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ABSTRACT This paper presents the results of the first attempt to assess, identify and quantify the residual number of shell craters
of World War I currently present in the Vezzena/Luserna/Lavarone Plateau, areas of Millegrobbe, Bisele and Cima
Campo (Province of Trento, Italy). Historical sources report the existence of several thousand artillery explosions:
therefore, a field survey or a classic photo-interpretation would be labour-intensive and highly time-consuming. For
this reason, a digital terrain model (DTM) of the test-site was processed using the Sky-view Factor algorithm and
was analysed with an object-based approach, which implied: (1) multiresolution segmentation; (2) classification (main
features considered size, shape and colour).
The automatically classified shell craters were thus verified during an in situ survey that determined the accuracy of the
method in the order of 84% of the total occurrences.                                  
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Introduction

Between 25 May and 28 May 1915, the Italian Forts of
Verena and Campolongo attacked the occupants of the
Austrian fortification of Cima Campo in one of the
most dramatic events of the Great War (World War I)
along the fortified line the Vezzena/Luserna/
Lavarone plateau (Figure 1).
Numerous historical sources testify to the massive

shelling impact in the area. In particular the Memoirs
of Augusto Tommasini (1923), officer at the War
Tribunal of Trento, speak of ‘no less than five thousand
projectiles […], especially pieces of 280’.
The plaque on the memorial built in 1918 near the

Fort lists the main phases of attack, as well as the type
and number of projectiles used. It reads: ‘From May
the 23th 1915 to May the 20th 1916 the fort underwent
3 major attacks […]. The fort was shot with a total of
200 shells of 30 cm, 8100 of 28 cm and approximately
16000 of 15 cm’.

Now, 100 years later, the material remains of World
War I are in various state of post-depositional and
post-abandonment processes, involving an increasing
loss of information and spatial, physical or functional
transformations. Numerous sources of impact – from
re-forestation, pedogenesis and relic hunting to build-
ing activities – hampered the proper recognition of
war-features to such extent that they can be easily
confused with different natural or man-made entities.
Such an intrinsically fragile archaeological surface is
now particularly ‘equivocal’ and the embedded war
scenario must be fully isolated, detected, recognized,
enhanced and protected by using the best scientific,
intellectual and ethical practices.
In the past two decades the archaeology of World

War I has emerged as an attractive and flourishing
field, as shown by the abundant specialized literature
(for a general overview see Saunders, 2002; Novotny,
2009). Books and papers express a growing interest in
material culture (Saunders, 2003, 2012), archaeological
excavations and surveys (Fraser and Brown, 2007;
Robertshaw and Kenyon, 2008; Desfossés et al., 2009),
physical anthropology (Jankauskas et al., 2011; Le
Bailly et al., 2012; Gaudio et al., 2013), geophysical
prospections (Masters and Stichelbaut, 2009) and
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remote sensing (Stal et al., 2010; Kaimaris 2011;
Hesse, 2014; Gheyle et al., 2016; Mlekuž et al., 2016;
Stichelbaut et al., 2016).
In our opinion the last topic, combined with

geophysics and ground surveys, seems to offer the best
opportunities to detect, protect and monitor the
vanishing World War I heritage in the direction of
‘minimum tillage’ or ‘no-collection’ policy (aimed at
minimizing the archaeological footprint/impact).
Modern landscapes are characterized by a complex

evolutionary process whose palimpsestic traces may
be very hard to distinguish. Remote sensing tech-
niques possess intrinsic capabilities of object/pattern/
scenery recognition and a higher predictive and
discriminatory potential that may help to improve
the comparability of the analytical data, to reduce the
processing time and to avoid errors and bias that can
affect the classical archaeological photo-interpretation
(Halliday, 2013).
For this purpose, object-based techniques have been

