how
much entropy is removed when the data set is partitioned
into several subsets (in our case the different CPs). In
other words, the higher IG is, the more entropy is elimi-
nated, and the better the CP classification can distinguish
between wet and dry CPs. The precipitation threshold for
the computation of the information gain is 1mm/d for
the seasonal and 5mm/d for the subseasonal
classification.

For the analysis of the CP-dependent rainfall condi-
tions (e.g., wet and dry), the mean daily areal rainfall prob-
ability (MDARP) and the mean daily areal precipitation
amount (MDARA) is calculated. In addition, the wetness
index (WI) for each CP is computed B�ardossy (2010). WI
[−] is defined as the ratio of the conditional MDARA of a
CP to the unconditional MDARA (average DARA) for
the studied period. A WI value greater (smaller) than 1
implies that the CP is wetter (drier) compared with the
climatological mean.

3.3 | Predictor screening

Regardless of the chosen CP classification method, the
relevance of the obtained CPs depends on the selected
predictors. Suitable predictor variables should be able to
describe the main atmospheric characteristics of the
study region. Over West Africa, seasonal and daily rain-
fall variability is constituted by complex interactions of
different WAM processes (Nicholson, 2013). Thus, a com-
prehensive predictor screening is done to determine the
most suitable predictor variables for both classification
steps. To achieve this task, the ERA5 reanalysis fields
were preprocessed with bilinear remapping from
0:25�×0:25� to 2�×2� resolution for the predictor screen-
ing. This is a common method to save computational
effort in FRBCM, especially for variables like mean sea
level pressure, which have a low spatial heterogeneity.

The list of potential predictor variables selected from
ERA-5 used for the classification can be found in Table 2.
In addition to variables directly provided by ERA5, the
zonal and meridional moisture flux component was cal-
culated. These variables were previously chosen for
downscaling daily precipitation, for example, by
Bliefernicht and B�ardossy (2007) for Central Europe and
Laux (2009) for West Africa. The choice of predictor vari-
ables for domain A was mainly based on previous classifi-
cation studies done for this region (see the references in
Table 2). However, we included further variables like
temperature and additional pressure levels (e.g., 500 hPa).
For the subseasonal classification we used several vortic-
ity parameters, wind components and the stream func-
tion at the 700 and 850 hPa level (Li et al., 2006; Berry
et al., 2007). Based on the stream function field, the rota-
tional flow can be determined to determine troughs and
ridges of AEWs (Berry et al., 2007).

Potential predictor variables of the seasonal classifica-
tion are analysed for their performance in discriminating
between rainy and dry season. For this classification, the
FRBCM is performed for domain A using 10 CPs and an
ANC of 100 in the SA process. The subseasonal classifica-
tion is only done for the wettest CPs of the seasonal clas-
sification. Six CPs and an ANC of 10 in the SA process
are used for the predictor screening.

3.4 | Sensitivity and transferability
analysis

The transferability of a classification to an independent
data set is a basic requirement for the development of a
reliable downscaling approach. To address this issue,
FRBCM is trained and validated using a split-sampling
approach. The training dataset ranges from 2000 to 2010
and is used for optimization of FRBCM. Afterwards, the
optimized rules are transferred to the validation period of
1989 to 1999. Since the performance of the fuzzy
approach depends on different parameters, like the num-
ber of CPs and the number of grid points relevant for
fuzzy rules (ANC), we perform an analysis on both
parameters to determine an optimal classification for the
target region in terms of model performance and trans-
ferability. Only the number of CPs was addressed in pre-
vious investigations (B�ardossy, 2010; Pringle et al., 2015),
so far.

Since ANC has a strong influence on the transferabil-
ity of the FRBCM, the parameter is decreased from
207 (25% of the grid-points) to 16 (2% of the grid points)
in domain A. This investigation is done using MSL
because this variable scored best among the selected vari-
ables in the first predictor screening. The same analysis is
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done for SF700 on domain B using 18, 10 and 5 grid
points. An analysis on how the number of CPs affects the
information gain for both classifications is also per-
formed. 6 to 12 classes are used for the seasonal classifi-
cation, and 4 to 8 classes for the subseasonal
classification. A higher number of classes is not used to
determine CPs with appropriate sample size for the final
classification.

