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1

Introduction

Our modern society heavily relies on information and communication technol-
ogy. The most obvious examples are the trends in digitalization and smart
devices, both affecting nearly all segments of our life [1–5]. Improvements in
all these devices typically require miniaturization, cost reduction, increased
performance of all existing components, and development of new functional
units. To date, this challenge has often been met by the scaling down of elec-
tronic components, such as transistors, facilitating lower power consumption
[6], while simultaneously increasing the performance. This process of down-
scaling is known and frequently cited as Moore’s law [7]. However, in the last
years the size reduction has reached fundamental limits [8] as well as technology
related limits, such as the diffraction limit of light which is used in the pho-
tolithographic processing of wafers to make components like transistors [9–15].
Thus, these challenges have launched widespread research efforts to explore
alternative ways of generating functional properties at the nano-scale [16–20].

One particularly exciting solution are spin-transfer electronics, or in short
spintronics [21–23], where either individual spins, or emergent spin textures,
are used as memory objects. Among such textures, the nanometer sized whirls
of spins called topological solitons, have been attracting broad interest. A sub-
group of these solitons, magnetic skyrmions, which were originally predicted
by A. Bogdanov and D. Yablonskii in 1989 [24] and observed experimentally
in 2009 by Mühlbauer et. al. [25], represent a seminal part in novel mem-
ory concepts based on spintronics. In addition to skyrmions, magnetic bubble
domains have come to a renaissance recently, due to the possibility to stabi-
lize them at room temperature and squeeze them to the nanoscale. Magnetic
bubbles and skyrmions have various commonalities and often they are hardly
distinguishable. The strong research efforts devoted to the study of these ob-
jects can be ascribed to two factors: their technological potential to serve as
elementary units in future information technology and the academic excitement
about exploring new physics on the nanoscale.

Technologically speaking, there are a number of potential benefits in us-
ing these quasi-particles. They can be moved by ultra-low densities of spin
polarized currents [26, 27], which is attractive because of the low energy con-
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2 Chapter 1. Introduction

sumption. Moreover, their properties can be sensed by non-local magnetic
fields, which is attractive for reading their state [28]. Potential applications in-
clude skyrmionic memory and logic devices [29–32], skyrmion magnonic crystals
[28, 33], and skyrmion-based radio-frequency devices [34, 35].

Skyrmionics is a fast progressing field, and nowadays there are multiple dif-
ferent ways of generating skyrmions in various different classes of host materials
[29]. Skyrmion lattices were first observed in non-centrosymmetric chiral mag-
nets [25, 36] and thin films [37, 38] at low temperature, stabilized by the bulk
Dzyaloshinskii-Moriya interaction (DMI). Subsequently, individual skyrmions
were stabilized by interfacial DMI in asymmetric magnetic multilayers [39–48].
In addition, skyrmions were observed in axially symmetric polar magnets [49–
51] and the frustrated centrosymmetric kagome magnet Fe3Sn2 [52]. The latter
is of specific interest, because it has been reported to host skyrmions at room
temperature [52, 53]. In contrast to the other skyrmion hosts mentioned above
[52, 53], Fe3Sn2 has a centrosymmetric crystal structure, hence the stabiliza-
tion of the skyrmions in this compound is caused by the competition between
the uniaxial magneticrystalline anisotropy and dipolar interactions, rather than
relying on the DMI [54].

Despite the rapid progress in the field and application oriented visions, a
lot of research is still focused on the fundamental material properties and the
understanding of individual systems. Although there is a plethora of candi-
date materials, in many respects Fe3Sn2 is an excellent choice for potential
applications: It is known to have a room temperature skyrmion phase [52], it
is composed of abundant, cheap, and non-toxic elemental metals [55], and the
bulk properties have been described in detail in the literature [56–63]. Nonethe-
less, there are still major questions to be addressed in order to prove the real
applicability of this compound. For instance, what is the internal spin struc-
ture of skyrmions and bubbles observed in Fe3Sn2? To which size can they be
scaled down? How can these magnetic textures be manipulated and controlled?

This thesis addresses these questions and others to establish an understand-
ing of the different magnetic textures in Fe3Sn2, using a combination of mag-
netic imaging techniques with nanoscale resolution. The experimental work is
complemented by micromagnetic simulations to reveal the three-dimensional
spin textures of the magnetic objects. While this is very much in the realm
of fundamental science, wherever possible the potential for future device ap-
plications will be considered. Along this line, this thesis aims to address the
following questions:

i) What magnetic objects emerge in Fe3Sn2?

ii) How is the stability of these magnetic objects influenced by geometrical
confinement?

iii) How are the magnetic objects affected by external magnetic fields?

iv) Which device geometries can be useful for future applications?

These questions will be addressed using two key microscopy techniques:
Magnetic force microscopy (MFM) to image the out-of-plane magnetic stray
fields, and Lorentz transmission electron microscopy (LTEM) to study the in-
plane magnetization. Micromagnetic simulations and simulated transport of
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intensity equation (TIE) reconstructed induction maps are computational tools
used to visualize the three-dimensional magnetic textures. TIE reconstructed
induction maps based on LTEM data are used to reconcile the modeled spin
textures and the experimental data. Focused ion beam scanning electron mi-
croscopes (FIB-SEM) are used to control geometrical confinement, namely the
lateral size of specimen and its thickness.

The structure of the thesis is as follows. In the second chapter, the ba-
sic concepts of magnetism and magnetic textures are introduced following an
approach inspired by Hubert and Schäfer [64], also including a description of
topologically non-trivial spin textures. After this theoretical background, the
experimental methods used in this work are described in chapter three, focus-
ing on the fundamental procedure and principles of the respective techniques.
Specifically, MFM and LTEM are considered for imaging, as well as FIB-SEM
for advanced sample preparation. Next, in chapter four a brief overview is
given about the material-specific properties of Fe3Sn2, the target material of
this thesis. Then, the results are discussed in light of the questions raised above,
where the main focus is on the creation, stability and control of the magnetic
mesoscopic objects and revealing their internal structure. The results section
is concluded with a series of prototypical functional objects to illustrate how
this work moves the community closer to spintronics applications.
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Theoretical Background

The first application of magnetism dates back to the ancient world when the
compass was introduced [65]. The compass needle was initially made of the
naturally occurring mineral magnetite, Fe3O4, also known as lodestone [66].
Over time, the compass was constantly improved. Eventually, the needle was
made out of precisely formed iron that was magnetized using lodestone, leading
to improved accuracy. Cartography and navigation hinged on this naturally
occurring ferromagnetic material in the following centuries, enabling global
trade, discovery, and progress [65, 67]. However, until the 19th century the
physical understanding of magnetic phenomena was lacking.

Ørsted and Ampère linked magnetism to electricity laying the foundation
for understanding magnetism and the development of numerous applications
[68]. The attractive or repulsive long-ranged force between two permanent
magnetic poles is still the most well-known magnetic phenomenon to the lay-
man. Ørsted and Ampère were the first to explain the Lorentz force and the
origin of induction. The discovery of induction sparked the development of
the generator and the electric motor, thus, placing the foundation for a vast
variety of technical applications. Magnetic levitation trains and the shift to
E-mobility for personal cars are only the pinnacle of current developments in
the transport sector, all hinging on magnetism.

The origin of magnetic fields on the macroscopic scale was quickly linked to
a looped current. Almost a century later, these current loops were attributed
to the orbital angular momentum, associated with the encircling motion of an
electron around the nucleus, and the spin of individual electrons, yielding the
fundamental origin of the magnetic field. The spin was discovered experimen-
tally in 1925 [69] and the theoretical framework was postulated soon after [70].
Both contributions are highly influenced by the distinct electronic configura-
tion, hence free atoms or ions, differ vastly from condensed matter in terms of
magnetic properties.

The final big leap in the application of magnetic phenomena was the utiliza-
tion of magnetic materials as storage media [64, 71]. Starting from magnetic
tapes to spinning disks in hard drives magnetic storage media have been the
backbone of high capacity memory devices in the past decades. With the
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6 Chapter 2. Theoretical Background

ever-growing requirements for data storage fueled by the digitalization in all
branches of our lives, further improvements of magnetic storage media are re-
quired. Limiting the scope to relevant developments of the last two decades
alone, a variety of interesting new phenomena have been discovered, including
the interfacial Dzyaloshinskii-Moriya interaction [72], spin transport mecha-
nisms in 2D materials [73], supermagnetism phenomena [38], and the discovery
of novel topological objects on the nanoscale [74]. The latter motivates the
investigation of a broad field of complex nanometric spin textures, their nu-
cleation and modification. Research targeted towards application in storage
media, comprises both the application focused engineering aspect and the fun-
damental characterization.

The first section of this chapter is necessarily inspired by the seminal work
of Hubert and Schäfer on magnetic domains [64], as such the interested reader
is encouraged to expand this section with reference to their textbook. The
subsequent section on topological solitons moves beyond this established text-
book knowledge to the cutting edge of the respective research fields, as such it
focuses on the latest research articles.

2.1 Magnetism

In this section the theoretical foundation of magnetism is elucidated. Starting
from a semi-classical picture, the fundamental building block of magnetic order,
the magnetic moment is deduced. Subsequently the interactions of multiple
moments are examined. Followed by a short overview of the emergent collective
behavior and the micromagnetic textures, the emphasis lies on conveying an
intuitive idea of what these interactions do, individually and collectively, whilst
also formulating them properly. Finally, the link of the microscopic magnetic
texture is made to the macroscopic magnetic phenomena.

2.1.1 Fundamental Origin

The origin of magnetism lies in the microscopic world. On the smallest scale,
magnetism is linked to the individual magnetic moments of electrons and nu-
clei, which can be understood as elementary magnetic dipoles. Hereafter the
magnetic moment of the nuclei will be neglected as it is of order 10−3 smaller
compared to the electrons magnetic moment. The fundamental origin of the
magnetic moment of an electron are, the orbital angular momentum and the
spin.

The origin of the magnetic moment can be deducted from a semi-classical
picture [75]. Any electrical current density j(r), occupying the volume V , has
an associated magnetic moment [76]

µ =
1

2

∫
V

r × j(r)dV. (2.1)

For an electron with charge e and velocity v, expression (2.1) yields the mag-
netic moment for an individual electron:

µ = −e
2
r0 × v. (2.2)
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Taking the electron mass, me, into account the angular momentum of an indi-
vidual electron is

L = r × p = r0 ×mev. (2.3)

Comparing the latter two equations the relation of the magnetic moment and
the angular momentum can be deduced:

µ = − e

2me
L ≡ γL, (2.4)

with the gyromagnetic ratio γ [77]. Although the classical analogy often works,
the individual magnetic moment is inevitably linked to quantum mechanics as
the angular momentum is quantized in integer multiples of ℏ = h/2π, the
reduced Planck constant. Therefore, the classical angular momentum L can
be translated to the quantum mechanical operator

L = −iℏr×∇ ≡ ℏl, (2.5)

where i represents the imaginary unit, r is the position operator, and ∇ the
vector differential operator. Inserting the smallest possible value of L = ℏ into
equation (2.4) yields the Bohr magneton:

µB =
eℏ
2me

, (2.6)

the quantized unit of magnetization. On the level of atomic magnetism, the
principle quantum number n, referencing the atomic shell, constrains the or-
bital angular momentum quantum number ℓ to values of 0 ≤ ℓ ≤ (n − 1).
Within each of the s, p, d, and f orbitals (for ℓ = 0, 1, 2, 3 respectively) the
magnetic quantum number mℓ is limited to values of −ℓ ≤ mℓ ≤ ℓ. mℓ refer-
ences the orientation in space and thereby divides the subshell into individual
orbitals which hold the electrons. Additionally, all electrons have a spin angular
momentum of s = 1/2, described by the spin operator

S ≡ ℏs. (2.7)

For an individual electron, the spin quantum number is constrained to values of
ms ∈ {+1/2,−1/2} termed the spin up and spin down state, respectively. For
both the orbital and spin angular momentum operator the expectation values
correspond to the respective quantum numbers:

⟨l2⟩ = ℓ(ℓ+ 1) ⟨lz⟩ = mℓ (2.8)

⟨s2⟩ = s(s+ 1) ⟨sz⟩ = ms (2.9)

Taking both the orbital and spin angular momentum into account the total
angular momentum operator

J = L+ S (2.10)

is defined as their sum. Subsequently, equation (2.4) can be rewritten in the
form

µ ≡ γJ = −gµB

ℏ
J, (2.11)
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with the quantized total angular momentum and the g-factor. For the orbital
and spin contributions the g-factor is equal to 1 and 2, respectively, whereas
for free atoms the g-factor is given by the Landé factor:

g = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.12)

Analogous to the angular momentum operator the total magnetic moment of
a single electron [78],

µ = µorbit + µspin (2.13)

can therefore be expressed as the sum of the two contributions:

µorbit = − eℏ
2me

l = −µBl, (2.14)

µspin = − eℏ
2me

ges = −µBges. (2.15)

With the deduction of the magnetic moment of an individual electron covered,
the scheme is now expanded to describe several electrons, e.g. orbiting a single
atom or contained in a solid-state body. The current density j(r) contained in
the volume V is rewritten in the following form:

j(r) =
∑
k

−evkδ(r − rk), (2.16)

where k indexes all electrons contained. No electron-electron interactions will
be considered at this point. Inserting the expanded current density into equa-
tion (2.1) yields

µ = −e
2

∑
k

rk × vk = −
∑
k

γJk =
∑
k

µk. (2.17)

Hence, the overall magnetic moment is the sum of all total magnetic moments
contained in the volume V . In solid state physics the magnetic moment is com-
monly expressed in the form of the magnetization M , thus independent of the
reference volume. Therefore, the definition of the magnetization is introduced:

M = lim
V→p

1

V

∑
k

µk. (2.18)

The source of the magnetic moments and subsequently the magnetization are
microscopic magnetic dipoles. Hence, analogous to the Gauss’s law for electric
charge, the magnetic charge density,

ρm = −∇ ·M , (2.19)

is defined [76]. Considering this equation isolated yields the risk of misinter-
pretation in line with the existence of magnetic monopoles. A term coined
for quasi-particles realized by complex geometrical arrangements of magnets
[79, 80]. These should not be confused with an actual elementary magnetic
monopole, which has to obey Gauss’s law for magnetism:

∇ ·B = 0. (2.20)
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No such restriction is imposed on the magnetizationM . HereB is the magnetic
flux density:

B = µ0 · (H +M) , (2.21)

and µ0 the vacuum permeability.
One of the most fundamental magnetic properties is the magnetic suscep-

tibility

χ =
|M |
|H|

=
M

H
, (2.22)

describing the response of the magnetization to an external magnetic field of
strength H. Its sign determines whether the response of the system is negative,
so called diamagnetic, i.e. works against the external field or positive, termed
paramagnetic.

The response to external magnetic field can be understood in the following
simple scheme. The degeneracy of the energy levels of an electron of total
angular momentum J are lifted by a magnetic field according to the Zeeman
effect (which will be covered in more detail in section 2.1.3). The energy E for
each individual level is given by

E = −µ ·B = mJgµBB, (2.23)

yielding a symmetric splitting in mJ levels [81]. Note that the parallel align-
ment of the magnetic moment with the external field effectively lowers the
energy level resulting in an energetically favorable state predominantly occu-
pied by the electrons.

All materials exhibit weak diamagnetism as no net spin or orbital angular
momentum is required. In the absence of any other superseding contribution
the material is classified as diamagnetic. Materials with unpaired electrons
show paramagnetic behavior. Whilst these still exhibit a diamagnetic response,
it is generally outweighed by the paramagnetism. Even though both dia- and
paramagnets are weak magnetic materials they are often falsely referred to
as amagnetic (non-magnetic), due to the common misconception of ferromag-
netism being the universal key magnetic phenomenon. Ferromagnetism is gen-
erally understood as residual magnetization present even in the absence of
external magnetic field. In section 2.1.3 a more rigorous definition of ferromag-
netism will be given.

2.1.2 Microscopic Description of Magnetic Order

Beyond the dia- and paramagnetic response of magnetic materials, a multitude
of peculiar ordered magnetic states, like ferro- and antiferromagnets have been
observed. It is evident, these cannot be considered as a simple ensemble of
individual magnetic moments of many electrons, as these states originate from
the interaction of magnetic moments. Numerous short-range inter-atomic in-
teractions and long-range cooperative interactions contribute to the formation
of magnetic order. In the following sections these interactions and subsequent
emergent phenomena will be elucidated.

Micromagnetic theory

Micromagnetic theory rests on the assumption that the spatially and tempo-
rally resolved magnetization M(r, t) can be treated as a continuous vector
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field, thus providing a theoretical description of systems with magnetic phe-
nomena in the mesoscopic scale (∼ 10−6 to 10−3 m). Fundamental assumptions
are made within a material. The material is assumed to be saturated every-
where, i.e. magnetized at maximum strength. Furthermore, this local satu-
ration Ms(r, t) ≈ Ms is considered to be independent of local and temporal
variation and dependent only on the temperature. Hence, the magnetization
can be expressed as

M(r, t) = |M(r, t)| ·m(r, t) =Msm(r, t), (2.24)

represented by the saturation magnetization, Ms, and a unit vector field,
m(r, t), called reduced magnetization. The latter describes the local temporar-
ily resolved orientation of the magnetization. Finally, to account for continuity,
the characteristic exchange length, where the inter-atomic forces are considered
strong enough to keep the magnetic moments aligned almost parallel, is intro-
duced. Within the exchange length

lex =

√
2A

µ0M2
s

≫ a, (2.25)

that has to exceed the lattice constant a, the magnetization remains almost
parallel. Here A is the exchange stiffness which is defined later in equation
(2.40). Typically, the exchange length is of the order of a few nanometers in
ferromagnetic materials. L. Landau and E. Lifshitz introduced a semi-classical
theory to describe micromagnetics. It is based on modeling the competing in-
fluences as contributions to an effective magnetic flux densityBeff . By applying
the variational principle to the Landau-Lifshitz equation

dm

dt
= γLL

1

1 + α2
{m×Beff + α [m× (m×Beff)]} , (2.26)

where γLL and α are the Landau-Lifschitz gyromagnetic ratio and damping
coefficient, respectively, the ground state, i.e. the reduced magnetization dis-
tribution m of lowest total energy, is calculated. In order to improve the read-
ability, here and going forward, the exact dependencies of m(r, t) are omitted.
The effective magnetic flux density, similar to the Hamiltonian in the atomic
scale consideration, can be expressed as the sum of contributing flux densities:

Beff = Bdemag +Bexch +BDM +Banis +Bext, (2.27)

where

Bdemag represents the demagnetization interaction,

Bexch represents the Heisenberg exchange interaction,

BDM represents the Dzyaloshinskii-Moriya interaction,

Banis represents the magnetocrystalline anisotropy interaction,

Bext represents the Zeeman interaction.

Each individual interaction favors a particular orientation of the local magne-
tization m(r, t) relative to the vicinity. Multiple interactions being simultane-
ously active gives rise to a complex magnetic texture, potentially developing a
uniform long-range order, or highly fragmented domain patterns.
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In the 1930s, Bohr and van Leeuwen showed that magnetism in materials
is incomprehensible within the framework of an exact classical theory, as it is
thermodynamically not stable [82]. The origin of magnetism is strictly rooted
in quantum mechanics and thus, the Schrödinger equation

(H− E) |ψ⟩ = 0. (2.28)

Here H, E, and |ψ⟩ are the Hamiltonian, the energy, and the particle wave
function, respectively. Consistent with perturbation theory, the Hamiltonian
can be expressed in the form

H = H0 +H′, (2.29)

separating the unperturbed partH0 from the perturbations summed inH′. The
latter describes various interactions and influences on the electron, which can
be represented by an individual Hamiltonian. In section 2.1.3 each interaction
is covered individually, both on an atomic level by the respective Hamiltonian
H, and in terms of its effective magnetic flux density, B. Additionally, the
respective energy density, ε, is shown before a brief overview of the emergent
magnetic order is given in section 2.1.4.

2.1.3 Magnetic Interactions

Demagnetization interaction

The demagnetization interaction originates from the most basic magnetic inter-
action, the dipole-dipole interaction [64, 83, 84]. Which describes the influence
a magnetic dipole has onto another one in its vicinity and vice versa. On an
atomic level, the dipole-dipole interaction between two magnetic moments µi

and µj located at positions ri and rj can be expressed by the Hamiltonian
[83, 84]

Hdd,ij = −µ0

4π

(
3 (µi · rij) (µj · rij)− |rij |2µi · µj

|rij |5

)
, (2.30)

where rij = ri − rj , denotes the distance in between them. Intuitively, the
interaction can be understood as the mutual reaction to the emergent magnetic
field of the respective other moment. Thus, the interaction is only influenced
by the relative orientation of the magnetic dipoles and their spatial separation.
The energy, Edd,i, of an individual magnetic moment, µi, located at ri is
determined by the interaction with all other moments and therefore reads [84]

Edd,i = −µ0

4π

∑
j

(
3 (µi · rij) (µj · rij)− |rij |2µi · µj

|rij |5

)
,∀j ̸= i

= −µi ·Bdemag (ri) .

(2.31)

Here, the sum over all individual interactions is rewritten as the effective de-
magnetization flux density, Bdemag, acting on the single moment, yielding the
micromagnetic representation. The corresponding energy density is [85]

εdemag = −1

2
Msm ·Bdemag. (2.32)
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The interaction is termed demagnetization interaction due to the orientation of
the intrinsic magnetic field in magnetic matter. Suppose a permanent magnetic
material in vacuum, thus the only source of the magnetic flux density is the
magnetization within the material. The resulting field lines for the induction
are closed loops, as shown for an individual magnetic moment in figure 2.1a.
Within the material, as shown in figure 2.1b, the magnetic field, H, has to
oppose the magnetization M , and thus it is called demagnetizing field. The
orientation of the intrinsic magnetic field is given by −m. Outside the material,
the dipolar fields are responsible for the long-range stray field.

Figure 2.1: Demagnetization interaction. a, magnetic flux density
Bdipole (yellow lines) emerging from a single dipole represented by the equiv-
alent current loop (black). b, magnetic field H for a uniformly magne-
tized material. Outside the material it accounts for the stray magnetic field
Hstray = 1/µ0B. Whereas within the material it opposes the magnetization
M , i.e. effectively partially demagnetizing it. c, energetically least favorable
scenario, an out-of-plane magnetized thin platelet, resulting in large net mag-
netic poles at the surfaces (red, blue) and strong magnetic stray field (yellow).
d, the same sample geometry uniformly magnetized in-plane yields smaller
poles (red, blue) and reduced stray field (yellow). e, the energetically ideal
case, an in-plane flux-closure domain pattern, eliminating all unmatched net
magnetic poles and minimizing the stray field. The colors and arrows mark
the direction of the magnetization within the domains. Panels a, b reproduced
with permission from [86]. Panels b, c, d, created from additional artwork
courtesy of collaborator E. Lysne.

The demagnetization interaction is often referred to as shape anisotropy,
due to the major impact the shape of the magnet has. Remaining with the
above example of a permanent magnetic material in vacuum and the magne-
tization being saturated everywhere, the only remaining degree of freedom is
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the orientation of the magnetization. Assuming a thin platelet magnetized per-
pendicular to the plane, see figure 2.1c, yields large stray fields and a strong
demagnetization field. The latter can be explained in terms of a laterally ex-
panded magnetic north and south pole, separated only by the relatively small
thickness of the platelet. Note that the magnetic poles can be understood in
the concept of a magnetic charge density, see equation 2.19, analogous to the
surface charges in materials with electric polarization. In contrast, the same
platelet magnetized in-plane (figure 2.1d) results in an energetically preferen-
tial state with smaller magnetic poles being spaced apart further and weaker
magnetic stray field. Figure 2.1e shows the ideal orientation of the magne-
tization, causing the lowest energy contribution of the demagnetization term
to the total energy. Here, due to the introduction of domains (confer section
2.1.5) the stray field can be eliminated almost completely and the formation of
unmatched poles can be avoided alltogether. The formation of domains how-
ever results in an energy cost associated with the formation of domain walls
in between domains of uniform magnetization. Here, the spins located in the
boundary layer occupy an energetically unfavorable state due to the Heisen-
berg exchange interaction covered in the next section. At any given surface, the
demagnetization interaction generally favors an in-plane configuration, which
reduces the stray field and the formation of locally unmatched net magnetic
poles.

Heisenberg exchange interaction

Many magnetic phenomena can be understood considering the mutual interac-
tions transmitted via the magnetic field associated with the individual magnetic
moments. Whilst in very close proximity, these interactions favor a parallel,
so-called ferromagnetic, alignment of neighboring spins. Therefore, this inter-
action yields two problems. On one hand, this would rule out the existence
of densely packed antiparallel aligned moments, i.e. the existence of an anti-
ferromagnet. On the other hand, the energy gain associated with the ferro-
magnetically aligned dipole-dipole interaction is easily superseded by thermal
fluctuations, long before the Curie temperature TC, and a subsequent break-
down of the magnetic long-range order, is reached. Thus, the magnetic order
must have a different and stronger source.

The Heisenberg exchange interaction resulting in the much stronger align-
ment is of quantum mechanical origin and a direct result of the coulomb inter-
action and the Pauli principle [87]. Following the outline of the Heitler-London
method a system of two protons, A and B, fixed in space, orbited by two elec-
trons, denoted 1 and 2, is considered. That is the equivalent of the H2 molecule
[83, 84]. This model system can be described by the Hamiltonian

H = H0 +H′

=
1

2m

(
p21 + p22

)
− e2

4πϵ0

(
1

rA1
+

1

rB2

)
+

e2

4πϵ0

(
1

rAB
+

1

r12
− 1

rB1
− 1

rA2

)
,

(2.33)

where pi denotes the momentum and rxx the distances in between the parti-
cles as shown in figure 2.2. Note the unperturbed first part H0 contains the
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Figure 2.2: Schematic distances in the hydrogen molecule. Here,
the blue spheres labeled A and B indicate the nuclei, which are considered
fixed in space. The corresponding electrons (red) orbiting the nuclei A and
B are labeled 1 and 2, respectively. The inter-particle distances are denoted
accordingly. Recreated from [84].

kinetic and potential energy of the two free electrons, effectively representing
the Hamiltonian of two infinitely spaced apart hydrogen atoms. The second
part contains the perturbations attributed to the mutual coulomb repulsion of
the two protons and two electrons, respectively, and the attractive forces of
the protons on the electrons associated with the respective other proton. Solv-
ing the Schrödinger equation for the perturbed Hamiltonian yields two energy
eigenstates [83, 84]:

E′ =
C ± J

1± S2
∝ C ± J, (2.34)

where C is the coulomb integral, J is the exchange integral and S is the overlap
integral:

C =

∫
d3r1d

3r2 H′ |ψA (r1)|2|ψB (r2)|2, (2.35)

J =

∫
d3r1d

3r2 ψ
∗
A (r1)ψ

∗
B (r2) H′ ψA (r2)ψB (r1) , (2.36)

S =

∫
d3r ψ∗

A (r)ψB (r) . (2.37)

Note, the energetically favored state depends on the sign of J . Initially J > 0
is assumed and subsequently the antisymmetric linear combination is the fa-
vorable state. This restriction acts on the spatial part ψ(ri) of the total wave
function

ψ(i) = ψ(ri)χi (2.38)

of the electron i with spin χi. Taking the Pauli exclusion principle into consid-
eration, the total wave function has to be antisymmetric for fermions. Thus,
the linear combination of the spin terms χ1 and χ2 has to be symmetric, re-
sulting in the s = 1 triplet state associated with ferromagnetic alignment.
Analogous for J < 0, the symmetric linear combination of the spatial part of
the wave function is favored, and therefore the spin part has to be antisym-
metric, leading to antiferromagnetic alignment of the spins.
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The Hamiltonian represents the simplest form of a two-atom system. It can
be generalized to regard a N multi-electron-atom system [84]. The resulting
Hamiltonian contains the ground state energy of all individual electrons H0

and a perturbation. The Heisenberg exchange [81, 84, 87]

Hexch = −
∑
i,j

JijSi · Sj , (2.39)

expressed directly dependent on the individual spins Si and Sj , as well as their
respective exchange constant Jij . Analogous to the two-spin model the sign
of Jij determines whether parallel, i.e., ferromagnetic (Jij > 0) or antiferro-
magnetic (Jij < 0) alignment is favored. Both cases are illustrated in figure
2.3 for a 1D chain of spins. The sign of Jij can in principle vary depending
on the electrons considered. E.g. in case of a 3D layered crystal yielding fer-
romagnetic coupling within a layer but antiferromagnetic coupling in between
layers. Cases like the latter and antiferromagnets in general are not well suited
for study via micromagnetic considerations as they do not comply with the
assumption of almost parallel spin alignment within the exchange length.

Figure 2.3: Heisenberg exchange. a ferromagnetic (parallel) alignment of
neighboring spins, due to a positive exchange constant. b antiferromagnetic
(antiparallel) alignment of neighboring spins due to a negative exchange con-
stant. Recreated from [86].

In contrast, for ferromagnetic materials, it is sufficient to average the indi-
vidual inter-atomic exchange constants in a general term. On the micromag-
netic scale this yields the exchange stiffness:

A = N
JexS

2

a
, (2.40)

where Jex is the average exchange integral, a is the lattice constant, and N
is a correction factor for the crystal structure. Subsequently, the exchange
interaction can be rewritten in the form of the effective exchange induction
[64]

Bexch = 2
A

Ms
∇2m, (2.41)

and the corresponding energy density is

εexch = A (∇m)
2
. (2.42)
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Interestingly, though acting on the spin configuration, the Heisenberg exchange
is a purely quantum mechanical effect that outweighs the magnetic dipole-
dipole interaction. Originating from Coulomb interactions and the Pauli Prin-
ciple, it explains the origin of (anti-)ferromagnetism. Thus, any deviation in
the form of a rotation between neighboring spins, e.g. in case of the aforemen-
tioned domain walls, is taxed in the energy term associated with the Heisenberg
exchange, due to the scalar product Si · Sj .

Dzyaloshinskii-Moriya interaction

The interaction is formally known as antisymmetric exchange, termed by D.
Treves and S. Alexander in 1962, when they reported the observation thereof in
yttrium orthoferrite [88]. Today, it is most commonly referred to by the name
Dzyaloshinskii-Moriya interaction (DMI), due to their seminal contributions
to the explanation of the interaction. I. Dzyaloshinskii proposed a thermody-
namic theory based on the work of L. Landau to explain weak ferromagnetism
in antiferromagnets [89]. He derived an explanation for the anisotropic su-
perexchange based solely on symmetry arguments. In the following years T.
Moriya identified spin-orbit coupling as the mechanism behind the asymmetric
exchange [90]. On the microscopic scale, the interaction is represented by an
additional term to the total Hamiltonian

HDM = −
∑
i,j

Dij · (Si × Sj) , (2.43)

where Dij is the Moriya vector, which can only be finite for bonds with no
inversion center. The interaction favors orthogonal alignment of spins Si and
Sj , as well as Dij .

In the continuum limit, such antisymmetric interactions are present only in
non-centrosymmetric compounds, i.e. in materials missing the global inversion
symmetry. In cubic chiral magnets the effective magnetic flux density related
to such an antisymmetric term reads[91]

BDM =
2D

Ms

(
∂mz

∂x
,
∂mz

∂y
,−∂mx

∂x
− ∂my

∂y

)
. (2.44)

Here D represents the strength of the interaction. The energy density of the
DMI is given by

εDM = Dm · (∇×m) . (2.45)

Favoring an orthogonal orientation of spins, the DMI competes with the afore-
mentioned Heisenberg and demagnetization interactions, which favor parallel
or antiparallel spin alignments. The competition between these interactions
typically results in canted spins for the energetic ground state of a system.

Magnetocrystalline anisotropy interaction

Possible reasons for the anisotropic behavior of the magnetic susceptibility
are the shape anisotropy rooted in the dipole-dipole interaction and the mag-
netocrystalline anisotropy. The first explains anisotropic behavior, like the
aforementioned favored in-plane magnetized state of a thin platelet, which is
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associated with the samples shape, and is neglected in the deliberations here-
after. Whereas the magnetocrystalline anisotropy accounts for the lattice, be-
ing the consequence of the relativistic spin-orbit interaction. Here, the partial
quenched orbital angular momentum of electrons, contributing to the magnetic
structure, is coupled to the crystalline electric field [84]. Thus, the electrons
interact with the anisotropic lattice.

Generally, the concrete form of the anisotropy is deduced from the lat-
tice symmetry and thus can be determined by the symmetry group. Uniaxial
anisotropy occurs if the symmetry is highly restricted and only one high sym-
metry axis exists [64]. The direction of the anisotropy can be described by
a single vector u. Hence the scalar product u · m quantifies the alignment
with the anisotropy. Due to symmetry reasons +u and −u are magnetically
equivalent and thus the associated energy density can be expanded in even
powers

εanis,u =
∑
n

−Kun (u ·m)
2n

= −Ku1 (u ·m)
2 −Ku2 (u ·m)

4
+O(m6),

(2.46)

where Kun denotes the nth uniaxial anisotropy constant. Usually considering
the leading terms in the expansion Ku1 and Ku2 are sufficient to describe the
anisotropy, while higher order terms can be omitted. The corresponding flux
density in the micromagnetic framework is thus given by

Banis,u =
2Ku1

Ms
(u ·m)u+

4Ku2

Ms
(u ·m)

3
u. (2.47)

In the discrete lattice model the corresponding Hamiltonian reads [84]

Hanis,u = −
∑
i,j

KijS
z
i S

z
j , (2.48)

where Kij is the anisotropy constant and Sz denotes the z-component of the
spin. Evidently the energetically preferential state with respect to uniaxial
anisotropy is given by all spins aligning along or opposite to the anisotropy
axis.

Zeeman interaction

Lastly, the interaction of an external magnetic field with the magnetic material
is considered. Unlike the aforementioned intrinsic interactions emerging natu-
rally for a given system, the external magnetic field is easily tunable. Equation
2.23 already describes the energy gain attributed to lifting the degeneracy of
the energy levels of an electron under the influence of an external magnetic flux
density. As the levels split, the ones representing a magnetic moment aligned
parallel with respect to the external flux density, are energetically lowered,
whereas the antiparallel alignment yields a raise of the energy level. This is
represented by the Zeeman Hamiltonian [84]

HZ = −2
µB

ℏ
s ·Bext, (2.49)
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considering a spin only system. The Zeeman interaction is directly represented
in the micromagnetic framework by the external flux density Bext, therefore
the energy density yields

εZ = −1

2
Msm ·Bext. (2.50)

Here the system gains energy, due to the occupation of parallel, thus favorable,
energy levels. In the case of a paramagnet, the orientation of the magnetic
moments is considered random in zero field. Hence, the easiest picture of
lifting the (anti-)parallel degeneracy along the field direction is only partially
explaining the Zeeman effect. Additionally, canting of the magnetic moment
with respect to the field direction is associated with an energy cost. Overall
the Zeeman interaction favors spin alignment parallel to the external field.

2.1.4 Emergent Magnetic Order

All materials exhibiting a net magnetic moment on the atomic length scale,
in other words, all paramagnetic materials, are in principle capable of forming
ordered magnetic states. These range from simple uniform magnetized states,
over peculiar fragmented patterns, to spirals and skyrmions, laying the foun-
dation for the topologically protected spin textures, covered in section 2.2. At
room temperature though, only few pure elements like Fe, Ni, and Co exhibit
long-range ferromagnetic order, and thus, are generally recognized as magnetic
materials. A multitude of other materials on the other hand require low tem-
peratures to spontaneously develop magnetic order.

The transition temperature below which materials exhibit ordered magnetic
states is called Curie temperature TC for ferromagnets, and Néel temperature
TN for antiferromagnets, respectively. Above the transition temperature the
thermally induced random fluctuations outweigh the energy gain from occu-
pying an energetically favorable ordered state. Therefore, the material is a
paramagnet. Below TC the saturation magnetization Ms(T ) varies with tem-
perature. Approaching the transition temperature from below, the saturation
magnetization gradually decreases to zero at TC, due to the thermal fluctua-
tions. Only for low temperatures T ≪ TC the system reaches true saturation,
where all moments are aligned.

For a fixed temperature T < TC the saturation magnetization Ms(T ) still
satisfies the underlying assumptions of the micromagnetic framework as it can
be considered constant. However, micromagnetic theory is not well suited
to describe antiferromagnetic alignment. Hence, hereafter the considerations
for emergent magnetic order are limited to systems where the spins form a
ferromagnetic arrangement locally, though the magnetization direction show
spatial variations on scales much larger than the lattice constant.

The ground state magnetization within a material at a given temperature
is rarely uniform and the hierarchy of magnetic interactions determines the ac-
tual spin texture. The Heisenberg exchange interaction is usually the strongest
interaction, with an effective induction of up to Bexch = 1kT [81] and thus the
starting point. It favors parallel alignment of neighboring spins, and therefore,
ferromagnetic long-range order. At this point the ferromagnetic order has no
preferential orientation in space. This is altered due to the magnetocrystalline
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anisotropy which dictates favorable orientations relative to the lattice. The ad-
dition of the demagnetization interaction gives rise to more complex magnetic
textures. As discussed above the demagnetization term generally favors mag-
netic textures avoiding large stray fields and the formation of magnetic poles.
In certain cases, this can be realized by gradual rotation of the spins. However,
in case of strong ferromagnetic coupling and magnetocrystalline anisotropy the
resulting structure is commonly a complex pattern of small ferromagnetic re-
gions, also called ferromagnetic domains. The magnetization of these domains
can point along any of the energetically preferential directions. Depending on
the type of anisotropy and the relative strength of the interactions a multitude
of patterns can arise. A small selection of cases relevant for this work will be
covered in the next section.

