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Abstract

Optimal doses for the treatment of adrenal metastases with stereotactic radiotherapy

(SBRT) are unknown. We aimed to identify dose-volume cut-points associated with

decreased local recurrence rates (LRR). A multicenter database of patients with adrenal

metastases of any histology treated with SBRT (biologically effective dose,

BED10 ≥50 Gy, ≤12 fractions) was analyzed. Details on dose-volume parameters were

required (planning target volume: PTV-D98%, PTV-D50%, PTV-D2%; gross tumor vol-

ume: GTV-D50%, GTV-mean). Cut-points for LRR were optimized using the R maxstat

package. One hundred and ninety-six patients with 218 lesions were included, the larg-

est histopathological subgroup was adenocarcinoma (n = 101). Cut-point optimization

resulted in significant cut-points for PTV-D50% (BED10: 73.2 Gy; P = .003), GTV-

D50% (BED10: 74.2 Gy; P = .006), GTV-mean (BED10: 73.0 Gy; P = .007), and PTV-

D2% (BED10: 78.0 Gy; P = .02) but not for the PTV-D98% (P = .06). Differences in

LRR were clinically relevant (LRR ≥ doubled for cut-points that were not achieved). Fur-

ther dose-escalation was not associated with further improved LRR. PTV-D50%, GTV-

D50%, and GTV-mean cut-points were also associated with significantly improved LRR

in the adenocarcinoma subgroup. Separate dose optimizations indicated a lower cut-

point for the PTV-D50% (BED10: 69.1 Gy) in adenocarcinoma lesions, other values

were similar (<2% difference). Associations of cut-points with overall survival (OS) and

progression-free survival were not significant but durable freedom from local recur-

rence was associated with OS in a landmark model (P < .001). To achieve a significant

improvement of LRR for adrenal SBRT, a moderate escalation of PTV-D50%

BED10 >73.2 Gy (adenocarcinoma: 69.1 Gy) should be considered.

K E YWORD S

adrenal, dose-finding, oligometastases, SBRT

What's new?

Stereotactic body radiation therapy (SBRT), a method of precisely targeting tumors with radia-

tion, has been successful in treating adrenal metastases. However, the optimal dose has not yet

been established. Here, the authors retrospectively analyzed 218 lesions in 196 patients who

had been treated with SBRT and for whom dose-volume parameters were available. They identi-

fied dose-volume cut points above which higher doses did not provide additional benefit. Mod-

erate escalation to 73.2 Gy for the PTV-D50% achieved a clinically relevant improvement in

recurrence rate.