4 | RESULTS

In the following, the results of the seasonal and the sub-
seasonal classification are presented. For both classifica-
tions, a predictor screening is performed first, followed by
the analysis of the sensitivity and transferability of the clas-
sification approach. In addition, the identified circulation
patterns and their wetness is analysed for both classifica-
tions. The purpose of this analysis is to describe whether
physically reliable atmospheric circulation patterns can be
obtained by the classification process, rather than mathe-
matical artefacts (Wetterhall et al., 2007). This is an impor-
tant step in objective classification and was also done by
many other FRBCM studies (Zehe et al., 2006a; Wetterhall
et al., 2008; Pringle et al., 2015). Finally, an evaluation of
the two-step classification procedure for heavy rainfall is
presented.

4.1 | Seasonal classification

In this section, the outcomes (predictor screening, sensi-
tivity and transferability analysis, circulation patterns) of
the seasonal classification (domain A, see Figure 1a) are
described in detail.

4.1.1 | Predictor screening

Figure 3 shows the performance of the candidates used for
the predictor screening of the seasonal classification. The
near-surface temperature variables T2M and TEMP1000,
which indicate the temperature contrast between the Tropi-
cal Atlantic and West Africa, perform best (IG = 0.42) in
describing the rainfall seasonality. A slightly lower perfor-
mance is obtained for MSL (IG = 0.41) and GPH1000
(IG = 0.40). Both variables can be seen as an indicator for
the SHL. Very similar results are obtained for the near-
surface wind components U1000 (IG = 0.40) and V1000
(IG = 0.39), as well as the near-surface meridional moisture
flux MFV1000 (IG = 0.38). These predictors are closely
related to the Southwest Monsoon and the Harmattan.
Moreover, the zonal wind fields at 700 hPa (U700) and

200 hPa (U200), representative of the African Easterly Jet
and the Tropical Easterly Jet, respectively, also have a rela-
tively high information gain (IG > 0.37). They outperform
other predictors such as V200, V700 and U850, which can-
not be related to large-scale seasonal WAM processes. This
gives sufficient credibility that the predictor screening
reflects major governing WAM processes quite well.

The significance of the outcome of the predictor
screening was also analysed using a bootstrap method
(Efron and Tibshirani, 1994; Chernick, 2011). The basis is
an algorithm presented in Bliefernicht et al. (2019),
which was slightly adapted for the calculation of the
information gain and for performing a pairwise test of
the performance differences for each predictor pair.
Figure 4 shows that the differences are only non-
significant for predictor pairs with very similar model
performances (e.g., T2M and MSL or MSL and U1000).
Thus, for most of the tested predictor pairs (88.6%) the
differences in model performance are significant.

Ultimately, the predictor variables U1000, V1000,
MSL, GPH1000, U700, U200 and MFV1000 are selected
by the predictor screening and used for further analysis.
Similar predictors of the selected variables like U10 or
V10 are no longer considered. The same also applies for
near-surface temperature variables like T2M and

FIGURE 3 Predictor screening for the seasonal classification.

Results are shown for the calibration period (2000–2010) and sorted

from high to low information gain (IG) values. T2M and MSL are

therefore the best predictors with the highest information gain. The

abbreviations of the predictors are explained in Table 2 [Colour

figure can be viewed at wileyonlinelibrary.com]
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TEMP1000, since these are closely related to MSL
and GPH.

4.1.2 | Sensitivity and transferability

The results of the transferability analysis are exemplar-
ily shown in Figure 5 for the seasonal classification
and MSL as the predictor variable. The performance of
the classification in the calibration period is best for
the highest ANC values (IG = 0.41 with 207 ANC) and
tends to decrease with smaller ANC values (IG = 0.36
with 16 ANC, Figure 5). However, the information gain
of the validation increases with a decreasing ANC and
reaches its optimum at 55 (IG = 0.29). Thus, only a
small fraction of grid points should be used for the
training of fuzzy rules, otherwise, if the established
fuzzy rules are transferred to the validation set, approx.
40% of performance in terms of the information gain is
lost. Since the transferability and the performance is
highest for ANC = 33 (corresponding to a fraction of
0.04% of grid points used for the fuzzy rules), this value
is used in the following.