2.1.5 Magnetic Domains

Domains are spatially confined regions of uniform magnetization. Since a mon-
odomain state is rarely energetically favorable for a material, multi-domain
states form. Where these individual domains meet, a boundary layer called
domain wall is formed. Within the wall, the magnetization gradually rotates
bridging the mismatch of the orientation of the magnetization. Evidently, the
slight canting between neighboring spins, required to gradually rotate the mag-
netization, is taxed in energy cost associated with the Heisenberg exchange.
The respective energy density (equation 2.42), in the micromagnetic model,
yields no contribution for the uniform magnetization within the ferromagnetic
domains, where ∇m(r, t) = 0. Thus, the only non-zero contributions to the
exchange energy density originates from the domain walls. Therefore, in the
context of materials solely exhibiting ferromagnetic domains, the contribution
of the exchange interaction is often termed domain wall energy [64]:

Ewall =

∫
V

εexchdV = σwall ·Awall. (2.51)

Where V is the volume containing the domain walls, and Awall is the actual area
of boundary layer. Often the domain wall energy is alternatively expressed in
the form of a domain wall energy density per unit area σwall. In the absence of
antisymmetric interactions a 180◦ mismatch of two neighboring domains allows
two types of walls as illustrated in figure 2.4. The spins can either rotate in
the plane of the domain wall, forming a Bloch wall. Or a Néel wall is formed,
where the spins rotate perpendicular to the wall.

In many systems, the magnetocrystalline anisotropy competing with the de-
magnetization interaction dictates the preferential orientations of the ferromag-
netic domains. The special case of perpendicular uniaxial magnetic anisotropy
(PMA), relevant for Fe3Sn2 is discussed in detail. In case of PMA, the uniaxial
magnetic anisotropy is parallel to the surface normal of the sample. This results
in a direct competition between the magnetocrystalline anisotropy, stabilizing
an out-of-plane orientation of the magnetic moments, and the demagnetization
interaction generally favoring an in-plane magnetization. The resulting mag-
netization distribution of lowest energy depends on the shape of the sample,
external magnetic fields and other involved interactions. Thus, determining the
ground state is a non-trivial task. Usually no analytic model can be employed
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Figure 2.4: Fundamental types of magnetic domain walls. a, a Bloch
wall, where the magnetization rotates in the plane of the wall. b, a Néel
wall, where the magnetization rotates perpendicular to the plane of the wall.
Recreated from [86].

to solve this problem exactly. The rare cases, that can be solved analytically,
are limited to particular parameter sets, like very strong anisotropy compet-
ing with rather weak dipolar interactions. These results cannot be employed
universally to explain the large variety of emerging domain patterns. But they
represent easy-to-grasp examples, and therefore, a good starting point for in-
structive cases.

Focusing on the consideration of PMA in a ferromagnetic material in zero
field, the resulting magnetization distribution is determined only by the balance
of the magnetocrystalline anisotropy energy density, proportional to Ku and
the shape anisotropy Kd, determined by the demagnetization energy density
[64]. The quality factor [92]

Q =
Ku

Kd
=

2Ku

µ0M2
s

, (2.52)

describes this balance, where for simplicity only the first order anisotropy con-
stant, previously denoted Ku1 in equation (2.47), is considered, and all higher
order terms are omitted. The shape anisotropy per unit volume,

Kd =
1

2
µ0M

2
s , (2.53)

is approximated by the magnetostatically least favorable state, a plate mag-
netized normal to the surface as illustrated in figure 2.1c. Further assuming
Ku > 0, and Q ≫ 1, yields the analytically solvable case of very dominant
anisotropy, where the magnetization is forced to align either up or down along
the axis of the PMA. Charles Kittel showed that in such cases the demagnetiza-
tion energy can be significantly lowered to a factor of 1/N by the introduction
of N alternating domains [93]. A finite number of domains will form, as the
introduction of new domains comes at the energy cost of forming domain walls.
The width of these walls, i.e. the distance over which the magnetization grad-
ually rotates is the second parameter of major influence for the formation of
domains. The Bloch wall width [93],

δBloch =

√
A

Ku
, (2.54)

is determined by the exchange stiffness, see equation (2.40), and the strength
of the anisotropy [93]. Most importantly the Bloch wall width defines a lower
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limit for the size of domains [64]. Additionally, the walls are the only area where
the magnetization deviates from the strict up or down orientation. In order to
minimize their subsequent negative contribution to the total free energy, the
volume occupied has to be minimal. In this particular case, the walls have
to be oriented perpendicular to the surface throughout the material. Thereby
minimizing the wall area, hence for the fixed width δBloch, the volume.

Stripe and bubble domains

Typical ground states of such thin magnetic film like samples with strong PMA
are quasi-periodic maze patterns, band-, or stripe patterns. In order to under-
stand these complex patterns, first their building blocks have to be understood.
Hence, the energy gain due to the introduction of a single straight stripe domain
of opposite magnetization in a ferromagnetic background shall be considered.
The energy per unit length L̂ of the stripe is given by [94]

∆Estripe

L̂
= −

(
1−Nstripe − Ĥex

)
ŵ +

ξ

t
, (2.55)

where t is the sample thickness, Nstripe is the demagnetization factor for a stripe

domain, Ĥex is the reduced external magnetic field in quantities of 4πMs, and
ŵ = w/t is the stripe width to thickness ratio. ξ = σwall/4πMs represents the
domain wall energy and can be considered fixed per unit length for a given
material. In zero field, this equation yields an optimal stripe width wstripe for
the given sample thickness t. The introduction of a single stripe of according
width is associated with lowering the systems total energy. As the energy
lowering is given per unit length, ideally this stripe grows to the maximum
possible length.

Figure 2.5: Plots of the energy of a single stripe and bubble. a,
energy per unit length of a single stripe domain plotted versus the stripe width
according to equation (2.55). b, energy of a single bubble dependent on its
diameter according to equation (2.56), for different fields. Recreated from [94].

Lifting one of the previous assumed constraints, additionally the effect of the
Zeeman interaction shall be taken into consideration. Applying small external
fields parallel to the ferromagnetic background, the optimal stripe width is
gradually decreasing until the critical field Hstripe is met. Fig. 2.5a illustrates
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this behavior, where the minimum of the curve shifts towards smaller width. At
the critical field the energy lowering from the introduction of a stripe domain
vanishes, i.e. the minimum of the respective curve is zero. Thus, for all fields
H > Hstripe applied, the stripes contract along their length as they are no
longer energetically favorable. The contracted stripes give rise to another type
of domain, the bubble domain. These are typically confined by a cylindrical
domain wall. The latter implies circular shape, which is indeed the preferential
shape, due to the minimized domain wall area for a given domain size with
the above-mentioned constraints. The energy for such a single bubble domain
embedded in a ferromagnetic background is given by [94]

∆Ebubble = −
(
1−Nbubble − Ĥex

)
d̂2 + 2

(
ξ

t

)
d̂, (2.56)

where Nbubble is the demagnetization factor of the bubble and d̂ = d/t is the
bubble diameter to thickness ratio. Note, this equation describes a bubble
far from the edge of the sample, as edge pinning and similar confinement in-
duced influences are omitted. Analogous to the description of the stripe width,
equation (2.56) yields an optimal diameter for the bubble. For a given sample
thickness t, the application of external field Ĥex results in one of three cases.
The first one, represented by Ĥex = H1 in fig. 2.5b, describes a bubble and
its ideal diameter, which yields a lowering of the total energy when being in-
troduced into the system. Thus, the bubble is stable and furthermore can form
spontaneously. The upper field limit for this first case is shown by Ĥex = H2,
where the local minimum is zero. Hence, the formation of a new bubble is no
longer preferential. However, shrinking and ultimately dissolving the bubble
domain in fields larger than H2 is hindered by the energy barrier (the local
maximum in the curve), which is associated with intermediate diameters of
the shrinking bubble during the transition. As a result, the preexisting bubble
remains in a meta-stable bubble phase up to the critical field H3, where the
bubble is no longer stabilized, dissolves, and gives rise to the uniform ferro-
magnetic order.

Figure 2.6: Schematic domain configurations for high Q materials.
a, Typical periodic stripe domain pattern, and b, regular lattice of bubble
domains for a material with Q ≫ 1. The stripe width w, bubble diameter
d and sample thickness t are marked accordingly. The black and white color
denotes the out-of-plane orientation of the magnetic domains.

In summary, below a critical field the total energy of the system is lowered
by the introduction of a stripe or bubble domain of opposing magnetization,
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i.e. they form spontaneously. In a small field range above this critical field, a
preexisting bubble domain can persist in a meta-stable phase. Towards lower
fields the bubble diameter increases slightly. Eventually, the bubble expands
into a stripe, which generally tends to grow to maximum length. Note that
the bubble can persist to fields Ĥex < Hstripe, in some cases even being the
remanent state.

While the formation of a domain requires it to be energetically favorable,
defects and random fluctuations usually are the nucleation points. Thus, a
magnetic material rarely forms only a single domain, but several. Each formed
domain contributes with the respective net reduction of the systems energy.
However, as the domains become more densely packed, their interactions can-
not be neglected either. The change in the total energy due to the introduction
of multiple domains reads [94],

∆Etotal =
∑
i

∆Esingle,i + Eint

= N ·∆Esingle + Eint,

(2.57)

where the sum is carried out over all domains i. ∆Esingle,i denotes the re-
spective energy lowering associated with a single domain, which can be further
simplified in case of N domains of equal type. Eint describes the inter-domain
interactions collectively, which can be approximated by assuming the domains
being large dipoles with an associated magnetic moment. Domains spread far
apart have little to no effect on each other, whereas closely packed domains
interact strongly. However, these interactions are strictly dependent on the
exact type and shape of the individual domains involved. In-depth analyses
are limited to the study of particular cases, and not covered here.

In zero field, the ground state is typically given by the equilibrium state of
multiple stripes alternately magnetized up and down along the PMA. The gain
from the demagnetization interaction is balanced with the energy cost of the
domain walls. Each stripe nucleating from a quasi-random site grows to the
maximum possible length, yielding endless variations of patterns of alternating
up and down domains with a fixed stripe width [95]. The exact morphology of
the stripe pattern (see figure 2.6a) either being oriented, or a random maze-like
pattern, depends on numerous factors. Detailed predictions for such patterns
are beyond the scope of this thesis.

Under the application of external field (Hstripe < H < H3) a pure bubble
phase is realized. The preferential domain configuration for multiple bubbles
is a densely packed lattice [96, 97]. Intuitively, a triangular lattice, as shown in
figure 2.6b, yields the densest packing and should be favored. Detailed analysis
of the inter-domain dipolar interactions, Eint, for a triangular and square lattice
yields merely a difference of 1% [94]. Either lattice is thus readily formed when
stabilized by sample geometry, interstitials, or dislocations.

Domain branching

In the simplest picture, for a high Q material (Q≫ 1) with PMA, the domain
walls are perpendicular to the surface throughout the material. Thus, the
domain width is the same near the surface, ws, and in the bulk, wb. In this
context, bulk refers to the core region of a material, i.e. far from the surface for
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the respective geometry. Intriguingly, the ideal width or diameter of stripe and
bubble domains, according to equations (2.55) and (2.56) above, is given in
relation to the sample thickness. Hence, a thickness dependence of the domain
width is expected. Indeed, the domain width scales with the specimen thickness
[64]

ws = wb =

√
γW
2Cs

t ∝ t1/2, (2.58)

where γW is the specific domain wall energy, and Cs is a phenomenological
parameter, describing the energy term associated with the closure energy. Flux-
closure effects will be covered in more detail in the next section. This scaling
law, with a

√
t dependence, is commonly referred to as the Kittel scaling law [98,

99]. It does however not hold true universally, as it is only accurate in a limited
thickness range. With increasing domain size, it is eventually superseded due to
the onset of domain branching. Branching is a peculiar phenomenon, where the
domain pattern at the surface deviates from the bulk, once a certain threshold
thickness is overcome. This critical thickness for the onset of domain branching
is given by [64]

tbranching =
π4

8
γW

F 2
i

C3
s

, (2.59)

where the internal field energy is described by the phenomenological parameter
Fi. In the specific case of a high Q material, the three relevant factors can be
estimated as follows [64]

γW = 4
√
AKu (2.60)

Cs =
0.272Kd

1 +
√
µ∗ (2.61)

Fi =
0.5Kd

µ∗ . (2.62)

Here the rotational permeability tensor, µ∗, can be approximated to be [64]

µ∗ ≈ 1 +
1

Q
. (2.63)

The critical thickness is thus mainly determined by the strength of the magne-
tocrystalline anisotropy, the demagnetization energy and the exchange stiffness,
which allows an estimate of the critical thickness [64]

tbranching ≈ 5000Q

√
A

Ku
= 5000QδBloch. (2.64)

If the sample thickness exceeds tbranching domain branching sets in. Concep-
tually, it is the result of optimizing the demagnetization interaction, whilst
minimizing the cost for the introduced domain walls. The latter is achieved by
very wide domains in the bulk, effectively reducing the domain wall area per
unit volume. At the surface, these imply large unfavorable domains in terms
of the demagnetization interaction. This is mitigated by the introduction of
small domains of opposite magnetization, penetrating only the surface area,
within the larger ones. A schematic illustration of such domains is shown in
figure 2.7. The introduced domains lower the stray fields significantly, whilst
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Figure 2.7: Domain branching in a high Q material. The effective
surface area of the domains is reduced, due to the introduction of additional
domains of opposite magnetization in the surface area. Recreated from [64].

imposing a rather small energy cost associated with their domain walls. Fol-
lowing previous arguments for segmentation of domains into smaller sizes, the
existence of a lower limit for the size of the nested domains is apparent. Thus
the domain width at the surface levels off at a constant value [64]

ws = 4γW
Fi

C2
s

. (2.65)

In the bulk on the other hand, the morphology of the domains is now mainly
influenced by the minimization of the domain wall area, as the demagnetization
interaction is largely screened by the branched domain pattern at the surface.
Hence, the rate at which the domains grow, relative to the thickness, increases
further. The domain width in the bulk is given by [64]

wb = 3

√
4γW
π2Fi

t2 ∝ t2/3. (2.66)

Evidently, only once the bulk area is significantly large compared to the near
surface region, the gain from reducing the number of domain walls in the bulk
balances the additional cost of the introducing small domains and partially
bent walls at the surface.

Flux-closures and Néel caps

On the other end of the scale, the case of a very thin sample effectively repre-
sents the equivalent of a low Q material (Q ≪ 1), where the demagnetization
term is dominant over the magnetocrystalline anisotropy. To screen stray fields
and minimize Kd these materials form so called flux-closure structures, where
the magnetization is fully in-plane forming a closed loop. A simple case thereof
is shown fig. 2.1e, where the flux-closure pattern is formed by domains. In ac-
cordance with the diminishing energy gain of domains compared to the cost of
domain walls, numerical simulations predict the lower limit of the thickness for
such closure-domain patterns is approximately [64]

tdomain ≈ 6δBloch. (2.67)
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Below this thickness the formation of domains of uniform magnetization, ar-
ranged in a flux closure pattern, is superseded by a gradual rotation of the
magnetization. Low Q states are of course not limited to very thin samples. In
case of very weak magnetocrystalline anisotropy, which can occur independent
of the sample shape, the magnetization behaves almost isotropic. Hence, allow-
ing the magnetization to locally align with the overall magnetic flux. Whether
domains are formed or the magnetization rotates gradually is determined by
the relative strength of the exchange interaction and the dipolar interaction.

Figure 2.8: Possible flux-closure domains for intermediate Q mate-
rials. Four cases of flux-closure domains for different intermediate Q factors
are shown. The arrows denote the orientation of the magnetization. The green
and yellow domains represent domains of predominant in-plane magnetization,
the flux-closure domains. Note the surface gap highlighted by the red arrows
up to Q = 0.8. Recreated from [64, 86].

If the perpendicular magnetocrystalline anisotropy and the demagnetiza-
tion interaction are evenly balanced, the emerging domain structure is hard
to predict. Particularly analytical models, hinging on the assumption of ei-
ther term being almost negligible compared to the other, fail to provide a
good description. Therefore, in the intermediate Q range (0.1 < Q < 1),
where the interactions are balanced, numerical simulations are the means of
choice to predict the magnetic texture. In contrast to the low Q materials
where complete flux-closure is commonly observed, intermediate Q materials
normally form partial flux-closure structures. These are termed partial, due to
a remaining non-screened stray field, originating from a residual out-of-plane
component of the magnetization at the surface [64]. A selection of flux clo-
sure domains patterns for different intermediate Q-factors is shown in fig. 2.8.
Here, three trends with increasing Q-factor are evident. Firstly, the depth of
the surface layer containing the flux-closure domains decreases. This is to be
expected, as the volume fraction of non-aligned magnetization with the PMA
is reduced. Secondly, the angle of canting decreases, which again is expected,
due to the lower energy cost associated with the reduced misalignment. And
lastly, a rather peculiar observation. The gap in-between opposing flux-closure
domains shrinks towards higher Q-factors and eventually closes. But for low
Q materials, it must and does vanish as well, as it contradicted complete flux-
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closure otherwise. Hence these unscreened surface areas are an entity of the
intermediate Q materials.

Finally, a remark on the rotation of the magnetization through the domain
walls. As mention above, for domain walls in-between 180◦-domains the ori-
entation of the rotation relative to the plain of the wall is not determined.
Both Bloch and Néel walls are energetically equivalent with respect to their
cost associated with the exchange. Whichever occurs is determined by addi-
tional interactions like the presence of DMI. Irrespective of the wall type in
the bulk, the energetically favorable rotation to bridge the mismatch between
flux-closure domains is perpendicular to the wall, i.e. of Néel-type. Further-
more, even the gradual rotation of flux-closure structures follows this direction
of rotation. Hence the (partial) flux-closure patterns are also referred to as
Néel caps. Though caps linguistically implies finishing a spatially constricted
structure, like a bubble, the term Néel caps is also used in case of large, highly
branched maze-like domain patterns exhibiting flux-closure.

Despite being the easy to grasp example, the case of PMA, as illustrated
above, is by no means trivial to understand. Nevertheless, the field of micro-
magnetism is a lot broader and contains many more cases, like cubic magnets.
Here even fewer restrictions are imposed and thus the complexity of the prob-
lem is significantly higher. Many of the basic concepts introduced can be
adjusted to match these constraints. But particularly as analytical models fail
to describe a vast majority of these cases, numerical simulations optimizing
all interactions involved are a great tool to get an impression of the expected
magnetic textures. An excellent summary, far beyond what is covered in this
thesis, on the theory behind the micromagnetic textures and magnetic domains
in general, can be found in the work of Hubert and Schäfer [64].

2.1.6 Magnetism on the Macroscopic Scale

In the macroscopic picture, magnetism is described in the context of collective
behavior. In this picture, magnetic textures on the microscopic and mesoscopic
scale can no longer be spatially and temporally resolved. In contrast to the
definition given in equation (2.18), here the magnetization vector M is rep-
resenting the average orientation of all moments within the volume occupied
by the magnetic sample. The magnetic susceptibility χ, see equation (2.22),
is the major observable, describing the response of the magnetization to the
application of an external field. Dia- and paramagnetic behavior are discerned
by a negative, respectively positive susceptibility.

Since the material investigated in this thesis is a ferromagnet, here, the con-
sideration is limited to such cases. Upon cooling a ferromagnet below its Curie
temperature, a random distribution of ferromagnetic domains of varying size
emerges. This spontaneous emergence of magnetization manifests in hysteresis
behavior, a non-linear response in the magnetization as a function of an ap-
plied field. Figure 2.9 depicts the typical hysteresis loop for a ferromagnet. The
initial random distribution exhibiting no overall net magnetization is referred
to as the virgin state. Upon applying a magnetic field, the domain structure
adopts by reorientation, growth, and nucleation of domains [84]. Eventually,
all intrinsic interactions are superseded by the Zeeman effect and a uniform
mono-domain state is formed. This state represents magnetic saturation. The
saturation value Ms extracted from the plateau in the curve, as denoted in the
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Figure 2.9: Schematic hysteresis loop. The graph shows the characteristic
response of a ferromagnetic material to the application of external field H
(black curve). Along the loop three distinct points are marked: the saturation
magnetization Ms, the remanent magnetization Mr and the coercive field HC.
The virgin curve (red) differs from the loop until it reaches saturation.

figure, is still subject to thermal fluctuations. Only for temperatures T ≪ TC it
resembles true saturation, which is reached asymptotically under the applica-
tion of very large fields. Removing the field, yields the remanent magnetization
Mr. In order to demagnetize the material, the coercive field HC, opposing the
existing magnetization, must be applied. HC typically refers to the remanence
coercivity, i.e. the field required to reduce the remanent magnetization, Mr, to
zero. In the graph, HC denotes the intrinsic coercivity, i.e. the field required
to reduce the magnetization to zero, while it is applied. For the sake of com-
pleteness, the normal coercivity describing the field required to suppress the
internal magnetic flux shall be mentioned as well. The latter is strongly influ-
enced by the demagnetization field and the anisotropy fields. Upon applying
strong enough field in the opposite orientation to the initial saturation, the
magnetization decreases and eventually reaches saturation in the inverted ori-
entation. Subsequently the loop can be completed back to +Ms, by application
of field in the original direction.

The area enclosed in the full loop is proportional to the energy required to
fully switch the magnetization. Hence a hysteresis loop enclosing a large area,
like the one displayed, characterizes a hard magnet. Hard refers to the robust-
ness versus degaussing or switching. Soft magnets on the other hand excel at
applications where constant switching is required, e.g. in a transformer, due
to the low losses. The terms hard and soft magnets, thus describe the overall
robustness, i.e. energy required to terminate or form a residual magnetization.
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2.2 Topological Solitons

In the 1960s and 1970s classical field equations of the quantum field theory
were studied in their fully nonlinear form. Some of the newly obtained so-
lutions were interpreted as particles of the theory [100]. Unlike elementary
particles originating from the quantization of the wave-like excitations of the
field, the properties of these new solitons are mostly determined by the classical
equations. These solitons are localized and have a finite energy. Furthermore,
they are characterized by their topological structure which differs from vacuum.
Hence, they are assigned a respective topological charge, which is a conserved
quantity. Thus, these solitons cannot simply decay into a number of elementary
particles.

In ferromagnetic systems, a soliton is a continuous magnetization field dis-
tribution, distinct from the ferromagnetic state. Due to the topological charge
it is protected, i.e. it cannot be deformed continuously to the trivial uniform
ferromagnetic order. A key requirement for the formation of solitons is the
existence of a spontaneously symmetry-breaking phase transition yielding mul-
tiple degenerate ground states. In case of magnetism this transition is given by
the paramagnetic to ferromagnetic phase transition, where time-reversal sym-
metry is broken. As a result, the magnetization field emerges which serves as
the order parameter [70]. Upon lowering the temperature below TC the full
rotational symmetry of the paramagnetic phase is lost and the magnetization
arranges in one of several energetically degenerate ground states [83].

The emerging topological solitons behave in many ways like particles, they
are localized, possess a quantized topological charge, and move collectively
under external stimuli [39, 101]. Therefore, they are often considered magnetic
quasi-particles made up of collective spins. Additionally, peculiar emergent
electromagnetic fields are generally associated with them, allowing efficient
manipulation [40]. The first magnetic topological soliton discovered was the
domain wall [102], but a much larger zoo of solitons has since been predicted,
and several intriguing solitons were even observed experimentally. Particularly
the two-dimensional solitons, the skymrions, attracted tremendous attention
[25, 37, 40]. Skyrmions have a rich variety of novel properties associated with
them. This makes them promising candidates as building blocks in spin-based
electronic devices, often referred to as spintronics. Lower energy consumption,
higher processing speeds, and increased data densities are predicted benefits of
using skyrmion-based spintronics [21].

Beyond their emergence in magnetic materials [25, 37], skyrmions exist in
Bose-Einstein condensates [103, 104], quantum Hall states [105, 106], and chiral
nematic liquid crystals [107, 108]. Hence the topological theory behind their
stabilization is a universal theory, and thus will be covered more generally
before the topological solitons of highest interest for this work, the skyrmions,
will be investigated in detail. Finally, a brief outlook towards application will
be given and subsequently the peculiar phenomenon of Bloch points and lines
will be considered.

2.2.1 The Role of Topology

Topology in its pure form is a classical field of study in mathematics. It is
concerned with the study of geometrical objects and their properties under
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continuous deformations. A vivid example illustrating this study is the Möbius
strip. Despite being a two-dimensional looped band, it requires a third dimen-
sion to exist, due to the embedded 180◦ twist. Furthermore, it is confined by
a single edge and counterintuitively has only one surface. Through continuous
deformations, such as bending, crumbling, and twisting, one can move the twist
along the loop, but it is impossible to untwist the Möbius strip without break-
ing it. Here, breaking implies cutting open, untwisting, and regluing the loop.
More generally, in the context of topology merging or forming new boundaries,
particularly closing and opening of holes, and passing the object through itself
are considered non-continuous transformations, which are forbidden. From a
topological view point, the Möbius strip is thus inequivalent to the untwisted
loop. Simply put, topology is concerned with the classification of geometrical
objects, where all members of a class are considered equivalent as they can be
continuously transformed into each other.

Now, this rough concept shall be formulated more precisely, in a framework
fit to later describe physical phenomena in actual matter. The starting point
for this is a so-called ordered medium, that is characterized everywhere by a
continuously varying order parameter. Potential order parameters are the pre-
viously introduced magnetization or the electrostatic equivalent thereof, the
polarization. Usually, the order parameter is parameterized as a vector de-
scribing its orientation and magnitude. The space solely containing all possible
values the order parameter can take on, is termed the order-parameter space.
In case of an ordered medium, every point r in real space can be mapped into
order-parameter space by a function f(r) [69, 109–111]. The crucial step, to
evaluate the topological equivalence, is to map a contour in real space onto or-
der parameter space, where the mapping yields a closed contour as well. Two
mappings are homotopic, i.e. topologically equivalent, if their contours in order
parameter space can be continuously transformed into each other.

To illustrate this process, a two-dimensional system, i.e. a medium in R2,
where the order parameter is confined within the plane is considered. Addition-
ally, the magnitude of the order parameter is assumed fixed to a constant value.
Hence, the order parameter space is described by a circle of according radius.
The circle is formally a sphere of dimensionality one, denoted S1. Every po-
tential direction the order parameter can take in real space is thus represented
by the angle ϕ(r). The function mapping every point in real space, r, to the
order parameter space is therefore given by [110]

f(r) = e1 cosϕ(r) + e2 sinϕ(r), (2.68)

where e1 and e2 are orthogonal vectors in the plane. Now, a path in real space,
e.g. a circle of diameter d, is chosen as the contour and thus the mapping
function maps a sphere to a sphere,

f : S1 7→ S1. (2.69)

Figure 2.10a, depicts this for the particular example of a uniform state in real
space, where the order parameter is parallel to e2 everywhere. Mapping the
contour in real space means mapping every point on the contour, while tracing
counter clockwise along it. Here, for f1(r) every point on the contour in real
space maps to one single point in order parameter space, independent of the
diameter d and the location of the contour. Considering the distribution of
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Figure 2.10: Schematic mappings of a planar order parameter. The
order parameter with a fixed magnitude (black arrows) is spatially resolved in a
two dimensional medium. The corresponding order parameter space is a circle
(S1, orange). Mapping, f(r), a contour (green circle) into order parameter
space yields a loop. The winding number corresponds to the number of times
the loop wraps around the order parameter space. a, uniform state, w = 0. b,
radial configuration around singularity P , w = 1. c, unstable defect, w = 0. d,
the winding number of the total system (green loop) corresponds to the sum of
the individual defects (purple and blue), wtot = w1 + w2 = 0. Recreated from
[112].
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the order parameter around a singularity located in point P (see fig. 2.10b)
shows a more complex behavior. Mapping a similar contour (S1) enclosing the
singularity, f2(r) results in a looped contour wrapping once around the whole
order parameter space. Even if d is chosen almost infinitely large, as long as
it encircles P , the resulting mapping will be similar. The number of times
the contour wraps around the the order parameter space defines the winding
number w. For this particular mapping it can be expressed as [111]

w =
1

2π

2π∫
0

dr
∂

∂r
ϕ(r), (2.70)

where r is parameterized along the real space contour between 0 ≤ r < 2π. The
winding number effectively counts the revolutions, in multiples of 2π, the order
parameter turns, whilst tracing along the contour. For the uniform state, the
winding number is w = 0, whereas for the radial singularity it is w = 1. Note,
the sign of the winding number is determined by the match or mismatch of the
direction of rotation of the real space contour and the mapped contour. For the
singularity P , the contour is evaluated counterclockwise, i.e. mathematically
positive, and the direction of rotation in the order parameter space is the same.
Hence, the winding number is positive. A third example is illustrated in figure
2.10c. Mapping f3(r) yields a spaced-out loop that winds half way around
the order parameter space and back. The respective winding number for this
configuration is w = 0. The mapping f2(r) wraps the whole order parameter
space once, thus it cannot be contracted to a point without violating continuity.
f3(r), on the other hand, can be contracted continuously to a point, i.e. the
equivalent of f1(r), representing the uniform state. The mappings f1(r) and
f3(r) are homotopic.

f1(r) and f3(r) are just two specific of many examples of mappings, which
are assigned the winding number w = 0. Analogous, numerous mappings are
assigned the winding number w = 1, just like f2(r). All mappings assigned to a
specific winding number form a homotopy class. Within one class all mappings
are homotopic to each other, i.e. can be transformed continuously into one an-
other. From the purely mathematical viewpoint, any transition from another
class (w ̸= 0) to the uniform state or in between two classes (wfrom ̸= wto)
has an infinite energy barrier associated with it. Hence, contours representing
objects that map to classes w ̸= 0 are termed topologically protected, as they
cannot be transformed to the uniform state. In real systems, on the other
hand, this energy barrier is finite due to the finite samples and finite confine-
ments [110, 111]. Hence, topologically protected, in the context of real objects
like magnetic spin textures, implies a finite energy barrier stabilizing peculiar
textures. In the next section these topologically non-trivial spin textures are
investigated in detail.

Furthermore, the mappings can be evaluated sequential. This behavior is
illustrated in figure 2.10d. Evaluating the mappings of the contours enclosing
either of the singularities P1 and P2 yields the winding numbers w1 = 1 and
w2 = −1, respectively. Whereas the contour encircling both results in,

wtot = w1 + w2 = 0, (2.71)

the sum of the individual singularities, which is commutative. Hence, evaluat-
ing the individual contours in arbitrary sequence or the large contour enclosing
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both defects, yields the same total winding number. Since the winding number
is linked directly to the topological charge, which is a conserved quantity, this
is important: While the formation of individual singularities in the uniform
background is topologically forbidden, the pairwise formation of vortex and
antivortex are possible.

The concepts of topology illustrated on the planar two-dimensional system
can be expanded to the R3, that is equivalent to real space. An outline of this
process as well as a mathematically more precise description are summarized
in appendix A. Working in the framework of micromagnetic theory, the order
parameter space is given by the two-dimensional surface (S2) of a sphere with
radius Ms. Analogous, a non-zero winding number is assigned, if the mapped
contour fully wraps the order parameter space and topologically (non)trivial
spin textures can be classified.

2.2.2 Skyrmions

Topological protected spin textures have been a hot topic in the past decades.
In particular, one spin texture, the skyrmion, attracted tremendous attention
after it was discovered in magnetic materials [25, 38]. Skyrmions can be clas-
sified by the assignment of a winding number. However, the winding number
alone does not fully capture the topological state of the skyrmion. Therefore,
the topological charge [113, 114],

NSk =

∫
nSk(r)d

2r, (2.72)

where the integration is carried out over all of real space, is introduced. The
integrand nSk is the topological charge density

nSk =
1

4π
m(r) ·

[
∂m(r)

∂x
× ∂m(r)

∂y

]
, (2.73)

which is calculated from the spatial distribution of the magnetization in real
space. To obtain a skyrmion, a magnetization distribution yielding a non-
zero topological charge under evaluation of the integral is required. A possible
parameterization for such a magnetization distribution representing a skyrmion
is given by [113]

m(r, ϕ) =

cosΦ(ϕ) sinΘ(r)
sinΦ(ϕ) sinΘ(r)

cosΘ(r)

 , (2.74)

where Θ(r) and Φ(ϕ) are the polar and azimuthal angle of the magnetiza-
tion, represented in spherical coordinates, respectively. Here polar coordinates,
r = r(cosϕ, sinϕ), are used and the symmetry of the skyrmion has been
exploited to express m(r, ϕ). Calculating the topological charge yields

NSk =
1

4π

∞∫
0

dr

2π∫
0

dϕ
∂Θ(r)

∂r

∂Φ(ϕ)

∂ϕ
sinΘ(r)

= −1

2
cosΘ(r)

∣∣∣∞
r=0

· 1

2π
Φ(ϕ)

∣∣∣2π
ϕ=0

,

(2.75)
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the product of two factors, one dependent only on the radial component r and
the other one on the polar angle ϕ. The first factor, captures the inversion
of the out-of-plane component of the magnetization, while tracing along the
radial component, from the center of the skyrmion located at r = 0 to r → ∞.
It describes the polarity of the skyrmion,

p = −1

2
cosΘ(r)

∣∣∣∞
r=0

= ±1, (2.76)

which can either be p = +1 for the magnetization in the center pointing up,
or p = −1 for the center pointing down. Effectively the polarity is determined
by the ferromagnetic background the skyrmion is emerging within. Due to
continuity of the magnetization distribution, the azimuthal angle Φ(ϕ), must
coincide with itself after a full revolution of ϕ. Thus, the second factor, the
vorticity is defined,

m =
1

2π
Φ(ϕ)

∣∣∣2π
ϕ=0

= 0,±1,±2, . . . (2.77)

which can only wrap around in integer multiples of 2π. The vorticity effectively
describes the number of wrappings of the order parameter space, i.e. it repre-
sents the winding number. Together the polarity and the vorticity determine
the topological charge,

NSk = m · p = 0,±1,±2, . . . (2.78)

where NSk = 0 represents the topological trivial state. NSk = +1 yields the
skyrmion illustrated in figure 2.11a, NSk = −1 the antiskyrmion (see fig. 2.11b)
[115], and for |NSk| ≥ 2 more complex higher-order skyrmion textures arise.
While the topological charge captures the properties relevant to determine the
topological stability it does not fully describe the skyrmions. Additionally, to
the polarity and vorticity skyrmions possess another degree of freedom, the
helicity. It describes the direction of rotation tracing radially along the spin
helix, respectively the lack thereof in case of a cycloidal structure. In the
framework above, the helicity is represented by a phase offset γ to the linear
parameterization of the azimuthal angle [114],

Φ(ϕ) = mϕ+ γ. (2.79)

For γ ∈ {0, π} the magnetization rotates radially, yielding a Néel-type skyrmion,
assuming NSk = +1. Whereas a Bloch-type skyrmion is the result if γ = ±π/2.
Unlike the polarity and the vorticity, the helicity is continuous, allowing mixed
states between Néel and Bloch-type skyrmions [114]. An example of such a
mixed state is shown in fig. 2.11c for γ = π/4.

Two rather peculiar examples of skyrmionic texture are illustrated in figure
2.11d and e, where both structures have a vorticity of m = +2. Whilst the
higher order skyrmion behaves as intuitively expected by rotating the mag-
netization twice when circuiting the core once, the same winding number is
obtained for the biskyrmion. Which is a clustered particle composed of two
adjacent skyrmions, each with a vorticity of +1 and a helicity offset by a factor
of π. Note, for clustered particles as well as densely packed lattices of skyrmions
the helicity offset implies strict Bloch or Néel-type of all solitons. The anti-
skyrmion on the other hand exhibits alternating helical and cycloidal behavior
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Figure 2.11: Overview of different magnetic skyrmions. a, Néel-type
skyrmion (p = +1, m = +1, γ = 0). b, antiskyrmion (m = −1). c,
skyrmion (γ = π/4), intermediate between Néel and Bloch-type. d, higher-
order skyrmion (m = +2). e, biskyrmion (m = +2). f, Bloch-type skyrmion
tube, unaltered extension of the skyrmion into the 3rd dimension. g, chiral bob-
ber, a discontinued skyrmion in the 3rd dimension. h Hopfion, a non-trivial
3D soliton. i, type I bubble (m = +1). j, type II bubble (m = 0), topologi-
cally trivial, ”onion state”. k, classification of fundamental excitations in spin
textures with corresponding variations and extensions. Recreated from [86],
based on [114] (panels a-h, k) and [116] (panels i and j).

and is thus compatible with Bloch and Néel-type solitons, if aligned along the
proper direction. Beyond the presented examples a variety of combinations
yielding higher order (anti)skyrmions are theoretically possible.

Trivial extension of the skyrmion in the third dimension yields the skyrmion
tube [117], exhibited in figure 2.11f. If on the other hand the skyrmion is ter-
minated whilst penetrating the sample depth, see figure 2.11g, a chiral bobber
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emerges [118, 119]. In such a case, the three-dimensional real space has to be
mapped to order parameter space, giving rise to a multitude of possible pe-
culiar topological non-trivial spin textures. One example is the Hopfion [120],
depicted in figure 2.11h, which has a toroidal shape. Taking a cross section
of the tube it resembles a skyrmion, hence it can be understood as a looped
skyrmion tube. To get an overview, figure 2.11k shows a classification scheme
for these diverse topological protected structures and their variations. Though
the zoo of theoretically existent topological protected structures appears near
endless, only few and generally, the less complex ones are predicted to emerge
in known materials. Even fewer have actually been observed experimentally.

Origin of topologically non-trivial spin textures

To understand why the number of observed and predicted skyrmion-like tex-
tures in magnetic systems is limited, it is necessary to understand the driving
forces behind their formation. There are three possible reasons, plus combi-
nations thereof, that can lead to the formation of skyrmions in a magnetic
material. The first one is the DMI competing with exchange interaction re-
sulting in a modulated state [43, 121, 122]. The second reason is frustration
among several exchange paths. And finally, the competition between the dipo-
lar interaction and the uniaxial magnetic anisotropy [123].