1 | INTRODUCTION

Successful local therapy for adrenal metastases using surgery has

been described in multiple series1,2 and may result in long-term free-

dom from tumor progression.3 More recently, with the developments

of intensity-modulated radiotherapy (IMRT) and stereotactic body

radiotherapy (SBRT), radiotherapy (RT) has also been successfully

applied as a local treatment modality for adrenal metastases.4-16

Conventionally fractionated or low-dose approaches can be used suc-

cessfully17 in patients in a palliative setting. However, SBRT offers the

option to treat metastases with steep dose gradients and a high-

precision set-up,18-22 facilitating the possibility to increase tumor

doses without enhancing normal tissue toxicity. Therefore, SBRT has

been used in many studies published more recently.15,17,23 Interest-

ingly, local control (LC) rates seem to differ between involved meta-

static sites treated with SBRT; for example, in lung metastases, 1-year

BUERGY ET AL. 413

mailto:daniel.buergy@umm.de


LC was 90%24 whereas in liver and adrenal metastases, 1-year LC

rates of 77% and 80.8% have been reported.17,25

SBRT planning for adrenal metastases is often a challenge due to

anatomic proximity of serial risk organs such as the duodenum, small

bowel and stomach.26 Violating dose constraints can lead to life-

threatening complications27-29 making a complex planning process,

image-guided RT (IGRT), and appropriate motion management strate-

gies necessary.30 To avoid violating risk organ tolerance, compromises

in the target dose can be necessary resulting in heterogenous dose

and fractionation schedules.17

Several studies have reported on SBRT of adrenal metasta-

ses31,32; however, the optimal dose to treat adrenal metastases is

unknown and sufficiently powered multicenter series and/or system-

atic analyses did not use the actually applied doses but the prescribed

doses and detailed prescription patterns were often unavailable.15,23

Therefore, dose-coverage with regard to the planning target volume

(PTV) and the actual gross tumor volume (GTV) are unknown as they

depend on prescription patterns and might vary between different

plans with the same nominal prescription dose especially in series

before the ICRU-91 dose reporting recommendations.33

We therefore conducted this analysis using a retrospective cohort

of patients with adrenal metastases within the framework of the SBRT

database initiative of the Working Group Radiosurgery and Stereotactic

Radiotherapy of the German Society for Radiation Oncology (DEGRO).

Results for safety and efficacy of the overall patient cohort have been

published elsewhere17; for this analysis, we identified patients who

were treated with SBRT and for whom dose-volume parameters were

available to identify optimal cut-points for dose-volume parameters

associated with a decreased local recurrence rate (LRR).

2 | PATIENTS AND METHODS

2.1 | Patient characteristics and data collection

Data from a multicenter retrospective cohort study of patients

with adrenal metastases were analyzed after ethics approval had

been obtained in the coordinating study center (2018-853R-MA)

and in participating centers in accordance with local standards. All

patients had at least one adrenal metastasis of any histological

subtype which had been treated with SBRT. For comparison of

heterogeneous dose prescription patterns and fractionation sched-

ules, the linear-quadratic model was used with an assumed α/β of

10 Gy to convert absolute doses to biologically effective doses

(BED10) for each treated lesion.33 Details on the patient cohort,

including patterns of care, outcomes on LC, overall survival (OS),

and toxicity have been reported previously.17 Briefly, the database

includes three strata: (a) SBRT19 patients treated with a prescribed

BED10 of at least 50 Gy in maximal 12 fractions, (b) patients

treated with palliative intent (BED10 < 50 Gy), and (c) patients

treated with conventionally fractionated RT (>12 fractions). For

this analysis, we included lesions treated with SBRT (≤12 fractions,

prescribed BED10 ≥50 Gy); furthermore, details on one or more of

the following dose-volume parameters was required for inclusion:

PTV-D98%, PTV-D50%, PTV-D2% GTV-D50%, GTV-mean (GTV

mean dose).34

2.2 | Follow up, survival- and statistical analysis

Statistical analyzes were performed using R (version 3.6.3; The R

Foundation for Statistical Computing, Vienna, Austria).35 We used a

cumulative incidence function to calculate a competing risk-adjusted

LRR using Gray's test to compare groups.36 The alpha level was set at

.05. To identify cut-points for minimum doses required to achieve

local control, we used the method proposed by Lausen et al37 as

implemented in the R maxstat package.38 To avoid strong numerical

imbalances between high- and low-dose groups, the lower quantile of

the covariate distribution was predefined at 25%. Such an approach

results in optimized cut-points located between the 25% and the 75%

quantiles. In each figure, high-dose and low-dose group refers to the

group above and below the cut-point for the parameter, respectively.

Excluded strata

• Palliative RT (<50 Gy BED10, 

79 lesions)

• Conventionally fractionated RT 

(>12 fractions, 27 lesions) 

Initial database

366 lesions, 326 

patients

218 lesions treated with SBRT 

in 196 patients (22 bilateral)

Most common prescription 

doses

• 10 × 5 Gy (n = 68, 31.2%)

• 5 × 7 Gy (n = 27, 12.4%)

• 5 × 8 Gy (n = 22, 10.1%)

• 10 × 4 Gy (n = 15, 6.9%)

• 7 × 5 Gy (n = 9, 4.1%)

• 3 × 12.5 Gy (n = 8, 3.7%)

• 5 × 10 Gy (n = 7, 3.2%)

• 9 × 5 Gy (n = 6, 2.8%)

• 3 × 10 Gy (n = 6, 2.8%)

• 8 × 5 Gy (n = 5, 2.3%)

• 12 × 4 Gy (n = 5, 2.3%)

• 8 × 7.5 Gy (n = 5, 2.3%)