increasingly applied to remotely sensed image analysis
and classification. The first approaches to object-
oriented remote sensing date back to the beginning of
the new millennium and to the pioneering work of
Blaschke et al. (2000). Since 2003 object-based image
analysis (also known as OBIA or more properly
GeOBIA) spread in forestry sciences, bringing excellent
results in mapping tree coverage (Dorren et al., 2003;
Heyman et al., 2003). This technique also proved to
be a useful tool to solve problems related to the ‘salt
and pepper’ effect typical of the pixel-based classifica-
tions (Yu et al., 2006) and to process LiDAR (light
detection and ranging) data (Maier et al., 2008).
OBIA has made its way in archaeology only in very

limited cases: we could quote the seminal work of
Verhagen and Drăgut (2012) on site predictivity
through landforms classification or our test studies
on semi-automated image analysis of crop and soil
marks for sub-surface feature detection (De Guio
et al., 2015). A recent paper by Sevara and Pregesbauer

(2014) stressed the importance of OBIA experimenta-
tion in archaeology with a theoretical approach, while
Pregesbauer et al. (2014) applied it to the classification
of magnetic anomalies. Finally, the methodology has
been tested by Sevara et al. (2016) in contrast with a
pixel-based approach and employed for mound
classification in Freeland et al. (2016).

Materials and methods

Description of the study area

Millegrobbe, Bisele and Fort Lusern are located in the
municipalities of Lavarone and Luserna on a pre-
alpine plateau (Province of Trento, Italy) between
1300 and 1600 m above sea level (Figure 2). The natural
environment is characterized by lawn terraces that
form the focus of a longue durée economy of grazing
and pasture. The overall emerging phenomenology is
a spectacular fossil landscape (Balista et al., 1998),
where the cumulative traces of the human activities
that contributed to shape the landscape over the

Figure 2. Ortophoto of the study area, located in the municipalities of
Lavarone and Luserna (Province of Trento, Italy). [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 1. Location of the study area: (a) in the Italian territory with regional boundaries; (b) in the context of northern Italy (Veneto Region). [Colour
figure can be viewed at wileyonlinelibrary.com]
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millennia can still be recognized both at ground level
and from aerial (or satellite) view.
The earliest evidences of human occupation date

back to the Late and Final Bronze Age (approximately
twelfth to the eleventh century BC) and consist of a
series of kilns and furnaces connected to the metal-
lurgy of copper. These productive structures are
concentrated at the edge of (often still active) mountain
pools, which are the only water supply in this karst
environment (De Guio, 2005; Addis et al., 2016; Artioli
et al., 2016).
In the following centuries, the area was essentially

devoted to a mountain economy: woodland
exploitation, pastoralism and stone quarries, in a
presumptive status of histoire immobile (Le Roy
Ladurie, 1974), only to return in the forefront of
history during World War I.
The construction of Fort Lusern in the area of Cima

Campo was a significant source of income for the
inhabitants of the plateau in the years before the
conflict (1908–1912), as most of the population was
(directly or indirectly) involved in the works (Baratter,
2007). Fort Lusern was the most impressive fortifica-
tion in the area and it was known with the title ‘il
Padreterno’ (the Almighty). Despite its claimed
invincibility, the Fort was in serious trouble since the
early days of the war, because it occupied a strategic
position and was the prime target of Italian artillery
shelling.
After three days of non-stop attack the commander

Emanuel Nebesar surrendered, fearing the explosion
of the fuel depots. The decision was rejected by the
other Austrian fortifications and after the symbolic
gesture of a volunteer who bothered to remove
the white flag, Fort Lusern was re-occupied by the
Austrians until the offensive in May 1916 when the
front moved (Hentzschel, 2008).
With such different sources of evidence, ‘equivocity’

or ‘equifinality’ in feature-formation is a major issue in
the recognition and classification of the war scenario
[our target warscape, as defined in Korf et al. (2010)].
Computer-aided methods of feature extraction seem
thus a promising field to tentatively address the
problem.