First the case of DMI shall be considered. This case is limited to non-
centrosymmetric materials, where the broken inversion symmetry can either
be an inherent property of the lattice or the effect of an interface. As described
in detail in section 2.1.3, DMI favors orthogonal alignment of neighboring spins.
Whereas the Heisenberg exchange prefers parallel alignment, thus leading to
a competition. As a compromise a gradual rotating spin texture is formed.
These textures can be cycloidal, e.g. for axial polar magnets, helical, like in
the case of cubic or axial chiral magnets, or an intermediate spiral state. The
energy of such a helical state is minimized for [124–126]

Si = [e1 cos(q · ri) + e2 cos(q · ri)] , (2.80)

where

q =
2π

λ
e3, (2.81)

and en with (n = 1, 2, 3) are a set of orthogonal unit vectors. Figure 2.12
illustrates the helimagnetic order, where the spins rotate perpendicular to the
propagation direction q. Utilizing Landau theory the helical period and sub-

Figure 2.12: Helical spin texture. The spins Si rotate in a plane perpen-
dicular to the q vector with the periodicity λ. Recreated from [86]
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sequently the q vector can be determined [127]. The periodicity

λ = 4π
A

D
, (2.82)

is given by the relative balance of the exchange and the DMI. For stronger DMI
with respect to the exchange the periodicity shrinks. Thus, it is not necessarily
commensurate with the lattice constant. This single-q state is the ground state
for respective materials.

The emergence of topologically non-trivial spin textures is limited to multi-
q states, where several helices or cycloids are superimposed. The following
illustrative description covers isotropic bulk DMI giving rise to the superpo-
sition of helical single-q states. This description is representative of the B20
compounds, which are the first materials where skyrmions (Bloch-type) were
observed in [25, 36–38]. To form skyrmions a triple-q state is required, which
can only be stabilized by the application of an external field. In such a helical
triple-q state, the three propagation vectors qj lie in one plane perpendicular
to the field, where they span a 120◦ angle between each other. Hence, the spin
configuration is given by the superposition of three spin spirals qj (j = 1, 2, 3)
and the external field H. The resulting spin configuration in real space, for
the field applied along the z-axis, is given by [128]

Si = Itemp ·
3∑

j=1

sin(qj · ri + ϑj)
sin(qj · ri + ϑj)
cos(qj · ri + ϑj)

+

 0
0
mz

 , (2.83)

where Itemp is a temperature dependent constant, mz is the resulting mag-
netization from the spin canting towards the external field and the sum is
evaluated for all three q vectors. The phase factors ϑj (j = 1, 2, 3), required
to satisfy cos(ϑ1 + ϑ2 + ϑ3) = −1, describe the phase shift between the three
helical structures. This triple-q state spin configuration describes the skyrmion
lattice [24, 36–39, 129–133], which is a triangular lattice of skyrmions, gener-
ally incommensurate with the underlying crystal lattice. Altering the phase
of the wave vectors results in a translation of the lattice. Hence, the three
q vectors qj fully characterize the lattice. Additionally, the sign of the DMI
determines the chirality of the individual helices, i.e. whether the spins rotate
counterclockwise or clockwise whilst tracing along the propagation direction.
Thus the helicity of the resulting skyrmions is already determined by the DMI.

The second origin of skyrmions is frustration. A prominent and illustra-
tive example of such a frustrated geometry in 2D is the triangular lattice with
antiferromagnetic Heisenberg exchange. Evidently two antiferromagnetically
arranged spins, sitting on two corners of an individual triangle, couple to the
third one, where they favor opposing alignments. Hence the lattice is frus-
trated. The resulting ground state, considering nearest-neighbor interactions
only, is a 120◦ canted in plane structure, which is commensurate to the lat-
tice. Additionally, considering dominant further-neighbor interactions gives
rise to incommensurate ground states. From a symmetry viewpoint, the lat-
ter have the advantage of possessing a three-fold degeneracy with respect to
the choice of the three equivalent directions of the wave vectors on the lattice
[128]. Consider a layered material, where within one layer all spins are cou-
pled ferromagnetically to their nearest-neighbors, but the inter-layer coupling
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to nearest-neighbors J1 and next-nearest-neighbors J2 differs. The exchange
energy of such a system is given by [83, 134]

E = −2NS2 (J1 cos θ + J2 cos 2θ) , (2.84)

where N is the number of atoms per plain and θ the angle between spins in
neighboring layers. Minimizing the energy of the system yields

∂E

∂θ
= 2NS2 (J1 + 4J2cosθ) sin θ = 0. (2.85)

Hence two trivial solutions, with sin θ = 0, for the ferromagnetic (θ = 0) and
antiferromagnetic coupling (θ = π) exist. Furthermore, a non-trivial solution
for cos θ = −J1/4J2, which is favored if J2 < 0 and |J1| < 4|J2|, exists. It
describes a modulated state with a gradual rotation of the spins in between
layers which can also be incommensurate to the lattice. Through superposition
such incommensurate modulated spin textures, appearing in two and three
dimensional systems, can ultimately form skyrmions.

The last reason for the formation of skyrmions, the competition of dipo-
lar interactions and anisotropy, has been elucidated in detail in section 2.1.5.
Hence a detailed consideration how the textures are stabilized is forgone here,
where the focus lies on the relevant topological properties. In summary, the
competition between the long-range dipolar interaction, favoring in-plane orien-
tation, and the uniaxial magnetocrystalline anisotropy, stabilizing out-of-plane
configurations, yields bubble domains as the energetically favorable configura-
tion, when modest external field is applied. Naturally this raises the question
if these bubbles are similar to skyrmions, or weather distinct differences can
be determined. First and foremost, the size of such bubbles is vastly differ-
ent, generally, a lot larger [40], compared to skyrmions emerging due to the
above mentioned mechanics, where the size ranges from the atomic scale [39]
to 100 nm [41]. The core of a skyrmion is a single spin, whereas the bubbles
are ferromagnetic domains, i.e. their core of ferromagnetically aligned spins has
to exceed a threshold size. Despite the size difference, the topological prop-
erties remain unaffected. The topological properties are solely determined by
the shape of the domain wall confining the bubble. The trivial configuration,
a continuous domain wall enclosing a so-called type-I bubble, shown in figure
2.11i, yields a vorticity of m = +1. Analog to the skyrmion the polarity p
is assigned based on the orientation of the spins in the domain. Additionally,
the helicity is determined by the type of the domain wall, being either Bloch
or Néel-type. The skyrmion can be seen as the limit of such a bubble domain
contracting to a single point. Thus, the type-I bubbles are often also referred
to as skyrmionic bubbles, as they are topologically equivalent [135, 136]. Par-
ticularly for very small bubbles it is often hard to mark down a clear limit
between skyrmionic bubbles and skyrmions. This problem is further enhanced
as they behave similar under external stimuli, e.g. current-induced motion
[28]. Besides the size and mechanism of origin, skyrmions, also referred to
as compact skyrmions [137], and skyrmionic bubbles usually differ in lifetime
and temperature stability [123]. Despite exhibiting the intuitive domain wall
configuration, the skyrmionic bubble is not the only type of bubble. In many
systems type-II bubbles form. A schematic configuration of such a bubble is
shown in figure 2.11j. It exhibits a characteristic shape, which does not fully
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wrap the order parameter space. Hence these bubbles are topologically trivial.
Note, the domain wall also has two singularities, these will be covered in more
detail in section 2.2.3.

To conclude, the origin of topologically non-trivial spin textures is either
one, or a combination of the three reasons above. Generally, if only one of the
driving forces behind the formation of skyrmions applies, the resulting objects
are representatives of the less complex textures. This is readily understood
from the case of isotropic DMI. Here the periodicity λ and subsequently the
q vector, are defined by the ratio of the Heisenberg exchange and the DMI.
Skyrmions (m = 1) are stabilized as the result of a triple-q state via the
application of magnetic field. But these skyrmions are limited to the least
complex non-trivial state, as more complex textures require the superposition
of anisotropic or aperiodic q vectors, hence contradicting the isotropy of the
the DMI. Whilst generally true, the formation of less complex textures is not
exclusively the case. In certain systems anisotropic DMI, which is a key factor
for the formation of anitskyrmions [138], is an inherent property of the lattice
[139], which can ultimately lead to the formation of antiskyrmions [115]. Un-
like DMI, the competition of long-range dipolar order and uniaxial magnetic
anisotropy offers an additional degree of freedom for the orientation of the spins,
the helicity γ. Whilst not contributing to the topological charge NSk it allows
for greater freedom in the domain wall configuration without violating conti-
nuity, hence enabling the formation of more complex textures. Recently even
higher order antiskyrmions (m = −2) coexisting with generic antiskyrmions,
Bloch skyrmions of both helicities (γ = ±π/2) and trivial type-II bubbles, all
dipolar-stabilized, were observed in a multilayer compound [140]. Combining
two or all three of the stabilizing mechanisms in a material, thus yields a vari-
ety of options to stabilize further spin textures. Tuning their relative strengths
and optimizing materials to form stable and well distinguishable topological
spin textures will be the key to realize spintronics based applications.

Spintronics - Applications of skyrmions

Beyond the interest from a pure academical perspective, topologically protected
solitons, are promising candidates for future technological applications. The
majority of topologically protected solitons are generally viable to be used
as information carriers, however the focus of most works in this context lies
on the skyrmions. In particular, skyrmions have been envisioned as potential
information carriers in future memory devices. In order to realize such memory
concepts, control of three major actions has to be achieved: creation, deletion
and manipulation. As such, the state of the art for these three actions and
subsequent detection is outlined in the subsequent paragraphs.

The simplest form of encoding data in a skyrmion based memory is the ab-
sence and presence of a skyrmion representing 0 and 1 in a binary format [137].
Here, the topological charge, coinciding with a finite energy barrier for creation
or annihilation, stabilizes the information carrier itself. A prerequisite for this
technology is the ability to create and delete skyrmions as well as detect them,
or their absence, reliably to read the information. It has already been demon-
strated that by the application of external stimuli skyrmions can be created or
annihilated reliably, following several different mechanisms. These are optical
methods such as the application of pulsed lasers [141, 142], spin-polarized elec-
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tric currents [143–146], and the application of magnetic field [147]. Of these
mechanisms, those based on electric currents are especially interesting as they
are relatively easy to integrate into potential memory designs. However, as this
thesis focuses on the application of static magnetic field here, the existence of
various alternative approaches is only noted.

Potential memory designs bring up a major challenge, the unsolved chal-
lenge of detection. Fundamental research on skyrmions relies on established
imaging techniques such as LTEM [37, 38, 52, 116, 122, 148–150], spin-polarized
scanning tunneling microscopy (SP-STM) [143, 151], magneto-optical Kerr ef-
fect (MOKE) [40, 152], and MFM [153, 154]. These direct imaging techniques
cover the atomic length scale up to the micrometer range, yielding extremely
valuable insight for the study of the fundamental properties of skyrmions. How-
ever, none of the established techniques are viable read-out devices for memory
applications. Because all of these techniques are incompatible with device ar-
chitecture, where an integrated all electric read out like an integrated magnetic
tunneling junction is required. In the related field of domain walls, such a in-
tegrated magnetic tunneling junctions have been shown to work reliably [155].
However, manufacturing them on such small scales is complicated and yielding
sufficient signal from skyrmions has not been proven to work, let alone work
reliably [155]. Alternative read-out operations have been presented at a proof-
of-concept level, these are based on the topological Hall effect [156–159], or
magnetoresistance [160, 161].

Figure 2.13: Skyrmion Hall effect. Illustration of the curved skyrmion
trajectory deviating from the applied current (grey). Reproduced with permis-
sion from [162]

These challenges associated with the detector naturally lead to the idea
of having single stationary detector, and moving the skyrmion array to the
detector. This has the requirement that their dynamic behavior, and the ma-
nipulation thereof via external stimuli, must be understood to control them
reliably. Two research focuses now come to the fore: how to accelerate the
skyrmions, and how to control their direction. Considering the acceleration
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of the skyrmions first, spin-polarisated currents have proven to be viable can-
didates for this task as well. This can be a significant advantage on more
classical domain wall based approaches as, taking MnSi as an example, the
threshold current density yielding spin-transfer torque induced skyrmion mo-
tion, is up to six orders of magnitude smaller [26, 163, 164]. Spin-orbit torque-
based approaches yielded even faster terminal velocities for domain walls [165].
Additionally, eliminating the magnetostatic fields by transitioning to synthetic
antiferromagnetic structures improves these even further for domain walls [166,
167]. Analogously, further improvements of the terminal velocity of skyrmions
are expected. However, all these potential solutions to the challenge of skyrmion
acceleration have one problem: skyrmions do not follow a straight path along
the current - showing our second challenge.

The trajectory of a skyrmion under the application of currents was orig-
inally described by A. Thiele [168], before being refined by [137, 169, 170]
and always yields a velocity component perpendicular to the current, termed
the skyrmion Hall effect [152, 162, 171]. As a result, the skyrmion moves
on a curved trajectory as illustrated in figure 2.12. This leads to the second
challenge, which is generally solved via geometric confinement. By limiting
the quasi two-dimensional skyrmion host materials to e.g. a narrow strip the
skyrmion is limited to propagate along what is essentially a track. While origi-
nally proposed with domains respectively domain walls as information carriers
in mind, the racetrack memory [172, 173] exploits the quasi one dimensional
confinement of the propagation of the magnetic textures. Altered version of
the race track memory based on skyrmions have since been proposed [174].
But despite promising concepts and early stage prototypes showing results no
commercial racetrack memory is currently available. Yet, the details of how
geometric confinement effects skyrmion materials is an ongoing research area.

2.2.3 Bloch Points and Lines

Intriguingly the topologically trivial type-II bubbles, emerging naturally in ma-
terials with PMA, actually host non-trivial spin textures. From the schematic
of a type-II bubble, depicted in figure 2.11j, it is evident the domain wall has
two peculiar spots. There, so called Bloch lines (BL) emerge within the domain
wall mitigating the discontinuity of the magnetization, where two Bloch wall
segments of opposite helicity come together [175, 176]. Being part of the domain
wall between an up and down domain along the z direction, the magnetization
in between the two Bloch wall segments has to mitigate its mismatch by an
in-plane rotation. A vertical line like defect along the wall, where it exhibits
Néel-type character is the result. Figure 2.14a shows an in-plane cross section
perpendicular to such a Bloch line extended along the z axis. Depending on the
mismatch of the helicity, the Bloch line can be distinguished as head-to-head,
or tail-to-tail, where the local magnetization points towards or away from the
line, respectively [176]. From a topological viewpoint these are quite interest-
ing. Overall the type-II bubbles, have a topological charge NBubble = 0, but
evaluating the two Bloch wall segments yields Nγ+ +Nγ− ≈ 1. In the simplest
case these segments are symmetrically spaced around the domain, thus each
segment maps to the same half of the order parameter space. Hence the Bloch
lines have to account for unwinding these half wrappings as well as constituting
a continuous contour. Indeed, the helicity reversal in the plane coincides with
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Figure 2.14: Bloch line and Bloch points. a, in-plane cross section of
a domain wall between two domains pointing up and down along the z axis
(black). The red and blue area show Bloch-type domain walls of opposite
helicity. The green area shows the Bloch line, where the wall exhibits Néel-
type character. b, schematic representation of Bloch points with a topological
charge of +1. Analog to skyrmions the helicity can vary yielding a hedgehog,
circulating or spiraling configuration. Panel a reproduced with permission from
[175]. Panel b reproduced with permission from [177].

a topological charge NBL = ±1/2, which is localized at the Bloch line. Analog
to the skyrmion’s topological charge, the sign is determined by the direction
of rotation relative to the direction the contour is evaluated along and opposes
the Bloch walls segments. Due to the severe spin canting required to locally
rotate the magnetization in such a way, Bloch lines are generally not stable
as an individual object. They only form in certain cases when the balance of
magnetostatic, magnetic domain-wall, and Zeeman energies, stabilizing bubble
domains can be optimized by reducing the stray field of Bloch walls at the cost
of introducing Bloch lines [64, 176]. Hence the underlying interaction governing
the formation of Bloch lines is the dipolar interaction. Subsequently the Bloch
line width [64]

δBL = π
√
A/Kd, (2.86)

depends on the dipolar energy density Kd and the exchange stiffness, rather
than the anisotropy, Ku, which determines the Bloch wall width (see equation
2.54).

Additional complication is introduced for type-II bubbles in intermediate Q
systems (0.1 < Q < 1), where Néel caps are present. The in-plane component
of the corresponding Néel caps at the bottom and top surface of the material
are antiparallel, due to their flux-closure nature. A vertical Bloch line, link-
ing both caps, yields a problem. The orientation of the magnetization of the
Bloch line, exhibiting Néel-type domain wall character, must coincide with the
orientation of the Néel caps at the top and bottom, respectively. Hence, an
intrinsic inversion of the magnetization along the one-dimensional Bloch line
is required. Yet, the constraints of the Bloch line, being part of the domain
wall and mitigating the helicity mismatch of π, remain in place. Thus, nei-
ther an out-of-plane nor an in-plane rotation of the magnetization is possible
without violating either one. The result is a Bloch point (BP), which is a
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three-dimensional spin texture that cannot be mapped to the order parameter
space represented by a sphere S2, due to a singularity in the center, where
the magnetization vanishes [178, 179]. In the simplest form the magnetization
distribution parameterizing a Bloch point can be written as [179]

mBP(θ, ϕ) =

cos(ϕ+ γ) sin(θ)
sin(ϕ+ γ) sin(θ)

cos(θ)

 , (2.87)

in Cartesian coordinates, where θ and ϕ refer to the spherical coordinates of
r and m. Depending on the helicity either a hedgehog (γ = 0), circulating
(γ = ±π/2) or spiraling (γ = π) configuration is obtained, as depicted in figure
2.14b. Analog to the skyrmions, intermittent helicities yield mixed states.
Bloch points also carry a topological charge, which is calculated analog to that
of the skyrmion (see equations 2.72 and 2.73) [180, 181]. Adapted for the
three-dimensional evaluation the equation reads [177]

NBP =
1

8π

∫
dAiϵijkm · ∂m

∂ej
× ∂m

∂ek
= ±1, (2.88)

where the integration is carried out over a surface A enclosing the Bloch point.
Technically the topological charge is analog to the skyrmion, but the vorticity
of the Bloch point is fixed at m = +1. Hence the topological charge effectively
describes the polarity of the Bloch point. It is positive if the magnetization
points from, respectively negative if it points towards the singularity. Note in
case of a ”combed” state (γ ̸= 0) despite positive topological charge the helicity
reversed spins can point towards the singularity, and vice versa. Similar to
the Bloch lines, the antiparallel alignment of the magnetization surrounding
the singularity is highly unfavorable due to the exchange interaction. Thus,
Bloch points are mainly expected to emerge in dynamic processes, e.g. the
transient state during magnetization reversal along a one-dimensional object
[182, 183]. They are, however, not strictly expelled and can emerge statically,
and were studied extensively both theoretically and experimentally [40, 43,
73, 172, 184]. Due to the inherent complexity of achieving both temporal and
spatial resolution on the atomic length scale, generally the study of Bloch points
is focused on static Bloch points and their quasi static motions [177, 183, 185,
186].

In summary both Bloch points and lines are mitigating local misalignment
of the magnetization. Whilst they naturally emerge in materials with PMA,
Bloch lines are not limited to the elucidated case of a type-II bubble. Generally,
they can form even in walls of extended domains and their number is not
limited to two. Bloch points on the other hand, emerging individually if local
magnetization reversal is required in a one-dimensional object, can emerge
under several other circumstances as well. E.g. in an interface of two materials
hosting skyrmions of opposite helicity and polarity, Bloch points can arise at the
point where the skyrmion cores line up [180]. One particular problem with the
simulated magnetic textures containing Bloch points is, that the micromagnetic
framework generally used to calculate the magnetic landscape, cannot cope
with the ill-defined singular points.
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Experimental Methods

Exploring their habitat and everything within it lies in the nature of humans.
On one side of the length scale, this manifests in the desire to go and see as far
as possible, whereas on the other side this means meticulous analysis of what is
right there in the immediate surrounding. The latter implies looking closer and
eventually the limit of what can be resolved by the bare eye is a limiting factor.
Hence, magnification tools are a requirement. As early as the Greco-Roman
empire, reports and findings of naturally occurring transparent crystals, hand-
crafted to lens shapes, can be found [187]. Modern visible light microscopes,
building on centuries of optical developments, are sophisticated tools, where
the resolution is limited by diffraction rather than the optical quality. Ernst
Abbe determined this limit to be

dmin =
λ

2AN
, (3.1)

where, λ is the wavelength of the light and AN is the numerical aperture which
depends on the refractive index of the microscope environment. Despite in
parts successful attempts to achieve resolution below the diffraction limit of
dmin ≈ 200 nm, visible light microscopy (VLM) is inherently unsuitable to
reach nanometer let alone atomic resolution [188].

This chapter introduces two microscopy techniques, with atomic resolution.
Scanning probe microscopy, which employs a fundamentally different princi-
ple of image acquisition via mapping of local probe-sample interactions, and
electron microscopy, which utilizes the tuneability of the electron’s wavelength.
Furthermore, these microscopes have the advantage of enabling imaging modes
sensitive to the local magnetization. A general introduction to both techniques
is given and subsequently the routines for appropriate sample preparation.

3.1 Scanning Probe Microscopy

The field of scanning probe microscopy (SPM) was initiated in 1982 by the
invention of the scanning tunneling microscope (STM) by G. Binning and H.
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Rohrer at IBM Zurich [189]. Nobel Prize winners in physics only four years
later for their invention. STMs measure the tunneling current between the
sample and an extremely sharp conductive tip. The breakthrough idea lies in
exploiting the tip sample distance dependent tunnel current as the input signal
to a feedback loop, which readjusts the distance via piezoelectric actuators
[190]. Thus, while scanning the sample surface, the extension of the piezo
required to keep the current constant reveals the topography. This constant
signal or feedback mode is the key to obtain resolutions down to the atomic
scale.

To overcome the limitation to conductive samples of STM, G. Binning, C.
F. Quate and Ch. Gerber developed the atomic force microscope (AFM) in
1986 [191]. It works similar to the STM, but tracks the forces acting on the
probe suspended on a cantilever instead of the tunneling current. AFM mea-
surements were quickly established as spectroscopic, imaging and manipulation
tool throughout several fields of natural sciences, such as physics, chemistry, bi-
ology and nanotechnology [192–196]. Developments in the following decades ex-
panded on the measurable interactions [197–201]. Furthermore, measurement
conditions, ranging from ultra-high vacuum to immersion in liquids [202, 203],
temperatures from milli-Kelvin up to several hundred degrees centigrade [204],
as well as in-situ field application up to 38T [205], are available.

3.1.1 Basic Principles of Atomic Force Microscopy

The fundamental idea behind the AFM lies in measuring the inter atomic
forces between the sample surface and the probe. To obtain those, the probe
is mounted on a cantilever of known spring constant acting as the force sensor.
Hence, the deflection of the cantilever is proportional to the forces probed. The
deflection is most commonly detected by a laser beam deflection method [206].
The laser points on the backside of the cantilever, where it is reflected to a
four-segmented photodiode, see figure 3.1a. Deflections of the cantilever are
detected by a shift of the laser spot on the photodiode. Up or down motion
(bending and buckling), commonly referred to as deflection, as well as rotation
(torsion) of the cantilever, generally referred to as lateral force, can be discerned
using this method. The second common method is based on an optical laser
interferometer. Figure 3.1b shows the partial beams of the coherent laser source
reflecting on the backside of the cantilever and a reference plane, usually the
end of the glass fiber, which are superimposed. The modulation of the path
difference induced by the cantilever deflection is tracked and relative changes in
the cantilever fiber distance are detected. The major drawback of this method
is, it cannot detect the lateral force channel. The main advantages are the
minimal spatial requirements, as the interferometer unlike the photodiode can
be located in an adjacent electronics rack, and superior mechanical stability.
These advantages are particularly relevant for low-temperature systems [207].
For both methods the sensitivity is ultimately limited by the thermal noise of
the cantilever.

Piezo electric actuators moving the sample relative to the tip are used to
acquire a spatially resolved image. Generally, three actuators, two for raster-
ized scanning in the xy plane and one for the z height are required. These
are commercially available as stacks of individual piezos or piezo-tubes. Addi-
tionally the tip holder is equipped with a piezo actuator (dither), that is used
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Figure 3.1: Schematic AFM setup. Both setups rely on a stack of piezo el-
ements enabling rasterized scanning and an additional element to drive the can-
tilever oscillation. a, beam-reflection method, detection via a four-segmented
diode. b, Laser interferometry based read-out. Recreated from [112].

to drive the cantilever oscillation, as can be seen in figure 3.1. Beyond these
integral parts for the operation of the AFM and their respective electronics,
numerous adaptations and add-ons, which enhance ergonomics, are available.

Tip-sample interactions and operation modes

The probed inter atomic forces can be differentiated in short-range (<1 nm)
and long-range forces. Short-range forces are dominated by the effects of over-
lapping electron wave functions yielding either attractive (forming bonds) or
repulsive (Pauli exclusion principle) contributions. Long-range forces contain
Van der Waals, including dipole-dipole interactions, electrostatic and magnetic
forces. Depending on the conditions the AFM is used in, additional forces,
like capillary forces attributed to the formation of a water meniscus at the tip-
sample interface, can occur. Assuming the AFM in vacuum, with no emergent
electric or magnetic forces only repulsive short-range and attractive long-range
interactions determine the tip-sample potential. Further reducing the consider-
ation to two neutral atoms, representing the tip and sample surface respectively,
the Lennard-Jones potential represents the interaction [197, 208]

VLJ = 4ϵ

[(σ
z

)12

−
(σ
z

)6
]
, (3.2)

where ϵ is the depth of the potential well, σ is the Van der Waals diameter,
and z is the separation distance between tip and surface. Figure 3.2 shows the
plot of the Lennard-Jones potential, as well as the first (repulsive) and second
(attractive) term individually. From the potential the tip-sample forces can be
derived as follows

Fts = −∂VLJ
∂z

= −24
ϵ

σ

[(σ
z

)13

−
(σ
z

)7
]
. (3.3)

If the tip is far from the surface, the tip-sample forces are superseded by the
internal elastic forces of the cantilever, which depend on the spring constant.
Upon approaching closer the increasing attractive tip sample interactions result
in the cantilever bending towards the sample, before it jumps into contact.
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Further lowering the cantilever base, the tip gradually straightens out and
eventually bends away from the surface. Throughout, the tip is in contact and
thus constantly repelled by the short-range Pauli interactions. Upon reversing
the approach, the tip bends back down, held in contact by the attractive Van
der Waals forces until the internal strain of the cantilever is large enough to
supersede.

Figure 3.2: Tip-sample interaction. Schematic representation of the
Lennard-Jones potential and the respective attractive and repulsive terms.
Along the curve, regions for operation in contact (blue), semi-contact (red)
and non-contact (green) mode are highlighted. The respective insets highlight
the cantilever and tip position relative to the sample surface for the three
modes.

With the tip pressed slightly onto the surface, the AFM is operated in
contact mode. The resolution in this mode is, highly dependent on the tip’s
radius at the apex, and depending on the contact pressure the wear of the tip
is rather large. Alternatively, the system can be operated in the non-contact or
semi-contact mode. The signal to noise ratio is greatly increased by operating
the AFM in dynamic mode [209], instead of directly reading out of the tip
deflection. Using the dither piezo, a driven oscillation at the cantilevers eigen-
frequency can be exited. Generally, a vertical oscillation (tapping) is excited.
Rather weak excitation and subsequently a small resulting tapping amplitude
(<10 nm), where the cantilever remains in the attractive potential close to the
surface, is used, if the AFM is run in non-contact mode. Contamination layers
and tip instabilities make this mode the most challenging [210], but only in this
mode true atomic resolution is achieved [211, 212]. In semi-contact mode the
tip is excited up to amplitudes exceeding 100 nm. Whilst tapping the tip peri-
odically contacts the surface of the sample, hence analogous to contact mode
the resolution is limited to the tip radius at the apex. In contrast to contact
mode, the wear on the tip, due to grinding whilst laterally scanning the sam-
ple, is greatly reduced. Furthermore, the formation of menisci accompanied by
capillary forces is hindered, thus the scan quality is improved.

Additionally, there are two feedback modes that can be used: constant
height and constant force mode. In constant height mode, the height of the
cantilever base and thus the tip relative to the sample is adjusted once, before
starting the scan, and kept constant throughout taking the image. In more
sophisticated setups it is possible to define the constant height as a tilted plane
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to correct for misalignment versus the sample surface. During scanning the
deviations of the cantilever are mapped directly and recorded in either of the
before-mentioned tip-sample interaction modes. Constant height scans have
the major advantage of allowing very fast scan speeds, particularly in the non-
contact mode. However, they run at the risk of breaking the tip or cantilever,
if height deviations, e.g. contaminations like a dust particle, locally exceed the
elastic range of either part. The second option is the constant force mode, which
utilizes a feedback loop adjusting the sample height to mitigate any deviations
sensed by the cantilever. Whilst the finite reaction time of the feedback loop
describes the upper limit for the lateral scan speed, height differences can be
mapped up to the extension limits of the z scanner piezo.

In the semi- or non-contact regime the AFM is generally used in AC, i.e.
dynamic, mode, where the cantilever and tip oscillate. The excitation voltage
of known frequency is applied to the dither piezo and serves as the reference to
the lock-in amplifier. The laser read-out signal of the oscillating cantilever is
then demodulated by the lock-in, yielding an amplitude and phase signal. The
amplitude A is directly proportional to the physical amplitude of the tip. Every
cantilever possesses an eigenfrequency fres and thus sweeping the frequency in
the vicinity yields the characteristic resonance peak of the unperturbed can-
tilever, as shown in the upper graph of figure 3.3. From this peak the quality
factor is determined

Q =
fres

∆fFWHM
, (3.4)

where ∆fFWHM is the resonance width, determined as full width at half max-
imum (FWHM). Additional repulsive or attractive forces acting on the can-
tilever modulate the resonance frequency, shifting it to higher or lower fre-
quencies. The shift is proportional to the derivative of the force along the
oscillation direction [209],

∆f =
1

2k

∂F

∂z
f0, (3.5)

where k is the spring constant of the cantilever. During operation the dither
piezo drives the oscillation at the unperturbed eigenfrequency f0. If the reso-
nance shifts due to additional forces, the resulting amplitude drop is detected
and can be used as the input to the z feedback loop. To gain the information
if an additional force is attractive or repulsive, the phase ϕ, is recorded. A
phase shift to higher or lower values can be attributed to attractive, respec-
tively repulsive, interactions, as depicted in the lower graph of figure 3.3. The
phase describes the relation of the tip motion with respect to the base of the
cantilever driven by the dither piezo. For small frequencies they are in phase,
whereas for high frequencies they are out of phase, as depicted in the insets. As
a technical note, the absolute value assigned to the phase can vary vastly as a
linear offset is often applied, either to bring ϕ(f0) to zero or π/2. Furthermore,
in some systems even the whole phase curve is inverted.

For small Q factors, i.e. broad resonance peaks, the phase curve is behaving
quasi linearly over a wide enough frequency range to directly image the phase
shift, i.e. ∆ϕ(x, y), during scanning. Additionally recording the frequency de-
pendency of the phase shift, ϕ(f), allows reconstruction for quantitative evalua-
tion of the data according to (3.5). Since the slope in the phase curve correlates
with the sensitivity, such broad peaks yield limited sensitivity. In ambient at-
mosphere, most commercially available tips yield Q factors in this regime. Al-
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Figure 3.3: Frequency dependencies of amplitude and phase. The
upper graph shows a characteristic resonance peak of a cantilever (black). The
eigenfrequency and thus the resonance peak shifts to higher, respectively lower,
frequencies for repulsive (blue), respectively attractive (red), forces acting on
the tip. The lower graph depicts the corresponding phase signal, which in con-
trast to the amplitude is asymmetric. The insets to the lower graph emphasize
the tip motion relative to the oscillation driving dither piezo.

ternatively, an additional phase sensitive frequency feedback loop (PLL), that
readjusts the driving frequency accordingly is employed. Using such a feedback
loop enables tracking of strong forces corresponding to frequency shifts ∆f be-
yond the linearly sloped regime of the phase curve. Furthermore, working with
high Q factor tips, i.e. extremely narrow resonance peaks and strong slopes in
the phase curves, the sensitivity is improved. Hence, allowing measurements
down to the atomic scale. For high Q factor measurements a tip with a nat-
urally high eigenfrequency frequency fres is advantageous. Low pressure and
temperatures increase the Q factor further, which is accompanied by weaker in-
ternal damping. Thus, enforcing strongly reduced scan speeds. The minimum
dwell time per pixel is limited by the time constant [201]

τ =
2Q

f
, (3.6)

where f is the actual frequency applied for the respective pixel. It gives an
estimate of the time required for the tip to adopt to the varying forces in
between neighboring pixels. Scanning with a high Q factor is a trade off be-
tween improved sensitivity and fast scan speeds. On a technical note, short
scans are favored, because they reduce the risk of quasi random image artifacts
occurring. Furthermore, ambient conditions like cryogenics are limiting the
maximum scan time.

Topography scans

Topography scans are feasible with any combination of the above-mentioned
modes. Due to the relative ease of use, constant force mode in contact is the
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standard technique to scan topography, if the resolution is sufficient. With
small contact pressure applied, the tip rests on the surface and any height
changes result in a deflection of the cantilever. The laser read-out signal of
the deflection is fed into the feedback loop, which subsequently adjusts the z
piezo accordingly. The required voltage ∆Uz(xy) ∝ ∆z can either be directly
mapped or the signal of a extension height sensor of the z piezo is used. Ad-
ditionally, tracking the deflection signal yields an error signal to the height
map, which enables an assessment of the scan quality. If reduced tip wear or
higher resolution are a concern, semi- or non-contact mode can be used. In
that case the amplitude or phase signal of the driven oscillation serve as signal.
In semi-contact the amplitude is used as the input signal to the z feedback
loop, due to the phase being non-reliable when the tip makes contact with the
sample. Upon approaching the surface, the free oscillation is damped gradu-
ally and eventually reaches a sharp cutoff where the tip makes physical contact
with the sample. A setpoint amplitude Asetpoint amounting to damping from
physical contact is used. Any height undulations during scanning translate
into changes in the amplitude and the feedback loop corrects the z-piezo ex-
tension accordingly. In non-contact mode, both the amplitude or the phase
can be used as input signals with respective setpoints. The feedback loop is
run analog to semi-contact, respectively using the phase setpoint. Here, any
deviations in the amplitude or phase signal serve as error signal and should
be tracked as well. Depending on the exact mode used, the appropriate probe
has to be chosen for the scan, as the tip radius at the apex, the Q factor and
several other properties directly influence the scan quality.

Probe characteristics

AFM probes are commercially available in a vast variety of cantilever geome-
tries, tip radii and spring constants. Additionally a multitude of coating for
different purposes, which will be explored in more detail in section 3.1.2, can be
applied. Probes are mainly made from single-crystalline silicon manufactured
on wafers in batches by lithography [213]. Figure 3.4 a shows a classic geometry
of an AFM probe. The exact geometry and predominantly the length l and
thickness t of the cantilever determine the force constant, which can be tuned
in a range of about 0.01-100Nm−1. In contact-mode based methods choosing
a cantilever of appropriate force constant is the key to maintain good surface
contact and steady contact force. Furthermore, the force constant affects the
eigenfrequency, thus the Q factor and ultimately the sensitivity of the probe,
which limits the z resolution. As mentioned, the tip radius r at the apex limits
the maximum lateral resolution, whereas the tip height h plays a crucial role in
mechanical stability. Additionally, the tip height represents the leaver lateral
forces, acting on the tip, have on the cantilever. Figure 3.4 b elucidates the
three potential excitations: bending due to a force normal to the surface plane,
as well as buckling and torsion stemming from lateral forces along respectively
perpendicular to the cantilever. Note, commonly the read-out channels are
termed deflection and lateral, where the deflection channel also contains the
signal attributed to buckling, i.e. a lateral force, as well. The contribution to
the detected signal of the latter is expected to be superseded by the deflection
signal in most cases. The lateral force channel, if available, only contains the
lateral forces yielding torsional excitations. To obtain a good signal to noise
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Figure 3.4: Detailed view of an AFM probe. a, SEM images of a
standard AFM probe, the cantilver and tip. Relevant dimensions are marked.
The demagnified inset on the left shows the full chip with the cantilever and
tip attached on top. The insets on the right show a magnified view of the tip
as well as a profile. b, the three potential stimuli exciting an oscillation.

ratio on the read-out, the backside of most cantilevers is coated, e.g. with
aluminum, for enhanced reflectivity. Beyond the geometry the tip material
must be adapted the experiment. Ranging from conductive coatings, like gold
or platinum, to maximum wear resistant, potentially conductive doped, single
crystal diamond tips, a multitude of options is commercially available [214–
216]. More relevant for this work, magnetic coatings, e.g. made from Co-Cr
alloys, are applied to create probes sensitive to magnetic interactions. The
drawbacks of added coating are decreased spatial resolution due to the larger
tip radius, and the potential delamination of the coating. For magnetic tips the
guaranteed resolution of commercially available tips is usually in the range of
20-50 nm. Custom-build tips can reach radii, and thus resolution, below 10 nm
[217, 218]. Depending on the tip geometry, as well as the thickness and type of
the magnetic coating the remanent magnetization and coercivity of the probe
can be adapted to the requirements of the intended experiment.

3.1.2 Advanced Scanning Probe Microscopy Techniques

Beyond topography scans, the AFM is established as a spectroscopic and ma-
nipulation tool in many labs. Several advanced scanning probe microscopy
techniques, probing forces proportional to intrinsic material parameters of in-
terest directly, or exploiting phenomena closely related to such, have been
developed in the past decades [219].