Respectively, the FRBCM is performed for the chosen
predictor variables (U1000, V1000, MSL, U700, U200,
V850, MFV1000 and GPH1000) in Domain A with
33 ANC in the SA process and 10 CPs. In comparison to
the results of Section 4.1.1, all predictor variables suffer
performance losses during the calibration period because
of a reduced ANC (Figure 6). However, almost all vari-
ables (except for U1000) show an improvement in the
validation period. This confirms our assumption that by
reducing ANC, the transferability of the classification can
be improved to a certain degree. Interestingly, the rank-
ing of the best predictors is slightly changed. In this case,
MFV1000 performs best, followed by MSL and U200.
Thus, this indicates that it is necessary to perform a
detailed analysis for every predictor variable, that is, to
determine an optimal number of grid points. MSL and
MFV1000, the two most performant variables, are used
exemplarily to study the impact of the number of CPs
(6, 8, 10 and 12) on the information gain (see Figure 7).

The outcomes of this analysis show that the number
of CPs also has a considerable impact on the performance
of the classification. The highest performance is achieved
if 8 to 10 classes are selected for MSL, and 10 to 12 classes

FIGURE 4 Significance of the results of the predictor screening shown in Figure 3. The significance of the performance differences

between two classifications with different predictors (e.g., MSL and U1000) was tested for each pair using a bootstrap analysis on a

significance level of 5%. Red indicates a statistically significant difference in performance between two classifications (1), whereas blue

indicates no significance (0). For instance, row 1 indicates that a classification using T2M was superior compared with all other

classifications expect a classification using MSL. The abbreviations of the predictors are explained in Table 2 [Colour figure can be viewed at

wileyonlinelibrary.com]
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for MFV1000. The MSL classification using eight CPs
shows the highest performance and is therefore used as
the best solution for the seasonal classification.

4.1.3 | Description of circulations patterns

Figure 8 shows the spatial CP patterns of the MSL anom-
alies from the seasonal classification. An important fea-
ture of the MSL fields is the negative pressure anomalies
indicating the West African heat low. This heat low exists
throughout the year and occurs where insolation is high,

and evaporation is low. It shifts northwest from its winter
position (November–March, CP7) by the Darfur Moun-
tains to its summer position (June–September) between
the Hoggar and the Atlas Mountains above the Sahara,
known as the SHL (CP2, CP4, CP5, Lavaysse et al., 2009).

During the dry phase (November to March) of the
WAM, CP1, CP6 and CP7 are predominant (Tables 3 and
4). In general, these patterns have quite a similar struc-
ture with a high surface pressure (i.e., positive anomalies)
in the north and low surface pressure (i.e., negative
anomalies) in the south. CP6 is most characteristic for
the dry phase, while CP1 and CP7 can also appear in

FIGURE 5 Performance of the

seasonal classification for the calibration

and validation period using different

numbers of grid points (ANC) in the

fuzzy rules and mean sea level pressure

as predictor variable. IG,

information gain [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 6 The performance of the

seasonal classification for different

predictors using 33 grid points in the

fuzzy rules (ANC = 33). The variables

on the x-axis are sorted by the

information gain (IG) in the validation

period. The predictor abbreviations are

explained in Table 2 [Colour figure can

be viewed at wileyonlinelibrary.com]
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April and May during the WAM transition phase. The
MDARP (WI) remains below 0.04 (0.19) for CP1, CP6
and CP7, indicating that these CPs are extremely dry.

During the transition phase of the WAM (April, May,
October) CP2, CP3 and CP8 operate as a kind of bridge to
the other phases. There is a northward (southward) pro-
gression between 10 and 20�N of the West African heat
low (CP3, CP8), with a zonal expansion (reduction)
related to the seasonally varying solar insolation follow-
ing the zenith position of the sun. As the seasonal cycle
progresses, the zonal expansion of the heat low decreases
and changes to the state in CP2, where the SHL between
the Hoggar and the Atlas Mountains starts to intensify as
a precursor for the summer phase. During the transi-
tional phase, the southwest monsoon is shifted inland,
initiating the rainy season in the study region. In conse-
quence, CP2, CP3, CP8 are relatively wet in comparison
to the CPs of the dry phase.