• 5 × 9 Gy (n = 4, 1.8%)

• 6 × 6 Gy (n = 3, 1.4%)

• 12 × 5 Gy (n = 3, 1.4%)

• 3 × 12 Gy (n = 3, 1.4%)

• 4 × 7.5 Gy (n = 3, 1.4%)

• Other (n = 19, 8.7%)

Excluded SBRT patients

• Local recurrence data and/or 

dose-volume data unavailable 

(n = 42)

SBRT patients 

(BED10 ≥50 Gy, ≤12 

fractions)

260 lesions, 232 

patients

F IGURE 1 CONSORT diagram and fractionation regimens of
patients and lesions included in the analysis [Color figure can be
viewed at wileyonlinelibrary.com]
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Progression-free survival (PFS) and OS were calculated by using the

Kaplan-Meier method. PFS was defined as the time from the end of

the RT to any in- or out-of-field disease progression (according to

Response Evaluation Criteria in Solid Tumors: RECIST 1.1) or death.

For the PFS analysis, two analyses were performed: for the first

model, we excluded patients with bilateral lesions (due to the

TABLE 1 Patient, tumor and treatment characteristics of adrenal metastases included in the database

Patient, tumor and treatment characteristics

Lesions n 218

Patients n 196

Pathohistology (lesions) Adenocarcinoma, n (%) 101 (46.3)

-NSCLC, n 82

-Colorectal, n 12

-Othera, n 7

SCLC, n (%) 29 (13.3)

SCC, n (%) 27 (12.4)

-NSCLC, n 24

-Other, n 3

Melanoma, n (%) 12 (5.5)

Hepatocellular, n (%) 9 (4.1)

Renal cell, n (%) 9 (4.1)

Breast cancer, n (%) 6 (2.8)

Otherb, n (%) 22 (10.1)

Unknown, n (%) 3 (1.4)

Sidec Left/right, n (%) 105 (48.2)/113 (51.8)

Intrafractional motion management Abdominal compression, n (%) 65 (29.8)

Breath-hold, n (%) 43 (19.7)

Gating, n (%) 22 (10.1)

Tracking, n (%) 4 (1.8)

Free breathing, n (%) 63 (28.9)

-With 4D-CT, n 46

- No or unknown 4D-CT, n 17

Data on motion management unavailable, n (%) 21 (9.6)

-With 4D-CT, % 19

-No or unknown 4D-CT, % 2

GTV Mean (95% CI), mL 39.9 (33.7-46.2)

PTV Mean (95% CI), mL 87.4 (77.1-97.7)

BED10 PTV-D98 Mean (95% CI), Gy 65.5 (63.3-67.7)

BED10 PTV-D50d Mean (95% CI), Gy 83.6 (80.7-86.5)

BED10 PTV-D2 Mean (95% CI), Gy 96.1 (92.2-100.1)

BED10 GTV-meand Mean (95% CI), Gy 88.7 (85.2-92.3)

BED10 GTV-D50d Mean (95% CI), Gy 89.7 (86.0-93.3)

Abbreviations: BED10, biologically effective dose, α/β = 10 Gy; CI, confidence interval; D2, dose to 2% of the volume; D50, median dose; D98, dose to

98% of the volume; GTV, gross tumor volume; NSCLC, nonsmall-cell lung cancer; PTV, planning target volume; SCC, squamous cell carcinoma; SCLC,

small-cell lung cancer.
aOther primary tumors contributing to adenocarcinoma were unknown primary (n = 4), gastroesophageal (n = 2), and one breast cancer lesion which had

been classified as an adenocarcinoma (n = 1).
bOther histologies include lesions with sarcoma, mixed type carcinoma, large cell carcinoma, thyroid (papillary) carcinoma, neuroendocrine carcinoma,

thymic carcinoma, Merkel cell carcinoma, cholangiocellular carcinoma, prostate carcinoma, ovarian carcinoma, and extramedullary anaplastic

plasmacytoma.
cNumbers include 22 bilateral lesions.
dInclusion criterion was the prescribed dose by each treating center (BED10 >50 Gy). Due to the retrospective manner and different prescription methods

of some centers the cohort included 3, 2, and 2 lesions which received a PTV-D50, GTV-mean, and GTV-D50 below 50 Gy (BED10), respectively.
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guaranteed recurrence status; that is, all patients with subsequent

bilateral lesions would be counted as having PFS events after the

interval until the second lesion occurred), the second model includes

patients with bilateral lesions. OS was defined as the interval from the

end of RT to the day of death or censoring. For the OS analysis,

patients with bilateral lesions were allowed, if the RT completion dates

of both lesions were similar (ie, interval below 1 month/28 days).