Conductive atomic force microscopy (cAFM) allows the study of electrical
transport properties on the nanoscale [220]. While scanning in contact mode,
the tip-current is measured in a two-point configuration, where the voltage is
applied between the sample back electrode and the tip [221, 222]. The ob-
tained spatially resolved map of the conductivity, allows to determine if the
conductivity is linked to certain conductive features, e.g. domain walls or de-
fects. Piezoresponse force microscopy (PFM) is established as the standard
technique for imaging and the study of ferroelectric domain structures on the
nanoscale [223]. The strong emergent stray field, due to an AC voltage applied
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between the tip and the sample back electrode, excites the inverse piezoelec-
tric effect. The resulting periodic contraction and expansion of the surface
of the ferroelectric material, is detected in contact mode. Using a technique
called vector PFM, i.e. combining the signal from the deflection as well as the
lateral channels from two scans with the cantilever rotated 90◦ in between, it
is even possible to fully reconstruct the three dimensional orientation of the
polarization within domains [224]. Non-contact techniques, like Kelvin probe
force microscopy (KPFM), allow to map relative changes of the work function
of the surface [225]. To obtain this information the relative changes to the DC
potential applied to the tip, in order to keep the electrostatic forces constant
are mapped. KPFM is a more elaborate application of electrostatic force mi-
croscopy (EFM) [226, 227]. A technique that works analog to MFM except for
the use of a non-magnetic conductive tip, sensitive to the electrostatic stray
field. Evidently, cAFM, PFM and KPFM rely on the use of a conductive tip
as well. In addition to scanning techniques the nanometer precision of the
scanner piezos can also be used to investigate individual, or a spaced-out grid
of points. Keeping the tip stationary not only eliminates errors attributed to
lateral motion, but also allows point spectroscopy. Ranging from force curves
over I(V ) curves to frequency dependent spectroscopy, modern AFMs can be
configured to perform a multitude of experiments [228–231].

Magnetic Force Microscopy (MFM)

Probing the interactions related to magnetic domain textures is the main func-
tion of the AFM used in this work. The primary requirement for such ex-
periments is a magnetic probe, as MFM quantifies the strength of the mag-
netic interaction of the magnetic stray field emerging from the sample and
the magnetic moment of the probe [232, 233]. The major complication in the
measurement lies in separating the magnetic forces from other contributions.
The most common forces perturbing the magnetic measurement are related
to the topography, i.e. strong short-range forces. These forces decay quickly
with increasing tip-sample distance, whilst long-range forces remain detectable
up to intermediate distances of several tens of nanometers. Hence, magnetic
forces should be measured at a certain height above the surface, where short-
range forces no longer interfere. Additionally, grounding the tip to the sample
surface, mitigates signal from electrostatic forces.

MFM scans are typically performed in a dual pass technique, as shown in
figure 3.5. In the first pass, the topography is obtained using either contact or
tapping mode. For the second pass, the tip is lifted by dlift, typically in the
order 10 to 100 nm, and the previously recorded topography is retraced, with
equidistant lift and disabled z feedback. Retracing is executed line by line to
avoid thermal drift and other errors yielding misalignment of the two images
recorded. During the second pass, the AFM is operated in non-contact mode,
where it is most sensitive to small changes in the magnetic stray field. The
amplitude ∆A, phase ∆ϕ and potentially the frequency shift ∆f are measured
to image the magnetic interactions [209]. Figure 3.6 shows illustrative MFM
images of permalloy obtained at room temperature. Panels a-c, depict the
topography, amplitude and phase, these are image channels typically recorded
with a low Q system using dual pass. Panels d-f, show the frequency shift,
amplitude and phase derived during the second pass, when operating with the
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Figure 3.5: Magnetic force microscopy scheme. a, during the first pass
a topography image is obtained. b, during the second pass, the tip retraces
the topography with an additional height offset dlift. Amplitude and phase,
respectively the frequency shift, are recorded, containing information about the
field distribution emerging form the underlying domain structure. Reproduced
with permission from [86].

PLL. The phase signal, respectively the frequency shift, hold the quantifiable
magnetic information. In case the PLL is used, the amplitude and phase serve
as error channels. Permalloy forms ferromagnetic in-plane domains separated
by sharp domain walls [234], coinciding with increased out of plane stray field.
In the images the latter are clearly distinct from the domains. Particularly
using the PLL it is evident, the feedback loop adopts well to gradual changes
of the stray field within domains, but at the domain walls residual signal is
visible in the phase channel.

Depending on the circumstances and the exact experimental setup several
variations to the measurement procedure are possible. For very flat samples
a single pass technique is sufficient, where a constant height non-contact scan
sensitive to the magnetic signal, is executed at the lift height dlift relative to
the surface. In this mode the overall scan time is reduced by more than a factor
of two, compared to a regular dual pass scan. Previously mentioned drawbacks
of the constant height mode and potential artifacts in the magnetic signal due
to tip-sample distance undulations are the major drawbacks of this approach.
Increased lifetime and prolonged high-resolution imaging capabilities, due to
the eliminated tip sample contact during the first pass, are the main advantages.
Alternatively, bimodal dual AC mode, can be used to eliminate the need for
a second pass [235, 236]. Here the resonance, and a higher resonance mode of
the cantilever are both exited simultaneously. Whilst the resonance is used to
track the topography in semi-contact, the higher mode is demodulated by an
additional lock-in amplifier to obtain the magnetic signal. Remaining a semi-
contact mode, with all positive and negative implications, the scan time is still
reduced by over a factor of two, compared to the dual pass technique.

The classic and more sophisticated approaches to MFM explained above all,
exploit the fundamental idea of different decay length and ultimately the exis-
tence of a practically unperturbed regime, where the magnetic forces supersede.
However, electrostatic stray field decaying on a similar length scale, cannot al-
ways be evaded. A recent newly developed technique addresses this issue by
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an additional feedback loop compensating the electrostatic mismatch analog to
KPFM, and is thus called Kelvin probe MFM (KPFM-MFM) [49, 237, 238]. An
alternative approach is switching magnetization MFM (SM-MFM), where two
scans with opposing tip magnetization are compared [239]. Summing the two
images, the antisymmetric magnetic contributions should cancel, whereas con-
tributions of non-magnetic origin, which remain unaltered with respect to the
tip magnetization inversion, should add up. Subsequently, the non-magnetic
contributions can be subtracted from the measured magnetic signal to obtain
the unperturbed magnetic signal.

Figure 3.6: Magnetic force microscopy image of permalloy. a, b,
phase and amplitude signal recorded during the second pass. c, corresponding
topography image (first pass). d, frequency shift image obtained via a phase
sensitive feedback loop during the second pass. e, f, corresponding phase and
amplitude image serving as error channels.

Furthermore, the magnetic signal and the obtained image thereof are highly
influenced by the mutual interaction of the tip magnetization and the sample.
One of the reasons behind very weak magnetic interactions is the tip coating,
which tends to break up into microscopic domains. The formation of such re-
duces the total magnetic moment of the tip and thereby lowers the sensitivity
of the system. A problem that can be avoided by saturating the tip prior to
scanning. However, very strong magnetic interactions, can lead to problems
like imprinting of the magnetic signal in the topography, when scanning in tap-
ping mode. To avoid such imprints, contact mode can be used for the first pass.
While the topography signal is then generally unperturbed from the magnetic
imprint, the magnetic interactions are actually strengthened due to the re-
duced mean tip-sample distance. Scanning in contact mode, but even a raised
tip carrying a very large moment, yield a strong magnetic interaction, which
can result in the tip actively altering the magnetic structure instead of imaging
it. By comparison to less invasive magneto-optical Kerr effect microscopy the
following three contrast regimes were classified [240]: The irreversible interac-
tion regime is defined by strong interactions, sufficient to drag domain walls or
locally switch the sample. The result is smeared out contrast, double images
or significant mismatch of the back- and forward direction of the scan. In the
reversible interaction regime, the tip induces local perturbations due to non-
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rigid magnetization in the tip or sample. Though, these relax back once the
tip is removed, they lead to locally varying contrast. The negligible interaction
regime, where the tip sample interaction is sufficiently small not to perturb
either, yet still detectable, is the preferential one for imaging. To reach such
conditions a hard-magnetic tip and large lift heights dlift are the most promis-
ing. Hence, choosing an appropriate magnetic coating is required to keep the
lift height within reasonable limits.
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3.2 Electron Microscopy

Electron microscopy is another option to overcome the resolution limit of VLM
[241]. First developed by E. Ruska in 1931, the importance of his invention was
highlighted by the Nobel price in 1986. Peculiarly, a shared prize with G. Bin-
ning and H. Rohrer for inventing the STM. Unlike scanning probe microscopy,
which takes a complementary approach to image acquisition, the fundamental
principle of electron microscopes (EM) is similar to VLM. A beam of accel-
erated electrons is used as illumination source. The beam can be focused by
specially shaped magnetic fields, so-called electron optical lenses. The diffrac-
tion limit (see equation 3.1), postulated by E. Abbe, applies to the electron
beam analogous to visible light. However, the energy of the individual electron,

E = eUaccel =
hc

λ
, (3.7)

and thus, its wave length, λ, can be tuned by the acceleration voltage, Uaccel.
The propagation speed of the wave is denoted c, that is the velocity of the
electrons, which requires relativistic corrections for acceleration voltages ex-
ceeding 100 kV. Hence, by increasing the acceleration voltage, the wavelength,
λ, and thus the diffraction limit decreases. For a 100 keV accelerated beam,
the diffraction limit of 4 pm is sufficiently small to resolve subatomic features.
As the excellent quality of the optical lenses manufactured for visual light mi-
croscopy is not matched by electron optics, resolution down to the diffraction
limit is not achieved in electron microscopy. The resolution of electron mi-
croscopes is predominantly limited by the aberrations of the electron optical
components. In 1936, O. Scherzer proved chromatic and spherical aberrations
are inevitable flaws of the rotational symmetric electron lenses, whereas dis-
tortion and coma can be evaded [242]. Implementation and improvement of
aberration corrections, are thus the only option to bring the resolution close
to the diffraction limit. Additionally, the corrections are seminal to material
studies, as higher acceleration voltages are inevitably linked to increased beam
damage. Furthermore, increasing the acceleration voltage, beyond a few hun-
dred kiloelectron volts, yields diminishing improvements in resolution. Initially
developed to overcome the resolution limit of VLM, numerous benefits in using
EM to study materials were discovered. Thus, making electron microscopes ex-
tremely valuable analysis and spectroscopy tools in modern labs across many
fields, from natural over medical to forensic sciences [241, 243–245].

Following a brief introduction of fundamental operating principles and re-
quired components in section 3.2.1, an illustrative overview of the relevant
capabilities of electron microscopes will be given. There are two types, trans-
mission electron microscopy (TEM) and scanning electron microscopy (SEM),
where various types of scattered electrons are detected for imaging. In section
3.2.2, the TEM is introduced, where particular focus lies on the three major
imaging techniques, which visualize intrinsic magnetic structures. In section
3.2.3 the SEM will be introduced in the context of energy dispersive X-ray
(EDX) analysis used for sample characterization. Furthermore, dual beam sys-
tems, with an additional focused ion beam (FIB-SEM), will be elucidated due
to their key role in high precision sample manufacturing. Throughout, these
sections are limited to a brief introduction to the respective topics.
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3.2.1 Operating Principles

Before exploring the advantages and limitations of the two types of electron
microscopes, their mutual operation principles are covered [241, 243, 246, 247].
Following the analogy of the VLM, electron microscopes can be divided in
three major parts as well, the light source, the illumination system (condenser
and objective lenses) and specimen stage, as well as the imaging system. Note
that a distinction is made between a specimen, that is the individual piece
of sample inserted in the microscope, and a sample, usually a single crystal,
where multiple specimens can be obtained from. Generally, but not exclusively,
EMs are built with a vertical column, where the electron gun sits on top. The
latter contains both an electron source and the anode accelerating the emitted
electrons to the desired speed, i.e. energy. Modern electron guns allow the use
of variable acceleration voltages.

However, such changes require stringent adaptations of all electron optical
components, like the magnetic electron optical lenses made of solenoids in the
the column. In fact, while intrinsically working differently, the magnetic field
of a solenoid acting on electrons resembles the effect of a convex glass lens to
such a point, that magnetic lenses can be described by ray diagrams, as known
from classic ray optics, too. Subsequently, properties like the magnification of
a lens or lens system [241],

M =
di
do
, (3.8)

the object and image distances do, di, as well as the focal length f are defined
accordingly. Unlike the fixed curvature of a glass lens, the magnetic lens is
based on a variable electromagnet. Hence, instead of switching or moving
optical components, adaptations like changing focus or adopting to variable
acceleration voltages can be done by adjusting the field, i.e. the current in the
magnets. In the EM these lenses as well as the gun are all aligned along the
optical axis.

Depending on the type of microscope, either a stage, where the specimen
sits on top (SEM), or a specimen holder which is inserted into the column
(TEM), both placing the specimen in the optical axis, is used [241, 243]. Stages
and holders, usually feature multi-axis motion, including lateral and vertical
translation, rotation about the optical and potentially other axes, and tilt. Fur-
thermore, special upgrades and holders expand on possible sample orientation,
allow cryogenic applications and even in-situ electrical biasing.

Finally, with the specimen placed in the desired orientation and conditions
on the optical axis, it can be imaged. To obtain such images a series of highly
specific detectors, ranging from simple counting over spatially resolved intensity
mapping of electrons to energy selective radiation detection, is used. Each
detector is tailored to measure a subset of specific signals generated when the
incident electron beam hits the specimen.

Interactions of electrons with matter

The electron beam is a type of ionizing radiation. Ionizing is a term given to
all types of radiation, if the energy transferred in a scattering event suffices to
remove tightly bound, inner-shell electrons from a nucleus [241]. The advantage
of using an incident beam of ionizing radiation is that it yields a vast variety
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of secondary signals. An illustrative overview of those relevant for this work,
is given in figure 3.7. If the specimen thickness is sufficiently thin, i.e. electron
permeable, the direct beam, which comprises the unscattered electrons of the
incident beam, as well as (in-)elastically scattered transmitted beams, make
up the majority of signal. For increasing thickness, the ratio of secondary
signals increases, while the intensity of the transmitted beams diminishes. The

Figure 3.7: Scheme of EM signals. Recreated from [241].

secondary signals denote a large variety of electron types and radiations, which
are the result of scattering and recombination events [241, 243]. When an
electron hits the specimen the scattering cross-sections of the individual atoms
in the specimen, each sitting on their respective lattice sites, determine the
path it takes. The electron undergoes a cascade of scattering events, where the
electron transfers energy to the material, until the low energy electron itself is
absorbed. If the energy still suffices, the electron can also exit the material at
some stage of the cascade. These electrons are known as backscattered electrons
(BSE), if their direction is reversed, or make up the scattered beams, if the
sample is thin enough. BSE are predominantly linked to elastic scattering with
nuclei, hence obtained image contrast can be correlated to the atomic number of
elements contained in the specimen. Electrons scattering with bound electrons
transfer approximately half their kinetic energy, due to the equal mass, creating
so-called secondary electrons (SE). Analogous, these start their own cascade
of scattering events until they are reabsorbed, or exit the specimen, where
they can be detected. The creation of a secondary electron yields a vacancy
on the respective shell. Subsequently an electron from an outer shell jumps
down to the vacancy, thereby emitting a photon of respective energy, i.e. a
characteristic X-ray. The emission is isotropic, hence the likelihood of detecting
such X-rays depends on the relative proximity to the surface of the emission,
the composition and density of the material, as well as the detector position.
Other byproducts of the scattering events potentially escaping the specimen are
Auger electrons and visible light (cathodoluminescence). Furthermore, excited
electron hole pairs, absorbed electrons, Bremsstrahlung and eventually phonons
are the result of the incident beam. Note that a focused beam, as used in SEM
and STEM, induces a severe and highly localized energy and charge input. For
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that reason, particularly the focused beam, but even a spread out, so-called
parallel beam (TEM) can lead to non-reversible changes in the specimen, hence
beam damage.

The scattering events elucidated above are well described by the electron
in the classical picture of a particle, where (in-)elastic scattering describes loss
free (afflicted) scattering events. Whilst this description is of major relevance
to understand the concept of secondary signal generation, it omits the wave
character entirely. The latter is relevant, when coherence, the in-phase relation
of electron waves, is required. Imaging techniques, like holography, require
coherent electron waves as these are based on interference of partial beams.
Modern electron guns and aberration corrected optics fulfill these requirements.

3.2.2 Transmission Electron Microscopy

Electron transmission is inevitably linked to thin specimens [241]. The exact
threshold specimen thickness to maintain permeability is strongly correlated
to the energy of the incident beam. Modern TEMs typically work with up to
200 keV or 300 keV acceleration voltage, enabling clean imaging of specimen up
to a few 100 nm. However, high resolution transmission electron microscopy
(HRTEM), imaging down to the atomic length scale, routinely requires thick-
nesses of a few tens of nanometers, sometimes even down to solely a few atomic
layers [248, 249].

Due to the design of the microscope, which includes optical components
below the specimen holder, only transmitted beams scattered at low angles
versus the direct beam can be collected and subsequently detected in the TEM.
The actual detectors range from a fluorescent viewing screen to semiconductor,
scintillator-photomultiplier, or charge-coupled device (CCD) based quadrant,
sectioned, respectively pixelated, setups. Modern TEMs often have multiple
types of detectors, and additional specific ones for analytical work.

A classical TEM image is obtained with one quasi parallel beam illuminating
the sample, while the detector collects the resulting laterally resolved electron
density distribution of the transmitted beams. These comprise information
about crystal structure, defects and strain. Alternatively, the system can be
used as scanning transmission electron microscope (STEM), where the beam
is focused in a small spot, the probe, which is rastered across the specimen. At
each raster point, the deflection of the transmitted beams is imaged. Either case
is described by an amplitude image, as the observable is the spatially resolved
intensity of the electrons on the detector plane. On a technical side note, here,
amplitude contrast, comprises thickness contrast and contrast attributed to
scattered electrons, which due to the induced path difference necessarily also
includes phase information.

In contrast, imaging of the intrinsic magnetic structure of the specimen
requires phase-contrast based imaging techniques. To obtain such contrast,
two or more coherent beams are required. Superposition of a two beam system
yields the intensity [250],

I = A2 +B2 + 2AB cos(φ), (3.9)

which is defined by the amplitudes, A and B, of the the two individual beams
and a phase sensitive modulation. Here, φ describes the relative phase mis-
match of the two beams. The image contains contrast analogous to a classical
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amplitude image, from the first two summands, and the phase-contrast as a
superimposed perturbation.

Before elucidating the three common imaging techniques used, the effect
of the intrinsic magnetization on the beam has to be considered. The Lorentz
force [250, 251],

FL = e(E + v ×B), (3.10)

which describes the effects of an electric field, E, neglected in the consideration
going forward, and the magnetic induction B, stemming from the magnetiza-
tion, on a single electron. Since, the velocity of the electron v is almost parallel
to the optical axis, that is the z axis, the cross product yields no force, if the
magnetization is parallel as well. Hence, for the standard specimen orienta-
tion, a laterally extended thin lamella in the xy plane, the electron beam is
only perturbed by in-plane magnetized areas of the sample. In general, the
TEM cannot image any magnetic structures magnetized along the optical axis,
only those magnetized perpendicular. However, projecting the magnetization
onto the xy plane in a series of images, with the sample gradually tilted up
to 90◦, allows full reconstruction of the intrinsic magnetization, via complex
algorithms processing the tilt stack of images.

Additionally, a major concern when imaging the magnetic texture of a
specimen is to actually image an unperturbed state. As mentioned electrons
are focused using magnetic lenses and the objective lens, leaving a large enough
gap for the specimen holder between the pole pieces, is a particularly strong
one. The emergent field is typically up to 2T, hence it cannot be used when
imaging the virgin state of a sample. Fortunately, when needed, it allows in-situ
application of magnetic field parallel to the optical axis in the TEM.

Lorentz transmission electron microscopy

LTEM, is an imaging technique, where the sample is uniformly illuminated by
a single almost parallel incident beam. As a result, the laterally spaced out
intensity is uniform above the specimen. The in-plane component of the magne-
tization (assuming according specimen orientation) results in locally deflected
beams due to the Lorentz force, as illustrated in figure 3.8a [241, 251, 252].
With the assumption of the incident beam being coherent, superposition of
an unperturbed and a deflected beam yields a detected intensity according to
equation (3.9), i.e. phase-contrast. In order to make the phase contrast visible
the TEM has to be used in Fresnel mode, that is in slight defocus. Overfocus
(underfocus) technically describe an imaging condition, where the image plane
lies above (below) the detector. Peculiarly, when switching from over to under
focus, the contrast is reversed and it scales with the defocus. This scaling is
exploited when using transport of intensity equation (TIE) based reconstruc-
tion of the magnetization [253]. A defocus stack of images, typically three,
an in-, over and underfocused one of known defocus, are processed. Assuming
linear scaling of the lateral intensity shift with the defocus, the local in-plane
inductance required to yield the experimentally observed changes in the image
contrast, can be calculated.

The resulting LTEM images are regular bright field images, that are inten-
sity maps of the electron density, in varying defocii to maximize the magnetic
contrast while maintaining reasonable levels of Fresnel fringing at thickness
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Figure 3.8: Overview of magnetic TEM modes. a, Fresnel mode LTEM.
In focus, the image is uniformly exposed, whereas over- underfocused images
yield intensity contrast. Note, the darker areas in the schematic correspond to
increased electron density, i.e. bright regions in the actual image. b, off axis
electron holography, using a biprism (red) to superimpose the reference beam
(unperturbed, left) and the sampling partial beam (right). c, schematic setup
of a differential phase contrast (DPC) scan in STEM mode. (De-)scan coils are
used to (de-)raster the beam. The shift of the illuminated area on the detector
is tracked for each spot. Panel a recreated from [252], panel c recreated from
[251].

variations and grain boundaries. TIE reconstructed images are typically rep-
resented as phase images or false color plots, where the in-plane orientation of
the induction is encoded in color and the magnitude of the in-plane component
by the brightness. The major drawbacks of LTEM are, the complex deconvolu-
tion of phase contrast of magnetic origin and regular, e.g. topography induced,
Fresnel contrast, as well as the non-quantitative nature when determining the
size of objects. The latter is attributed to the assumptions made in TIE re-
construction and the out-of-focus imaging. The advantage is the quick image
acquisition, usually not longer than a few seconds for clean images. For some
specimen it is even in the several millisecond range, allowing live observation
of domain morphology under stimuli like applied field. Live observation is lim-
ited to the (over-) underfocused bright field images, as TIE reconstruction is
a complex task requiring precise and consistent image alignment. In this work
LTEM refers only to the specific technique Fresnel mode LTEM.

Electron holography

Off axis electron holography is used to overcome the major drawbacks of Fresnel
mode LTEM, which are inherently linked to the mandatory out-of-focus imag-
ing. A hologram is obtained by superposition of an imaging and a reference
beam [241, 251]. In the TEM this is realized by a biprism, which is essentially
a very narrow diameter (<1 µm) positively charged wire, placed in the optical
axis. The biprism is placed in the beam in a way that it superimposes the
two partial beams, as depicted in figure 3.8b. One partial beam, which should
account for about half the overall incident beam, serves as the unperturbed
reference beam. The other one, illuminates the specimen. The resulting holo-
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gram contains the bright field image overlayed by a periodic structure, which
contains the phase information. Simply outlined, using fast Fourier transfor-
mation (FFT) the image is transformed. The resulting center peak, containing
the bright field image, and the characteristic side peak, containing the phase
image, are cropped out and individually retransformed. The thereby filtered
out phase image can subsequently be processed analogous to the TIE recon-
structed phase image to obtain a false color in-plane inductance map.

Electron holography is imaged in focus, hence eliminating all undesired Fres-
nel contrast and allowing quantitative analysis of the size of magnetic nanos-
tructures and domains. Properly calibrated imaging, even allows to eliminate
electrostatic contributions from the hologram entirely and thus quantitative
analysis of the observed induction. Besides an increased setup time of the ex-
periment due to the alignment of the biprism, individual image acquisition is
of comparable time scales to LTEM for clean imaging. Extracting information
from the hologram is a more complex task, and thus the technique is not viable
for live observations.

Differential phase contrast imaging

Differential phase contrast imaging (DPC) is one more technique, which is
established for the study of magnetic samples [251]. In contrast to holography
and LTEM, it is a STEM based technique. The idea lies in exploiting the local
deflection of the probe, i.e. the focused beam, due to the Lorentz force as well.
In the STEM setup, shown in figure 3.8c, the scan coils displace the probe
laterally point by point onto the specimen. Below the specimen the previously
induces displacement is reversed by the de-scan coils, yielding a stationary spot
of controllable size on the detector. The presence of any magnetization in the
specimen results in an additional deflection on the probe, which is not corrected
for. Hence, from the shift of the spot on the detector the magnetization can
be calculated.

From the lateral, that is two dimensional, shift of the spot, the two in-plane
components of the magnetization can be reconstructed directly. Usually these
are plotted individual or analogous to the other techniques in false color images.
DPC is also sensitive to beam deflection of non-magnetic origin, e.g. topog-
raphy or strain. Hence, interpretation of such images, should always include
a reference image of non-magnetic contrast. DPC excels at high resolution
imaging of magnetic textures down to sub nanometer spatial resolution [254].
However, the overall acquisition time of an image is drastically increased, as
the detection per pixel is on the same time scale as acquiring a full LTEM
image.

3.2.3 Scanning Electron Microscopy

In the SEM sample illumination works similar to the STEM, where the beam
is focused on the surface of the specimen and scanner coils displace the beam
along the rastered path as desired [243]. Regardless of sample thickness, any
sample can in principle be studied in the SEM. However, as no electrons are
transmitted, the energy of the beam, as well as the charge are locally dis-
charged into the sample. Hence insulating materials, generally incapable of
dissipating the energy and implanted charge, are a lot more challenging to
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image. Commercially available SEMs today typically allow for beam energies

Figure 3.9: Scanning Electron Microscope SEM Reproduced with per-
mission from [86].

up to 30 keV. On the lower end, the limit is in the range of a few hundred
electron volts. In figure 3.9, the classic design principle of a SEM is depicted.
The detectors are located above the stage on the sides of the chamber, as well
as in the objective lens. Most commonly SEs are used to obtain an image
in the SEM, where the contrast is revealing the topography of the specimen.
Bright areas correspond to edges or tilted surfaces, where the relative number
of secondary electrons escaping the material is larger. The actual detectors are
scintillator-photomultiplier, or CCD based, and effectively count the number of
electrons detected per pixel dwell time. The major advantage of a SEM com-
pared to other techniques lies in the ease and variability of the magnification.
Starting from approx. M = 25, commonly denoted 25x, which is roughly in
the range generic optical microscopes allow, within seconds the magnification
can be raised to several 1000x. The resolution limit of modern commercially
available SEMs reaches the sub nanometer scale (≈ 0.5 nm).

Energy dispersive X-ray analysis

Besides electron detection, the SEM allows analytic spectroscopy on the mi-
croscopic scale [243]. One type, routinely used throughout this work to ensure
sample quality and consistency, is EDX. Scattering events lead to the emission
of characteristic X-rays, as described in detail above. Hence, if the energy of the
incident beam, which is an ionizing beam, is sufficient to free up tightly bound
inner-shell electrons, these characteristic X-rays are a regularly occurring by-
product. Furthermore, they are characteristic, i.e. the energy of the emitted
radiation describes one particular transition in one particular atom. Hence, by
detecting the energy spectrum and quantity of the emitted radiation, one can
assess the elements these originate from.

In practice EDX is a very fast technique, if coarse confirmation of stoi-
chiometry (±3%) is sufficient. Exact analysis of the stoichiometry is rather
complex and susceptible to errors. Such detailed analysis is beyond the scope
of this work.
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Focused Ion Beam

Another type of particle beam based system is the focused ion beam (FIB),
which works similar to the SEM [246, 247]. It offers advanced functionality
in milling, material deposition, and implantation, beyond analogous imaging
capabilities to the SEM. In contrast to the SEM, the FIB beam consists of
ions instead of electrons. For the optical components this has two major im-
plications. The beam is created in a gun, which comprises a liquid-metal ion
source, and it is focused with electrostatic field-based lenses. When hitting the
specimen, the ions can trigger the emission of SE as well, hence the beam can
be used to image analogous to the SEM. The major difference to the electron-
based technique is that the ion beam is inherently destructive. Besides SE, the
ion beam also triggers the emission of secondary ions, i.e. effectively sputters
away the specimen, and implants incident ions up to a few nanometers below
the surface. An illustrative overview of these processes is given in figure 3.10.

Figure 3.10: Focused Ion Beam (FIB) sample interaction Reproduced
with permission from [86].

Today gallium ions (Ga+) are established as the industry standard, but sev-
eral nobel gas based systems are available as well. The advantages of gallium
are, the easy manageability, due to the low melting point, and the intermediate
weight. Since all scattering based interactions depend on the ratio of masses in-
volved, very light ions are almost incapable of sputtering heavy atoms, whereas
heavy accelerated ions cause severe sputtering damage on substrates containing
light atoms. Gallium enables precise milling of most materials with tolerable
damage. The ions are accelerated with up to 30 kV resulting in an amorphous
damage layer at the surface, which is approximated to be about 1 nm/kV.

Individually the FIB is a sophisticated tool for milling, which is made even
more powerful when combined with a SEM in a single instrument. The FIB-
SEM, e.g. DualBeam or CrossBeam systems, combines a FIB and a SEM
column attached to one chamber and stage for alternating or parallel in-situ
use. Thus, the FIB can be optimized for ideal milling capabilities, enabling
complex nano-structuring, while the SEM is used for damage free imaging.
Furthermore, the capabilities can be extended by additional use of a gas injec-
tion system (GIS), which allows local deposition of a vast variety of materials,
including conducting, e.g. platinum (Pt), aluminum (Al), tungsten (W), gold
(Au), carbon (C) and insulating options, like silicon dioxide (SiO2). Deposited
materials are rather impure, due the organometallic compounds in the precur-
sor, which are required to make them gaseous in the first place. Additionally,
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the FIB-SEM chamber is typically equipped with a micro manipulator, i.e.
a piezo-driven microprobe, which can be used for in-situ physical manipula-
tion. Combined, these components allow complex processes, such as lift-out of
nanofabricated structures. Where, a thin lamella is milled out from the bulk
specimen, welded to the manipulator and lifted out. Subsequently, the lamella
is welded to a TEM grid for further thinning, or placed on a substrate for AFM
study.

3.3 Experimental Equipment

Throughout this work several microscopes have been used for different magnetic
characterizations and preparation techniques. In the following the instruments
will be introduced very briefly. These are:

AFM: attoAFM I by attocube (Wittenstein Group),

AFM: Cypher ES Environmental AFM by Oxford Instruments (Asy-
lum Research),

AFM: NTEGRA AFM by NT-MDT (Spectrum Instruments),

FIB-SEM: Gemini 2 Crossbeam 550 by Zeiss,

FIB-SEM: Helios G4 UX DualBeam FIB by ThermoFisher Scientific (for-
merly FEI),

FIB-SEM: FEI Helios NanoLab DualBeam FIB by ThermoFisher Scien-
tific (formerly FEI),

TEM: JEM-ARM200F / NeoARM by Jeol,

TEM: JEM-2100F by Jeol,

TEM: FEI Titan G2 60-300 by ThermoFisher Scientific (formerly
FEI).

All AFMs are capable of MFM and further advanced scanning probe tech-
niques. The Cypher, as well as the NT-MDT system, both located at NTNU,
are used exclusively at room temperature. They are fully damped table top
systems, additionally setup on an optical bench each, equipped with a four-
quadrant diode for the signal read out. Hence, they yield extremely clean
images at room temperature.

The attocube attoAFM I is designed as a very compact system, which fits
inside a standardized 2-inch vacuum tube, that can be inserted in a cryostat,
e.g. in our system equipped with a 2-2-5T magnet. The AFM is operated in
a temperature range from 1.3K to 300K and in-situ vector field is applied up
to 2T. The closed loop option allows nanometric precision for the tip position
during operation.

All magnetic images are recorded with either of the three systems listed
above, employing the dual or single pass techniques described in section 3.1.2.
For the measurements one of the following tips by NANOSENSORS is used:
PPP-MFMR (standard probe), SSS-MFMR (smaller tip radius), PPP-LM-
MFMR (low moment) and SSS-QMFMR (high vacuum), based on necessity.

Both DualBeam FIB-SEMs, from NTNU Nanolab, are used to prepare
lamellae for AFM studies. Besides AFM specimen preparation, the Crossbeam
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system is additionally used extensively for TEM preparation, as well as EDX
analysis. Within the work for this projects the crossbeam was retrofitted with
an additional rotation axis of the micro manipulator and the stage. Thereby in-
situ specimen rotations including and exceeding 90◦ were enabled, facilitating
advanced specimen preparations and nano-patterning.

Fresnel mode LTEM and DPC images of magnetic textures are measured
on the Jeol TEMs. Electron holography measurements are conducted with the
FEI Titan ”Holo” system at the Ernst Ruska-Centre (ER-C), Jülich.

Concomitant micromagnetic simulations were performed at the Helmholtz
Zentrum Dresden Rossendorf. Additional micromagnetic simulations were cal-
culated at NTNU.

3.4 Sample Preparation

All characterized samples were provided by Dr. V. Tsurkan, Dr. L. Prodan
and Dr. M. Kassem at the University of Augsburg. Single crystals have been
grown by the chemical transport reactions method. As starting material for
the growth, the preliminary synthesized polycrystalline powder has been used,
which had been prepared by solid state reactions from the respective high-
purity elements. Iodine has been utilized as the transport agent in the single
crystal growth.

Individual crystals are selected for microscopic study, once the proper sto-
ichiometry of sample badges has been confirmed and their macroscopic mag-
netic characterization is completed. Subsequently, the surfaces of the crystals
are inspected via SEM. Furthermore, individual crystals are analyzed by EDX.

For TEM, single crystals are loaded in the FIB-SEM, where lamellae of
desired orientation are cut and lifted out, following cross sectional or plane-
view preparation procedure. Mounted to a TEM half-grid, they are thinned
and polished by the ion beam to the desired final shape. Subsequently, the half
grids are mounted in the TEM holder and directly inserted into the microscope.
Alternatively, the polished lamellae, i.e. nanostructures, are placed flat on a
substrate for AFM measurements. More details on lamellae preparation via
FIB-SEM will be given in section 5.1.

Via AFM/MFM as grown facets of desired orientation, respectively, lapped
and polished surfaces of specimen are investigated. The crystals are mounted
on specimen carrier chips, which may include electrodes for optional in-situ
electrical biasing. Subsequently, specimens, except FIB prepared nanostruc-
tures, are thoroughly cleaned following a protocol which involves high purity
isopropanol, acetone and methanol applied consecutively by mull and dust free
optical cleaning wipes, before mounting them in the AFM.
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Target Material

Fe3Sn2

Since the 1940s Fe-Sn has been investigated focusing on the rich phase diagram
of stable compounds of varying stoichiometry and their magnetic properties
[56, 57]. Recently, one phase - out of the plethora of interesting magnetic com-
positions - Fe3Sn2 has been in the scientific focus due to the observation of
stable skyrmions at room temperature [52]. This specific composition crystal-
lizes in the rhombohedral space group R3m, with a tripled hexagonal unit cell.
The lattice parameters are a, b = 5.3145 Å and c = 19.7025 Å. The centrosym-
metric crystal structure consists of offset kagome bilayers. Kagome lattices are
two-dimensional networks of corner-sharing triangles, as depicted in the bot-
tom left of figure 4.1a. Fe occupies the sites of the kagome lattice, whereas
Sn fills the hexagonal vacancies. Each kagome bilayer, see the upper frame, is
separated by a Sn spacing layer. The relative orientation of the latter is shown
on the bottom right. The unit cell contains 6 Fe3Sn kagome layers with a total
of 18 Fe ions [59, 255].

Beyond the scope of what is primarily relevant for this work, the kagome-
based system has been investigated for a vast variety of exotic properties. The
itinerant system exhibits spin frustration [59] and can host numerous magnetic
phenomena due to the competition of multiple magnetic interactions, includ-
ing a low-temperature spin glass phase (below 80K) and the anomalous Hall
effect (AHE), that is the emergence of a large hall resistivity, which cannot be
explained by classical transport theory. The emergence of the AHE is related
to the Berry Phase, skew-scattering and side-jump scattering [59] and was ex-
tensively studied [59, 60, 257, 258]. Angle-resolved photoemission spectroscopy
(ARPES) revealed massive Dirac fermions, which were linked to the AHE [61].

Early characterization of Fe3Sn2, analogous to many other Fe-Sn com-
pounds, focused on the magnetic properties. These properties lay the foun-
dation for the peculiar domain structures investigated throughout this work.
Mösbauer spectroscopy and magnetometry studies were performed across a
broad temperature range [58, 259–262]. These studies concluded a mean mag-
netic moment of approximately 2µB/Fe at low temperatures and a Curie tem-
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Figure 4.1: Fe3Sn2 crystal structure and magnetic hysteresis. a,
crystal structure of Fe3Sn2, including the orientation of the crystallographic
axes. Lower illustrations show the FeSn kagome lattice (left) and the relative
orientation of the Sn honeycomb lattice in the spacer layers (right). b, magnetic
hysteresis curves for B ∥ c at room temperature (yellow) and 2K (black).
The inset depicts the temperature dependence of the saturation magnetization.
Reproduced with permission from [86] based on [61, 256].

perature of TC = 640K. Furthermore, the majority of spins were found to
align along the easy-axis, which is the c axis, above 250K, whereas below, the
system undergoes a transition to an easy-plane (ab plane) configuration. Fig-
ure 4.1a illustrates the relative orientations of the axes. The low temperature
spin reorientation was studied in depth, revealing that the gradual rotation
is not associated with a rotation of the easy-axis, but more accurately repre-
sented by the coexistence of the easy-axis and easy-plane orientation during a
first order phase transition [62]. This transition was found to occur at around
120K using a superconducting quantum interference device (SQUID), and was
subsequently directly observed via MFM [263]. Furthermore, the magnetic
properties of Fe3Sn2 are linked to the itinerant 3d electrons of the Fe atoms
[60]. Hysteresis measurements, as depicted in figure 4.1b, show linear behavior
up to the saturation for room temperature, as well as 2K. Due to the lack of
coercivity, Fe3Sn2 is a soft ferromagnet. Additionally, the weak temperature
dependence of the saturation value is corroborated by the inset.