LiDAR data and derived sky-view factor (SVF)

The archaeological application of high-resolution
digital elevation models (DEMs) based on airborne
LiDAR [sometimes referred to as airborne laser
scanning (ALS)] are gaining an increasingly important
role for site identification, mapping and monitoring
(Hesse, 2010; Zhou and Zhu, 2013).

LiDAR is an active remote sensing technique that
enables to calculate the distance from a surface by mea-
suring the time elapsed between the emission of a laser
pulse and the reception of the return signal (Weher and
Lohr, 1999). The first reflected signals can be filtered to
create a DSM (digital surface model) representing the
surface of the earth including trees and buildings.
However, the last signals are used to build the DTM
(digital terrain model), which is a depiction of the bare
ground surface under the vegetation canopy (Doneus
et al., 2008; Li et al., 2005). Despite the tree cover
removal of the DTM, an appropriate data visualization
is necessary to identify features of archaeological
interest. The most widespread visualization techniques
comprise, among others, hillshading, slope gradient,
multiple hillshading, PCA (principal component
analysis) of hillshading, local relief model, openness,
local dominance, cumulative visibility, accessibility,
exaggerated relief and SVF, i.e. sky-view factor
(Hesse, 2014; Kokalj et al., 2013).
This last algorithm is the measure of the portion of

visible sky and simulates a diffuse illumination over
each pixel of the DTM; ultimately, it provides a dimen-
sionless parameter between zero (no visibility) and one
(entire hemisphere visible). Comparative analysis
proved it particularly suitable when dealing with
small topographic depressions (Zakšek et al., 2011;
Kokalj et al., 2011).
LiDAR data for our study were acquired between

October 2006 and February 2008 with a grid of
1 m × 1 m cells, during a mapping campaign that
covered the whole Province of Trento (Figure 3a). All
global positioning system (GPS) data are based on the
UTM-WGS84 coordinate system. The DTM was freely
available on the local Cartographic Portal of Trentino
(2006–2008) with a Creative Commons license.
SVF was calculated using SagaGIS (Böhner et al.,

2006; Böhner and Antonic, 2009). Considering the
relatively small dimension of the target features (see
later), we decided to set a low maximum search radius
with a value of 10 m (i.e. 10 pixels). Conforming to that
suggested by Zakšek et al. (2011), we therefore chose a
parameter of eight for the number of search directions
(Figure 3b).

Object-based shell craters classification and mapping
methodology

GeOBIA principles
Hay and Castilla (2008) defined GeOBIA as: ‘a

sub-discipline of Geographic Information Science
(GIScience) devoted to developing automated
methods to partition remote sensing imagery into
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meaningful image-objects, and assessing their
characteristics through spatial, spectral and temporal
scales, so as to generate new geographic information
in GIS-ready format.’ p 77.
Image-objects are the conceptual unit of this

method. They can be described as self-consistent
regions created by aggregating proximal pixels accord-
ing to their spatial, spectral and textural homogeneity,
in contrast with the traditional ‘per-pixel’ approach
(Blaschke et al., 2014). This implies a major shift in
the protocol of image analysis, because object-based
methods take into account shape, pattern and spatial
context, thus providing an improved basis for classifi-
cation and interpretation. The workflow of a GeOBIA
project can be broadly divided into four main stages:
(1) processing of the image-data; (2) partitioning of
the image into primitive image-objects (segmentation);
(3) classification of the image-objects to form meaning-
ful geo-objects; (4) post-classification analysis and
interpretation.
For a systematic overview of the research on the

topic the reader is referred to the comprehensive
synthesis of Blaschke (2010).

Features description and parameter evaluation
Paraphrasing the definition of Passmore et al. (2014),

Millegrobbe and Fort Lusern can be described as
‘landscapes of shelling’. In fact, depressions derived
from artillery and mortar explosions are one of the
characterizing morphologies of the area. The location,
number and dimensions of shell holes are key elements
to define the extension of the World War I battlefield in
the area and to monitor the preservation of the local
warscape.