Survival curves were truncated at 48 months for the regular fig-

ures; in the Supplementary Material, curves up to 60 months are

shown. A landmark analysis was done to compare OS between

patients with unilateral lesions who were alive at 12 months with or

without local recurrence; patients with bilateral lesions were excluded

for this analysis.

3 | RESULTS

In total, 232 patients with 260 adrenal lesions were treated with

SBRT. Dose-volume parameters and/or LRR/survival data were

unavailable for 42 lesions, the remaining 218 lesions in 196 patients

(22 with bilateral SBRT) were included in this analysis (Figure 1).

Characteristics of the irradiated lesions are detailed in Table 1;

briefly, mean GTV of the treated lesions was 39.9 mL (95% CI:

33.7-46.2 mL), the largest histopathological subgroups were adeno-

carcinoma (n = 101 lesions, NSCLC: 81.2%, colorectal: 11.9%, other:

6.9%), small-cell lung cancer (n = 29 lesions, SCLC), and squamous

cell carcinoma (SCC, n = 27 lesions, 88.9% NSCLC, 11.1% other).

61.5% of patients were irradiated with intrafraction motion
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F IGURE 2 (A-D) Cumulative incidence of local recurrences using the optimized cut-points for the (A) PTV-D50% (BED10: 73.2 Gy; P = .003),
the (B) GTV-D50% (BED10: 74.2 Gy; P = .006), the (C) GTV-mean (BED10: 73.0 Gy; P = .007), or the (D) PTV-D2% (BED10: 78.0 Gy; P = .02). In
all cases, the 12- and 24 months recurrence rates for the higher doses were less than half the recurrence rate of the lower doses. For panels with
additional graphs for informative censoring, see Figure S2a-d. Different numbers at risk are due to missing dosimetric information [Color figure
can be viewed at wileyonlinelibrary.com]
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management, mostly abdominal compression, breath-hold, or gating.

Out of the patients who were irradiated in free-breathing (including

unknown), the majority had received a 4D-CT prior to RT; the

remaining 19 patients (8.7%) were irradiated in free-breathing with-

out 4D-CT. Distributions of prescribed doses are depicted in

Figure S1.

We identified dose cut-points which separated two groups with

statistically significant LRR (Gray's test) for the PTV-D50% (BED10:

73.2 Gy; P = .003; Figure 2A), the GTV-D50% (BED10: 74.2 Gy;

P = .006; Figure 2B), the GTV-mean (BED10: 73.0 Gy; P = .007;

Figure 2C), and the PTV-D2% (BED10: 78.0 Gy; P = .02; Figure 2D);

no significant cut-off value could be identified for the PTV-D98%

(P = .06). The corresponding cumulative LRR curves with additional

graphs for competing risks (ie, death in patients without local recur-

rence) are shown in Figure S2a-d. We additionally compared lesions in

which all significant parameters were above the cut-off values to

those with at least one lower-dose parameter. This analysis also

showed a significant difference (P = .02; Figure S3) but the separation

of the curves was not more pronounced compared to the comparisons

shown in Figure 2A-D.

Differences in LRR were also clinically relevant (12- and

24-months LRR more than doubled for all cut-points in Figure 2A-D

that were not achieved).

Numerical improvements were also consistently observed in PFS

and OS of patients who surpassed the cut-points; however, the differ-

ence was not significant for any of the tested cut-points. Curves for

lesions which were irradiated with doses that surpassed all cut-points

compared to those who missed at least one cut-point are shown in

Figure 3A for PFS (median: 6.2 vs 5.5 months; P = .13), and in

Figure 3B for OS (median: 22.5 vs 18.1 months; P = .27). Durable

control (1 year or more) of irradiated metastases was associated with

an improvement of OS in a 12-months landmark analysis (P < .001;

Figure S4; bilateral lesions excluded).