During the WAM main phase (June to September),
CP2, CP4 and CP5 are the prevailing patterns. CP2
occurs as pre- and post-monsoonal pattern in June and
September, in addition to CP4 and CP5 in July and
August. In comparison to CP2, the core of the SHL in
CP4 and CP5 is much stronger, and a north-west
migration can be observed. The southwest monsoon
flow is strongest and the ITCZ/ITD reaches its north-
ernmost position. Thus, CP2, CP4 and CP5 are the wet-
test CPs for the study region and explain approx. 87%
of the total areal precipitation amount of the study
region.

4.2 | Subseasonal classification

In this section, the outcomes (predictor screening, transfer-
ability and sensitivity analysis and circulation patterns) of
the subseasonal classification (domain B) are presented.

4.2.1 | Predictor screening

The outcomes of the predictor screening for the subseasonal
classification are shown in Figure 9. The relative vorticity
RV700 has the highest performance (IG = 0.07) for the cali-
bration period, followed by the stream functions SF700 and
SF850. Note that the scale is an order of magnitude smaller
compared with Figure 6. Slightly lower IGs (0.05) are
achieved for the calibration period by the other predictors.
However, many predictors are considerably weaker for the
validation period. Several predictors, like the zonal wind
component, tend to zero information gain. The only predic-
tor with similar performance for the validation period is the
stream function at the 700 hPa level. Thus, this predictor
allows a much better transferability of the classification
approach and has the highest overall model performance
for both periods. It is therefore chosen for further analysis.
The performance loss for the validation period of the wind
and vorticity predictors can be partly explained by their
strong spatial heterogeneity. The stream functions only
include the rotational component and no divergence, and
therefore have a much smoother spatial field compared
with the vorticity parameters.

FIGURE 7 The

performance of seasonal

classification for meridional

moisture fluxes at 1000 hPa level

(MFV1000) and mean sea level

pressure (MSL) with respect to

the number of CPs [Colour

figure can be viewed at

wileyonlinelibrary.com]
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4.2.2 | Sensitivity and transferability

Several findings of the transferability and sensitivity anal-
ysis in Section 4.1.2 are confirmed by the subseasonal
classification using SF700 (Figure 10, left). A

classification setting with 10 ANC, and therefore 4% of
the grid points, has the highest performance in the vali-
dation period. In addition, performance increases with a
higher ANC for the calibration period but decreases for
the validation period. Investigating the impact of the

FIGURE 8 Atmospheric circulation patterns (CP) of the seasonal classification using mean sea level pressure anomalies (1989–2010)
within domain A [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 3 Circulation pattern (CP)

statistics (1989 to 2010) for the seasonal

classification using mean sea level

pressure and for domain A

CP Occurrence (%) MDARP (−) MDARA (mm/d) WI (−)

1 13.37 0.04 0.39 0.19

2 7.44 0.21 3.07 1.51

3 7.37 0.09 1.15 0.57

4 14.00 0.36 6.62 3.26

5 13.90 0.28 4.42 2.18

6 22.39 0.01 0.07 0.04

7 13.14 0.01 0.07 0.04

8 8.39 0.09 1.16 0.57

Abbreviations: MDARP, mean daily areal rainfall probability; MDARS, mean daily areal rainfall amount;
WI, wetness index.

TABLE 4 Monthly occurrence

frequencies (%) for each circulation

pattern (CP) of the seasonal

classification using mean sea level

pressure within domain A

Month CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8

Jan 16.9 0.0 0.4 0.0 0.0 53.5 28.0 1.2

Feb 17.4 0.3 1.3 0.0 0.0 47.2 30.1 3.7

Mar 21.8 1.5 4.0 0.1 0.0 28.2 32.0 12.5

Apr 30.2 5.2 11.8 0.5 0.8 8.8 16.2 26.7

May 13.9 18.9 23.3 2.3 10.1 3.4 3.1 24.9

Jun 1.2 22.3 9.1 17.4 44.2 0.3 0.0 5.5

Jul 0.4 9.2 0.7 47.1 40.9 0.0 0.0 1.6

Aug 0.0 4.4 0.3 59.2 34.5 0.0 0.0 1.6

Sep 3.8 13.8 6.4 37.3 32.3 1.4 0.6 4.5

Oct 17.7 12.3 26.5 2.8 3.5 13.6 8.2 15.2

Nov 22.0 0.6 3.8 0.0 0.0 53.8 17.7 2.1

Dec 15.5 0.6 0.3 0.0 0.0 60.0 22.7 0.9

FIGURE 9 Predictor screening for

the subseasonal classification, using the

information gain (IG) sorted from low to

high values of the validation period. The

abbreviations of the predictors are

explained in Table 2 [Colour figure can

be viewed at wileyonlinelibrary.com]
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number of CPs on the information gain (Figure 10, right)
reveals that SF700 with six classes performs best, with
slight tendencies to higher information loss of the opti-
mized classification for the validation period if four or
eight subgroups are selected. Thus, the classification
using SF700 with 10 ANC and six subgroups is selected
as the best solution for the subseasonal classification.