However, despite their peculiar features, artillery
craters can easily be misinterpreted on remotely-
sensed imagery because of their similarity to other
circular depressions typical of mountain environ-
ments, such as deforestation holes (trous avec
monticules), mountain pools, remains of abandoned
charcoal pits, ice-storage pits, dolines and sinkholes
(De Guio et al., 2013).
In our attempt to identify a method of automatic/

discriminant classification, we needed to select a
number of parameters that could be used to specifi-
cally describe war-related depressions. In this regard,
we considered the results of a series of ground
surveys focussed on more than a hundred shell holes
of World War I on the Grappa massif (Venetian
Prealps, Italy). Maximum diameter, maximum
depth (approximately 0.5 to 2 m) and difference in
level between two extremities were measured and
compared (Celi, 1991). The following classification
was proposed on the basis of the maximum
diameter: (1) less than 2 m; (2) from 2 to 5 m; (3)
more than 5 and up to 10 m (with rare exceptions
of 15 m).
Hupy and Schaetzl (2006, 2008) report similar results

in their study on bombturbation, a form of soil distur-
bance derived from explosive munitions. In particular,
they register a correlation between projectiles calibre
and size of the relative depressions, stating that
70 mm shells produced craters of less than 1 m in
diameter, while ammunitions with calibre of 420 mm
could create depressions larger than 10 m, and several
metres deep. World War I craters and further circular
depressions can be broadly discriminated according
to these values.

Figure 3. (a) DEM with spatial resolution of 1 m of the study area; (b) SVF visualization of the study area computed in eight directions with a search
radius of 10 m. [Colour figure can be viewed at wileyonlinelibrary.com]
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All other similar entities are generally characterized
by different size, depth or section (Figure 4): mountain
pools have a flat bottom and a diameter varying
between 7 and 60 m, but usually ranging from 10 to
30 m. Remains of charcoal piles are also flat but only
20–30 cm deep, while ice-storage pits can reach 2 m
or even 3 m in depth.
Deforestation holes are similar to shell craters in

size, but they present a soil discharge (which is usually
located downhill) created during the uprooting of the
stumps. Conversely, shell craters have a perimetric
ridge produced by the displacement of ground
material during the explosion, but in this case the rim
is relatively concentric and uniform in width.
Dolines and sinkholes, however, are very difficult to

recognize from war-related depressions. It was stated
that more than 50% of the artillery craters located in
karst environments have been actively evolving into
dolines during the last century post-war scenario
(Celi, 1991; Sauro, 1993).

Segmentation
Segmentation is the basic step of OBIA. This process

aims to divide the image in homogeneous groups of
pixels, called image-objects (Haralik and Shapiro,
1985; Hay et al., 1997). Every image-object can be
described with a huge set of information attributes
(from here on: features) which define its spectral
properties, shape, size, texture, context and relations.

Primitive image-objects usually do not correspond to
geo-objects or real world entities.
For this project, we chose the multiresolution algo-

rithm included in eCognition Developer 9.1 (Trimble
Navigation Ltd, Sunnyvale, CA). Multiresolution
segmentation is a region growing method: it starts
from a single pixel, which is progressively combined
to proximal ones according to criteria of minimized
intra-object heterogeneity (Baatz and Shäpe, 2000;
Benz et al., 2004). We found the selection of the seg-
mentation parameters on a trial and error process
based on a group of ground-truth reference depres-
sions, unequivocally identified as shell craters. As a
result of these tests, the following values were applied:
scale 20, shape 0.1, compactness 0.5 (Figure 5a). The
use of a low scale parameter is justified by the small
size of the structures to be identified, in order to avoid
a possible under-segmentation.