A numerical study of spin frustration in kagome crystal systems, like Fe3Sn2,
predicted stable skyrmions at room temperature [264], which were first ob-
served in 2017 by Hou et al. [52]. In their work, experimental observations by
LTEM are supplemented by micromagnetic simulations. They report on the
occurrence of stripe domain patterns, as well as both type I (skyrmionic) and
type II (topologically trivial) bubbles in the material. Furthermore, they at-
tribute the stability of individual domains to the magnetocrystalline anisotropy
and implicitly identified the material as an intermediate Q system, see equa-
tion (2.52). Based on bulk magnetoresistance and susceptibility data, the phase
diagram, shown in figure 4.2a, is proposed. Figure 4.2b, illustrates the char-
acteristic stripe patterns in zero field, observed via LTEM. Applying external
magnetif field of 300mT, B ∥ c, the system exhibits bubble domains, as shown
in figure 4.2c. Figure 4.2d-g, illustrate the field evolution of a single bubble
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domain transitioning from type II to type I. The corresponding TIE recon-
structed induction maps are shown in figure 4.2h-k. Figure 4.2d and h depict
the topologically trivial type II bubble, which exhibits two wall segments of op-
posite helicities. Whereas the non-trivial bubble domain shown in figure 4.2g
and k, constitutes of one continuous domain wall analogous to a skyrmion.

Figure 4.2: Phase diagram and observation of bubbles in Fe3Sn2. a,
temperature, T , and magnetic field, H ∥ c, dependent phase diagram. b, bright
field LTEM image of a Fe3Sn2 lamella at room temperature and in zero field
exhibiting stripe domains. The inset shows the intensity along a line section.
c, analogous image in field (300mT), revealing magnetic bubbles. d-g, bright
field LTEM images of four different magnetic bubbles of type II (d, e) and type
I (f, g). h-k, corresponding TIE images, where the in-plane magnetization is
encoded according to the color wheel in panel h and emphasized by the white
arrows. Reproduced with permission from [86] based on [52, 53].

Further studies by Hou et al. revealed intriguing properties of Fe3Sn2
[53, 265, 266]. Geometrical confinement can stabilize type I over type II bub-
bles and drastically decrease the required external magnetic fields by an order
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of magnitude. Thus, bringing temperature and field values closer to values
required for potential applications [265]. Interestingly, early results of current-
induced dynamics experiments reveal helicity reversal by spin transfer torque
[266].
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Results and Discussion

5.1 Towards Technological Relevant Functional Objects

Modern digital infrastructure demands miniaturization of all components to
the nano-scale [267]. Magnetic storage media, i.e. data encoded in magnetic
domains, have been the key technology of high capacity memory for decades.
However, the miniaturization of individual domains beyond a limit makes these
domains prone to random undesired switching. This problem could be solved
by using topologically protected spin textures as the bits of information. Hence,
model systems like Fe3Sn2, which exhibit topologically protected domains even
above room temperature, are ideal candidates to address this problem. Such in-
sights gained on model systems are relevant for the design and material choices
of potential future applications.

Fe3Sn2 single-crystalline samples grow in the shape of hexagonal laterally
extended sheets in the ab plane of up to several millimeters. The thickness
along the crystallographic c axis ranges from 20-40 µm [54]. Due to their large
dimensions, the as-grown single-crystalline samples do not serve as good model
systems for micron- to nano-scale devices, where limited sample size is required
to enforce constraints on the magnetic texture. Hence, to obtain control over
the magnetic texture, geometrical constraints were introduced. Therefore, for
the present work, a series of lamellae were prepared via FIB-SEM, allowing
subsequent studies of magnetic textures via MFM and LTEM. Experimental
details of the methods can be found in sections 3.1.2, 3.2.2, and 3.2.3.

5.1.1 Plane-view FIB-SEM Preparation

Here, ab plane lamellae are studied, therefore the PMA is expected to stabilize
an out-of-plane domain configuration. Due to the layered structure of Fe3Sn2,
the as-grown single crystals regularly exhibit severe delamination at the edges.
Thus, the preparation of ab plane lamellae from an edge, following established
procedures for cross-sectional preparation is an unsuitable approach. Instead,
plane-view lamellae are prepared. First, the single crystal is mounted on a SEM
stub, either using conductive carbon tape or silver paste and loaded into the
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FIB-SEM. Once a suitable region is determined, a large trench is coarsely milled
with the FIB. An ion beam acceleration voltage of 30 kV and beam currents
ranging from 30-100 nA, depending on the required size, are used. This initial
trench is angled versus the ab surface of the Fe3Sn2 single crystal. Subsequently,
the stage is rotated by 180◦ and a similar trench is cut so that both trenches
meet under the lamella bridge. The results of these initial steps are shown in
figure 5.1a. The best compromise between FIB cutting efficiency and obtaining
the largest possible triangular prism-shaped volume is obtained for trenches
cut at approximately 45◦ with respect to the ab surface. Finally, a trapezoidal
shaped cross-sectional cut, angled 90◦ to the ab surface and the orientation of
the trenches is used to expose one end of the prism-shaped volume. Following
coarse milling, the exposed volume is cleaned up by cross-sectional cuts at 3 nA
beam current of matching angles yielding the exposed volume depicted in figure
5.1a. Note, matching angles to obtain plane parallel cuts to prior cuts always

Figure 5.1: FIB-SEM based plane-view lamella preparation. a, isola-
tion of triangular prism-shaped volume. b, lift-out. c, transfer to TEM half
grid oriented horizontal. d, welding to TEM half grid. e, triangular prism-
shaped volume on TEM grid oriented vertical. f, early stage of thinning of
lamellae.

implies consideration of beam current specific additional tilt to compensate for
the beam profile. Once, the lamella is cut free from the volume on three sides,
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a perpendicular cut is made on the fourth side so that the lamella is only held
in place by a thin bridge.

Now that the lamella is cut free, with minimal redeposited material present,
it can be lifted onto the TEM half grid. To do this, the crystal is orientated
in a way that the ab plane is horizontal and the exposed volume is accessible
both by the FIB to cut and deposit material, as well as the micro-manipulator.
The latter is welded on the topside to the prism-shaped volume with ion beam
deposited platinum. Once a solid weld is confirmed, the remaining bridge is cut
by the FIB freeing up the triangular prism-shaped volume for lift-out, as shown
in figure 5.1b. The volume is then lifted out using the micro-manipulator and
transferred to a TEM half grid, see figure 5.1c. During lift-out, the micro-
manipulator is ideally solely retracted and extended along the radial axis. Any
lateral displacement, as well as any change in height, generally coincide with
adjusting the orientation of the manipulator in spherical coordinates, i.e. intro-
duce angular mismatch of the lamella. The TEM grid is mounted horizontal
in the FIB-SEM, matching the orientation of the prism-shaped volume, which
is welded to the latter, see figure 5.1d. Using the Kleindiek RoTip Shuttle,
which is an additional 360◦ free rotation axis on top of the sample stage the
TEM grid is mounted to, the TEM grid can be tilted upwards by 90◦ in-situ.
Furthermore, use of the tilt axis of the RoTip shuttles in combination with the
stage rotation allows to compensate for angular mismatch introduced during
lift-out and transfer. Figure 5.1e shows the desired orientation of the prism-
shaped volume, with the ab plane oriented in line with the SEM respectively
FIB beam. Using the FIB at gradually decreasing beam currents, 3 nA down to
a few tens of pA, the volume is finally thinned to a lamella of desired thickness.
An illustration of part of this process is given in figure 5.1f, where the thickness
is being reduced from both sides with a large beam current of 3 nA.

Following this plane-view lamellae preparation procedure, triangular prism
shaped volumes, see figure 5.2a, are isolated as the starting point for all lamellae
investigated within the scope of this thesis. From this common starting point,
subsequent steps differ, depending on how the magnetic textures will be imaged.
These alternative steps are described individually below.

Lamellae for TEM studies

This section continues from the common procedure, outlined above, to describe
the steps needed for TEM lamellae preparation. Lamellae remaining on the
TEM grid are thinned by applying cross-sectional plane parallel cuts of suc-
cessively decreasing beam current down to a few tens of pA. That means the
lamella is thinned layer by layer. In the case of the semi-metal Fe3Sn2, this pro-
cess generally does not require special compensation methods for beam drift.
However, the material is relatively soft and tends to curl, when its thickness
goes down below 100 nm. Furthermore, it is highly susceptible to curtaining.
Curtaining describes an obtained undulating cutting pattern, despite cutting
in a straight line. This is a particular problem as lamellae are thinned from a
previously cut surfaces, which may already exhibit curtains (see top surface of
the prism in figure 5.2a). To obtain precise lamellae, it is vital the prism-shaped
volume is carefully prepared with clean surfaces. Supporting structures in line
with the desired lateral size of the lamella have to be preserved. Alternatively,
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Figure 5.2: Preparation of lamellae for TEM and SPM. a, universal
starting point: triangular prism-shaped volume. b, fully prepared lamella for
TEM on half grid. c, thinned lamella for SPM. d, FIB cut landing zone on
substrate for SPM. e, lamella transferred to substrate. f, in-situ FIB patterned
lamella for SPM on substrate.

the thin region of the lamella can only be a window between thicker supporting
structures.

Deviating from classic plane parallel preparation, wedge-like lamellae are
obtained by milling at a small inclination. An example is shown in figure 5.2b,
where the left side is plane parallel with a thickness of approx. 200 nm followed
by a step-like reduction of the thickness to about 150 nm. On the right side, it
is wedged from full thickness at the top to below 50 nm at the bottom. Once the
target measures of the lamellae are reached, they are polished at 5 kV ion beam
acceleration voltage and 200 pA, respectively, 10 pA to reduce the damage layer
suffering from Ga implantation.

Lamellae for SPM studies

In principle, preparing lamellae for SPM follows the same thinning procedure,
but there are two additional caveats. First, such lamellae are required to be
even stronger, as they have to withstand another lift-out process including
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welding. Secondly, lamellae should be placed flat on the substrate without the
introduction of strain (unless intended). Hence, their backsides are required
to match the surfaces of the substrates. Due to these constraints, lamellae
prepared for SPM study are usually not thinned below 100 nm. Figure 5.2c
shows such a large lamella intended for SPM study with a target thickness of
about 600 nm.

A major difference between TEM and SPM lamella is the substrate they
are placed on: while for TEM specific grids are commercially available for the
SPM these are prepared in house. There are two challenges that arise not
experienced in the TEM: Firstly, electrostatic charging of the mm sized sub-
strate and subsequent improper grounding of the specimen. Secondly, finding
the ten-micron square lamella on a mm sized substrate. To prevent spurious
electrostatic forces, it is important to have the SPM tip and the sample back
electrode well-grounded to the same earth. To achieve this, a thin layer of
gold is deposited on the silicon wafer. Since the SPMs have limited maximum
scan ranges of a few tens of micro-meters and the lamellae are often effectively
undetectable on the substrate with the build-in optical microscopes, a FIB cut
pattern marking the landing zone for the lamellae is prepared on the coated
substrate. Figure 5.2d depicts one exemplary pattern, where the uncut path
from the right hand side ensures grounding to the back electrode. The pattern
is approximately 200 µm large and thus identifiable. Once the substrates have
been prepared and mounted in the FIB, the previously thinned lamellae are
oriented horizontally in the FIB-SEM by tilting the TEM grids back by 90◦.
Subsequently, the micro-manipulator is welded to the lamellae on the edge far
from the TEM grid posts and the lamellae are cut free on the other side. Then
the lamellae are lifted and placed in the center of the landing zone where they
are provisionally welded in placed. Next the micro-manipulator is cut off and
retracted, re-enabling free stage rotation, so the lamella can be firmly welded
into position, as depicted in figure 5.2e.

Welding the edges, as well as cutting off the micro-manipulator, inevitably
introduces undesired redeposition of material on the lamellae. To mitigate this
the surface facing up is subsequently polished with a low angle beam of 10 pA
and 5 kV. Note, an unpolished backside of such lamellae was found to have
no impact on the scan quality and is thus left unpolished. To maintain an
exact region of interest over several scans, e.g. when studying a temperature
evolution, it is often helpful to have an unique identifier on the surface of the
lamella. Figure 5.2f shows a possible layout of such, where a distinct pattern
is milled into the surface, yielding traceable topography signal.

In addition to the wedge-shaped lamellae used for TEM studies, which have
a maximum thickness dictated by electron transparency, wedge-shaped lamellae
for SPM studies were prepared in collaboration with E. Roede. Following the
plane-view preparation process, triangular prism-shaped volumes are extracted.
The original ab plane surfaces are polished and placed facing downwards on
the substrates. Note, the lamellae have to be placed close to the edge of the
substrates. Subsequently, the prisms are cut at an angle versus the base plane
from the apex yielding wedge-shaped lamellae. Finally, wedge-shaped lamellae
are polished as well.
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5.1.2 Advanced Lamella Geometries

In order to fully understand the magnetic textures exhibited by Fe3Sn2 the
introduction of geometrical confinement is one key parameter. In line with
the requirement to miniaturize the functional building blocks, the FIB-SEM
offers a unique flexibility for the fabrication of lamellae, which allow such stud-
ies. These lamellae can be cut to precise measures as cuboids or tapered,
yielding wedge-like gradual sloped specimen. Furthermore, the FIB-SEM in
combination with an additional free rotation axis allows to precisely shape any
pre-prepared lamella in the ab plane, hence effectively enabling 2D and 1D
confinement. These challenging sample preparation steps form an integral and
crucial part of my PhD research.

Beyond the reduction of the thickness of lamellae and tapering thereof, the
FIB-SEM is used to introduce lateral confinement, e.g. by reducing the width
of a lamella, effectively yielding a stripe, or an in-plane wedge. Such geome-
tries are prototypical for spintronics applications, e.g. race track memories
[86]. Their potential as future building blocks in spintronics applications is
explored in section 5.3. Three exemplary TEM lamellae are prepared, taking
into account different types of lateral and horizontal constraints, as well as the
thickness dependency.

Figure 5.3: Various FIB cut lamellae geometries. a, b, nested half ring.
c, d, Y-selector-collector.e, f, thickness grating.
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Nested half-ring lamella

Figure 5.3a and b illustrate the side and top view of a nested half-ring lamella,
respectively. The width of the larger outer half ring is almost 1µm at the ends
and tapers down to just above 500 nm at the narrowest point in the middle.
The width of smaller inner ring is tapered inverse, where the middle is the
widest at almost 1 µm and it narrows down to 700 nm at the edges, where the
rings are connected. A detailed overview of the dimensions is given in figure
B.1 in the appendix. To cut such complex patterns first a regular lamella of
desired thickness, here about 150 nm, is prepared. Using the RoTip shuttle the
lamella is then oriented horizontal, analog to the process for SPM lift out. Sub-
sequently, it is patterned via the FIB. Here, it is critical to limit the exposure
to the minimum necessary, as the perpendicular focused ion beam, is partic-
ularly prone to induce beam damage [268]. Furthermore, not all geometries
manufactured allow subsequent polishing along the ab plane.

Y-selector-collector lamella

Here the initial lamella is no longer a plane parallel one of constant thickness,
but a wedge. This has major implications during cutting with the perpen-
dicular focused ion beam, as the required dose to obtain a clean cut varies
with the lateral position of the exposed area. In the specific case shown in
figure 5.3c and d, the thickness is gradually reduced from 150 nm (left side) to
about 100 nm (right side). The geometry cut represents a Y-shaped selector,
respectively collector, where the wide arms on the left and right side break up
into narrower ones angled at 45◦. The narrow-split arms are connected on the
top and bottom, respectively. Thus, allowing study of the magnetic texture
along the whole thickness gradient in combination with the defined angular
mismatch. Detailed dimensions are given in figure B.2 in the appendix.

Grated lamella

A lamella exhibiting a grating like texture, as shown in figure 5.3e and f, is
prepared. Unlike the previous two examples, this lamella is not cut by the FIB
in a perpendicular orientation. Instead, analogous to the preparation of wedged
specimen for TEM, a slight inclination of less than 3◦ is used. Following the
preparation of a plane parallel lamella, a series of approximately 140 nm wide
trenches are cut in the lamella at the low tilt angle. As a result, these yield
thickness undulations, which gradually form defined steps of up to several tens
of nano-meters along one direction. Perpendicular to this direction the result is
an almost unperturbed thickness trailing along one edge, whereas the opposing
edge is broken up into several sections by the trenches. Distinct dimensions
are given in figure B.3 in the appendix.
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5.2 Imaging and Analysis of the Magnetic Texture of
Fe3Sn2

In the intermediate Q system Fe3Sn2 with Q ≈ 0.15, confer equation (2.52), the
uniaxial magnetic anisotropy at room temperature is along the crystallographic
c axis (Ku ∥ c). As a result, in ab plane lamellae, alternating ferromagnetic
domains pointing up and down along the c axis are expected. MFM probes the
gradient of the out-of-plane component of the stray field, making it an ideal
tool to image the expected spin textures of Fe3Sn2.

However, certain phenomena cannot be understood by the consideration of
the out-of-plane component alone. Such phenomena include discerning topo-
logically trivial and non-trivial bubble domains. For this matter, LTEM and
off-axis electron holography are employed. These TEM based techniques probe
the in-plane components of the magnetization making them particularly com-
plementary to the MFM approach. One limitation of these TEM based tech-
niques, however, is that they integrate the contrast along the optical axis, i.e.
through the specimen thickness.

To overcome the challenges of the individual techniques, and bring all the
data together in a holistic understanding, micromagnetic simulations are used.
These render the spatially resolved orientation of the magnetization of the
three-dimensional structure of magnetic objects. Subsequently, the obtained
contrast in techniques like LTEM can be simulated based on the obtained mod-
eled magnetic textures. Qualitative comparison of experimental and simulated
data, thus, allows to link the theoretical model of the magnetic textures to the
obtained data.

5.2.1 Bulk Specimen

Magnetic force microscopy, like all SPM based techniques, is a surface sensitive
technique, and does not provide information into the depth. A result of this
is that MFM is highly sensitive to changes in topography and it can be hard
to deconvolute magnetic contrast and topographic contrast, thus to obtain
clean images of the magnetic texture a flat surface is required. Conveniently,
Fe3Sn2 grows in the shape of laterally extended ab plane platelets, which are
the surfaces of interest to image the domain structure. Figure 5.4a depicts one
crystal in the as-grown state. Due to the hexagonal outline, the crystals can
be oriented easily. However, from the image of the optical microscope, figure
5.4a, defects on the surface are already observed.

Figure 5.4: Bulk Fe3Sn2 specimen. a, imaged by an optical microscope.
b, c, imaged via SEM.
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SEM and EDX analysis

Using the enhanced resolution of the SEM, the surface defects observed with
the optical microscope can be resolved into defects and growth terraces, as
depicted in figures 5.4b and c. Defects can either be attributed to mechanical
interference, e.g. traces of handling the crystal with tweezers, or are an inherent
artifact of the as-grown state. Examples for the latter are deposits of non-
stoichiometric material or pure elements. To ensure the quality of the crystals
investigated, a number of crystals of each growth batch are analyzed by EDX.
In table 5.1 the quantitative results obtained from the EDX analysis for three
crystals of the same growth batch denoted A1, A2 and A3 as well as two
additional ones from different batches denoted B1 and C1, respectively, are
listed. These results confirm proper stoichiometry of all the single crystals

Atom% A1 A2 A3 B1 C1
Fe 59.15% 59.09% 58.84% 58.99% 60.48%
Sn 40.85% 40.91% 41.16% 41.01% 39.52%

Table 5.1: EDX results for various Fe3Sn2 single crystals.

probed. Importantly, as the results deviate in the range of 1% from the target
distribution, i.e. well within the error margin of ±3% for EDX analysis (confer
3.2.3). Furthermore, samples within a single batch exhibit very consistent
results. Mapping the EDX counts of the probed area allows to clarify whether
residue and deposits on the surface are stoichiometric, i.e. twinned crystals or
defects.

Magnetic force microscopy analysis

High quality MFM images were obtained on polished surfaces of single crystals.
Despite the as-grown surfaces yielding sufficiently flat areas to study Fe3Sn2
via MFM, it is often impractical to scan such. The crystal depicted in 5.4b for
example, has terraces on the right side, where the thickness increases in the
micro-meter range. Such large height steps can not only be a source of error
due to erratic stray fields, when scanning in the vicinity but can ultimately
block access to the region of interest when scanning. Additionally, during
coarse repositioning of the sample, such steps can severely damage the tip or
break the cantilever. As such, to minimize the risk of tip damage and to avoid
spurious stray fields, the samples are lapped and polished.

Figure 5.5a shows a dual pass MFM image (procedure described in sec-
tion 3.1.2) of a 30×30 µm2 region recorded on a polished ab plane surface of
a bulk Fe3Sn2 single crystal. It shows a peculiar dendrite pattern of alternat-
ing domains pointing up and down along the c axis. Here, the color encodes
the locally resolved phase shift. The underlying superstructure of alternating
stripe-like domains along the vertical axis is superimposed by the formation of
dendrites. These dendrites are highly branched. The corresponding topography
depicted in figure 5.5b shows distinct mechanical defects in the form of hori-
zontal scratches. Additionally, individual particles can be seen. In the MFM
image these can be correlated to point defects, presumably due to tip sample
contact in the second pass. These are an artifact of the finite adjustment speed
of the height during the first pass, which can be mitigated and theoretically
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vanish with an infinity slow scan speed - which is experimentally impractical.
Figure 5.5c shows the MFM phase signal plotted for a 4µm line section across
a domain, as marked in panel a. Despite representing a line segment, across
two domain walls in between anti-parallel domains, the phase signal depicts
a smooth continuous behavior. These findings match the behavior expected

Figure 5.5: MFM on polished ab plane surface of bulk Fe3Sn2. a,
MFM image. b, corresponding topography. c, MFM phase profile across a
domain as marked in a.

for an intermediate Q material like Fe3Sn2 [64, 263, 269]: The superstructure,
that is the predominantly vertically oriented alternating pattern, is rooted in
the wide stripe domains within the volume of the bulk. Whereas at the sur-
face branching occurs to minimize the stray field. The latter yields the imaged
dendrite structure, which exists only in the surface region and exhibits local
perturbations where the crystal structure is impaired at the surface. Finally,
the gradual transition of the MFM signal in between neighboring anti-parallel
domains, due to the continuous gradual variation of the stray fields is consistent
with the emergence of Néel caps [64].

Although the MFM contrast of the image shown in figure 5.5a fits the
expectation for a bulk Fe3Sn2 single crystal, the proper origin of the presumable
magnetic contrast must always be ensured. In the case of MFM, this is easily
done by reversing the tip magnetization. Electrostatic contributions to the
image contrast yield unperturbed image contrast when the tip magnetization is
reversed, whereas the image contrast attributed to magnetic forces is inverted.
Following the convention illustrated in figure 5.6c, the tip is magnetized in
”north”, or ”south” orientation, i.e. in both cases sensitive to the out-of-plane
component of the magnetic stray field. MFM images of the same area, see
5.6a and b, imaged with opposing tip magnetization exhibit inverted contrast.
Hence, Figure 5.6 shows that the dendrite textures are of magnetic origin. The
deviating bright spot on the right side, is a topography feature used to align
the frames.

The magnetic contrast exhibited here for a 30×30 µm2 area, coincides with
previous observations. While figure 5.5 shows the generally expected struc-
ture, different crystals from the same batch show slightly different trends. For
instance, figure 5.6 shows a more developed maze-like texture and the super-
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imposed dendrites exhibit a reduced order of branching. Generally these ob-
servations are still in line with the expectations of an intermediate Q material
[64]. However, as the superstructure appears narrower, this implies narrower
domains in the bulk. This assumption is furthermore corroborated by the re-
duced order of branching. A reduced domain width in the bulk is known to
coincide with a reduced thickness of the sample according to equation (2.66).
Since these images and the data presented in figure 5.5a have been obtained on
two different crystals, according mismatch in thickness is likely. Irrespective
of the exact thicknesses of the individual bulk crystals, these results confirm a
strong codependency of the micromagnetic texture and the thickness. However,

Figure 5.6: Proof of magnetic origin of the image contrast. a, MFM
image with tip magnetized ”north”. b, MFM image with tip magnetized
”south”. c, schematic tip magnetization via a permanent magnet prior to
scanning. Schematic in c reproduced form [86].

whilst the superstructure, excluding the fine branching, hints the size of the
underlying stripe domains in the bulk, it is not sufficiently distinct to actually
quantify any correlations of the bulk stripe width wb and the sample thickness.
Additionally, MFM is a surface sensitive technique and complex reconstruction
of domain width via branching into the depth cannot be excluded by merely
quantifying the order or branching. Hence, detailed quantitative analysis of
the bulk stripe width is forgone at this point.

5.2.2 From Bulk Specimen to Lamellae

As observed above, the magnetic texture is affected by the thickness, even
in bulk samples. However, quantitative analysis of the thickness dependence
via MFM is limited to a thickness range, where the magnetic texture shows
unobscured stripe domains at the surface. This is known to be the case for
thicknesses in the range of tens to a few hundred nanometers, where stripe do-
mains were observed via LTEM before [52, 53]. Whereas domain branching, as
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shown in figure 5.7a, emerges for bulk specimen, where the thickness exceeds a
few tens of micro meters. Evidently, the upper thickness limit for unbranched
stripe domains lies in between. In this section, the transition from branched
to unobscured stripe domains is investigated. Subsequently, the thickness de-
pendence of the stripe domain width is qualitatively analyzed.

MFM on plane-view lamellae

As discussed in section 3.2.3, the FIB is an ideal tool to prepare specimen with
well-defined thickness along the c axis. Besides the already discussed prepara-
tion of lamellae to investigate functional objects (confer section 5.1.2), a 200 nm
thick lamella was prepared in collaboration with E. Roede and placed flat on
a gold covered substrate. This prime example, depicted in figure 5.7b, is used
to introduce some common features of magnetic textures in these thin struc-
tures. MFM imaging on the 4×4 µm2 area marked with a red square reveals
unobscured stripe domains arranged in a maze-like pattern, see figure 5.7d.
These stripe domains qualitatively reproduce the domain patterns observed
via LTEM in literature [52, 53].

Figure 5.7: MFM and SEM images of specimen of varying thickness.
a, MFM image of a bulk specimen. b, SEM image of a lamella placed on a
substrate for SPM analysis. c, MFM image of a specimen of thickness 2.7 µm.
d, MFM image of a specimen of thickness 200 nm.

For another lamella, precisely cut to a thickness of 2.7 µm, the obtained
MFM image is shown in figure 5.7c. Here, the color scale encodes the frequency
shift ∆fMFM of the resonance. For the presented case of ambient imaging
conditions, this color scale can be interpreted analogous to the phase-shift
∆ϕMFM. In the image, individual stripes can still be clearly distinguished, but
the domain walls separating these stripes show the characteristic undulating
structure for the onset of domain branching [64]. Hence, the upper thickness
limit for the study of unperturbed stripe domains is just below 2.7 µm.
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MFM on a wedge-shaped lamella

To quantify the relation between the thickness along the c direction and the
magnetic texture, a wedge-shaped lamella prepared in collaboration with E.
Roede is studied. Figure 5.8a shows a 3D rendering of the obtained topography
of the wedge-shaped lamella during the first pass of an MFM scan. In the
image, both the z axis and the color scale encode the height. Over the length
of 14.7 µm the thickness increases from 400 to 900 nm. Due to the profile
of the FIB beam the cut does not yield a linear but slightly curved height
profile. The corresponding MFM image is shown in figure 5.8b in an analogous

Figure 5.8: Spatially resolved loacal periodicity of stripe domains. a,
topography of wedge-like lamella. b, corresponding MFM signal. c, computed
local periodicity λMFM. For the lower part of the color bar the periodicity is
undefined.

3D representation. Here, the z axis and the color scale encode the phase shift.
The image shows a maze-like pattern of stripe domains. These are qualitatively
equivalent to the unobscured stripes. MFM images recorded with inverted
tip magnetization confirming the magnetic origin of these stripe domains are
presented in the appendix, see figure B.4. The MFM images recorded on the
wedge-like lamella indicate gradual widening of the observed stripe domains
from the thin end of the lamella to the thick end.

Kittel scaling of stripe domains

A MATLAB script was developed for the quantitative evaluation of the stripe
width in relation to the thickness. The script evaluates the local periodicity
λMFM(x, y) for each pixel, within a cropped region of interest, based on the
magnetic texture in its vicinity. In section D of the appendix, the script is
explained in detail.

The obtained periodicity λMFM is equivalent to two times the stripe width.
Figure 5.8c shows the 3D representation of the spatially resolved local period-
icity λMFM for the magnetic texture shown in panel b. The height and color
scale encode the periodicity in nano-meters, where the lowest values are unde-
fined, and set to zero artificially. Along the y axis a gradual increase of the
periodicity is visible, whereas the perturbations along the x axis are negligible.
Thus, the data confirms the assumption of gradual widening of the stripes with
increasing thickness.
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Figure 5.9: Quantitative analysis of domain width and thickness.
Plot of computed periodicity versus sample thickness for experimental data
and micromagnetic simulations. The inset highlights the correlation via the
3D rendering of the lamella colored with the MFM signal. It is placed to
coarsely align with the abscissa.

In order to properly correlate the computed periodicity data to the sample
thickness and evaluate the results, the thickness of the lamella for every pixel
is determined. The original topography image contains a large area of the
flat silicon substrate, which is not displayed in figure 5.8a. This area is used
to determine the plane background the wedge-like lamella rests on, which is
subtracted from the topography image. The resulting height map represents
the spatially resolved thickness t(x, y) for every pixel. The local periodicity
λMFM(x, y) is subsequently averaged for all pixels of equal thickness. Figure
5.9a shows the averaged computed local periodicity λMFM plotted versus the
thickness of the lamella (blue datapoints). Additionally, the data point rep-
resenting the periodicity calculated for the whole MFM image of the 200 nm
thick lamella, presented in figure 5.7d, is plotted. In the plot, the periodicity
is squared to linearize the Kittel scaling law, see equation (2.58), represented
by the red line. The experimental data agrees well with the fit confirming
Kittel scaling of the domain width in the thickness range below the onset of
branching. Furthermore, the results of micromagnetic simulations provided by
collaborator E. Lysne, depicted in figure C.1 in the appendix, are also plotted
as green data points in figure 5.8. The periodicity derived from these simula-
tions is scaled by a factor of 1.12 to match the scaling law of the experimental
data the best. Thus, Kittel scaling is not only experimentally observed, but
also corroborated by micromagnetic simulations.

5.2.3 Domain Morphology under Static Magnetic Field

Sample thickness, confirmed by the Kittel scaling behavior, already denotes
one tuning parameter for the magnetic texture. Here, the impact of static
magnetic field as a further tuning approach is studied. Figure 5.10 shows
the field dependence of the magnetization for a macroscopic single-crystalline
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sample at 300K with the magnetic field applied out-of-plane, i.e. parallel to
the c axis. In zero magnetic field, the sample has no remanent magnetization,
which agrees with the stripe domain pattern observed by MFM. Following a
linear increase, the magnetization saturates at 750mT to the value of 2µB per
Fe atom.

Evolution of magnetic texture in plane-view lamellae

The detailed evolution of the domain pattern is documented by a series of MFM
images recorded on a 450 nm thick Fe3Sn2 lamella at 300K, depicted as insets
in figure 5.10. From a remanent maze-like domain pattern a parallel stripe
pattern is obtained by a field-treatment process described in detail below. Ap-
plication of a modest field of 200mT fosters domains with magnetization along
the field to grow, which manifests in the respective stripe domains widening.
Domains with opposite magnetization shrink. This behavior is enhanced for
increasing magnetic field to 400mT, where additionally the first bubble do-
main is observed. Further increasing the field to 600mT yields a pure bubble
phase, before the system reaches saturation and all antiparallel domains are ex-
pelled entirely at higher fields. As indicated by the MFM images, this process
is reversible. In decreasing magnetic fields, first, the bubble domains reap-
pear below 600mT and subsequently stripe domains are formed. At 200mT
a maze-like pattern predominantly formed of stripe domains is formed, which
corresponds closely to the remanent state.

Figure 5.10: Response to static magnetic field. The graph shows the
M(H) virgin curve for Fe3Sn2 at 300K. The insets show MFM images recorded
over the same area at the respective fields at 300K, as well as the corresponding
topography image.

This evolution of the magnetic texture is further confirmed by the same
measurement at 200K, which is presented in Figure B.5 of the appendix. In
field steps of 50mT (100mT) the same evolution of domain morphology is ob-
served, corroborating the room temperature results. In 600mT, i.e. just below
saturation, a pure bubble phase is realized for both data sets. Since MFM is
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not sensitive to the in-plane component of the local magnetization, it is not
possible to determine, whether these are type I or II bubbles. From figures
5.7 and 5.8 the quasi random maze-like patterns are identified as the ground
state or remanent state. While the domain patterns observed in zero field be-
fore and after the field treatment look very similar, the exact positions of the
individual domain walls differ vastly for the remanent state before and after
field is applied. This shows no substantial pinning occurs in the Fe3Sn2 lamel-
lae. Furthermore, this proves fabrication of lamellae via FIB-SEM, inevitably
linked to Ga implantation and other defects, does not perturb the magnetic
texture severely.

Evolution of the magnetic texture in the wedge-shaped lamella

The combined effect of magnetic field and variable sample thickness is studied
in figure 5.11a-e, which show MFM images of a wedge-shaped lamella in static
magnetic field. In all images the lamella is oriented in a way, that the thin end
is left and the thicker one points to the right. Up to modest fields of 250mT,
stripe domains exhibiting Kittel scaling are observed similar to zero field. Ad-
ditionally for fields exceeding 200mT, bubble domains begin to form predomi-
nantly at the edges of the lamella. Further increasing the field to 380mT boosts
this behavior with an increased number of bubble domains emerging. Finally
at 450mT the majority of domains are bubbles with several residual stripe
domains agglomerated predominantly in the center of the lamella. The bubble

Figure 5.11: MFM of the wedge-shaped lamella in field. a-e, MFM
images in various fields. f, schematic of the applied magnetic field over time.

domains also follow Kittel scaling analogous to the stripes. The aforementioned
scripted evaluations fail for bubble domains, thus the diameter of individual
bubbles was evaluated manually by applying three cross-sections to each and
averaging the obtained values. Figure B.6 in the appendix shows the selection
of five representative bubbles for three thicknesses and the corresponding plot
of diameter versus thickness confirming the scaling behavior.

For the study of the wedge-shaped lamella, a room-temperature MFM with
exchangeable static permanent magnets was used. The applied field is schemat-
ically illustrated in figure 5.11f. Thus, the study on the wedge-shaped must not
be confused with the study of the morphology in continuously driven magnetic
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fields. Peculiarly, the stripe domains in modest fields exhibit a predominant
orientation. Hence, the question arises, if the sloped geometry can be ruled out
as a reason for the orientation due to this approach. In 130mT the stripes are
oriented perpendicular to the slope, whereas for 250mT and 380mT the ori-
entation follows the slope. As the residual stripe domains in 450mT have the
same perpendicular orientation, an inherent link to the slope seems unlikely.
This infers that the orientation could be an artifact from placing the perma-
nent magnet under the sample, which - unless moving from infinity - necessarily
coincides with the application of oblique fields (B ∦ c). This serendipitous ob-
servation suggest oblique magnetic fields could be used to control the stripe
directions, a hypothesis that is investigated in the next section.

Magnetic texture in oblique magnetic fields

So far, only out-of-plane fields have been deliberately applied. In the following,
the impact of oblique magnetic fields on the magnetic texture is investigated
in order to prove these can be used to align the stripe domains. To test this
hypothesis a series of MFM images of remanent states is collected. Rema-
nent states are imaged because these resemble the previous observations of the
oblique field being applied prior to scanning. Furthermore, applying oblique

Figure 5.12: MFM images in oblique magnetic fields. a, b, d-i, in
zero field after field treatment in different orientations, as indicated in k. c,
MFM image of domain configuration in 600mT. j, corresponding topography.
k, schematic of the applied magnetic field over time, for panels a to i. MFM
images recorded at 200K.

fields during scanning yields an oblique tip magnetization that can lead to
non-trivial MFM contrast. To overcome the latter problem, the in-plane com-
ponent of the field is kept weak relative to the out-of-plane component and
it is turned off prior to scanning to ensure the proper orientation of the tip
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magnetization. Figure 5.12a-i show the MFM image series recorded at 200K.
The corresponding topography for all images is shown in figure 5.12j, where
the relative orientations for the applied field are denoted as well. From the
maze-like remanent state, presented in figure 5.12a, an ordered state aligned
vertical (y axis) is obtained by applying external field with an in-plane com-
ponent along the y direction. Application of 600mT out-of-plane field, see
figure 5.12c, reveals a pure bubble state and subsequently, a remanent maze-
like state, confer figure 5.12d, is observed. Applying the in-plane component
of the field along (Bx,By) = (−1, 1) · Bip yields stripe domains following this
diagonal orientation, see figure 5.12e, which can be reset to a maze-like pattern
afterwards, see figure 5.12f, analogous to the previous step. Varying the in-
plane component in the following steps to (1, 1) ·Bip, figure 5.12g, (1, 0) ·Bip,
figure 5.12h, and (2, 1) · Bip, figure 5.12i, remanent stripe patterns oriented
along the image diagonal, horizontal and angled are obtained. It is evident
that the orientation of the stripe pattern follows the orientation of the previ-
ously applied in-plane field. However, since MFM is limited to the study of
the out-of-plane component of the domains, it is not the optimal technique to
discern this behavior.