4.2.3 | Description of circulation patterns

The six atmospheric CPs for the best subseasonal classifi-
cation using SF700 are shown in Figure 11. The negative
(positive) anomalies of SF700 indicate cyclonic (anticy-
clonic) circulations over the study region. For instance,
CP1 and CP2 show strong positive anomalies over the
study region, indicating that this area is influenced by
anticyclonic circulations and resulting in drier conditions
(WI < 0.7, Table 5). In turn, CP4 and CP6 are character-
ized by strong negative anomalies, leading to much wet-
ter conditions (WI > 1.5). For instance, MDARA of the
wettest pattern (CP4) has a value of 8.27 mm/d, which is
nearly three times larger compared with driest pattern
(2.85 mm/d, CP2). Moreover, the results of this analysis
also indicate that the location of the negative anomalies
plays a role. The negative anomaly of CP4 and CP6 is
much closer to the study region in comparison to the
drier CP5. Thus, the results of this analysis suggest that
the subseasonal classifications based on the SF700 anom-
aly fields can be linked to wetter and drier conditions
within the main monsoon period and can therefore

explain a substantial part of the daily rainfall variability
during this period.

4.3 | Evaluation of the two-step
classification procedure for heavy rainfall

The subseasonal classification was performed for the
period of the wettest seasonal CPs, that is, CP2, CP4 and
CP5 using MSL, and is used to classify these CPs into
subgroups. Since the best subseasonal classification is
based on six CPs (see Figure 11), the final classification
leads to 23 CPs. The occurrence frequency of the CPs and
their precipitation statistics are listed in Table 6. In addi-
tion, the number of extremes is shown for each CP, based
on the 100 largest precipitation events. The results exhibit
a clear discrimination between dry and wet CPs. There
are four CPs (CP2.4, CP2.6, CP4.4 and CP4.6) with a
clearly increased WI (WI > 3.5) compared with the wet-
test CP of the seasonal classification (CP4, WI = 3.26).
The two wettest subclasses (i.e., CP4.4 and CP4.6) caused
45% of the extremes, although they occurred on only
6.5% of days. Moreover, the six wettest CPs are also
responsible for more than 65% of the annual rainfall
amount and 63% of the extremes, although these CPs
only occur on 11.5% of days. There is also a clear varia-
tion of the WI for the different subclasses of CP2, CP4
and CP5. For example, CP4.2 has a WI value of 1.68,
compared with 4.5 for CP4.4. Thus, the analysis shows
that the final classification can distinguish relatively well
between dry and wet CPs during the season and within

FIGURE 10 The performance of

the subseasonal classification for the

calibration and validation period using

the stream function at 700 hPa level for

several configurations with respect to

the grid points in the fuzzy rules (ANC)

and to the number of circulation

patterns (CP) [Colour figure can be

viewed at wileyonlinelibrary.com]
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the monsoon period, and that certain subclasses can be
clearly linked to precipitation extremes.

5 | DISCUSSION

The FRBCM is widely applied in Central Europe
(e.g., B�ardossy and Filiz, 2005; Wetterhall et al., 2008;

B�ardossy and Pegram, 2011; Rau et al., 2020), but only
rarely used in the context of monsoonal areas (e.g., Zehe
et al., 2006b; Laux, 2009). In the West African domain,
Guèye et al. (2011, 2012) and Moron et al. (2008a) used
other well-known classification techniques based on self-
organizing maps and k-means cluster analysis. Compared
with those existing classifications studies for the WAM
region, the advantage of the proposed two-step

FIGURE 11 Atmospheric circulation patterns (CP) of the stream function anomalies at 700 hPa level within domain B, 1989 to 2010

[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Circulation pattern (CP)

statistics for stream function at 700 hPa

within domain B

CP Occurrence (%) MDARP (−) MDARA (mm) WI (−)