Object-features evaluation and classification training
Geo-objects classification on remotely sensed

imagery is a matter of mental models and experience.
Literature data discussed earlier were the starting
point to identify the most suitable object-features
characterizing shell craters.
A classification experiment was first performed in a

test section of Millegrobbe (0.6 km × 0.6 km, Figure 6a).
The SVF visualization technique creates a grey scale

image, where pure black corresponds to no visibility

Figure 4. Sections of (a) mountain pool, (b) shell crater, (c) deforestation hole in the study area. [Colour figure can be viewed at wileyonlinelibrary.
com]

Figure 5. Millegrobbe, multiresolution segmentation with varying scale parameter: (a) 20, (b) 200, (c) ‘slope’ class: 200 and ‘open field’ class: 20.
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and white to the visibility of the entire hemisphere
(Zakšek et al., 2011). In this kind of visualization, shell
holes stand out as dark grey/black dots of medium to
small size. Sloping areas are also characterized by the
presence of similar image-objects due to the recogni-
tion of contour lines related to the resolution of our
LiDAR data. The dense vegetation canopy in those
areas also created a higher concentration of artefacts
that could compromise the correct classification. In
order to avoid misinterpretations, we first operated a
general landform classification of slopes and open
fields. For this purpose, we used a higher scale
parameter for segmentation (200) and employed the
spectral and dimensional properties of the image-
objects in order to select those with appropriate mean
and area values. In this way, we classified big, dark
image-objects as ‘slope’ and everything else as ‘open
field’ (Figures 5b, 6b).
At this point, we employed a second level segmen-

tation on the class ‘open field’ with a scale parameter
of 20, to optimize the results (Figures 5c, 6c). Subse-
quently, shape features were applied to identify the
‘shell craters’ class. Circular shape is one of the more
efficient identification parameters for war-related
depressions, so we used the object-feature roundness
(Figure 7a). Considering the average size of artillery
craters in relation to their maximum diameter, as
discussed earlier, we opted for the area feature in
order to remove larger objects. Despite the wide
variability of shell holes radii, we chose a threshold
value of 81 m2 (diameter of approximately 10 m) to
avoid a partial overlapping with the mountain pools
class (Figure 7b). Additionally, we employed the
length/width feature to eliminate the remaining
elongated image-objects that were not related with
the war-scenario (Figure 7c). Finally, we used the
merge region algorithm in order to fuse proximal

image-objects and repeated the same object-feature
procedure with slightly different parameters
(Figure 7d).
At this point 263 on 1699 image-objects were

successfully classified as possible shell craters. The
parameters used in the project are summarized in
Table 1.

Rule-set export
Subsequently, we run the rule-set described earlier

on the SVF-based visualization of Cima Campo, Bisele
and Millegrobbe, covering an area of approximately
4 km2 (Figure 8).
The process resulted in 3700 possible artillery craters

identified, out of a total of 22 751 image-objects
(Figures 9, 10).
The possibility to transfer a classification system

from one area to another is problematic, since
different sensors, raw data, processing procedures
and environmental characteristics may prevent the
comparability of the resulting data. However, it is
possible to apply the same classification rules to
similar areas or to the same area through time, when
the raw data and the analytical protocol are consis-
tent: it is a crucial shift in terms of both time saving
and landscape monitoring potential. This type of
controlled automation is particularly useful when
working on large-scale projects because it speeds up
the process of features detection and supports the
related photo-interpretation.
In our case, the opportunity to apply the same set of

rules at a future date will be of central importance to
monitor the progressive transformation in size and
number of the remaining shell craters and identify
strategies to preserve the vanishing World War I
heritage.

Figure 6. Millegrobbe: (a) detail of the SVF visualization; (b) preliminary landform classification with multiresolution segmentation, scale parameter
200. Red: ‘open field’ class; pink: ‘slope’ class; (c) preliminary landform classification with multiresolution segmentation. Red: ‘open field’ class:
scale parameter 20; pink: ‘slope’ class: scale parameter 200. [Colour figure can be viewed at wileyonlinelibrary.com]
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Data validation

Field survey

Two sample regions of the analysed area were
systematically surveyed to assess the accuracy of the
method (Figure 11). The ground control took place in
May 2015 and monitored all shell holes within the

test-regions. War-related depressions both automati-
cally identified through OBIA and unrecognized by
our rule-set were mapped and measured. The
fieldwork also allowed for a small number of potential
artillery craters to be discounted.
Test area 1 is located in open field and still preserves

important traces of World War I trenches and shelling

Table 1. Segmentation and object features values of the proposed ‘shell craters’ rule-set.

