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ABSTRACT

This comprehensive review written by experts in their field

gives an overview on the current status of incorporating posi-

tron emission tomography (PET) into radiation treatment

planning. Moreover, it highlights ongoing studies for treat-

ment individualisation and per-treatment tumour response

monitoring for various primary tumours. Novel tracers and

image analysis methods are discussed. The authors believe

this contribution to be of crucial value for experts in the field

as well as for policy makers deciding on the reimbursement of

this powerful imaging modality.

ZUSAMMENFASSUNG

Diese umfassende Übersichtsarbeit, die von Experten auf ihrem

Gebiet verfasst wurde, zeigt den aktuellen Stand hinsichtlich

der Einbeziehung der Positronen-Emissions-Tomografie (PET)

in die Strahlenbehandlungsplanung. Darüber hinaus werden

laufende Studien zur Behandlungsindividualisierung und zur

Überwachung des Tumoransprechens pro Behandlung bei ver-

schiedenen Primärtumoren vorgestellt. Neuartige Tracer und

Bildanalyseverfahren werden diskutiert. Die Autoren sind der

Meinung, dass dieser Beitrag sowohl für Experten auf diesem

Gebiet als auch für politische Entscheidungsträger, die über

die Kostenerstattung dieser leistungsstarken Bildgebungsmo-

dalität bestimmen, von entscheidendem Wert ist.

Introduction

Positron emission tomography (PET) has found its way into pri-
mary disease staging of numerous solid tumours and of lympho-
mas. This has mainly been the contribution of 2-[18F]fluorodeoxy-
glucose- ([18F]FDG), a glucose analogue which depicts the altered
metabolism of malignant tumours as well as the physiological
metabolism of organs and inflammatory processes. Functional
PET with [18F]FDG as radiopharmaceutical (FDG-PET) combined
with anatomical imaging modalities, such as computed tomo-
graphy (CT) and magnetic resonance imaging (MRI), has also
altered radiation treatment planning and response assessment,
in particular in lung cancer, prostate cancer and lymphoma. More-
over, local radiation dose-escalation, termed dose-painting, based
on increased metabolism has been applied both in theoretical
treatment planning studies as well as in the context of prospective
clinical trials. Finally, tracers depicting additional tumour charac-
teristics beyond glucose metabolism have become available and
their value is being assessed. For many years, the incremental

value of a close interaction between radiation oncologists and
nuclear medicine physicians has been highlighted by interdisci-
plinary studies in various tumour entities. Whereas this review is
primarily aimed to provide a concise overview over the current
value of PET in radiation oncology, it might also serve as a stimulus
for future collaboration in both daily practice and scientific trials
to further enhance patient care.

Primary brain tumours

Different from peripheral oncological diseases, which are predo-
minantly imaged with FDG-PET, non-glucose tracers have shown
clear superiority in the workup of tumour lesions in the brain. This
is due to their high physiological glucose consumption, leading to
a low tumour-to-background contrast and sensitivity for [18F]FDG,
as well as to a high glucose uptake of inflammatory cells, which
particularly hampers the evaluation of equivocal lesions after
radiotherapy [1–3]. Therefore, amino acid tracers such as
[18F]fluoroethyltyrosine ([18F]FET), [11C]methionine ([11C]MET),
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[18F]FDOPA or [18F]fluciclovine ([18F]FACBC) are recommended for
the assessment of gliomas and brain metastases [4, 5], while
radiolabelled ligands of the somatostatin receptor type 2 (SSR2;
e. g. [68Ga]Ga-DOTATOC, [68Ga]Ga-DOTATATE, or [18F]SIFATATE)
are used for the imaging of meningiomas due to their overexpres-
sion of the SSR2 [6].

Radiotherapy planning

Conventional MRI of the brain is the gold standard to delineate
tumour extent in primary brain tumours. But yet, due to their infil-
trative growth, tumour margins are inadequately assessed by MRI
alone and histological studies have proven that amino acid PET
may be more sensitive to detect the true tumour extent [7–12].
Therefore, the PET/RANO report [4] proposed that delineation of
the so-called “biological tumour volume” (BTV) using amino acid
PET might more accurately disclose the true tumour volume and
that biologically more active tumour regions may be amenable for
dose escalation/selective boosting.

Several trials have shown the value of PET to reduce classical mar-
gins for delineation of the clinical target volume (CTV). For example,
a recent study reported that a 1.5 cm margin on [18F]FET-PET based
BTV and MR-based gross tumour volume (GTV) yielded equivalent
results according to recurrence patterns compared to classical 2 cm
margins while significantly reducing dose exposure to healthy brain
parenchyma [13–16].

Concerning the clinical benefit, a small prospective trial sug-
gested that amino acid PET-based re-irradiation may lead to
enhanced survival compared to radiotherapy planning based on
conventional MRI alone [17]. Currently, a multicentre phase II trial
(GLIAA, NOA-10, ARO2013/1) is testing the hypothesis that
[18F]FET-PET-based re-irradiation will be superior to radiotherapy
solely based on conventional MRI [18].

Also with regard to radiotherapy planning of meningiomas, the
MRI-based morphologic GTV delineation may be insufficient to
truly address the entire tumour volume. Particularly for the detec-
tion of an intra-osseous meningioma infiltration or for the tumour
delineation at the skull base, PET using SSR-ligands has been
shown to strongly complement anatomical information from MRI
and CT [19–21].

Taken together, PET is a highly valuable tool to complement
conventional imaging to improve the therapeutic ratio [22].

Treatment response and radiation-induced changes

In contrast to [18F]FDG, which is not valuable for the response pre-
diction to radiotherapy [23, 24], early [18F]FET- or [11C]MET-PET
changes are predictors for progression-free survival (PFS) and
overall survival (OS) [25–29].