1 27.61 0.22 3.45 0.69

2 17.43 0.20 2.85 0.57

3 16.55 0.26 4.16 0.83

4 15.11 0.45 8.27 1.65

5 5.74 0.27 4.59 0.92

6 17.57 0.42 7.71 1.54

Abbreviations: MDARP, mean daily areal rainfall probability; MDARS, mean daily areal rainfall amount;
WI, wetness index.
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classification procedure is the second step of the classifi-
cation, which can be easily adapted in terms of the spatial
and temporal domain. This nesting procedure, based on
large-scale atmospheric circulation patterns, allows the
definition of a dynamic temporal domain for further
refinement of the downscaling process, and gives better
flexibility to address specific questions, such as determin-
ing the onset or cessation of the rainy season for agricul-
ture. A direct comparison between the different studies,
however, remains difficult, since the studies differ not
only in their specific settings (e.g., spatial domain, period,
study area), but also in the methods and metrices to eval-
uate performance. Thus, a performance comparison
between the different approaches is out of the scope of
this study.

Despite the different classification techniques, the
predictor screening in this study revealed similar results
such as Guèye et al. (2011, 2012). They used MSL and the
wind fields at 825 hPa, which are closely related to the
best-performing predictor variables applied in our final
setup for the two-step approach (i.e., MSL and SF700). In

the seasonal classification (step 1), the identified best pre-
dictor variables (U1000, V1000, MSL, U700, U200, V850,
MFV1000 and GPH1000) are physically related to large-
scale WAM processes like SHL, TEJ and the AEJ. This
indicates that the classification can describe the seasonal
variability in this region, which is a necessary condition
for prediction.

Beside the identification of suitable predictor vari-
ables, the number of classes (i.e., CPs) and the number of
grid points relevant for the fuzzy rules is a crucial but
subjective decision in the classification. This has been
extensively analysed in this study. Considering the
tradeoffs between performance gains during the calibra-
tion process and performance losses during validation,
eight classes are determined as a good solution for the
seasonal classification. This finding is consistent with
previous studies for example, Guèye et al. (2011, 2012).
Moreover, we showed that the number of grid points rel-
evant for fuzzy rules is a crucial parameter in FRBCM
and has a strong impact on classification performance
and the transferability of the optimized classification to

TABLE 6 CP statistics from the

joint classification using the two-step

procedure based on stream function at

700 hPa and mean sea level pressure

CP Occurrence (%) MDARP (−) MDARA (mm) WI (−) Nex (−)

1 13.37 0.04 0.39 0.19 0

2.1 2.63 0.16 2.32 1.14 1

2.2 1.84 0.17 2.26 1.11 1

2.3 1.72 0.20 2.93 1.44 2

2.4 0.51 0.39 6.38 3.14 2

2.5 0.25 0.18 1.97 0.97 0

2.6 0.50 0.45 7.67 3.78 1

3 7.37 0.09 1.15 0.57 1

4.1 2.89 0.27 4.52 2.23 7

4.2 1.59 0.24 3.42 1.68 0

4.3 2.04 0.34 5.69 2.80 6

4.4 3.02 0.47 9.13 4.50 21

4.5 0.92 0.29 5.55 2.74 5

4.6 3.53 0.44 8.46 4.17 24

5.1 4.24 0.23 3.44 1.69 2

5.2 2.73 0.20 2.91 1.43 4

5.3 2.09 0.24 3.67 1.81 3

5.4 1.80 0.43 7.39 3.64 6

5.5 0.86 0.26 4.33 2.13 1

5.6 2.18 0.37 6.49 3.20 9

6 22.39 0.01 0.07 0.04 1

7 13.14 0.01 0.07 0.04 0

8 8.39 0.09 1.16 0.57 3

Abbreviations: Nex, Number of extremes based on the 100 wettest days (>19.6 mm/d); MDARP, mean daily
areal rainfall probability; MDARS, mean daily areal rainfall amount; WI, wetness index, 1989–2010.
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an independent dataset. We determined that only a very
small portion of the grid points (4%) are relevant for both
classification steps. This reduces overfitting of FRBCM
and improves classification performance and transferabil-
ity of the approach to an independent dataset. Our out-
come also confirms the information of Zehe
et al. (2006b), which used only small portion of grid
points (10–12) in their classification for India.