Bright-field LTEM studies of the application of oblique magnetic
fields

LTEM is a technique sensitive to the in-plane magnetization. Magnetic fields
along the optical axis yield no Lorentz force on the electrons and thus no per-
turbation to the uniformly distributed intensity, i.e. they are not imaged. In
a simple picture, magnetization oriented perpendicular to the optical axis of
the microscope perturbs the electrons locally resulting in a shift of the corre-
sponding intensity. In the resulting bright field (BF) image, this precipitates a
dark spot for reduced and a bright spot for enhanced intensity. The maximum
gradient of the intensity lies perpendicular to the magnetization, additionally
the direction flips with inversion of the defocus. A more detailed explanation
of the working principles of LTEM can be found in section 3.2.2. Note that all
TEM experiments are conducted at room temperature unless explicitly stated
otherwise.

Unlike the SPM, where a vector magnet allows in-situ application of oblique
fields, in the TEM the objective lens is used to apply the magnetic field, which
are required to be axial. To work around this challenge, a double-tilt sample
holder was used so oblique fields could be applied. This kind of holder allows
the specimen to be tilted about two independent tilt axes perpendicular to
the optical axis, i.e. orient it so the field is applied in oblique orientation with
respect to the crystallographic c axis. For the data presented in figure 5.13,
a rotation α coincides roughly with a rotation about the long edge of the
lamella, whereas a rotation approximately about the short edge is quantified
by β. LTEM images are recorded in an almost horizontal, that is perpendicular
to the optical axis, orientation to obtain contrast corresponding to the in-
plane (ab plane) magnetization. Before imaging, the specimen is tilted to
(α, β) = (18◦, 4◦), for figure 5.13a, (−2◦, 24◦), for figure 5.13b, and (0◦, 0◦), for
figure 5.13e. Subsequently, static magnetic field is applied up to several hundred
milli-tesla. Once the field is removed, the specimen is oriented horizontal for
imaging.
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Remaining with the study of controlling the stripe domain direction by the
application of oblique fields, figure 5.13a shows the underfocused LTEM image
for a plane-view lamella in the remanent state. The oblique field was applied in
a way that the in-plane component of the field aligns with the short edge of the
lamella as indicated by the red arrow. The bright horizontal lines are artifacts
of the step cuts, which are the effects of the steps that are discussed later.
The curved dark lines following no predominant orientation are attributed to
strain in the lamella. The alternating bright and dark contrast corresponds
to the magnetic domain walls, which are predominantly oriented horizontal in
the image. Within the domain walls the magnetization is oriented in-plane,
hence the walls yield contrast. Except for the bottom segment all stripes and
thus all domain walls align along the direction the in-plane component of the
external magnetic field has been applied along. Analogous, in figure 5.13b the

Figure 5.13: Field controlled stripe orientation imaged via LTEM.
a, bright field (BF) LTEM image of remanent state. b, BF LTEM image of
remanent state. c, detailed view of contrast magnified from panel b. The
inset (orange region) shows an even further magnified area overlayed with the
schematic orientation of the domain wall and in-plane field. d, diffraction
pattern (DP) of the lamella. e, BF LTEM image of remanent state. f, schematic
of the domain wall and corresponding oblique fields applied.

underfocused LTEM image shows similar artifacts and the domain structure
orients along the long axis of the lamella. Here, the in-plane component of the
field has been applied along the long axis previously, as indicated. The area
marked by a green square is magnified in figure 5.13c. An alternating pattern of
bright and dark contrast is evident. This is highlighted by the further enlarged
view displayed in the inset for the corresponding region marked orange. The
direction of the magnetization within an individual Bloch-type domain wall1,
i.e. a pair of a dark and bright stripe, is constricted parallel to the orientation
of the stripes. However, from a single LTEM image the direction along the

1Bloch-type domain walls have been confirmed via LTEM in Fe3Sn2 [52, 53]
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stripes remains degenerate, particularly as the contrast flips upon reversal of
the defocus. But, the relative orientation of the in-plane components of neigh-
boring walls, can be determined. Here, the strictly alternating pattern dictates,
the in-plane components of neighboring walls all point in the same direction,
that is either towards the top or bottom of the image. This is emphasized by
the schematic orientations in the inset that correspond to the schematic view
of the magnetization rotation through such domain walls, depicted in figure
5.13f. Figure 5.13d shows the diffraction pattern obtained in the TEM for
the lamella. The hexagonal array of the spots, indicated by the dashed blue
hexagon, confirms proper orientation of the zone axis of the lamella. Note, the
incident beam is shaded to prevent damage to the camera. The static magnetic
field has been applied along the c axis and subsequently, the remanent state
is imaged, as shown in Figure 5.13e. Peculiarly, in an extended region where
the selected area spot diffraction pattern was used to align the zone axis, bub-
ble domains represent the remanent state. Along the right and the top edges,
stripe domains oriented perpendicular to the edges emerge.

The conclusion from this section of work is that, analogous to the MFM
measurements, oblique fields in the TEM allow to control the orientation of
stripes. Furthermore, the in-plane component of the domain wall magneti-
zation points in the same direction for all domain walls, which is parallel to
the previously applied in-plane component of the magnetic field. Applying
out-of-plane magnetic field (B ∥ c), the remanent state shows no predominant
orientation of stripe domains. From this behavior the following is concluded:
The application of oblique magnetic fields yields domain walls with nwall per-
pendicular to both the out-of-plane and in-plane component of the applied
magnetic field, as depicted in figure 5.13f. Since the helicity of the Bloch-type
wall is not fixed in Fe3Sn2, the magnetization rotates in a way that the in-plane
component is parallel to the in-plane component of the applied field. Thereby
minimizing the energy cost associated with the Zeeman term for all spins within
the domain walls.

Flux-closure domains in a wedge-shaped lamella

Kittel scaling has been confirmed for the domains emerging in Fe3Sn2 specimen
up to a thickness of 2.7 µm, see 5.2.2. Even thicker specimen exhibit domain
branching, as depicted in figure 5.5. On the other end of the scale, very thin
specimen are effectively described as low Q materials, see section 2.1.4. For
such thin specimen, the shape anisotropy, represented by Kd, is dominant and
fosters the formation of a flux-closure structure. For Fe3Sn2, the Bloch wall
width is δBloch = 21.6 nm [86], and thus, from equation (2.67) the lower limit
for the formation of flux-closure domains is estimated to be 120 nm. That
means, for specimens with corresponding thickness flux-closure patterns are
the expected ground state.

In the following, the emergence of a flux-closure pattern is investigated.
From the MFM studies above, stripe domains are the confirmed ground state
of specimen with thicknesses exceeding 200 nm. Therefore, a wedge-shaped
lamella with gradually reducing thickness, from 150 nm at the thick end, is im-
aged. Bright field (BF) LTEM images obtained in over-, in-, and underfocus for
this lamella are shown in figure 5.14a, d, and g, respectively. While the in-focus
image displays contrast solely attributed to the topography of the lamella, and
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strain, the additional magnetic contrast observed in the over- and underfocused
images reveals opposing brightness, i.e. the LTEM contrast flips. This is most

Figure 5.14: BF LTEM and TIE of wedge-like Fe3Sn2 lamella. a, d,
g, over-, in-, and underfocused BF images. b, e, h, TIE reconstructed phase
images for different filter settings. c, f, i, TIE reconstructed phase images,
colored according to the orientation of the in-plane magnetization in i.

notable, for the distinct sharp lines at the top end, which is also the thinnest
region of the lamella. In line with previous SPM and LTEM observations, a se-
ries of ordered stripe domains and a few scattered bubble domains are observed
along the bottom edge, where the thickness is approximately 150 nm. Unlike
the stripe and bubble domains, where the domain walls manifest as adjacent
bright and dark lines in the BF images, the sharp lines at the top are either
bright or dark. Since in-plane magnetization perturbs the uniform brightness
into a region of enhanced and a region of reduced brightness by shifting the
locally resolved intensity, neither one can occur individually. Hence, the area
enclosed by separated lines of sharp BF contrast must coincide with laterally
extended regions of uniform in-plane magnetization. In such regions the con-
trast attributed to coaligned neighboring spins cancels, except for those at the
edge of the area. That means, sharp lines of unpaired bright and dark contrast
denote the edges of laterally extended in-plane magnetized regions, i.e. repre-
sent the domain walls of a flux-closure pattern. From the BF images alone, it
is very difficult to interpret the obtained contrast.

In order to visualize the flux closure domain pattern, processing via trans-



94 Chapter 5. Results and Discussion

port of intensity equation (TIE) of the images has been performed. The TIE
software calculates a phase image that is proportional to the in-plane induction
required to yield the observed intensity shift of the aligned image stack of BF
images. Subsequently, a filter is applied to suppress undesired contrast, e.g.
from strain, in the phase images. Figure 5.14b, e, and h display the obtained
reconstructed phase images for a low, medium, and high filter setting. Analo-
gously, these maps can be displayed colored, as shown in figure 5.14c, f, and i,
where the hue encodes the direction of the in-plane magnetization according to
the color wheel in figure 5.14i. The brightness corresponds to the strength of the
in-plane component, i.e. black regions are magnetized out-of-plane. Low-filter
settings reproduce laterally extended in-plane magnetized regions accurately,
as depicted in figure 5.14c. In-between the lines of sharp contrast, that are the
domain walls, the extended areas are uniformly colored, i.e. domains of uni-
form in-plane magnetization. These domains are flux-closure domains, where
the magnetization of neighboring domains rotates by approximately 90◦. How-
ever, the contrast attributed to strain is hardly suppressed either. A high-filter
setting suppresses such undesired contrast, but equally it does negate areas of
in-plane magnetization on the thin end of the lamella, see figure 5.14i. Such
a setting is preferable in cases where the only contrast is from the Bloch-type
domain walls between out-of-plane domains, as it enhances the clarity of the
image. As this work focuses on discerning domain wall structures, high filter
settings for TIE are generally used henceforth. The medium-filter setting is a
compromise, where spurious contrast is vastly suppressed, yet sufficient con-
trast of the in-plan domains remains to determine their orientation. Such a
setting should be avoided unless imaging the coexistence of both domain types
within one image, as presented here for a wedge-like lamella in figure 5.14f.

In summary, applying a high-filter setting, the obtained contrast can be
constricted to the domain walls. When the low-filter setting is used, the TIE
reconstructed induction maps illustrate laterally extended regions of in-plane
magnetization well. The latter confirms the formation of a flux-closure domain
pattern on the thin end of the wedge-shaped lamella. Thus, there is a lower
thickness limit below which the system effectively turns into a low Q mate-
rial. This limit also denotes the lower limit for Kittel scaling of the domains,
i.e. by thinning the specimen the domain size cannot be decreased below the
corresponding minimal size.

Morphology of magnetic domains in magnetic field

Building on the previous MFM observations of the application of out-of-plane
static magnetic fields, the effects are imaged with LTEM. The transition from
stripe to bubble domains investigated by MFM, see figures 5.10 and 5.11, al-
ready revealed that either domain type can be selected by the applied external
field. In addition, LTEM studies resolve the in-plane component of the mag-
netic texture with a high spatial resolution, allowing imaging of the domain
wall of each magnetic object. Critically, for bubble domains, that means topo-
logically trivial (type II) and non-trivial (type I) bubbles can be discerned.

The application of magnetic field in the TEM does come with the caveat:
While homogeneity of the field is ensured for the lateral extensions of the lamel-
lae, the absolute field strength given for the individual images is an estimate2.

2For both TEMs in Augsburg, the absolute values of the field corresponding to the HEX
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Thus, all field values given for the TEM images are an approximation and not
confirmed absolute values.

In order to qualitatively reproduce the domain morphology, the field evolu-
tion of a lamella of uniform thickness (approximately 200 nm) is imaged. Figure
5.15a shows the domain pattern of the remanent state. The imaged state in
zero field is generally a remanent state, as the lamellae have usually been ex-
posed to magnetic field prior. The lamella exhibits an uniform stripe domain
pattern, except for the bottom region, where the proximity to a topography
step leads to the formation of a few bubbles. In line with the conclusion for

Figure 5.15: Field evolution of a lamella of uniform thickness. a-
f, BF images of the same area of a 200 nm thick ab plane lamella under the
application of static out-of-plane field. The inset in a shows a magnified view
of the area marked by the purple square.

oriented stripe patterns, the majority of domains are oriented vertical in the
image. The imaged contrast reveals the previously described same orientation
of the in-plane magnetization for neighboring domain walls. Hence, at the top
and bottom ends of the individual stripe domains, where the domain walls of
opposite helicities meet, Bloch lines are formed. In the BF images, Bloch lines
(confer section 2.2.3) are distinguished by flipped contrast along one individual
domain wall, as shown in the inset in figure 5.15a. The stripe domain on the
left reveals the Bloch line more clearly, where the Bloch line is highlighted by
the purple square. Quantitative analysis of object size is forgone here, due
to the inherent flaws attributed to imaging in defocus. The relative domain
widths of neighboring domains of opposite out-of-plane orientation are almost
the same. Applying modest field of 160mT, figure 5.15b, changes the domain

values encoding the current manually applied to the objective lens are not mapped. For a
limited number of magnetic transitions of known field, the corresponding HEX values are
determined. The magnetic field values corresponding to the HEX values are linearly extrap-
olated based on this limited number of data points. In general, the linear approximation is
expected to break down around 500mT.
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pattern only slightly. Merely the domains opposing the external field narrow.
At the end of the domains, where the Bloch lines are located, the initial width
is preserved. Images representing the detailed field evolution in incremental
steps both up to the maximum field and back down to the remament state
can be found in the appendix, see figure B.7. From these, a gradual transition
to an oriented stripe pattern in 515mT, depicted in figure 5.15c, is observed.
Additionally, a slight tilt of the field away from the c axis is concluded, which
yields a small in-plane field along the vertical direction of the image the stripe
domains align along. Furthermore, as a function of increasing magnetic field,
the stripe domains opposing the out-of-plane component of the field are spaced
further apart and severely narrowed. Their ends, however, preserve a similar
size to the bubble domains, which decrease in size compared to the zero-field
state marginally. Unlike the almost maze-like pattern of densely packed bub-
bles in between stripes at low fields, the bubble domains order in a lattice with
the stripes in higher field. Upon further increasing the field to 595mT and
615mT, respectively, the stripes begin to break up into bubbles, which remain
in an ordered lattice of the mixed domains. Typically, the preferred lattice
for bubble domains is the triangular lattice. However, in the present case, the
coexistence of stripes still stabilizes a square lattice. As these lattices barely
differ in energy, stabilization of either one due to pinning or defects is not un-
common [94, 96, 97]. Increasing the field to 695mT finally breaks up all stripe
domains and a pure bubble domain phase is formed. These appear to maintain
the previous degeneracy between a triangular and square lattice.

Curiously, not all the bubble domains exhibit the same LTEM contrast. For
instance, the two bubbles appearing on the bottom left side of 5.15c persist up
to the highest fields in roughly the same location. Whereas other bubbles
forming during the field evolution appear more volatile, that is to say, they
seem to emerge and disappear across a much smaller field window. An example
of the latter, the single bubble on the bottom right of panel c either moves or
disappears before a field of 695mT is applied. This is readily understood if
the persistent bubbles (the ones on the left) are topologically protected type
I bubbles, while the volatile ones are topologically trivial type II bubbles. A
more complete classification of the different bubbles, and how they can be
distinguished, is given in section 5.2.4.

Bubble domain formation in magnetic field

Before an in-depth investigation of the different types of bubble domains is
conducted, a brief reminder of the key criteria, introduced in section 2.1.5,
needed before a material transforms from stripe to bubble domain patterns is
provided. It has already been observed, via MFM and TEM in figures 5.11
as well as 5.15, and discussed that bubble domains form when an out-of-plane
magnetic field is applied to a stripe domain pattern in Fe3Sn2. Bubble domains
predominantly start populating the regions close to the edges of the lamella,
whereas residual stripes are contained in the center. While such magnetic field
driven bubble to stripe transitions are classically expected [94], the details have
not been shown in Fe3Sn2.

Previously, it was shown that magnetic field drove the formation of bubble
domains in both MFM and TEM studies, despite having lamellae of different
thicknesses. Now this transformation is studied in more detail and the bub-
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bles that form are characterized. Figure 5.16a depicts the domain pattern of
the 200 nm thick Fe3Sn2 lamella in 475mT, where coaligned stripe domains
alter with intermittent bubble domains. Interestingly, the square lattice of the
bubble domains follows the positions of the stripes. Note, the dislocation in
the lattice above the marked short stripe domain. Upon increasing the field by
5mT, the marked stripe domain contracts to a single type II bubble domain.
This newly formed bubble domain arranges neatly with the preexisting ones
in the lattice. The dislocation in the stripe lattice follows this reconfiguration.
Dislocations pushing the bubble domains towards the edges of the stripe do-
main lattice could, therefore, explain the predominant population of bubble
domains at the edges of lamellae.

Figure 5.16: Morphology of bubble domains. a, b Stripe domain con-
tracting to a bubble domain. c, d Stripe domain breaking up into two bubble
domains.

Stripe domains breaking up into several bubble domains is the second mech-
anism behind the formation of bubbles. Direct evidence for this breaking-up
mechanism is provided by LTEM studies as well. Figure 5.16c shows the do-
main configuration at 635mT in the same lamella. The magnetic texture has
been transformed to a predominantly bubble domain structure, with a few
residual stripe domains, an example of which is highlighted. Under the appli-
cation of slightly increased field of additional 5mT this particular stripe domain
breaks up into two separate bubble domains, as shown in figure 5.16d. Both
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newly formed bubble domains arrange on the highly distorted preexisting bub-
ble lattice. On a technical side note, even the smallest incremental increases
of field, much smaller than 5mT, were not able to image any transition states,
neither for the contracting, nor the splitting behavior. This is not surprising as
even the shortest exposure time in the milli-second range required for imaging
in the TEM, exceed the time scale expected for the spin reorientation by several
orders of magnitude [270]. Based on the observation, that the ends of stripes
do not narrow and thus preserve a similar shape to a bubble domain, it is likely
one such end is pinched off to form a new bubble domain, while the stripe end
is reconfigured. This process requires the formation of two Bloch lines, one
for the newly formed type II bubble, as well as one for the reconfigured end
of the stripe domain. Due to the lack of imaged transition states, this process
requires further investigations beyond the scope of this work.

Figure B.8 in the appendix, presents additional images of the field evolution
corroborating the regular occurrence of the mechanisms presented in figure
5.16. These are the contraction of stripe domains to a single bubble and stripe
domains pinching off individual bubbles at their ends, respectively breaking
up into multiple ones. To conclude, both mechanics are confirmed origins of
bubble domains in Fe3Sn2. In the observed examples the mechanism fostered
the formation of type II bubbles.

5.2.4 Emergence of Topologically Non-Trivial Spin Textures

Intriguingly, the bubble domains emerging in Fe3Sn2 are not exclusively of
type II, i.e. topologically trivial. As shown in figure 5.15, bubble domains
of comparable size with a completely different domain wall configuration are
observed as well.

Topographical pinning of non-trivial spin textures

This section looks at where the different types of bubbles form, as a function of
applied magnetic field and lamellae thickness, before moving on to build a more
detailed understanding of the BF LTEM contrast. Therefore, an extended area
of the wedge-shaped region and the step linking it to the uniformly thick lamella
of approximately 200 nm are imaged, see figure 5.17. Naturally, the variations
in thickness required for this experiment means that at the thickest parts of
the sample (top region of the image) the electron beam is strongly attenuated
and contrast is reduced due to depth effects. Furthermore, at higher fields a
shadowing effect occurs from the bottom right of the images, this is attributed
to an additional aperture inserted with the intention of blocking undesired
reflections. In the remanent state, depicted in figure 5.17a, the wedge-like
lamella exhibits a peculiar domain pattern. On the left side, where the lamella
is very thin, barely any contrast is observed, this most likely coincides with an
in-plane closure domain pattern, which remains hidden as no distinct domain
walls are imaged. In the central region the image shows densely packed stripes
of gradually increasing width, predominantly oriented vertically. On the right
side, a densely packed lattice of bubble domains is observed, which reveals
that the lamella has been well aligned during the last exposure to out-of-plane
field. The observed type II bubbles are aligned in almost vertical chains, where
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Figure 5.17: Field evolution on the stepped and wedged area of the
lamella. a-f, BF images of the same region under gradually increased static
out-of-plane magnetic field.

neighboring chains are offset by approximately half a bubble diameter yielding
a triangular lattice.

Upon application of modest out-of-plane magnetic field of 160mT, figure
5.17b, all domains exhibit classical behavior: Namely, all the domains opposing
the external field are reduced in size [64]. Further increasing the field to 515mT
yields peculiar results. Note, incremental field steps omitted here can be found
in figure B.9 of the appendix. At 515mT, all stripe domains have broken up
into a chain of bubble domains. In figure 5.17c these are hardly discernible as
their contrast still overlaps. The previously densely packed bubble domains at
the right edge of the image now occupy almost half the imaged region, forming
a square lattice in the center, while maintaining the triangular lattice towards
the top of the image.

Furthermore, on the step in thickness, an aligned chain of domains is ob-
served. Their slightly larger size is explained by the locally increased thickness
of the lamella. However, their corresponding LTEM contrast also differs, hint-
ing these are type I bubbles. Applying even higher fields of 555mT and 595mT,
see figure 5.17d and e, gradually expels almost all traces of the bubble domains
originating from the narrow stripes. Additionally, several of the residual type
II bubbles of the remanent state are expelled. The resulting bubble lattice has
an increased distanced between the bubbles but still occupies the same total
area. Only the bubbles pinned to the step remain virtually unperturbed. Fi-
nally, further increasing the field to 695mT, all type II bubbles on the wedged
region are expelled as depicted in figure 5.17f. Whereas bubbles pinned to the
step, regardless whether they are on the step or at the bottom, persist, al-
though, no bubbles are remaining in the thick region. Hence, the pinning and
stability of the bubbles is not due only to thickness but rather correlates with
a change in thickness. As mentioned above, while these bubbles are expected
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to be topologically non-trivial type I bubbles, which makes them more stable,
additional pinning processes are still required to prevent them from moving in
the external field. These results and previous observations for figure 5.15 imag-
ing the area above the step imply the emergence of topologically non-trivial
bubbles is linked to the step-like thickness transition. Whereas, in the area of
equal thickness and on the gradual thickness slope, stripe domains break up
into type II bubbles.

BF LTEM contrast of different types of bubble domains

To discern the different types of bubble domains imaged, and whether they
are topologically protected or not, the structure of their domain walls has to
be studied in detail. As described for figure 5.13, the in-plane component of
the magnetization responsible for the contrast is oriented perpendicular to the
brightness gradient in the image contrast. That means, an extended straight
Bloch-type domain wall results in a bright and dark stripe adjacent to each
other, while introducing curvature to the wall yields additional variation. Cur-
vature induced superposition of bright or dark regions corresponding to differ-
ent domain wall segments can yield even stronger contrast or compensation.
Hence, interpretation of the obtained contrast requires a firm understanding of
the expected domain textures in the investigated material.

To help explain the observed contrast in Fe3Sn2, a series of schematics are
used to link the different observed textures with the real local magnetic tex-
ture. Figure 5.18 provides an overview of BF LTEM images and corresponding
sketches of the magnetic spin textures for all bubble types observed so far. In
the schematic representation the black and white arrows encode the helicity of
the corresponding domain wall segment. The arrow emphasizes the direction
of the in-plane component of the magnetization during the gradual rotation in
the domain wall. Figure 5.18a, and f depict the end of a stripe domain. In the

Figure 5.18: Detailed study of BF contrast. a-e, BF images of domain
strucutres. f -j, corresponding schematic orientation of the in-plane magnetiza-
tion of the domain walls. a, stripe end in field. b, type II bubble in zero field.
c, type II bubble in 595mT. d,e, type I bubbles of opposing helicity.

widened area it is clearly visible that the left and right domain wall segment
depict the same brightness gradient. Hence the in-plane component of both
domain wall segments points in the same direction. Evidently, this requires the
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helicity of the wall segments to be inverted. Thus, a Bloch line, indicated by
the green dot, must emerge at some point along the domain wall. The Bloch
line mitigates the helicity mismatch, as described in detail in section 2.2.3. To-
wards the top of the image, the stripe domain narrows severely, leading to the
superposition of the bright and dark region of the two wall segments. Here,
the contrast is hardly discernible.

Figure 5.18b, g, and c, h depict a type II bubble in zero field and 595mT,
respectively. Analog to the stripe domain, the type II bubbles constitute of
two wall segments of opposite helicity. Hence, where the in-plane components
of the magnetization meet head-to-head or tail-to-tail Bloch lines are formed.
In zero field, see figure 5.18b and g, the bubble domain is slightly deformed,
which is most probably attributed to interactions with neighboring domains,
as these are populated densely. In static out-of-plane magnetic fields, see figure
5.18c and h, the type II bubble exhibits the typically observed onion-like shape
[116, 271], which is characterized by an oblong shape with the Bloch lines on
opposite ends.

Type I bubbles are given in figures 5.18d, i, and e, j, these bubbles are
characterized by a continuous domain wall, which maintains the same helicity
throughout, and are, therefore, topologically non-trivial. Some preceding work
by Hue et al. [52] experimentally observed these first. Taking the domain
wall curvature and their size into account, the obtained BF image contrast is a
bright (dark) spot surrounded by a ring of dark (bright) contrast. Depending
on the helicity, the Bloch-type skyrmionic bubble acts like a lens focusing either
bright or dark contrast in the middle. An inherent challenge of LTEM images
is that the type I bubble domain, exhibiting bright contrast in the center, see
figure 5.18d, appears a lot smaller than its counterpart of opposite helicity.
This perceived size mismatch is rooted in the measurement technique and does
not resemble the actual spatial distribution of the underlying spin texture.

TIE reconstruction of magnetic objects

One possibility to overcome this perceived mismatch in size of different bubble
domains is TIE. Colored maps of the reconstructed in-plane induction, cal-
culated from the aligned stack of BF images, make it possible to distinguish
different magnetic textures much more easily [92, 272]. Figures 5.19 and 5.20
show the same lamella as in 5.17 to illustrate this improvement on both the
wedge-like region and the thick area that previously yielded no meaningful in-
formation. For every bright field image, the corresponding TIE reconstructed
induction map is displayed, where the domain walls are easily distinguished
as the bright colored structures. The hue and saturation encode the orienta-
tion and strength of the in-plane induction as encoded by the color wheels in
figures 5.19b and 5.20e. Figure 5.19a and b show a remanent state. Beyond
the in-plane flux-closure texture (top right of the image), all areas representing
domain walls light up in their corresponding color. From the TIE image many
of the complex domain patterns are readily understood: The uniform red to
purple color of the stripe domains confirms collinearity of the in-plane magneti-
zation of all neighboring domain walls. That means, neighboring domain walls,
which confine a single stripe domain, exhibit opposite helicities. Furthermore,
the chain-like arrangement of bubble domains extending the stripe domains is
apparent, and the bubbles are distinguished to be topologically trivial, as they
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Figure 5.19: Side by side comparison of BF and TIE image. a, BF
image and, b, corresponding TIE reconstructed induction map for the step like
region in zero field.

consist of two wall segments of opposite helicities. In contrast, in the center
of the image skyrmionic bubbles emerge. These are characterized by mapping
the full color wheel within the domain wall. Furthermore, a peculiar type of
stripe-like domain is observed, bridging the thickness mismatch from the inter-
mediate step to the uniform 200 nm region. These exhibit a continuous domain
wall of conserved helicity enclosing the core, i.e. the expanded equivalent of a
type I bubble. The coexistence of these domains in zero field is corroborated
by literature [52].

Analogous study of the domain morphology, upon applying out-of-plane
field, is shown in figure B.10 in the appendix, which highlights the field evo-
lution and the corresponding magnetic textures in more detail. TIE based
analysis in magnetic field allows to trace the evolution of domain walls and
bubble domains in the vicinity of topographic features. The combination of
BF LTEM and MFM studies yields three characteristic phases: the stripe, the
mixed and the pure bubble phase, selected by the application of magnetic field
(confer figures 5.11 and 5.17, as well as [54]). In 300mT, see figure 5.20a and
d, a laterally extended predominant stripe domain pattern, where a few type
I and II bubbles are already formed in the vicinity of the topographic step,
is observed. Both the BF image and the TIE reconstructed induction map
confirm that horizontal domain walls exhibit the same contrast, while the ver-
tical domain walls in the vicinity of the edge exhibit a different orientation
of the in-plane magnetization. Hence, the domain walls exhibit the helicities
observed in zero field. Applying higher filed of 535mT, see figure 5.20b and
e, bubbles are formed at the step, analogous to the discussion of figure 5.17.
Note those pinned directly at the step are of type I, whereas those forming in
the vicinity are topologically trivial. From the TIE reconstruction, neighboring
domain walls, confining a domain magnetized antiparallel to the applied field,
are hardly discernible. As the out-of-plane magnetized stripe domain must still
be present, this implies laterally extended domain walls or the domain walls
are strongly reconstructed along the thickness of the specimen. Finally, in even
higher fields of 645mT, the mixed square and triangular lattice of type II bub-
ble domains is reproduced in the area of uniform thickness. The type I bubbles
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Figure 5.20: Field evolution revisited by BF and TIE images. a-c,
BF images of the stepped region in different fields. d-f, corresponding TIE
reconstructed induction maps.

remain pinned to the step, as shown in figure 5.20c and f. In the wedge-like
region only a few type II bubbles persist. Applying even higher field expunges
all type II bubbles, before eventually also the pinned, topologically protected,
skyrmionic bubbles are erased.

Peculiar magnetic contrast in the grated lamella

From the above work on wedge like lamella, it became apparent that step
like features generated more advanced topological objects than the continuous
wedge. This naturally opens questions about why and how. As such, a sys-
tematic study of a lamella with a number of gradually deepening trenches and
distinct distance thereof is conducted, figure 5.3e and f. One of the questions
this study addresses is, whether these steps can be used for target-oriented
design of bubble domains. Figure 5.21a and b shows the BF and TIE image of
a remanent state, after strict out-of-plane field has been applied. On the right
half of the lamella, where the trenches yield only slight or no thickness un-
dulations, the domains remain unperturbed. They extend across the trenches
and their relative alignment does not vary. In contrast, on the left half of the
lamella, the domains are discontinuous at the trenches, immediately suggest-
ing a minimum critical thickness mismatch is required. Furthermore, individual
bubble domains are constrained in some of the trenches. These bubble domains
form a triangular lattice. The center of the lamella, where the zone axis has
been aligned, reveals densely packed slightly distorted bubbles domains, with
several of the bubble domains exhibit oblong shape. Additionally, a few short
stripe domains are observed surrounding the area. At the bottom and right
edges a stripe pattern is maintained.

Beyond the mere location of individual bubbles, the lamella reveals more
peculiar details linked to them. Unlike the previously classified bubbles, confer
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Figure 5.21: Remanent domain configuration of the grated laella. a,
BF image. b, corresponding TIE reconstructed induction map. Note, the color
wheel is rotated in accordance with the image rotation. The insets depict two
representative bubble domains magnified.

figure 5.18, many of the observed bubbles exhibit additional highly localized
contrast, which is emphasized by the two exemplary bubble domains depicted
in the insets to figure 5.21a and b. In the BF images these are manifested
in a distinct bright or dark spot, whereas in the TIE reconstructed induc-
tion maps, these spots yield analogous contrast to a skyrmion [147, 155, 273].
While, similar contrast could also be observed for point-like structural defects
of lamellae, these can be ruled out as the origin, as the contrast is inevitably
linked to bubble domains. Furthermore, these spots are nested within the do-
mains. For bright field LTEM images and the TIE maps reconstructed thereof,
such accumulated contrast could be the result of Fresnel fringing so that with
increasing (decreasing) defocus, there is an increased (decrease) superposition
of higher order fringes at the center leading to brighter (dark) spots. This is
consistent with the observations in bubble domains, however, some bubbles do
not exhibit such center-spots. Furthermore, for laterally expanded stripe-like
domains these spots are often observed, only in one of the ends, i.e. inconsistent
with the hypothesized origin due to Fresnel fringing. Thus, the correlation of
the origin of the spot-like contrast and the magnetic texture of the individual
domains, has to be investigated further.

Off-axis electron holography confirmation of peculiar contrast

In order to test if any Fresnel mode related artifacts are the origin of the spot
like contrast nested in the domains, off axis electron holography is performed
on a representative specimen. Holography measurements are performed in
focus, thus any defocus artifacts, e.g. attributed to Fresnel fringes do not
occur. Figure 5.22a shows an overfocused BF image of the investigated area
for reference. In the image, multiple bubble domains exhibiting the nested spot-
like contrast are visible. For the off-axis electron holography study, the biprism
is inserted in the optical axis below the sample. The obtained image contains
an in-focus BF image of the area superimposed by the periodic structure from
the interference of the partial electron beams. FFT based processing enables
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Figure 5.22: Off axis holography of bubble domains. a, reference BF
image of the edge of the step-like sample in zero field. b, corresponding sepa-
rated phase image obtained by processing the holography image. Holography
data obtained in collaboration with A. Kovács.

the deconvolution of the amplitude image, i.e. the equivalent of the BF image,
and the phase image presented in figure 5.22b. The phase image contains the
relevant magnetic information analogously to the phase images obtained from
TIE reconstruction. For several representative bubble domains, it confirms the
spot like contrast in the center. This provides evidence that the magnetic origin
of the spots is not linked to Fresnel fringes but the magnetic texture itself.

Field evolution of the grated lamella

Now that the existence of non-trivial topological objects exhibiting the peculiar
spot-like contrast has been established in a grated lamella, their evolution as
a function of field is investigated in figure 5.233. Figure 5.23a and b, show
the BF and TIE images for an applied field of 410mT. Despite extended
regions exhibiting a stripe pattern, due to the accidental application of slightly
oblique field, the vast majority of skyrmionic bubbles remains intact. Upon
close inspection, even the nested spots are preserved, as shown in the insets.
The rigidity of the spots versus the application of modest field is particularly
interesting: it implies that these are part of the naturally occurring domain
wall. Increasing the field further to 520mT causes the ejection of some bubbles.
For those preserved, it is no longer possible to discern potentially persistent
spots form the shrinking domains. Additional intermediate field steps can be
found in the appendix, see figure B.11.

Electron holography implies the origin on the spot like contrast is linked
to the peculiar three-dimensional reconfiguration of the domain walls, which
is corroborated by their rigidity versus external fields applied. Thus, they
appear to be an inherent consequence of all the magnetic iterations involved,

3Note, for improved visibility the lamella is aligned in every panel to correct for the
inherent rotation of the field application via the objective lens. However, during TIE recon-
struction this is not possible, and thus the color wheel is rotated accordingly, i.e. the absolute
in-plane orientation encoded is inconsistent in between images.
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Figure 5.23: Field evolution of grated lamella. a, c, BF LTEM images.
b, d, corresponding TIE reconstructed induction maps. Note, the color wheel is
rotated in accordance with the image rotation. The insets depict two exemplary
bubble domains magnified.

rather than an arbitrary in-plane spin orientation occurring only under peculiar
circumstances in the absence of notable Zeeman interaction.

In contrast to previous studies in figure 5.17, in the grated lamella, the
stability of type II bubbles appears to exceed the type I bubbles. The origin
of this peculiar behavior is rooted in the magnetic interactions: The circular
continuous domain wall of a skyrmionic bubble is topologically protected and,
furthermore, yields the most favorable spin configuration with respect to the
Heisenberg exchange. Type II bubbles, require the emergence of energetically
unfavorable Bloch lines. In case of oblique fields, the energy cost of the Bloch
lines can be superseded by the energy lowering due to the wall segments of
opposite helicity aligning with the in-plane magnetic field. Analogously, the
Zeeman interaction, renders the type I bubble less favorable, as the in-plane
components of the partial wall always oppose the applied in-plane field. Thus,
by tuning the angle of mismatch to the c axis and strength of the applied field,
the formation of a desired bubble phase is regulated. For increasing mismatch,
type I bubbles can be expelled, whereas for strict out-of-plane field type I bub-
bles persist while type II bubbles are already erased. This understanding allows
us to control the formation of different bubbles types, both in this material,
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and provides a road map that can be used in other materials.

Coexistence of composite bubble domains

From the previous analysis of BF images depicting bubble domains, two types
of bubbles were determined, confer figure 5.18. These are type II bubbles,
exhibiting Bloch lines, where the LTEM contrast inverts, separating the two
Bloch wall segments of opposite helicity. As well as type I bubbles, character-
ized by a continuous Bloch-type domain wall. The latter can be observed for
either helicity, i.e. yielding a dark or bright center surrounded by a ring of op-
posing brightness. Additionally, either type of bubble can exhibit the spot-like
contrast in the center. In the following, the variety of these occurring bubble
domains is discussed in detail.

Figure 5.24: Coexistence of various domain wall configurations. Mag-
nified view of the central area of the TIE reconstructed induction map depicted
in figure 5.21b.

Henceforth, a helicity γ = +π/2 corresponds to a counter-clockwise swirl
of the magnetization. Thus, an object of helicity γ = +π/2 yields a counter-
clockwise swirl in the TIE images. Note, inverted helicity does not change
the sequence of colors tracing along the wall, it interchanges colors at opposite
points of the perimeter. That means, if for a type I bubble of helicity γ = −π/2
the color at the 12 o’clock position is red, the same position is colored light
blue for γ = +π/2. Tracing along the domain wall counter clockwise in either
case the color sequence remains: green - blue - red - yellow, just like the color
wheel. Figure 5.24 depicts a distinct magnified area of figure 5.21b, where
several types of bubble domains have been imaged. These are:

1: A type II bubble, where the two wall segments of opposite helicities
cover the same half of the color wheel. Both domain wall segments cover
approximately the bottom half of the color wheel, i.e. map to the same
half sphere in order parameter space. At the top and bottom, where
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the in-plane components meet tail-to-tail, respectively head-to-head, the
Bloch lines mitigate the mismatch.