Subgroup analyses for LRR were in line with the overall cohort for

patients with adenocarcinoma lesions (n = 101 in 93 patients,

Figure S5a-d), we observed significant differences for aforementioned

cut-points in case of PTV-D50% (P = .012), GTV-D50% (P = .012), and

GTV-mean (P = .02) resulted in significant improvements in LRR; the cut-

point for the PTV-D2% was associated with a numerical improvement

which was not statistically significant (P = .09). Additionally, a separate

cut-point optimization was done for the adenocarcinoma subgroup. The

difference to the initially identified cut-points was 5.6% (absolute differ-

ence: 4.1 Gy, 69.1 Gy vs 73.2 Gy (BED10)) for the PTV-D50%; all other

differences were below 2%, detailed information is given in Table S1. The

second largest subgroup were patients with small-cell lung cancer (SCLC;

29 lesions in 27 patients): we observed a significant improvement for the

PTV-D50% cut-point (P = .019; Figure S6); all other aforementioned cut-

points showed trends toward an improved LRR but those were not signif-

icant in the small subgroup. Due to the small number of lesions, we did

not perform another separate cut-point optimization. In the third largest

histopathological group, (SCC; 27 lesions in 23 patients), we did not

observe any recurrences. Six patients in this group were treated with

doses below the cut-off values.

For all lesions who had received doses above aforementioned

cut-off values in the overall cohort, we analyzed if further dose

increases would be associated with further improvements in LRR. We

did not observe further statistical or numerical improvements in LRR

for higher doses; as an example, Figure 4 shows the LRR for patients

with PTV-D50% values of 73.2-85.9 Gy (BED10) compared to doses

above 85.9 Gy (P = .9).
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F IGURE 3 Kaplan-Meier panel for PFS (A) in patients whose lesions were irradiated with higher doses (ie, all significant cut-points surpassed),
compared to patients with lesions which were irradiated with lower doses (median: 6.2 vs 5.5 months; P = .13). Patients with bilateral lesions
were excluded for this model; however, results were robust when such patients were included (6.2 vs 5.2 months; P = .12, graph not shown). The
Kaplan-Meier graph for OS is shown in (B). Aside from a numerical trend, we did not observe a significant difference between patients who
surpassed all cut-points vs lower-dose patients (median: 22.5 vs 18.1 months; P = .27). Patients with missing PFS data (n = 13) and with at least
one missing dosimetric dataset were excluded for this analysis [Color figure can be viewed at wileyonlinelibrary.com]
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To evaluate if interactions with tumor size and localization (right-

sided vs left-sided) may have confounded our results, we analyzed the

following parameters:

1. We compared lesion sizes of metastases which were treated with

doses above aforementioned GTV/PTV cut-off values vs patients

treated with lower doses: This analysis showed no significant dif-

ference. There was, however, an imbalance between right-sided

and left-sided lesions: Right-sided lesions were significantly more

often treated with higher doses compared to left-sided lesions

(P < .05 in all cases). As an example, the PTV-D50% high-dose

group included 59.4% right-sided lesions compared to 50% in the

lower-dose group and 51.8% in the overall cohort.

2. Due to this potential imbalance, we additionally calculated LRR in

patients with right-sided vs left-sided lesions as well as larger vs

smaller GTVs. Both analyses did not show an increased LRR in

patients with left- or right-sided lesions and also no significant

(or nonsignificant but numerically relevant) difference between

larger and smaller lesions (Figure S7a,b).

3. Finally, multivariate Fine-Gray models for each dose-volume cut-

point in the overall population with GTVs and localization as addi-

tional variables were calculated. None of the Fine-Gray models

showed a significant association of GTV size or side of the lesion

with LRR and all models confirmed the aforementioned signifi-

cance of the univariate LRR models (hazard ratio [95% CI] and

P-values as follows: PTV-D50%: 0.39 [0.2-0.75]; P = .005; GTV-

D50%: 0.42 [0.21-0.82]; P = .011; GTV-mean: 0.41 [0.21-0.81];

P = .01; PTV-D2%: 0.47 [0.23-0.94]; P = .033).