Since the seasonal rainfall component of the WAM is
the dominant signal, the discriminatory power of the classi-
fication for day-to-day variability of rainfall is expected to
be poorer in comparison to seasonal variability. This expec-
tation is confirmed by the results obtained from the sub-
seasonal classification (step 2). It is found that information
gain is reduced by about one order of magnitude compared
with the seasonal classification. Based on the predictor
screening, we identified SF700 as the predictor with the
highest information gain. Stream functions are used in
order to objectively identify AEW trough axes and AEJ axes,
as shown by Berry et al. (2007). To the best of our knowl-
edge, no further study has applied a stream function field
for the CP classification in West Africa. Based on the wet-
test classes obtained from the seasonal classification, the
subseasonal classification identified suitable subclasses to
describe extreme rainfall events, that is, classes with WI
values remarkably different from 1. We cross-checked the
time series of the CP catalogue with observed extreme rain-
fall events in Burkina Faso. As an example, the extremely
severe heavy rainfall event on September first, 2009, in Oua-
gadougou (Engel et al., 2017) is grouped within CP4.6, one
of the wettest patterns in our approach. This CP type is
characterized by an intensified SHL pattern (CP4 in
Figure 8) and a cyclonic rotation over the study area (CP6
in Figure 11), indicating an AEW trough. This situation is
known as a favourable condition for generating rain-
producing systems. However, AEW are not the only type of
atmospheric wave influencing the daily rainfall variability
in this region (Schlueter et al., 2019a). Lafore et al. (2017)
showed that a simultaneous occurrence of a convectively
coupled Kelvin wave and equatorial Rossby wave played a
strong role for the heavy rainfall event in Ouagadougou,
1 September 2009. Moreover, the CPs shown in Figure 11
indicate a larger wavelength in comparison to a typical
wavelength of AEW waves (�2500 km, Diedhiou
et al., 1998). Thus, the current CPs can be also mixture of
different wave types for this region. To explore this issue in
more detail, a more rigorous process-based analysis of the
determined atmospheric patterns is needed in future inves-
tigations. This is shown for classification approaches by
Moron et al. (2008a) and Guèye et al. (2011, 2012) for this
region.

The seasonal CP patterns are also consistent with
Lavaysse et al. (2009) to a large degree. They pointed out

that the average heat low position during the dry phase is
at 8.9�N, 14.3�E (standard deviation of 2.44� and 5.9�,
respectively) and at 23.8�N, 0�E (standard deviation of
2.2� and 4.1�, respectively) for the wet phase. This is rela-
tively in line with our summer phase CPs (CP2, CP4 and
CP5) and the dry phase CPs (in particular CP7). More-
over, the identified CPs of the subseasonal classification,
associated with intense rainfall amounts (CP4 and CP6),
are related to westward propagating wind systems at
700 hPa. This is in agreement with the study by
Camberlin et al. (2020). Thus, the classification can gen-
erate relatively reliable CP patterns for the study region
of interest. Nevertheless, the determined CPs of the sea-
sonal classification are relatively similar compared with
the spatial patterns of a straightforward monthly classifi-
cation due to the strong overlying seasonal variation of
this region. However, a monthly classification does not
allow any flexibility in terms of late or early monsoon
and a classification based on atmospheric variables
should be therefore preferred.

The classification still offers potential for improvement.
Moron et al. (2008a) included more predictor variables in
the classification process, such as the wind fields at
200, 700 and 925 hPa. Lavaysse et al. (2009) used the thick-
ness of the geopotential height for describing the transition
of the West African heat low. A comprehensive predictor
study was also done by Deme et al. (2003) for the predic-
tion of daily rainfall in Senegal. Based on this investiga-
tion, other variables that were not used in this study are
also relevant for daily rainfall, like the lifting condensation
level. Another important setting is the predictor domain
used in downscaling (Wetterhall et al., 2006; Radanovics
et al., 2013). Wetterhall et al. (2007) illustrated that the
domain of the FRBCM has an influence and can therefore
improve the downscaling process. Moreover, the selected
predictor time step (12 UTC) might be not the best choice
since midday local forcings are the strongest and can
therefore perturb the large-scale circulation. Thus, other
time steps might be relevant, too. For instance, Guèye
et al. (2012) selected 0, 6 and 18 UTC for the classification,
as well. In addition, several other processes that influence
rainfall variability in West Africa are not yet considered.
For instance, the Madden–Julian Oscillation is known to
be relevant for the rainfall variability on timescales
between 30 and 90 days (Schlueter, 2020) and SST patterns
and ENSO can have an influence on the interannual rain-
fall variability (Nicholson, 2013).