— Object feature Value Class

Multiresolution segmentation: scale 200, shape 0.1, compactness 0.5
1 mean level 1 ≤139 SLOPE
2 area level 1 > 620 pixel
3 unclassified — OPEN FIELD
OPEN FIELD multiresolution segmentation: scale 20, shape 0.1, compactness 0.5
4 OPEN FIELD, roundness ≤1 SHELL CRATERS
5 SHELL CRATERS, area ≥ 81 pixel unclassified
6 SHELL CRATERS, length/width > 1.751 unclassified
SHELL CRATERS merge region
7 SHELL CRATERS, length/width > 1.751 unclassified
8 SHELL CRATERS, roundness > 1.093 unclassified
9 SHELL CRATERS, area ≥ 95 pixel unclassified

Figure 7. Millegrobbe: shell craters classification-training process. Application of the object features: (a) roundness, (b) area, (c) length-width, (d)
final classified image. [Colour figure can be viewed at wileyonlinelibrary.com]
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impact. Seventy-nine possible shell craters identified
with the proposed procedure were ground controlled:
70 of them were actually confirmed, while nine were
attributed to sub-circular, residual portions of a trench.
The survey also identified five additional shell craters:
out of these, however, only three exceed 2 m in
diameter and had an appreciable depth in the original
LiDAR data, so as to be viewed in SVF images.
Test area 2 is located between open fields and

forested slopes and preserves no other traces of World
War I, except for shell craters. Nevertheless, mountain
pools and deforestation holes are frequently found.
One hundred and twenty possible war craters where
automatically detected in this region and only 15 were
discounted at the end of the ground control. Four new
occurrences were also located: one of them was too
small to be detected (less than 2 m diameter and very
shallow), considering the resolution of our LiDAR
data, two have a diameter between 2 and 8 m, while
one other is above 8 m in size. The latter was not
identified because of the decision tree used in the clas-
sification; as already reported, the partial overlapping

of artillery craters and mountain pools classes led to
the discarding of image-objects bigger than 80 m2,
which statistically fell in the class of mountain pools.
In this specific case, the result was a loss of information
which, however, was unavoidable because of the
characteristics of the local landscape.

Results and discussion

Reliability of the OBIA approach and data accuracy
calibration

The reliability of the object-based shell craters
classification is encouraging, especially considering
the residual nature of the structures and the diffuse
presence of equivocal elements that could compromise
the correct identification.
Table 2 accounts for the number of commission and

omission errors ascertained by the ground surveys. In
this regard, it should be noted that a small percentage
of the omitted artillery craters were not actually visible

Figure 9. Global test area: (a) preliminary landform classification with multiresolution segmentation, scale parameter 200. Red: ‘open field’ class;
pink: ‘slope’ class; (b) preliminary landform classification with multiresolution segmentation. Red: ‘open field’ class: scale parameter 20; pink:
‘slope’ class: scale parameter 200. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 8. Global test area, multiresolution segmentation with varying scale parameter: (a) 20, (b) 200, (c) ‘slope’ class: 200 and ‘open field’ class: 20.
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in the SVF, because of LiDAR resolution issues. In
addition, the shallowness and the smooth profile of
some unidentified craters (depth between 15 and
30 cm, see Figure 12) did not allow SVF to highlight
such ground anomalies. Anyway, commission errors
were the majority of the inaccuracies encountered.
Most of them are related to the presence of artefacts
created during the original data collection and
processing, which are more frequent in forested slopes.
This is why their number is somewhat higher in test
area 2.
The values in Table 2 also allow an average stan-

dardization of the number of possible shell craters
identified in Millegrobbe, Bisele and Fort Lusern with
the proposed method. Starting from a non-calibrated
amount of 3700 occurrences, we can now hypothesize
that approximately 3420 war-related depressions are
still present in the area. However, this estimated value
considers as single units shell clusters which were
fused with the merge region algorithm.