2: A type I bubble, characterized by a continuous clockwise swirl of the
magnetization in the domain wall. Hence, the helicity γ = −π/2 is
assigned. Upon mapping, the whole order parameter space is wrapped
once, thus, the bubble is topologically non-trivial.

3: Type I bubble of opposite helicity γ = +π/2.

4: Type I bubbles, of helicity γ = +π/2, which exhibit the spot-like contrast
in the center. Due to the matching contrast of the spot to the wall, it
can be assigned the same helicity.

5: Type I bubbles, of helicity γ = −π/2, with a corresponding spot-like
contrast of helicity γ = −π/2.

6: A type I bubble, of helicity γ = −π/2, where the spot-like contrast
exhibits reversed helicity γ = +π/2.

Note, despite previous results suggesting the spots are part of the complex
domain wall, the terms ’wall’ and ’spot’ are used to differentiate here. Fur-
thermore, meticulous investigation of the whole lamella reveals type II bubbles
exhibiting spot like contrast. In the following, beyond simply listing up the
different observed magnetic objects observed, the composite bubble domains
are classified.

Classification of composite bubble domains

While, the coexistence of bubble domains of opposite helicity in Fe3Sn2 is evi-
dent from results shown in figure 5.24, and the literature [52, 266], the observed
variety exceeds expectations. Thus, all bubble types observed are classified in
the scheme depicted in figure 5.25. Here, for every type the observed TIE re-
constructed induction map, the corresponding BF image and a schematic of
the in-plane magnetization is given. The helicity is encoded in the schematic
drawing by the arrows. Black represents γ = +π/2 and white γ = −π/2. The
green dots denote the location of Bloch lines.

Type A describes type I bubbles where the helicities of the outer ring and
the spot match. Type B represents all skyrmionic bubbles which lack the spot-
like contrast in the center. Domains exhibiting inverse helicities of the spot
and the ring are assigned to type C. Note, that for all types of topologically
non-trivial bubbles, the exemplary case depicts cases of γ = −π/2 for the ring.
This solely serves clarity and any corresponding structure of reversed helicity
is classified accordingly. Type D represents all classical type II bubbles, which
do not exhibit a spot. Finally, type E describes topologically trivial bubbles
exhibiting a spot of either helicity.

Quantitative analysis of the occurrence of different bubble types

While, the coexistence of these different types of bubbles in close proximity is
confirmed by figure 5.24, a single magnified area is not representative of the
whole lamella, let alone lamellae cut from the material in general. Addition-
ally, as the discussion of figure 5.23 revealed, several of these peculiar bubble
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Figure 5.25: Classification of bubble domains observed via LTEM.
TIE, BF and schematic representation of the in-plane magnetization for all
types of bubbles observed.

domains are stable up to modest fields, while others are not. Thus, quanti-
tative analysis of the occurrence of bubbles of either type, evaluated over the
full area of the lamella, is performed. Furthermore, the analysis is expanded
to analogous quantitative assessment of the field evolution. For that purpose
images corresponding to modest fields up to 520mT are analyzed. The results
are summarized in table 5.2. L23A denotes the lamella and the respective field
is given for each row. All cells contain two values. These are the absolute
number of respective domains identified and the relative share. The reference
for 100% is the total number of identified bubbles per image. Considering the
total number varies when new domains form and others are expunged, small
variations in the relative occurrence of certain types of domains occur. For each
lamella and field value the BF LTEM image and the corresponding TIE map,
with all identified bubbles marked accordingly, are presented in the appendix
and the corresponding figures are indicated in the last row.

This analysis allows to draw two conclusions: First, in zero field the number
of topologically non-trivial bubbles comprises 80% of all bubbles. This is for
the remanent state after out-of-plane field has been applied. Secondly, while
the share of type II bubbles increases due to the application of modest oblique
field, the share of skyrmionic bubbles shifts in favor of type A. Applying a field
of 520mT, the bubbles shrink to the point, where any contrast correlated to
the spot is no longer discernible, i.e. all bubbles are assigned either type A or
D, respectively.
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type A type B type C type D type E Figures

L23A, 0mT
29 20 17 11 5 B.12
35% 25% 20% 14% 6% B.13

L23A, 320mT
26 10 25 20 10 B.14
29% 11% 27% 22% 11% B.15

L23A, 410mT
36 21 8 14 8 B.16
42% 24% 9% 16% 9% B.17

L23A, 520mT
57 - - 55 - B.18
51% - - 49% - B.19

L13A, 565mT
8 1 2 18 4 B.20

24% 3% 6% 55% 12% B.21

Table 5.2: Absolute and relative occurrence of different types of
bubbles. The figures listed in the last column show a bright field and TIE
reconstructed image with all bubbles marked accordingly.

Additionally, one image of the step linking the uniformly thick section and
the wedge-like section is evaluated with an out-of-plane field of 565mT applied,
see the last row of table 5.2. The data confirms the coexistence of all types of
bubbles even in higher fields. As a general statement, the type A and D bubble
domains are the most common under these circumstances.

For the MFM studies, as well as the BF LTEM images discussed initially
the observed contrast matches well with the theoretically predicted domain
configuration, confer section 2.1.5. For the intermediate Q system Fe3Sn2 these
predictions are stripe domains in zero field, which transition to bubble domains
in field. The domains are separated by Bloch-type domain walls and exhibit
Néel caps. The latter are corroborated by the gradual transition of the MFM
signal in between opposing oriented domains. Néel caps do not imply total
flux-closure, i.e. for each domain an uncapped partial region may exist, confer
figure 2.8. In case of bubble domains, respectively similar shaped ends of stripe
domains, such laterally highly constricted regions should appear centered over
the domain. That is, where the skyrmion-like TIE contrast, attributed to the
spots, naturally occurs. Thus, this spatial correlation is investigated for a
causal link.

The LTEM contrast obtained from the spots resembles a regular Bloch-type
skyrmion, i.e. vorticity m = 1 and helicity γ = ±π/2. From an experimental
perspective, this is reasonable as only Bloch-type skyrmions can be observed
in an aligned specimen via LTEM [274]. Néel-type skyrmions, γ = 0 or π,
essentially shift the intensity in a circle, thus, compensate their own LTEM
contrast. From theory, intuitively the partial flux-closure is expected to be
of Néel-type. Hence, if a circular residual uncapped region exists, it should
resemble the contrast of a Néel-type skyrmion not a Bloch-type one. Further-
more, the TEM essentially integrates all perturbations along the paths of the
imaged electrons. In other words, it probes the full thickness of the lamella
at once. That means, it also probes two surfaces, the top and bottom one of
the specimen at the same time. Thus, perturbations originating on either or
both surfaces contribute to the LTEM contrast. In order to actually deter-
mine a causal link of the spot-like contrast to partial flux-closure textures, it is
not sufficient to validate the results based on conceptual accordance. Instead
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a proper model of the three dimensionally resolved magnetization of Fe3Sn2
specimen of comparable shapes is required.

5.2.5 Micromagnetic Simulations

Micromagnetic simulations are carried out in collaboration with A. Kákay,
based on the work of E. Lysne [86]. The simulations are performed using MU-
MAX3 [275], where the energy terms included in the model are the Heisenberg
exchange, first-order uniaxial anisotropy, the Zeeman, and demagnetization
energy terms [54]

ϵ =

∫
Vs

[
Aex (∇m)

2 −Kum
2
z +MsBext ·m− 1

2
MsBdemag ·m

]
dr. (5.1)

Here Vs denotes the sample volume and the Zeeman term is adopted for exter-
nal field along the out-of-plane component. The values used for the constants
are listed in table 5.3. In order to avoid edge-induced effects, periodic boundary
conditions are applied along the in-plane directions (x and y). Open bound-
ary conditions are used along the out-of-plane direction (z ∥ c), reflecting the
constraints of ab plane cuts of defined thickness. The mesh is constructed of
8×8×8 nm3 cells, i.e. within the limit of the exchange length lex. The base ge-
ometry is set to a square cuboid of width and length of 4096 nm. The thickness
is set to 256 nm. With these setting the magnetic texture depicted in figure

Ms Aex Ku lex
(kAm−1) (pJm−1) (kJm−3) (nm)

566 10.0 30.0 8.34

Table 5.3: Constants for micromagnetic simulations. Based on litera-
ture values [86, 265].

5.26 is obtained, after relaxing a random initial magnetization distribution. In
this figure, the out-of-plane component of the magnetization, the z component,
is encoded by the color scheme. Red means magnetization oriented along +z,
whereas regions colored blue are magnetized in the opposite direction. White
areas represent domain walls of predominant in-plane magnetization. All sur-
faces of the cuboid are colored accordingly. Additionally, the top half in the
front of the cuboid is hidden. Here, iso-surfaces of ±90% magnetization along
the z direction are depicted in the according color. Hence, areas enclosed by a
red or blue iso-surface of constant magnetization represent the core of a domain,
which is almost fully aligned with the uniaxial magnetocrystalline anisotropy.
Whereas, regions in between opposing iso-surfaces are part of the domain wall.

Modeled ground state of lamellae

In agreement with the predictions from theory, a stripe domain patter is de-
duced from both the iso-surfaces, and the colored surfaces of the cuboid. Fur-
thermore, from the edges of the displayed data, which are equivalent to cross-
sections, a significant reconstruction of the domain wall width along the thick-
ness of the lamella is evident. The widening of the domain walls towards the
top and bottom surfaces and the weak out-of-plane contrast at the surfaces
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Figure 5.26: 3D rendering of the micromagnetic texture. Out-of-plane
domain texture for a 4096× 4096× 256 nm3 volume.

imply the occurrence of Néel caps (confer figure 2.8). For the definitive confir-
mation thereof, the orientation of the in-plane component following Néel-type
behavior must be confirmed. Additionally, small regions of strong saturation,
nested within the individual domains, are observed on the top surface. The
iso-surfaces depict corresponding neck-like structures extending towards the
top surface. These are the residual areas of strong out-of-plane magnetization,
which are not covered by the partial flux-closure at the surface, and these are
described in detail below.

First, the overall domain pattern is studied. The simulated volume resem-
bles an infinitely extended ab plane lamella of thickness 256 nm, due to the
periodic boundary conditions. In contrast, experimentally observed lamellae
are of finite lateral dimensions but these regularly exceed the dimensions of
the cuboid. Thus, there is a competition between reasonable calculation time,
forcing smaller simulation volumes, and avoiding edge induced artifacts arising
from small simulation volumes: Periodic boundary conditions are the reason-
able compromise. As the simulations in figures 5.26 and 5.27 are obtained using
periodic boundary conditions, they can be considered representative of a 4× 4
µm2 area cropped from a larger lamella.

Figure 5.27a shows the top-down view (along −z) of the iso-surfaces for the
micromagnetic simulation previously presented in figure 5.26. The maze-like
stripe domain pattern is severely branched, additionally, several residual small
stripe domains are visible. Peculiarly, the red domain is one large connected
domain, whereas the blue domains are multiple scattered ones. This behavior is
attributed to the nucleation sites embedded in the seed for the micromagnetic
simulations. In figure 5.27b to j the magnetization for the top, middle, and
bottom layers is depicted in the three rows. The color encodes the x, y, and
z components of the magnetization individually in the three columns. For the
x and y components the contrast is very strong in the top and bottom layer,
whereas in the middle layer it is clearly confined to the sharp domain walls.
The z component behaves inversely. The middle layer emphasizes the maze-
like stripe domain pattern. The top and bottom layers depict a weak imprint
thereof and the spots. These are nested centrally within the domains, which
agrees with previous experimental observations of the spot-like contrast. The
positions, where spots appear in the top layer are corroborated by the neck-like
structures in the iso-surfaces. Furthermore, several of the spots in the top and
bottom layer align. Since these are the most promising origin of the peculiar
contrast in LTEM studies, they are investigated in more detail.
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Figure 5.27: Detailed consideration of micromagnetic simulation. a,
top-down view of the iso-surfaces of ± 0.9mz. b-j, individual layers of the
simulated data colored by mi, where i ∈ {x, y, z}. b-d, top layer. e-g, middle
layer. h-j, bottom layer. b, e, h, mx. c, f, i, my. d, g, j, mz.

Observation of vortices at the surfaces

For a more detailed look at the oddities within the simulations, a region ex-
hibiting Néel caps, and four spots, associated with the neck-like structures, is
cropped out and magnified.

Note, that these spots formed on the bottom surface, and so, in figure 5.28a
the bottom surface is displayed facing up (view along −z). The out-of-plane
magnetization of the iso-surfaces, and the arrows are encoded by color anal-
ogously to figure 5.27, thus, white exhibits maximum in-plane magnetization.
For clarity, the local orientation of magnetization in the surface layer is rep-
resented by arrows. The arrows over the white regions, that are the domain
walls, are oriented parallel to the normal of the wall nwall. Thus, Néel-type
walls at the surface, i.e. experimentally hypothesized Néel caps, have been
computationally confirmed.

Focusing on the four spots, these are quickly distinguished to be made up
of 3 different types of structure, schematically illustrated in figure 5.28e to g.
First, the spot marked purple is considered in more detail. A further enlarged
view, as well as a schematic representation are depicted in figure 5.28b and e,
respectively. For the schematic the arrows are colored by hue and saturation.
Hue encodes the in-plane orientation, similar to TIE data, whereas reduced
saturation towards black (along +z) and white (along −z) describe the out-
of-plane orientation. In the vicinity of the spot, the magnetization is oriented
almost radial. Thus, the helicity, γ → 0◦, which is termed Néel-type, consistent
with the earlier observations of Néel caps. Counterintuitively, the Néel caps
do not extend to the spot. In close proximity to the unperturbed out-of-plane
magnetization exhibited at the spot, the in-plane component of the magneti-
zation is oriented almost tangential. Hence, the spot is surrounded by a small
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Figure 5.28: Spin texture around the partial flux closure. a Magnified
view of the iso-surfaces exhibiting neck-like structures to the surface. The
orientation of the magnetization in the top layer is represented by the arrows.
b-d, detailed view. e-g, corresponding schematic view of the observed spin
textures.

area exhibiting predominant Bloch-type domain wall character, which gradu-
ally transitions to the Néel-type in the vicinity. Analogous behavior is observed
for the second spot, marked orange, which depicts an inverted direction of the
swirl in close proximity, figure 5.28e and f. Therefore, spots can exhibit Bloch-
type behavior of either helicity, γ ≈ ± 90◦. Hence, in Fe3Sn2 there are vortices
of the same vorticity (m = +1) but opposite helicity. Topologically, they map
to the norther (southern) hemisphere of the order parameter space. Thus, they
mimic the inner half of Bloch-type skyrmions of either helicity.

In addition to the two vortices of opposite helicities described above, a
third distinct type has been identified, highlighted in green in figure 5.28a,
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with a magnified view and a schematic provided in 5.28d and g, respectively.
Unlike the previous spots, this one is not rotationally invariant, but rather has
a two-fold rotational symmetry (C2). Along the domain, the magnetization
points from the spot, whereas trailing perpendicularly out over the domain
wall, the magnetization points towards the spot. In between, the magnetization
rotates to bridge this mismatch, leading to an object with a vorticity of m =
−1: i.e., the spot is an antivortex. The fourth spot in this region is also
an antivortex, with an analogous magnetization configuration differing only
in its lateral position, which is slightly offset towards one side of the domain.
Peculiarly, a similar neck-like structure is visible on the opposing surface, which
is likely identified as an (anti-)vortex. These could be traces of the creation of a
vortex-antivortex pair from a Bloch point, previously nested in the domain wall
between the two stripes. However, as the observation of antivortices in Fe3Sn2
is currently limited to the micromagnetic simulations, and in-depth study is
not part of this work.

Correlation of micromagnetic simulations to experimental
observations

Having ascertained what types of vortices are present within micromagnetic
simulations, here this computational data is directly compared to the exper-
imental data. More specifically, the obtained contrast from LTEM studies is
qualitatively matched to the results from micromagnetic simulations.

Therefore, the micromagnetic simulation results are processed to yield com-
parable representations. This is done by using the PyLorentz code, version 1.0
[276]. The Python based code computes LTEM contrast for the micromagnetic
simulation results. Within the code, a microscope is defined with matching
specifications of the experimental setup, including parameters like defocus and
specimen tilt. From the modeled three-dimensional micromagnetic texture BF
images, and TIE contrast, are simulated for the defined experimental settings.
Compared to simpler approaches, e.g. averaging the in-plane components along
the thickness, this method has the major advantage that it actually reproduces
analogous artifacts to experimental TEM study. Most notably, working with
too large defoci yields rippled contrast associated with severe Fresnel fringing,
whereas too small defoci yield weak contrast. Hence, by adjusting, or delib-
erately misaligning the focus, even realistically imperfect experimental results
can be reproduced.

Figure 5.29a shows the BF image of a representative region. It contains,
both stripe and a few bubble domains. Furthermore, some of the stripes,
as well as some of the bubbles, exhibit continuous domain walls, while oth-
ers are characterized by the emergence of Bloch lines. This domain pattern
is matched by the modeled micromagnetic texture, depicted in figure 5.29b.
Note, for improved visibility the images are scaled to match the size of the
emerging domains, as quantitative size comparisons are inopportune, because
of some remaining challenges of the technique, such as sample thickness mis-
match. Both the BF image defocus stack and the modeled magnetic texture
are processed to obtain TIE induction maps. The induction maps, depicted
in figure 5.29c and d, finally allow qualitative comparison of results based on
analogous data representation. Looking beyond the quantitative mismatch
of when domain structures transform into each other, all the salient features
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Figure 5.29: Comparison of experimental and simulated results. a,
BF image. b, simulated micromagnetic texture. c, TIE reconstructed induc-
tion map, obtained from the image stack corresponding to a. d, simulated TIE
induction map based on the modeled micromagnetic texture in b.

are observed: Large stripe domains, exhibit Bloch lines in either image. Only
short stripes, which could also be termed elongated skyrmionic bubbles in many
cases, maintain a continuous domain wall.

Considering the modeled data, at the bottom of figure 5.29d an elongated
type I bubble domain without nested spot-like contrast is observed. Whereas,
spot like contrast is observed in the simulated TIE for other domains: On the
right-hand side, in a bubble, where the outer and inner contrast match. In the
center of the image, where the spot-like contrast sits centered in one of the
ends of the short stripe, as well as in the center of the large branched domain.
And finally, at the top edge, where the spot is nested in a type II bubble.
While, the locations of these spots match the locations of vortices identified in
figure 5.29b, the latter appear far more numerous. Hence, not all vortices yield
spot-like contrast in the TIE indcution map. On the flip side, this matches the
experimental results, where not all bubble, respectively stripe domains exhibit
the spot-like contrast either. The lack of spot-like contrast in the experimental
results could coincide with the lack of partial flux-closure for such domains.
But from simulations partial flux closure is predicted for all domains. Hence,
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the more likely reason for the lack of vortex related contrast is rooted in the
second surface. As denoted, the vortices tend to appear laterally centered over
the domain. Thus, averaging through the whole depth via TIE reconstruction
includes not only the effect of the vortices at the top surface, visible in figure
5.29b, but also their counterparts on the bottom surface.

Introduction of the layer based model

Given the spot-like TIE contrast nested in domains presumably originates from
vortices appearing at both surfaces of the specimen, individual analysis of the
respective depth regions is conducted to understand the reasons for the emer-
gence, or lack, of spot-like TIE contrast nested in domains. Therefore, a major
strength of magnetic simulations is exploited: While in the experimental setup,
probing the full thickness is a requirement of TEM studies, this is not the case
for the simulated TIE. In fact, the simulated contrast can be obtained from
a micromagnetic simulation representing as little as sub-nanometer thickness.
Thus, in case of the 8 × 8×8 nm3 cells used for the simulations in this work,
every single layer of the modeled magnetic texture could be evaluated individ-
ually. Hence, the individual features in the TIE contrast can be attributed to
the layers in the bulk or at either of the surfaces they originate from. This ap-
proach is corroborated by an analogous study of an individual bubble domain
in literature [277].

The micromagnetic texture, depicted in figure 5.30a, is obtained by re-
relaxing the domain pattern, simulated for 575mT out-of-plane field, in zero
field. The result is a mixed domain configuration of oblong bubbles and short
stripes, which match the experimentally observed remanent domain patterns
closely, including the presence of vortices. Analysis of cross sections reveal the
neck-like structures in the iso-surfaces are constrained in the top and bottom
three layers of the simulated magnetic textures. The central ten layers are
representative of the domain size in the bulk. Thus, these groups of layers are
extracted for separate analysis. As depicted by the iso-surfaces in figure 5.30b
to d, the central layer reproduces the domain pattern in the bulk, whereas the
top and bottom layers merely depict a few scattered spots corresponding to
the vortices. The locations of the majority of the vortices matches on the top
and bottom surface. For each of the separated subsets of layers, as well as the
modeled domain configuration representing the full thickness, the TIE contrast
is simulated. For all four simulations the presumed microscope and experimen-
tal settings, like the defocus, are kept fixed. The resulting TIE contrast is
depicted in figure 5.30e to g for the separated subsets and in figure 5.30h for
the full thickness. The latter depicts contrast qualitatively matching previous
experimental results (confer figure 5.21b). From figure 5.30h, the domains and
the spot like contrast attributed to the vortices are clearly visible. The TIE
contrast calculated for the separated subsets at the top and bottom corrob-
orates previous results discussed for figure 5.27. Note, the diffuse contrast is
not related to the Néel caps as these do not yield discernible BF contrast and
subsequently no TIE contrast. It actually correlates to the onset of the domain
wall reconfiguration towards the Bloch-type walls in the bulk. The vortices
yield the presumed skyrmion-like TIE contrast. Evaluation of the center re-
gion, figure 5.30f, reveals contrast solely linked to the Bloch-type domain walls
in the bulk. Hence, the origin of different features in the TIE contrast being



118 Chapter 5. Results and Discussion

Figure 5.30: Layer based model in simulations. a, remantent modeled
domain configuration and separation into the top and bottom three as well as
the central ten layers. b-d, modeled domain configuration in the top, central
and bottom region, respectively. e-g, corresponding simulated TIE contrast.
h, simulated TIE contrast for the full thickness.

attributed to either surface, respectively the bulk, is confirmed.

In the TIE images of figure 5.30, one domain is highlighted in white. For
the full thickness, this particular domain depicts the ring-like texture, as well
as the center spot attributed to a vortex. Comparing the area in the models
of the separated layers, the ring-like structure is reproduced in the center,
whereas both the top and bottom surface depict matching spot like contrast.
The behavior of the bubble domain marked in red differs. Here, the type
II domain exhibits no nested spot-like contrast for the full thickness. The



5.2.5. Micromagnetic Simulations 119

observed domain wall is reproduced from the bulk region. Although slightly
perturbed, the top and bottom slabs depict spot-like contrast, nevertheless.
Careful analysis reveals the two vortices exhibit opposite helicities, i.e. their
LTEM contrasts cancel one another. Thus, proving the lack of nested spot-
like contrast in experimental data originates from intrinsic cancellation due to
opposite contrast attributed to laterally aligned vortices at the top and bottom
surfaces.

Detailed consideration of three representative bubble domains

Furthermore, the layer based model explains the origin of several different
types of bubble domains classified in figure 5.25. In order to elucidate this,
three representative bubble domains obtained from micromagnetic simulations
are considered in detail, reveling the origin of the contrast for type A, B and
E bubble domains, respectively.

Figure 5.31: Topologically non-trivial bubble of type A. a, cross section
overlayed with arrows. b, arrows representing the domain wall configuration.
c, simulated TIE contrast for the layered and full model, respectively. d, iso-
surface of maximum in-plane magnetization.

The first one is depicted in figure 5.31a, b, and d, where a cross section,
as well as the domain wall represented by colored arrows, and the iso-surface
of maximum in-plane orientation, are shown. These representations not only
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emphasize the strong variance of the domain wall along the thickness of the
specimen, they also give insight to the local orientation of the magnetization.
In the cross section to the left of the iso-surface of −0.9mz the arrows are
colored purple, indicating an orientation into the page, whereas to the right,
the arrows are colored yellow to green, indicating the opposite direction. This
is true from the very top of the specimen to the bottom, which compels the
same helicity at the top, in the center and at the bottom. This is, furthermore,
corroborated by the matching swirl indicated by the arrows in figure 5.31b
at the top and bottom. In figure 5.31c, the detailed analysis via layered TIE
evaluation is presented. Matching helicities for both the vortices at the top
and bottom, as well as the center region is confirmed. Thus, the evaluation of
the full region yields ring-like contrast with a nested spot that is equivalent to
the type A bubble observed in experiments.

Figure 5.32: Topologically non-trivial bubble of type B. a, cross section
overlayed with arrows. b, arrows representing the domain wall configuration.
c, simulated TIE contrast for the layered and full model, respectively. d, iso-
surface of maximum in-plane magnetization.

The second bubble analyzed in detail is shown in figure 5.32a, b, and d,
using the same color schemes and format to allow ease of comparison. The
general shape of the bubble matches the previous one, but the local orientation
of the magnetization differs. Here, the magnetization to the right of the iso-
surface, depicted in figure 5.32a, is pointing into the page at the top and center,
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but reverses the orientation at the bottom. To the left of the iso-surface, this
behavior is mirrored but the orientation is locally inverted. From the top view,
this inversion can be confirmed by an inverse direction of the swirl at the
top and bottom. Simply put, the domain wall shows helicity reversal along the
thickness. These results are corroborated by the TIE simulations, which depict
inverse color contrast for the bottom layers compared to the central and top
ones. The evaluation of the full thickness, thus yields a ring structure, which
lacks contrast associated with the vortices, recreating the observed structure
of the type B bubbles experimentally observed (section 5.2.4).

Figure 5.33: Topologically trivial bubble of type E. a, cross sections
overlayed with arrows. b, arrows representing the domain wall configuration.
c, simulated TIE contrast for the layered and full model, respectively. d, iso-
surfaces of maximum in-plane magnetization.

Finally, a type II bubble, that is a topologically trivial bubble, is investi-
gated. Using the same layout and color scheme as before, figure 5.33a, and d,
show an altered shape. Trivially, it has a much larger equatorial region but
excitingly, it has an additional texture on the iso-surface. The domain shows
bulges on the −0.9mz iso-surface, which also appear on the colored iso-surface
of maximum in-plane magnetization, i.e. the domain wall, as spots. These
peculiar spots are Bloch points, which naturally occur in the domain walls of
type II bubble domains in Fe3Sn2, due to the constraints for the orientation
of the magnetization imposed by the helitity reversal in the Bloch lines and
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the Néel caps. A detailed explanation is given in section 2.2.3. In figure 5.33b,
the region of the Bloch point is enlarged, where the singularity is marked for
clearer visualization by the diverging orientation of the arrows. From the left
and right, the magnetization meets head-to-head constricted by the helicity of
the wall segments. From above and below, the magnetization is constrained
tail-to-tail by the Néel caps. Additionally, being part of the domain wall, this
yields a naturally occurring singularity in the magnetization, where the mis-
match in orientation cannot be mitigated by any rotation. Note, a second Bloch
point emerges in the second Bloch line, where the helicity constraints of the
domain wall segments enforce the magnetization in a tail-to-tail configuration.
Beyond the emergence of Bloch points, the type II bubble exhibits vortices
analogous to the type I bubbles. TIE simulation-based analysis reveals, in this
particular case these are of equal helicity, and thus, for the full thickness model
nested spot-like contrast is observed. Therefore, the bubble is assigned type E
according to the scheme in figure 5.25.

Summary for the layered evaluation of the helicity

Using the above three exemplary bubbles as representative cases, it is apparent
that an understanding of any magnetic object requires a consideration of its
3D nature. Here, the understanding of the 3D nature allows the origin of the
experimentally observed curious contrast signals to be deduced and understood.
In order to properly formulate their behavior and assign them to their type, the
bubbles cannot be described by one overall helicity assigned to them, instead,
the helicity for each of the layers contributing to the observed contrast has
to be denoted. In figure 5.34, the schematic for the naming convention is
displayed. To fully describe a bubble domain, it is necessary to list the helicity

Figure 5.34: Schematic helicity of the top, center, and bottom region.

corresponding to the bulk region, γcenter, as well as the helicities for the top,
γtop, and bottom, γbottom, surfaces. Here, γcenter describes the domain wall
in the bulk, which corresponds to the ring-like contrast. Whereas, γtop and
γbottom describe the helicities of the vortices at the corresponding surfaces.
Evidently, whether they match or mismatch determines the occurrence of spot-
like contrast nested within the ring.
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Finally, this leaves one type of experimentally observed bubble domains
unaccounted for, that is type C. This type is characterized by a ring of opposing
helicity to the spot-like contrast in the center. That means both vortices, must
exhibit the same helicity for the top and bottom surfaces, γtop = γbottom,
which are inverted relative to the bulk, i.e. γcenter. From the select few bubbles
observed in the micromagnetic simulations this behavior was not reproduced.
But this does not prove such a state cannot occur. Since the helicity reversal
within the domain wall is confined to the near surface region of the vortex and
occurs in several bubbles either at the top or bottom surface, it may as well
appear on both surfaces for the same bubble. An additional challenge comes
from the micromagnetic simulations themselves (as used here): they yield a
single state as the final solution. As such this minimum energy state does not
necessarily correspond to the global minimum in energy for a given parameter
set. Furthermore, the observed final state is generally closely linked to the seed
used. Thus, any other seed or the inclusion of additional perturbations from
the experimental setup could foster the emergence of such bubbles.

For all Bloch-type domain walls the absolute value of the helicity is |γ| =
π/2. Following the convention introduced in figure 5.34, topologically trivial
and non-trivial bubbles can be discerned by γcenter. For type I bubbles the
values γcenter = ±π/2 occur. Type II bubbles exhibit two wall segments of
opposing helicity and thus, no single values can be assigned to γcenter. The
(mis)match of the helicity of the vortices at the top and bottom surface de-
termines, whether these depict spot-like contrast. In table 5.4 all possible
distributions of (γcenter, γtop, γbottom) are assigned to the types of bubbles ob-
served experiementally. Most bubble domains can be unequivocally identified

helicity
center top bottom
γcenter γtop γbottom

type A
+π/2 +π/2 +π/2
−π/2 −π/2 −π/2

type B

+π/2 +π/2 −π/2
+π/2 −π/2 +π/2
−π/2 +π/2 −π/2
−π/2 −π/2 +π/2

type C
+π/2 −π/2 −π/2
−π/2 +π/2 +π/2

type D
- +π/2 −π/2
- −π/2 +π/2

type E
- +π/2 +π/2
- −π/2 −π/2

Table 5.4: Distributions of helicites assigned to the bubble types.

from experimental results: These are type A, type C and type E. Even their
exact helicity configuration is discernible from the depicted swirl of the mag-
netization in TIE reconstructed induction maps. But some bubble domain
types, namely type B and type D, remain degenerate with respect to their ex-
act identification in experimental results as the contrast attributed to the top
and bottom vortex cancels, their absolute helicity cannot be determined. That
is to say, whether the top or bottom vortex exhibits helicity reversal relative to
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the core and respective other vortex cannot be determined for a type B bubble
domain. Type B bubble domains are, thus, the only type which is obtained
from four instead of two configurations. Peculiarly, this does not translate into
more numerous occurrence of this type, as denoted for table 5.2. Hence, the
emergence of any type is strongly influenced by the overall domain configura-
tion, rather than a particular type being favorable in general. Simulated results
corroborate this, as the reduced complexity in the model fosters the emergence
of domains exhibiting simpler domain wall configurations.

5.2.6 Low Temperature Studies

Heritage et al. [263] demonstrated that in bulk Fe3Sn2 single crystals the
uniaxial magnetocrystalline anisotropy undergoes a transition to easy-plane
anisotropy below 250 K. The focus of this thesis is on lamellae of the same
material at room temperature. This section addresses the question, how those
observed properties change across this magnetic transition. Surprisingly, from
MFM studies at room temperature and at 200K, figures 5.10 and B.5, there
is no evidence of substantial deviation in the domain morphology. However,
MFM is limited to the observation of out-of-plane magnetization, thus, gradual
changes, i.e. minor perturbations in domain size or shape, could be overlooked.

Figure 5.35: Temperature dependence in zero field. a, b, BF images,
c, d, corresponding TIE reconstructed induction maps.
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Exploiting the enhanced resolution of the TEM, temperature-dependent
studies are conducted. Figures 5.35a and c depict the BF image and the corre-
sponding TIE reconstructed induction map obtained at 300K. Consistent with
previous results a mixed state of bubble domains agglomerated in the center,
surrounded by stripe domains along the edges of the lamella is observed. Fig-
ures 5.35b and d depict the corresponding BF, and TIE images at 100K. Ad-
ditionally, the intermediate steps of 250K, 200K, 150K, and 120K are shown
in the appendix in figure B.22. The magnetic texture of the specimen remains
almost unchanged upon cooling down to 100K. This result is corroborated by
literature [52], where negligible deviations in LTEM images were observed upon
cooling from room temperature to 170K. Furthermore, figure B.26 provides
evidence in laterally confined specimen, discussed in section 5.3, the magnetic
texture remains unperturbed upon cooling to low temperatures as well.

Figure 5.36: Field evolution at low temperature. a-d BF images ob-
tained at T =94K.

Additionally, the field evolution is also revisited in the TEM at 94K. Subse-
quent to thermal stabilization at 94K, magnetic field up to 800mT is applied.
Due to limitations imposed by the use of the liquid nitrogen cooled single-tilt
specimen holder, this assembly fosters in-plane domain configurations, coincid-
ing with the projected in-plane field. Figure 5.36 presents BF images in zero
field, 200mT, 500mT, and 800mT. Intermediate 100mT steps are shown in
figure B.23 of the appendix. Most notably, the application of 200mT is suffi-
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cient to stabilize an almost completely aligned stripe domain pattern. While
the emergence of an aligned stripe domain pattern, matches the domain mor-
phology for applied oblique field, the fact that all bubble domains vanish is
peculiar. Compared to room temperature results, see figure 5.23, where an
oblique field of 410mT merely stabilized a mixed domain pattern, the field
seems to be reduced by several hundred milli-tesla. Subsequently, the stripe
pattern remains practically unperturbed up to a field of 500mT. Applying
fields exceeding 500mT, the stripe domains vanish, giving rise to the mono
domain state, which is reached between 700mT and 800mT.

In summary, lowering the temperature from 300K to 100K does not lead
to a reconfiguration of the remanent ground state. The application of oblique
field in contrast, does foster the formation of an aligned stripe pattern. Most
curiously no bubbles are stabilized by the magnetic field. This behavior im-
plies increased easy-plane anisotropy stabilizing stripe domains at 94K, that
are aligned with the projected in-plane component of the applied field. The
caveat, that the application of severely oblique fields fostering the stripe do-
mains cannot be ruled out. Hence, while the transition from an easy-axis to
an easy-plane magnetocrystalline anisotropy is not sufficiently distinct to re-
configure the ground state in a lamella, enhanced easy-plane anisotropy is still
likely at low temperatures.
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5.3 Towards Functional Building Blocks for Applications

For the realization of functional building blocks for future applications in infor-
mation technology, based on Fe3Sn2 or similar intermediate Q materials, it is
important to meticulously understand the magnetic texture in detail enabling
domain engineering. As such the preceding sections have focused on under-
standing and cataloging what magnetic objects emerge in Fe3Sn2, and looking
at in-plane and out-of-plane magnetic components both experimentally and
computationally. The major problems identified from this work for potential
applications are: The ground state is represented by a maze-like stripe domain
pattern, which is quasi random. Furthermore, a pure bubble phase, which is
the most promising to encode data, e.g., for storage media, is realized only in
static fields above several hundred milli-tesla. These problems were identified
in laterally unconfined lamellae, and so this section considered whether lateral
confinement can help to overcome these challenges.

5.3.1 Controlling Domain Configurations by Lateral
Confinement

Introducing lateral geometrical confinement has been proven to influence the
emerging domain pattern while simultaneously lowering the field required to
stabilize the bubble domain phase [265]. Following this idea, a series of lamellae
were shaped to laterally confine the magnetic texture in order to gain control
over the exhibited domain patterns.

Stripe width as tuning parameter

The first one is an in-plane wedge shaped geometry depicted in figure 5.37a,
where the lateral dimensions are measured via an AFM topography scan. Note,
the ends to the left and right of the marked area are covered by platinum from
the FIB deposition, making unperturbed MFM imaging of this region impos-
sible. The lamella is of uniform thickness of 200 nm. Figure 5.37b depicts the

Figure 5.37: In-plane wedge-shaped lamella. a, topography scan reveal-
ing the dimensions. b, MFM image.

MFM image, where the phase shift corresponding to the out-of-plane magne-
tization is encoded by the color bar. On the narrow end, i.e. for width below
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400 nm the observed contrast is rather weak, which is probably caused by the
platinum contamination of the surface. In the intermediate range the lamella
depicts an aligned arrangement of domains oriented perpendicular to the edges.
For lamella widths exceeding approximately 900 nm, this pattern gives rise to
the previously observed maze-like stripe domain patterns, e.g. in figure 5.7d.
Hence, the intermediate range is of most interest to tune the shape of the do-
mains. While towards the wider end these are clearly identifiable as stripes,
towards the narrow end it is not so clear. At the narrow end it is not possi-
ble to discern whether the contrast of the stripe domains is perturbed at the
edges, giving rise to bubble domain like contrast, or actual bubble domains
form centered in the wedge-like lamella.