6 | CONCLUSIONS

In this study, a two-step atmospheric circulation pattern
classification consisting of a seasonal and a subseasonal
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classification was developed for West Africa to describe
the seasonal and day-to-day variability of rainfall in the
Sudan-Sahel zone.

In the seasonal classification, the best performing pre-
dictor variables (e.g., surface pressure, meridional mois-
ture fluxes) for describing the seasonal rainfall variability
are closely related to the main governing atmospheric
processes of the WAM (e.g., SHL, TEJ and the AEJ), giv-
ing evidence for the reliability of ERA5 reanalysis data
and the chosen classification approach. In the sub-
seasonal classification, the stream function at 700 hPa as
an indicator for troughs and ridges of tropical waves
shows the highest performance in describing daily rain-
fall variability during the monsoon period. It is concluded
that the subseasonal classification adds additional value
to the overall performance of the classification. The new
approach can therefore better separate between dry and
wet CPs in the study region. Moreover, specific subclasses
of wet CPs could be linked to synoptic situations, respon-
sible for 85% of the extremes, of which only two caused
nearly half of the extremes on 6.5% of the days. These
CPs are characterized by an intensified SHL and evidence
of a cyclonic rotation close to the study region in
Burkina Faso, indicating a wave trough in this region.

A crucial parameter for the chosen classification
approach is the number of grid points relevant for the
fuzzy rules. We discovered that a relatively small number
of grid points within the predictor domain is sufficient
for this classification. This reduces overfitting and there-
fore enhances overall model performance and transfer-
ability to an independent dataset.

The presented CP classification opens many different
possibilities for statistical applications in climate sciences
and other disciplines in the WAM region. The CP classifi-
cation can be used to improve state-of-the-art stochastic
approaches used for rainfall simulation in this region
(e.g., Vischel et al., 2009; Wilcox et al., 2021) by condi-
tioning the rainfall statistics to the CP-type (e.g., Stehlík
and B�ardossy, 2002; Zehe et al., 2006b). Moreover, CP
classifications can be also applied as conditional informa-
tion in downscaling (Haberlandt et al., 2015), to improve
common approaches used for climate projections or sea-
sonal forecasting (e.g., Siegmund et al., 2015; Rauch
et al., 2019), to better predict rainfall and other meteoro-
logical variables in this challenging region.
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APPENDIX A

SIMULATED ANNEALING ALGORITHM
The basis for the optimization algorithm of the fuzzy rule-
based classification is a simulated annealing approach. This
algorithm is described by B�ardossy et al. (2002). However,
the model parameter ANC is not listed in this reference.
This information was given in the FORTRAN code pro-
vided by Andr�as B�ardossy in former investigations (e.g.,
Laux, 2009). In this study, we used the information given in
the different references of the fuzzy approach and the FOR-
TRAN code and recoded the approach in Python. The dif-
ferent steps of the simulated annealing algorithm used in
this study can be therefore described as follows:

1. Set initial annealing temperature q0
2. Select rule k randomly
3. Select location i randomly
4. Select a class v� randomly
5. Evaluate several requirements to continue:

a. The allowed number of classes (ANC) (classes 1–4) for
the description of a CP is not higher than a specified
threshold

b. The ANC is not lower than a specified threshold
c. v i,kð Þ is unequal to v�

d. The absolute difference to neighbour grid points clas-
ses is not higher than 1

e. If these conditions are not fulfilled repeat step 2, other-
wise continue with step 6

1. Set v i,kð Þ=v� and execute the classification
2. Calculate O� for new rules
3. If O�>O, accept the change
4. If O�≤O:

a. Generate a random number z between 0 and 1
b. If z<exp − O−O�

qs

� �
, accept the change, else keep

the existing classification

5. Repeat steps 2 to 9 M times
6. Decrease the annealing temperature
7. Repeat steps 2 to 11 until the changes are below a cer-

tain threshold (number of changes < M=100).

The initial annealing temperature q0 is set to 50 and
the iteration number M to 1000.
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