Figure 11. Location of the two survey areas for ground-truth
controls on the SVF visualization: test area 1 (green) and test area
2 (red). [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 10. Global test area, with exported rule-set and application of the object features: (a) roundness, (b) area, (c) length-width, (d) final classified
image. [Colour figure can be viewed at wileyonlinelibrary.com]
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The true positives detected by the described
approach can be estimated by multiplying the total
number of image-objects classified as shell craters in
the entire study area (3700) with the ratio between
confirmed image-objects in the test areas (175) and
image-objects classified as shell craters in the study
areas (199), which returns a value of 3250. This means
that 87.8% of the classified image-objects corresponds
to real shell craters. Taking into account both
commission (approximately 12%) and omission errors
(approximately 4%), the average success rate is 84%.
The accuracy of the method is thus very high,
considering that nowadays the ground traces of the
smaller craters are evanescent if not disappeared, but
yet it fits very well with what is reported by the
historical sources about the area of Cima Campo. In
particular, while almost half of the craters created by
280 and 300 mm caliber weapons were probably
identified, the smaller ones related to 70 or 150 mm
shells got completely lost because of both post-
depositional transformations and LiDAR resolution.
Craters associated with the explosion of 450 mm
artillery and mortars were also omitted to some extent
when dealing with areas higher than 80 m2, in order to
avoid the classification of mountain pools.

Conclusions

Despite the problems discussed, this method is a fast,
reliable tool to detect, recognize and map shell craters

in mountainous areas. The proposed rule-set is an
exportable tool that can be used in other landscapes
of artillery shelling and aerial bombing, provided that
a fine-tune calibration is performed on segmentation
and object-features values.
The use of automated or semi-automated feature

detection is a theme of central importance in the future
developments of archaeological remote sensing. The
increasing necessity of objective and reproducible
approaches to deal with large amounts of high resolu-
tion data and to explore landscape transformations
through time imposes a paradigmatic shift in tradi-
tional processing methods. As previously noted by
Bennett et al. (2014), this does not mean that automated
classifications can provide historical interpretations.
Archaeological operators have indeed a central role
in supervised object-oriented analysis, because their
knowledge and mental models constitute the basis of
the decision tree and the related rule-set.
With this project, the authors strongly encourage the

use of a methodology that systematically integrates
OBIA and ground truth controls, in order to reach an
adequate balance between processing-speed and
reliability of the results.
Despite all the examined critical issues, OBIA is a

promising innovation in the archaeological field. Our
work reveals that a widespread use of this method will
be able to improve tremendously the automation rate,
the speed, the objectivity and the quality of feature
recognition, with no impact at ground level. In
particular, this will help in the process of object,

Table 2. Total number of shell craters identified during the ground survey in the two test areas.

— Test area 1 Test area 2 Total

Image-objects classified as ‘shell craters’ with the proposed rule-set 79 120 199
Image-objects confirmed as ‘shell craters’ after the survey 70 105 175
Commission errors 9 15 24
Shell craters omitted by the rule-set classification 5 4 9
Total number of shell craters identified during the survey 75 109 184

Note: Commission and omission errors are also reported in relation to the number of image-objects classified as ‘shell craters’ by the proposed rule-set.

Figure 12. Examples of the surveyed shell craters: (a) recognized by our rule-set; (b) unrecognized by our rule-set. [Colour figure can be viewed at
wileyonlinelibrary.com]
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pattern and scenery extraction and classification,
providing an economically sustainable tool to cata-
logue, preserve and protect archaeological heritage.
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