4 | DISCUSSION

To the best of our knowledge, this is the largest analysis to determine

dose-/volume cut-points using individual patient data for the treat-

ment of adrenal metastases. It has been shown by three large studies

that higher prescribed doses are associated with improved outcomes:

In an Asian individual-patient analysis, which includes 75 patients,

Zhao et al identified a prescription dose of ≥80 Gy (BED10) to be

associated with an improved local control.23 Detailed PTV/GTV

dose-/volume data were not analyzed and local control was not

corrected for competing risks.39 The second study is the metaanalysis

of case series published by Chen et al15 which included 1006 patients;

the authors observed that prescribed doses above 60, 80, and 100 Gy

(BED10) resulted in an improved local control in the higher-dose

groups15; however, they noted that confounding variables of the

included studies were not consistently reported and could not be ana-

lyzed. Finally, Stumpf et al recently published a tumor control proba-

bility (TCP) model which incorporated data from 2008-2017; the

authors estimated that a dose of 116.4 Gy (BED10) would lead to a

1-year local control of 95%40; furthermore, they noted that most

underlying studies were small and potentially affected by competing

risks. Data on histology were not incorporated and the largest under-

lying study12 included 48 patients in whom two recurrences had been

observed but only seven patients were alive after 2 years.

The strength of our analysis lies in the detailed dosimetric and

volumetric information which were available for all included lesions.

We identified cut-points which led to a highly significant separation

according to the individual lesions' (or patient's) risk of recurrence.

When cut-points for the PTV-D50% (73.2 Gy), the GTV-D50%

(74.2 Gy), the GTV-mean (73.0 Gy), or the PTV-D2% (78.0 Gy) dose

were surpassed, the risk of local recurrence during the patient's

follow-up was significantly and clinically relevantly lower compared to

the lower-dose group: Twelve- and 24-month LRR data showed that

recurrence risks more than doubled in each analysis if aforementioned

cut-points were not reached (see Figure 2A-D). Our database does

not yet include information on local treatment of other metastases.

Therefore, it is not surprising that we did not identify a significant dif-

ference in PFS and OS in patients who received doses surpassing the

cut-points as many patients might have had untreated metastases

aside from the adrenal lesion which limits the power to detect a PFS

or OS difference based on dose escalation of just one metastasis.

Nevertheless, we observed consistent numerical trends with regard to

both endpoints (Figure 3A,B); additionally, sustained local control was

associated with OS outcomes as demonstrated by the landmark analy-

sis (Figure S4).

Our cut-points for PTV-D50%, GTV-D50%, and GTV-mean but

not for PTV-D2% showed a significant separation of the LRR curves

in the largest homogenous histopathological subgroup of patients

with adenocarcinoma lesions. A separate optimization for the adeno-

carcinoma patient cohort resulted in minimal numerical differences

compared to the overall cohort for most cut-points; only for the PTV-

D50% the cut-point was lower in patients with adenocarcinoma

lesions (BED10: 69.1 Gy vs 73.2 Gy; Table S1). This indicates that a

0.0

0.1

0.2

0.3

0.4

0 12 24 36 48

Months

L
o
c
a
l 
re

c
u
rr

e
n
c
e

Group: PTV-D50 of 73.2-85.9 Gy PTV-D50 of >85.9 Gy Confidence Interval

Local recurrences of lesions irradiated with doses above the PTV-D50% 
cut-point (73.2 Gy). PTV-D50% high-dose (>median, BED10 85.9 Gy) 
vs intermediate-dose group (73.2-85.9 Gy)

78 28 11 1 1

78 37 18 9 4>85.9 Gy

73.2-85.9 Gy

0 12 24 36 48

Number at risk

F IGURE 4 Cumulative incidence function for local recurrences
of lesions which were irradiated with intermediate PTV-D50% doses
(BED10: 73.2-85.9 Gy) compared to lesions which were irradiated
with very high doses (>85.9 Gy); we did not observe a difference
between the groups (P = .9). Further dose escalation steps were
analyzed and none were associated with lower LRR if lesions were
irradiated with doses which surpassed the cut-points detailed in
Figure 2A-D [Color figure can be viewed at wileyonlinelibrary.com]

418 BUERGY ET AL.

http://wileyonlinelibrary.com


slightly lower PTV-D50% might be acceptable in this subgroup. Addi-

tionally, the (73.2 Gy) PTV-D50% cut-point was the only one which

led to a significant separation of LRR curves in lesions with SCLC.