Stray-field coupled lamellae

Analogous, to the out-of-plane wedge, the gradual change of width gradually
tunes the shape anisotropy. Thus, the formation of the domain pattern in the
intermediate width range is verified by a second geometry. That is a stripe of
similar dimensions and fixed width of 500 nm. Furthermore, a second stripe of
the same dimensions is placed 500 nm apart. The corresponding topography
image is shown in figure 5.38a. Consistent with the predictions, both stripe-like

Figure 5.38: Stripe pair. a, topography scan revealing the dimensions. b,
MFM image.

lamellae exhibit alternating domains pointing up and down along the c axis in
the MFM image, see figure 5.38b. Analogous to the in-plane wedge-like speci-
men on the narrow end, it is not possible to discern whether these are bubble
or stripe domains. However, upon close inspection the upper stripe depicts 20
domains of bright contrast and a partially covered one on the right, that are
highlighted by the green arrows. The lower stripe exhibits the same number of
bright domains, marked by the purple arrows, yet starts with an almost fully
covered one. This is remarkable, as it indicates, that there is a correlation of the
magnetic textures between both stripes leading to the formation of the alter-
nating domain structure. This structure is the mutual energetically favorable
state of the neighboring stripes. Based on this preliminary result, a stray-field
coupler of domains seems feasible. Such a device enables electric field free
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domain motion in one array, driven by a coupled array, following established
methods for induced domain motion (confer section 2.2.2, Spintronics).

Dynamics of domains

Focusing on the study of collectively moving the domain patterns, an additional
aspect has to be considered: Bubble (stripe) domains are spaced based on their
diameter (width) and the collective interactions with each other. Introducing
the lateral geometrical confinement to a quasi 1D geometry, represented by
the stripe, they form an alternating chain of up and down domains. However,
any repellent interaction from the edges acting on bubble domains (pinning of
stripe domains to the edges) on the ends of the stripe imposes an energy bar-
rier to collectively move all domains towards or away from that edge. In order
to overcome this artificial barrier, a ring geometry, see figure 5.39a, which is
prototypical for a racetrack memory based on Fe3Sn2 [86] is prepared. Beyond

Figure 5.39: Ring structure. a, topography scan revealing the dimensions.
b, MFM image.

eliminating the challenges associated with the ends of a stripe, the ring adds
the curvature as an additional parameter. In the presented case, the ring has
an inner diameter of 6.5 µm and retains a width of 500 nm all around. For the
itinerant ferromagnet Fe3Sn2, the magnetic order is not expected to be cou-
pled to the lattice. Hence, throughout the isotropic shape of a ring, domains
should be able to form irrespective of the local mismatch of the constraining
edges versus the crystallographic axes. Indeed, the alternating domain pattern
is observed throughout the ring, as shown in figure 5.39b. Note, deviations
in the MFM contrast of certain regions are attributed to the topography and
scanning along one direction. This provides evidence that the introduction of
curvature in quasi 1D geometries does not perturb the alternating domain pat-
tern, making Fe3Sn2 a viable candidate to study complex racetrack geometries
for memory applications. Furthermore, the reduced current densities required
to collectively move the domain pattern, due to the eliminated ends of the race
track, paired with the rigidity of the individual domains, allow to reduce the ac-
celerator to a part of the track [86]. Based on the joint work with E. Lysne and
colleagues a patent application is filed for such a partially accelerated racetrack
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memory [278]. In a successive step, stray field coupled acceleration, eliminat-
ing the need for biasing currents in the data carrying geometry entirely, could
broaden the range of skyrmion host materials applicable in racetrack memories,
while simultaneously spatially separating the energy dissipative acceleration
from the information storage in the memory application.

While MFM has already been established as an excellent tool to image
the out-of-plane magnetic textures in general (confer figures 5.7 and 5.11), it
has major challenges when imaging non-planar specimen. Scanning artifacts
arise along the edges of laterally confined lamellae, since, the height feedback
loop cannot adjust to the steps in the topography quick enough under ideal
imaging conditions for regions on the lamellae. Thus, employing MFM as a
tool to study the dynamics of bubble domains in detail remains a challenging
task. However, it seems feasible to image domains and possibly trace their
movement performing non-contact single-pass scans with low-moment tips, as
the stray field coupler demonstrates even in 500 nm distance the emergent stray
fields are sufficiently strong.

LTEM studies of laterally confined lamellae

To tackle the challenges of MFM studies on complex geometries, LTEM seems
to be an ideal technique, which is particularly useful for dynamic studies due to
image acquisition times down to few tens of milliseconds. Furthermore, despite
Fresnel fringing, magnetic contrast can often be well maintained close to the
edges of the specimen, giving the possibility to distinguish between stripe and
bubble domains. LTEM provides a high-resolution option to discern the exact
shape of the domains in the quasi 1D confined geometries. For this purpose the
lamella introduced in figure 5.3a, which exhibits a nested half ring structure,
is investigated. The stripe width of the individual half rings is tapered. Thus,
yielding a combination of the in-plane wedge-like and the ring structure.

Figure 5.40: BF LTEM image of the nested ring structure. The arrows
highlight domains.

Figure 5.40 depicts the BF image obtained in zero field. In line with pre-
vious observations for remanent states, relaxed from pure out-of-plane field, a
mixed stripe and bubble domain phase is imaged, highlighted with the green,
purple, and blue arrows, respectively. For the larger ring, a stripe domain cen-
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tered on the specimen is observed (purple arrows). For intermediate width,
it follows the curvature of the ring-like structure. In the center the stripe is
intermittent by a single type I bubble domain (blue arrow). At the top, where
the structure widens, additional stripe domains align parallel to the long stripe
domain (green arrow). Peculiarly, here, the stripe ends are pinned to the edges.
Despite, the Fresnel fringes partially obscuring the magnetic contrast, no severe
pinning or other edge effects are observed. Magnetic contrast in the smaller
ring is predominantly superseded by contrast attributed to strain. Addition-
ally, field sweeps, shown in figure B.24 in the appendix, confirm the analogous
field evolution of the domains to laterally unconfined lamellae.

Here, the focus lies on possible functional structures, stabilized by lateral
geometrical confinement, and thus, determining the resilience of domain ori-
entations stabilized by geometrical confinement versus external stimuli. That
means, understanding whether the curved stripes following the curved geome-
tries are reshaped by the projected in-plane fields applied or remain unper-
turbed. Elaborating on the inconsistent orientations of some stripes relative
to the edges, remanent domain patterns obtained after applying oblique fields
are investigated.

Resilience of confined domain structures versus magnetic field

In figure 5.41a three regions of interest are highlighted: The first one, marked
purple, is the top end of the outer ring where the 940 nm wide end of the ring
connects at an angle of 90◦ to a 600 nm wide stripe. The second region, is
the center of the small half ring, which is marked blue. At the widest point
this strongly curved stripe-like geometry is 980 nm wide. The third region of
interest is the center of the large half ring, where the width is reduced down
to 530 nm. Detailed measures for the full lamella are shown in figure B.1 in
the appendix. Figures 5.41b, c, and d show the remanent domain pattern

Figure 5.41: Remanent states post application of oblique field. a, BF
image and reference for regions of interest colored purple, blue, and green. b-j,
BF images for the regions of interest. The field has been applied as indicated
above the columns.
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for the first region of interest. For pure out-of-plane fields, a stripe pattern
following the geometrical constraints is observed. Following the 90◦ corner,
the stripes bend accordingly. For previous application of a field with an in-
plane component along the vertical axis of the image, the stripe pattern in the
wider arm aligns with the projected field. In the narrow arm the geometrical
constraints preserve a slight mismatch. Applying the in-plane component of the
field along the horizontal direction before imaging, this behavior is replicated.
In the narrow arm the orientation of the stripes is preserved. Subsequently,
they bend almost 90◦ before following the horizontal stripe pattern in the wider
arm. This behavior is corroborated by the other two regions of interest. For
the narrow curved region, see figures 5.41e, f, and g, the application of oblique
field yields negligible perturbations of the domain pattern. All three remanent
states depict domain patterns following the slightly curved geometry rather
than the previously applied in-plane field. The center of the small half-ring is
depicted in figures 5.41h, i, and j. It exhibits a curved domain texture following
the geometrical constraints, in case out-of-plane field has been applied. If
the in-plane component has been oriented along the vertical axis, the domain
pattern appears unperturbed, as in the widest area the geometrical confinement
favors the same orientation. Finally, if the in-plane component of the field has
been oriented perpendicular prior to imaging, the central region depicts stripe
domains following this direction.

The oblique fields, have been applied at angles α ≈ β ≈ 20◦, i.e. the
projected in-plane component of the field amounts to approximately 35% of the
few hundred milli-tesla applied in total. As a result, the lateral geometrical
constraints imposed by a stripe width of 500 nm supersede the effect of the
application of in-plane fields of at least up to 100mT. Hence, narrow stripe-
like geometries are ideal candidates to foster single chains of bubble domains
in modest field. In other words, quasi 1D geometries of Fe3Sn2 facilitate the
formation of rigid bubble domains, which could be used to encode data, in
prototypical racetrack memories based on intermediate Q materials.

In summary, lateral geometrical confinement is a viable tool to tune the
domain configuration. Quasi 1D confinement, i.e. narrow stripes of width be-
low 500 nm, fosters the formation of a single domain centered in the geome-
try. These geometries are not limited to straight lines. Curvatures as well as
sharp corners can be introduced, allowing the realization of prototypical ge-
ometries for racetrack memories and other applications. These stripe domains
are stabilized versus in-plane field of at least 100mT. Additional application of
modest out-of-plane fields stabilizes a chain of bubble domains instead of the
single stripe. Furthermore, by constraining wider areas with rectangular, or ac-
cordingly distorted edges, emergent bubble domains can be tuned to populate
triangular or square lattices.

5.3.2 Towards Skyrmion Device Based Logic Applications

In addition to the stray-field coupler and ring structures for racetrack memories,
applications like logic gates require another feature for data processing, that
is a selector, or collector for functional magnetic objects[29]. Therefore, a Y-
shaped lamella is FIB prepared to study the envisaged side selection of bubble
domains. All corresponding measures for this geometry are given in figure B.2
in the appendix. In agreement with prior results, the lamella exhibits a mixed
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bubble and stripe domain pattern in zero field, which follows the established
domain morphology in out-of-plane magnetic field at room temperature (figure
B.25), and exhibits no deviations in the remanent state down to 100K (figure
B.26). Figure 5.42 shows the stabilized bubble domain pattern in 630mT at
room temperature. On the right, a triangular lattice of various bubble domains

Figure 5.42: BF LTEM image of the Y-selector-collector. Imaged in
630mT out-of-plane field.

is formed, whereas the lower arm depicts a square lattice. The upper arm,
which is slightly narrower, exhibits a single chain of bubble domains. Note,
in the angled sections, which are even narrower, lower fields are sufficient to
stabilize the bubble domain chain, which is already expelled in 630mT. This
variation should be avoided for future proof of concept device applications,
instead stripes of uniform width, and if required severely narrowed structural
support structures, should be used.

In the prototypical Y-selector-collector geometry lateral motion of the bub-
ble domains is driven by the thickness gradient and increasing external out-
of-plane field. The reduced thickness towards the left in figure 5.42 drives the
bubble domains in the same direction. This behavior is rooted in the reduced
energy cost attributed to the Zeeman interaction of a smaller antiparallel ori-
ented volume of the domain. The volume of the domains shrinks, due to the
gradually narrowing height of the individual bubbles, that is proportional to
the thickness, and the corresponding down-scaling of the diameter. Exploiting
this driven motion yields only very limited lateral displacement before bubbles
eventually dissolve. Furthermore, no incentives, besides a potentially favorable
stripe due to geometrical mismatch, are given to actively select either path
at the Y-junction. In contrast, upon exploiting STT by applying a biasing
current jdrive across the junction, the skyrmion hall effect could serve as the
selecting rule. It is known that skyrmions and antiskyrmions exhibit an op-
posite Hall angles Φ [279], i.e. their velocities v deviate in opposing directions
from the driving current jdrive. Furthermore, the Hall angle Φ(γ) of skyrmions
depends on the helicity [280, 281]. For Bloch skyrmions, the Hall angle is
Φ(±π/2) = 0, which means they follow the direction of the current. For Néel
and intermediate skyrmions Φ ̸= 0. These exhibit a deviating trajectory as
depicted in figure 2.13, which can be used to select them in a side track. The
coexistence of dipolar-stabilized skyrmions and antiskyrmions [140], as well as
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the tuneability of the helicity of individual skyrmions [282] have recently been
demonstrated, highlighting a pathway to utilize a STT driven Y-junction as a
functional building block for logic architectures.



6

Conclusions

Numerous challenging demands arise for novel information technology, ranging
from upscaleability of manufacturing to improved functionality. For memory
applications, this means higher information density and superior access times,
while reducing the power consumption. To achieve such advances in technology,
profound understanding of the elementary building blocks in these devices is re-
quired. One particular paradigm of novel memory devices is based on spintron-
ics [21–23]. Topologically protected spin textures, like skyrmions, are of special
interest for spintronics based memory applications, as spin-transfer torque can
be exploited for writing individual bits and data transfer [283–287]. First con-
cepts for such memories have been proposed over a decade ago [172, 173, 288],
yet no spintronics-based memory device is available commercially up to now.
This is predominantly owed to the challenges of miniaturization with the added
complexity of working with extremely sensitive skyrmion host materials.

This work focuses on fundamental research aspects of mesoscopic spin tex-
tures motivated by the development of functional building blocks for spintronics
applications. For this purpose, Fe3Sn2 is chosen as a promising candidate ma-
terial and its complex magnetic patterns are investigated by magnetic force
microscopy and Lorentz transmission electron microscopy. Corroborating mi-
cromagnetic simulations are used to model the three-dimensional magnetic tex-
tures observed by these imaging techniques. The results obtained in this thesis
elucidate the following fundamental questions posed in the introduction:

i) What magnetic objects emerge in Fe3Sn2?

Microscopy studies reveal a maze-like pattern of alternating out-of-plane mag-
netized stripe domains as the zero-field virgin state of focused ion beam (FIB)
prepared Fe3Sn2 lamellae. In the bulk of the lamellae, i.e. away from the ex-
posed large surfaces, these are separated by Bloch-type domain walls of helicity
γcenter = ±π/2, whereas at the top and bottom surfaces the material exhibits
Néel caps and partial flux-closure. Coinciding with the uncapped regions of
the partial flux-closure structures, vortices are observed.

In finite magnetic fields, and in the remanent state after field cycling, bubble
domains emerge. These can be distinguished as topologically trivial (type
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II) or non-trivial (type I, skyrmionic) by the shape of their domain wall in
the center region. Towards the surfaces all bubble domains exhibit Néel caps
and the vortices attributed to partial flux-closure. From the bright field (BF)
images, and transport of intensity equations (TIE) reconstructed induction
maps, five types of bubble domains are discerned. Simulated three-dimensional
spin textures reveal that these are the result of composite magnetic objects,
which comprise the central region, that is the Bloch-type domain wall, and the
two caps. The central region may be assigned a helicity γcenter = ±π/2, and the
caps representing the two characteristic vortices at the top and bottom surfaces
are assigned γtop = ±π/2 and γbottom = ±π/2. In Fe3Sn2 these three parts can
exhibit helicities independently, leading two eight different composite domains
of non-trivial topology. Based on their exact composition (γcenter, γtop, γbottom)
these skyrmionic bubble domains are classified in three types: Those assigned
the same helicity throughout (type A), those where the top and bottom cap
exhibit opposite helicities, leading to cancellation of contrast in BF images
(type B), and those where the helicities of both caps are reversed relative to
the center region (type C). Additionally, topologically trivial bubbles lacking
a defined helicity γcenter are classified by the opposite (type D) or matching
(type E) helicities of the caps.

Furthermore, the domain walls of type II bubbles and most stripe domains
in Fe3Sn2 naturally give rise to Bloch points. Where the Bloch wall segments
of opposing helicities in the bulk of the specimen meet head-to-head or tail-
to-tail, Bloch lines emerge mitigating the helicity mismatch. The Néel caps
on the opposing surfaces dictate antiparallel alignment of the magnetization
at either end of the Bloch line, thus a Bloch point must emerge along the
one-dimensionally constrained spin texture.

ii) How is the stability of these magnetic objects influenced by geometrical
confinement?

The observation of unperturbed stripe and bubble domains is limited by the
geometry of the investigated specimen. Most notably, the thickness of the
specimen influences the magnetic texture stringently, while lateral confinement
above a threshold size has no notable effect. Focusing on the study of specimen
unperturbed by lateral confinement, bulk specimen of thicknesses exceeding
tens of microns reveal domain branching. In contrast, the introduction of
geometrical confinement via FIB cut lamellae of defined thickness validates
Kittel scaling for both stripe and bubble domains below the critical thickness
of 2.7 µm, above which domain branching sets in. Below a minimum thickness
of approximately 100 nm, the formation of alternating out-of-plane magnetized
domains is superseded by in-plane flux-closure domains.

Lateral confinement, when introduced on the same order of magnitude as
the spin textures, can be exploited to shape the domain pattern. By introducing
quasi one-dimensional constraints, chains of bubble domains or stripe domains
can be constrained in both straight and curved geometries. Such geometries
effectively resemble prototypical race-track memory layouts.

Within the above mentioned limits, severe step-like perturbation in the
specimen thickness are demonstrated to act as pinning sites for bubble do-
mains. Furthermore, topologically non-trivial bubbles are prone to emerge in
the vicinity of these steps, whereas gradually sloped thickness variations, as
well as uniform regions, foster the emergence of type II bubbles.
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iii) How are the magnetic objects affected by external magnetic fields?

In addition to geometric confinement, static magnetic field is the determining
parameter to influence the domain type. Applying finite out-of-plane fields to
planar FIB cut lamellae exhibiting antiparallel stripe domains, these domains
gradually narrow and eventually transform to bubble domains. In modest
fields, a mixed phase of domains is observed, whereas towards higher fields
(>600mT), a pure bubble domain phase is realized. The latter is further
discerned, by the coexistence of topologically trivial and non-trivial bubble
domains, and a small field range, where type I bubbles persist exclusively.

Applying static magnetic fields in oblique orientations, the projected in-
plane field fosters parallel alignment of the in-plane magnetization within the
domain walls. Thus, stripe domain patterns can be oriented parallel to the ap-
plied in-plane component of the field. Additionally, the application of oblique
fields stabilizes type II bubbles. Hence, by tuning the exact strength and mis-
match pure type II bubble domain phases can be realized. On a technical side
note relevant towards application, domain configurations imposed by lateral
confinement are rigid versus the application of in-plane fields up to 100mT.

iv) Which device geometries can be useful for future applications?

Lateral confinement introduced via FIB cut patterning of thinned lamellae has
proven to be a valuable tool to study prototypical geometries for functional
building blocks. Beyond limiting the magnetic textures to confined quasi one-
dimensional geometries, the FIB enables the ability to prepare coupled struc-
tures or precisely patterned junctions.

Building on the concept of prototypical race-track memory via lateral con-
finement, ring structures overcome pinning at the ends of stripe-like geometries,
lowering the energy barrier to collectively move the domain patterns. Fur-
thermore, for a pair of straight stripes, a stray-field coupled domain pattern
emerges, implying the possibility to separate the acceleration of a racetrack
memory and the information storage into two separate tracks. A prototypical
Y-selector-collector geometry foreshadows potential use in logic gate applica-
tions.

Combining results form literature and the detailed study of micromagnetic
texture in Fe3Sn2 presented in this thesis, the material and its properties are
well elucidated. It serves as a model system for host materials of topologically
non-trivial spin textures stabilized by the competition of the dipole-dipole in-
teraction and the uniaxial magnetocrystalline anisotropy, but also for a wider
range of intermediate Q materials. Prototypical behavior investigated in detail
is thus expected to be applicable in a larger range of similar systems.

From a microscopy perspective, Fe3Sn2 reveals an abundance of interesting
properties on imageable length scales, corroborating its role as a model system
for the investigation of phenomena relevant for future applications. Among
those, are the dynamics of the skyrmionic and trivial bubbles on prototypi-
cal race-track memories and side selectors, which can ultimately help design
skyrmion based logic architectures and thus expand the applications beyond
binary encoding of data for memory. However, commercial skyrmionic appli-
cations based on Fe3Sn2 are difficult in practice due to the limited potential
to miniaturize the individual domains. The Bloch points and lines occurring
spontaneously in this material, indeed show the potential to control and study
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interesting dynamics at the appropriate scale, paving the way for further stud-
ies in a new and exiting field.
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A

Topology

Beyond the illustrative description of topology given in section 2.2.1 on the
example of a two dimensional planar system, here a mathematically more pre-
cise description is given. As a brief recapitulation, in an ordered medium every
point r in real space can be mapped into order-parameter space by a function
f(r). Mapping closed contours in real space yields closed contours in order
parameter space, as illustrated in figure 2.10. Two mappings are homotopic,
i.e. topologically equivalent, if their contours in order parameter space can be
continuously transformed into each other (confer f1(r) and f3(r) in figure 2.10a
and c).

More precisely, a one parameter continuous family of maps ht(r) exists,
where t ∈ [0, 1] is the index parameter and the limits are h0 = f1(r) and
h1 = f3(r). Such a family of maps is called a homotopy. Evidently, many
other mappings, not contained within one particular homotopy, are homotopic
to each other as well. All these homotopic mappings form a homotopy class C,
and all possible classes subsequently form a homotopy group G. Each group
G has to fulfill the group axioms and has an operation denoted by ”•”. It also
has to be abelian with respect to this operation, meaning:

a • b = b • a. (A.1)

For the group of homotopy classes of mappings f(r), the group operation is
defined by sequential evaluation of individual contours. Simply put, evaluating
one contour and subsequently a second one, yields the same result as evaluating
a large contour encircling both or reversing the order of evaluation.

Coming back to the illustrative example of the planar order parameter,
the group G is denoted by π1(S

1), the first homotopy group for all mappings
f : S1 7→ S1. This group is isomorphic to the group of integer numbers Z, i.e.
exactly one element of the first group (a homotopy class C) can be assigned
to exactly one element of the second (an integer value), and no integer in the
second class remains unassigned. The isomorphism between π1(S

1) and Z is
given by the assignment of the winding number w (equation 2.70). Such an
isomorphism is not universally given for all mappings, hence the assignment of
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a winding number is limited so special cases. As a consequence, each mapping
fi(r) resulting in the same winding number belongs to the same homotopy
class and is therefore termed topologically equivalent.

Generally, all mappings belonging to a homotopy class assigned w ̸= 0 are
termed topologically protected. They cannot be transformed to the trivial state
as the local surgery required for such a transformation requires infinite energy.
The same applies for transitions in between any two homotopy classes. Note, in
the examples given in figure 2.10 the real space contours enclose singularities
located at the point P . Effectively describing the topological protection of
what is known as a defect in physics.

The planar two-dimensional case serves as an excellent example to illus-
trate the basic concepts, however these concepts are not limited to such highly
constraint geometries. In principle any nth order sphere Sn can be mapped
into the order parameter space F ,

f : Sn 7→ F, (A.2)

yielding an according group of mappings πn(F ). All these groups have topo-
logically non-trivial or protected elements, if at least one class of homotopies
does not contain the uniform state. Distinguishing between the classes via the
assignment of a winding number is limited to certain cases. Fortunately, if the
order parameter space is given by a sphere of dimension n, the nth homotopy
group is isomorphic to the group of integers [111]

πn(S
n) ∼= Z. (A.3)

Hence mapping f : Sn 7→ Sn, a winding number can be assigned to all classes
of the group πn(S

n). A particularly relevant trait, if the order parameter has
a constant magnitude, as it generally maps to a respective n-sphere.

This fact, strongly impacts the consideration of magnetic phenomena dis-
cussed in this thesis. In the micromagnetic framework, the order parameter
is assumed to be of constant magnitude and free orientation in three dimen-
sional space, thus resulting in the order parameter space being the surface of
an ordinary sphere (S2) with radiusMs. However, the assignment of a winding
number, requires the real space contour mapped, to be a sphere of second order
as well. This is not trivial, as generally real space, characterized by three or-
thogonal vectors, i.e. R3, is studied and has to be mapped fully. For simplicity,
the consideration is limited to a two-dimensional case here. This is equiva-
lent to the assumption of the spin orientation being unperturbed along one
axis. An assumption not too far-fetched in case of a thin platelet with strong
PMA for example, where the domain walls are perpendicular to the surface
as well. In such cases it is sufficient to evaluate the topological stability only
for the surface plane or a similar plane in the depth. Yet simply reducing the
problem to R2 is not sufficient. Additionally, a stereographical projection of
R2 to a sphere-like object, a punctured sphere, is required. This projection
works only if the order parameter asymptotically reaches a constant value η as
|r| → ∞, and the real space plane is projected onto a sphere with a missing
point (R2 7→ S2). Mapping the punctured sphere, representing all of real space,
to order parameter space finally yields f : S2 7→ S2, and thus the group π2(S

2),
where a winding number can be assigned to all homotopy classes. Note, here
all of real space is mapped at once. Hence the real space curvature is no longer
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limited to enclose singularities. In other words, topological protected objects
(w ̸= 0) are no longer limited to defects.

Summed up, every point of an ordered medium in real space can be mapped
to order parameter space. Mapping a closed contour, enclosing a defect or rep-
resenting all of R2 via a stereographical projection, yields a closed contour in
order parameter space as well. These mappings are homotopic, i.e. topolog-
ically equivalent, if they can be continuously transformed into each other by
local surgery. For certain special cases the mapped contours can be classified
by the amount of times they wrap the order parameter space, hence assigning
the respective winding numbers. Within one class, all mappings are homo-
topic and have the same winding number. The class assigned w = 0 contains
the trivial uniform state. Transitions in between homotopy classes are forbid-
den, i.e. associated with an infinite energy barrier, from a purely mathematical
view point. Hence, objects with an assigned winding number w ̸= 0 are termed
topologically protected.
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Experimental Data

B.1 Focused Ion Beam Scanning Electron Microscopy

Figure B.1: Dimensions for the nested half ring.
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Figure B.2: Dimensions for the Y-selector-collector.

Figure B.3: Dimensions for the thickness grating.
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B.2 Magnetic Force Microscopy Data

Figure B.4: Inversion of MFM signal via tip magnetization reversal.
a, MFM image with tip magnetized ”north”. c, MFM image with tip mag-
netized ”south”. c, schematic tip magnetization. Schematic in c reproduced
form [86].
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Figure B.5: Field evolution at low temperature. MFM images obtained
in 50mT, respectively 100mT steps at 200K on a 450 nm thick area. Repro-
duced with permission from [54].
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Figure B.6: Scaling of bubble domains. a, Kittel scaling of representative
bubble domains emerging due to the application of a static magnetic field of
450mT along the out-of-plane direction. b, overview of the selected bubbles
and corresponding approximate thickness. Reproduced with permission from
[54].



150 Appendix B. Experimental Data

B.3 Transmission Electron Microscopy Data

Figure B.7: Full field evolution representing the domain morphology.
a-y, BF images of the same area with respective out-of-plane field applied. z,
schematically plotted corresponding field strength for panels a-y.
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Figure B.8: Full field evolution for the morphology of bubble do-
mains. a-i, BF images of the same area with respective out-of-plane field
applied. The marked domains correspond to the highlighted ones in figure
5.15.
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Figure B.9: Detailed field evolution of the stepped and wedged
lamella. a-p, BF images of the same area with respective out-of-plane field
applied.
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Figure B.10: Side by side comparison of BF and TIE images. a, c, e,
g, i, k, BF images. b, d, f, h, j, l, corresponding TIE reconstructed induction
maps.
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Figure B.11: Detailed field evolution of the grated lamella. a, c, e,
g, i, k, m, BF images. b, d, f, h, j, l, n, corresponding TIE reconstructed
induction maps. o, schematic field evolution.
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Figure B.12: Marked bubbles L23A. BF image in zero field.
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Figure B.13: Marked bubbles L23A. TIE reconstructed induction map in
zero field.
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Figure B.14: Marked bubbles L23A. BF image in 320mT.
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Figure B.15: Marked bubbles L23A. TIE reconstructed induction map
for 320mT.
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Figure B.16: Marked bubbles L23A. BF image in 410mT.
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Figure B.17: Marked bubbles L23A. TIE reconstructed induction map
for 410mT.
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Figure B.18: Marked bubbles L23A. BF image in 520mT.
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Figure B.19: Marked bubbles L23A. TIE reconstructed induction map
for 520mT.
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Figure B.20: Marked bubbles L13A. BF image in 565mT.



164 Appendix B. Experimental Data

Figure B.21: Marked bubbles L13A. TIE reconstructed induction map
for 565mT.



B.3. Transmission Electron Microscopy Data 165

Figure B.22: Detailed temperature dependence in zero field. a-f, TIE
reconstructed induction maps for different temperatures. g-h, BF images.
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Figure B.23: Detailed field evolution at low temperatures. a-i, BF
images at T =94K for varying field.

Figure B.24: Detailed field evolution for the nested ring structure.
a-f BF images in out-of-plane magnetic field.
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Figure B.25: Field evolution of the Y-selector-collector. a-f BF im-
ages.

Figure B.26: Temperature dependence of the Y-selector-collector.
a-f, TIE reconstructed induction maps. g-i, BF LTEM images.
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Micromagnetic Simulations

Figure C.1 shows a series of micromagnetic simulations, provided by collabora-
tor E. Lysne. The panels show a depth average along the c axis of 4069×4096 nm2

cuboids of varying thickness. The color encodes the in-plane (ab plane) mag-
netization according to the color wheel in panel k, whereas the brightness
represents the out of plane component (c axis) of the magnetization. Bright
domains point upwards. Details for the parameters used to compute these can
be found in [54, 86]. The simulated micromagnetic textures exhibit predomi-
nantly maze-like stripe domains and occasionally bubble domains. The stripe
width, as well as the bubble diameter, widens with increasing thickness of the
cuboids. Hence, the stripe width, respectively the periodicity, of these domain
patterns is analyzed via the MATLAB script, too. The FFT is applied to the
full images yielding the periodicity for the respective thickness. The green data
points in figure 5.8a show the periodicity derived from simulations scaled by a
factor of 1.12 to match the scaling law of the experimental data.

Figure C.1: Micromagnetic simulations for varying thicknesses. a-
j, micromagnetic simulations for 4069×4096 nm2 cuboids of respective thick-
nesses. Micromagnetic simulations provided by collaborator E. Lysne.
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Script Based Data Analysis

Evaluation of Kittel scaling

A MATLAB script was developed for the quantitative evaluation of the stripe
width in relation to the thickness. It evaluates the local periodicity λMFM(x, y)
for each pixel, within a cropped region of interest, based on the magnetic
texture in it’s vicinity.

To run the script the MFM data is manually pre-processed: the scale of the
MFM signal is cropped to non erroneous values. Subsequently the evaluation is
carried out parallelized for each pixel in the following way. First, a sub-image of
defined size (N×N pixels) centered around the pixel of interest is cropped from
the original data. Next, the 2D fast Fourier transformation (FFT) is carried
out on the sub-image, where the applied Hann window function suppresses edge
effects. The obtained FFT data is then transformed to cylindrical coordinates
with respect to the DC peak. subsequently radially averaged. A smooth step
function is applied to suppress the DC peak for small radii and the data is fitted
with a high order polynomial fit. From the fit the first maxima corresponding
to the ring around the DC peak in the FFT image is determined. Subsequently,
a reduced interval around this peak is reevaluated with a 3rd order polynomial
fit to optimize the localization of the peak. This peak corresponds to the wave
number of the local periodicity of the evaluated pixel. Hence by reversing the
FFT, i.e. inversion of the wave number the local periodicity λMFM(x, y) for the
pixel located at the coordinates x and y is obtained.

Evidently not all pixels within an image yield reasonable, or valid values.
Hence, for pixels outside the boundaries of the lamella the value in the period-
icity map is artificially set to zero. Furthermore, in the border up to N/2 pixels
from the images edges the periodicity is not calculated, because the sub-image
cannot be formed from viable MFM data. This region as well as diverging
results on the edges of the lamella are artificially set to zero as well.

The image size N of the sub image has a major influence on the obtained
local periodicity. For small N , the obtained information is highly localized.
However, the minimum size must exceed the limit given by the Nyquist the-
orem, i.e. contain at least two full periods in real space. Larger N × N sub-
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images, which contain multiple full periods, improve the quality of the FFT.
But eventually increasing N defies the assumption of being representative for
the localized periodicity. For this work sub-images of 128 × 128, 256 × 256
and 512× 512 pixels were evaluated on an original MFM image of 1024× 1024
pixels. For, N = 512 the spatially resolved map of the local periodicity is very
smooth. However, beyond questionable local representation, it does not cover
extended region of the lamella, due to the constrictions mentioned above. In
contrast, for N = 128, severe discontinuities are observed in the spatially re-
solved local periodicity. Hence, a sub-image size of 256× 256 pixels yields the
best compromise.

In order to properly correlate the computed periodicity data to the sample
thickness and evaluate the results, the corresponding thickness for every pixel is
required. Therefore, form the topography image, obtained during the first pass,
the plane of the substrate is determined and subtracted from the topography.
The resulting height map represents the spatially resolved thickness t(x, y) for
every pixel. The corresponding local periodicity λMFM(x, y) is subsequently
averaged for all pixels of equal thickness.
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Michael Foerster, Mairbek Chshiev, Stéphane Auffret, Ioan Mihai Miron,
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[91] A. N. Bogdanov and U. B. Rößler. Chiral symmetry breaking in mag-
netic thin films and multilayers. Physical Review Letters, 87(3):37203–1–
37203–4, 2001.

[92] Xiuzhen Yu, Yusuke Tokunaga, Yasujiro Taguchi, and Yoshinori Tokura.
Variation of Topology in Magnetic Bubbles in a Colossal Magnetoresistive
Manganite. Advanced Materials, 29(3):1603958, oct 2017.

[93] Charles Kittel. Physical Theory of Ferromagnetic Domains. Reviews of
Modern Physics, 21(4):541–583, oct 1949.

[94] J. A. Cape and G. W. Lehman. Magnetic Domain Structures in Thin Uni-
axial Plates with Perpendicular Easy Axis. Journal of Applied Physics,
42(13):5732–5756, dec 1971.

[95] C. Kooy and U. Enz. Experimental and Theoretical Study of the Domain
Configuration in Thin Layers of BaFe12O19. Philips Research Rep., 15:7–
29, 1960.



Bibliography 181

[96] T. Garel and S. Doniach. Phase transitions with spontaneous modulation-
the dipolar Ising ferromagnet. Physical Review B, 26(1):325–329, jul
1982.

[97] W. F. Druyvesteyn and J. W .F. Dorleijn. Calculations on some periodic
magnetic domain structures; consequences for bubble devices. Philips
Research Rep., 26(1):11–28, 1971.

[98] Charles Kittel. Theory of the Structure of Ferromagnetic Domains in
Films and Small Particles. Physical Review, 70(11-12):965–971, dec 1946.

[99] S. Prosandeev, S. Lisenkov, and L. Bellaiche. Kittel Law in BiFeO3 Ul-
trathin Films: A First-Principles-Based Study. Physical Review Letters,
105(14):147603, jan 2010.

[100] Nicholas Manton and Paul Sutcliffe. Topological Solitons. Cambridge
University Press, jun 2004.

[101] Achim Rosch. Moving with the current. Nature Nanotechnology,
8(3):160–161, jul 2013.

[102] Jiadong Zang, Vincent Cros, and Axel Hoffmann. Topology in Mag-
netism, volume 192. Springer International Publishing AG, Springer In-
ternational Publishing, Springer, Cham, 2018.

[103] Usama Al Khawaja and Henk Stoof. Skyrmions in a ferromagnetic
Bose–Einstein condensate. Nature, 411(6840):918–920, jan 2001.

[104] L. S. Leslie, A. Hansen, K. C. Wright, B. M. Deutsch, and N. P. Bigelow.
Creation and Detection of Skyrmions in a Bose-Einstein Condensate.
250401(December):18–21, 2009.

[105] S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi. Skyrmions
and the crossover from the integer to fractional quantum Hall effect at
small Zeeman energies. Physical Review B, 47(24):16419–16426, jan 1993.

[106] S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. West, and R. Tycko.
Optically Pumped NMR Evidence for Finite-Size Skyrmions in GaAs
QuantumWells near Landau Level Filling v = 1. Physical Review Letters,
74(25):5112–5115, 1995.
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Salim Mourad Cherif, Laurent Ranno, Maurizio de Santis, and Jan Vo-
gel. Anisotropic Dzyaloshinskii-Moriya interaction in ultrathin epitaxial
Au/Co/W(110). Physical Review B, 95(21):214422, jun 2017.

[140] Michael Heigl, Sabri Koraltan, Marek Vaňatka, Robert Kraft, Claas
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and P. Böni. Topological Hall Effect in the A Phase of MnSi. Physical
Review Letters, 102(18):186602, jan 2009.

[158] N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Waki-
moto, K. Kakurai, S. Ishiwata, and Y. Tokura. Large Topological Hall
Effect in a Short-Period Helimagnet MnGe. Physical Review Letters,
106(15):156603, jan 2011.
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multifunctional molecular toolbox in nanobiotechnology. Nature Nan-
otechnology, 3(5):261–269, may 2008.



Bibliography 189

[196] L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer. The Chemical
Structure of a Molecule Resolved by Atomic Force Microscopy. Science,
325(5944):1110–1114, aug 2009.

[197] Franz J. Giessibl. Advances in atomic force microscopy. Rev. Mod. Phys.,
75(3):35, 2003.

[198] Yongho Seo and Wonho Jhe. Atomic force microscopy and spectroscopy.
Reports on Progress in Physics, 71(1):016101, jan 2008.

[199] Y. Martin, C. C. Williams, and H. K. Wickramasinghe. Atomic force
microscope–force mapping and profiling on a sub 100-Å scale. Journal of
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