Until further data become available for the small subgroups, our data

indicate that it may be preferable to aim at the PTV-D50% cut-point

of 73.2 Gy (BED10) for all adrenal metastases with the exception of

adenocarcinoma which might be sufficiently treated with 69.1 Gy

(BED10). Analyses of potentially confounding variables showed that

neither GTV size, nor lesion side were associated with LRR in univari-

ate models. Consequentially, multivariate models which included

these factors confirmed the results from the univariate models.

Our cut-points are slightly lower compared to the cut-point of

a prescribed dose of 80 Gy proposed by Zhao et al23 which were

not adjusted for competing risks and may therefore overestimate

the recurrence risk.39 Surprisingly, we could not identify any

further dose-response effect in patients who had surpassed the

cut-points for aforementioned PTV/GTV parameters. This is in

contrast to some of the previously mentioned analyses15,40 and

might be explained by the limited power to detect a small differ-

ence in the LRR due to the limited OS of the population which

leads to a high number of competing events. As an example: In the

dataset of Casamassima et al,12 which is the largest retrospective

analysis underlying the TCP model by Stumpf et al,40 only seven

patients (14.6%) were at risk of local recurrence at 2 years. This

was exactly in line with our dataset: There were 38 lesions at risk

(14.6%), that is, controlled lesions in patients who were alive and

uncensored at 2 years. This underscores the need for even larger

datasets to actually detect which doses or approaches lead to

long-term LC rates in potential long-term survivors.

Another limitation of our dataset is the low overall number of

patients who received very high doses: 38 patients had a PTV-D50%

of 100 Gy or more; out of these patients five had a local recurrence

over time. Therefore, the power to detect a difference between high

and very high dose escalation with our dataset was low.

Despite these shortcomings, our data clearly indicate a benefit of

moderately escalated SBRT doses in patients with adrenal metastases.

For all-comers, based on our data, we would suggest a PTV-D50%

dose of 73.2 Gy (BED10); if possible without violating serial risk organ

tolerances. In our study, this was achieved by using 50 Gy in 10 frac-

tions, 37.5 Gy in three fractions, and 50 Gy in five fractions, among

others (prescribed BED10: 75, 84.4, and 100 Gy, respectively).

Patients with adenocarcinoma lesions were sufficiently treated with

69.1 Gy (BED10), which was achieved in our study by 40 Gy in five

fractions (among others).

The wide variety of prescription patterns and doses in our study

indicates that it will be important to obtain interinstitutional and inter-

technology consistency in future prospective studies in the

oligometastatic setting. A harmonization of planning, dose prescrip-

tion, technological requirements and reporting is necessary and has

already been published for example, lung metastases.41 Such con-

touring and planning benchmarking is missing for adrenal metastases

and is subject to further research. For SBRT in critical localizations in

proximity to serial risk organs, further knowledge about detailed risk

organ constraints and technological improvements such as advanced

motion management strategies30,42 may help to reach doses ensuring

local control as found in this series.

5 | CONCLUSION

Moderate escalation of SBRT BED10 using cut-off values of 73.2,

74.2, 73.0, and 78 Gy for the PTV-D50%, the GTV-D50%, the GTV-

mean, and the PTV-D2% lead to significant and clinically relevant

improvements of the LRR. In adenocarcinoma lesions, the optimal cut-

point for the PTV-D50% was slightly lower (69.1 Gy) with other

values similar to the overall cohort. Further dose escalation was not

associated with improvements of the LRR in our dataset. There was

no significant direct association of dose escalation with PFS or OS;

however, durable LC was significantly associated with an improve-

ment in OS in a landmark analysis.
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