After radiotherapy to primary brain tumours or radiosurgery to
metastases [6], MRI, similarly to FDG-PET, does not offer reliable
specificity to differentiate tumour progression from treatment
effects such as pseudo-progression (early event) or radiation
necrosis (delayed toxicity) [1–3, 22, 30–32]. Contrarily, amino
acid PET studies report a high diagnostic accuracy, which can
even be increased by the evaluation of tracer uptake kinetics, at
least for [18F]FET [33–35].

Head and neck squamous cell carcinomas
(HNSCC)

In recent years, significant improvements in radio(chemo)therapy
of head and neck squamous cell carcinomas (HNSCC) have been
achieved.

The impact of FDG-PET on target volume (TV) delineation and
dose prescription has been studied extensively. FDG-PET improves
primary tumour delineation, in particular in advanced stages. FDG-
PET based TV is smaller than the volume derived by CT or MRI, and
thus FDG-PET has a significant impact on the radiation dose distri-
bution [36–40]. Compared to CT or MRI, FDG-PET demonstrates a
higher level of concordance with local tumour extent as identified
on histopathology [38]. Prospective studies were able to show that
the use of FDG-PET leads to a higher degree of conformal radiation
dose distribution and to a decreased rate of late side-effects, with-
out compromising effects of the irradiation [41, 42]. Leclerc et al.
[41] conducted a study in oropharyngeal tumours employing TV
delineation based on FDG-PET, which led to decreased radiation
doses to the parotid glands and oral cavity.

FDG-PET cannot reliably localize small superficial tumour depo-
sits of the primary tumour or nodal micrometastases. This under-
lines the high relevance of clinical assessment in HNSCC as well as
the necessity to further improve imaging modalities in the context
of radiation treatment planning.

Tracers imaging tumour cell hypoxia in HNSCC, [18F]FMISO,
[18F]FAZA, [18F]HX4, have been validated against immunohisto-
chemical staining and been applied for patient selection during
the course of radiochemotherapy (RCHT; [43–50]). Several pro-
spective clinical trials have assessed the value of [18F]FMISO-PET
for patient stratification. A recently published prospective clinical
phase II study suggests that radiation dose may be deescalated
from 70 Gy to 30 Gy in oropharyngeal cancer patients with no
hypoxia on [18F]FMISO-PET prior to or with a re-oxygenating
tumour during radiation treatment [51]. [18F]FLT-PET, an imaging
biomarker of tumour cell proliferation in HNSCC, also holds high
prognostic value regarding locoregional control [52–54]. Even
though, the tracer has not yet found its way into routine clinical
practice, owing to its complex synthesis.

The Fibroblast Activation Protein (FAP), which is highly expressed
on the fibroblasts of tumour stroma is a relatively new biological tar-
get which can be addressed with suitable FAP inhibitors (FAPI) that
can be labelled with several radionuclides such as Ga-68 and F-18.
Syed et al. [55] have shown that a high tumour-to-background-ratio
of the FAP-ligand along with significant alteration of TV-delineation
in HNSCC patients. The value of PET using 18F-labelled FAPI is being
evaluated for a variety of tumours in the context of a prospective
register (NCT04571086). The value of this novel radiotracer PET for
radiotherapy planning is to be assessed in prospective clinical stud-
ies with relevant oncological endpoints.

Non-small cell lung cancer (NSCLC)

FDG-PET/CT has been recognized as the key imaging method for
staging of (non-)small cell lung cancer [(N)SCLC] and for detection
of disease recurrence. High sensitivities and specificities reported
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for the detection of distant metastases allow for accurate staging
and treatment allocation, i. e., local therapy with curative intent or
systemic therapy for palliation, and high imaging contrast enables
delineation of the primary tumour and lymph nodes for radiation
treatment planning for both tumour types [56–58].

According to the present state-of-the-art, an FDG-PET-CT scan
in radiation treatment position should indeed be performed
within 3 weeks before start of irradiation, even before chemothe-
rapy is administered [59]. This scan may also be acquired as 4D-
PET/CT for motion management, such as for stereotactic body
radiotherapy (SBRT). For definition of the GTV containing the pri-
mary tumour and metastatic lymph nodes, institutionally stan-
dardized visual contouring is the most widespread method and
the value of FDG-PET/MRI subject to ongoing research [58, 60].
Recently, it has been confirmed in an international randomized
multicentre-trial, that the CTVs (containing GTV and additional
assumed microscopic spread) can safely be reduced when using
FDG-PET for treatment planning in the context of primary RCHT
of locally advanced NSCLC [58].

Serial PET scans, combined with CT or MRI, have been investi-
gated in multimodality protocols during induction treatment
before radiotherapy or during definitive RCHT aiming at either
acquiring prognostic information or defining individualized treat-
ment adaptation [61–63]. Semi-quantitative metabolic FDG-PET
parameters [i. e. maximum standardised uptake value (SUVmax),
metabolic tumour volume (MTV)] during RCHT have been
observed to significantly correlate with overall and progression
free survival, and/or local tumour control, even when reassess-
ment is performed early (at 2 or 3 weeks after the start of radio-
therapy) [64–70]. Newer approaches using radiomics and artificial
intelligence are under investigation, but robust independent fea-
tures, including 4D-PET imaging, were not of complementary
prognostic or predictive value [59, 71, 72].

Beyond [18F]FDG, other PET tracers reflecting tumour charac-
teristics expressed by NSCLC have been investigated. Regions of
tumour cell hypoxia, which could be imaged using [18F]HX4,
[18F]FMISO, [18F]FAZA or [62Cu]Cu-ATSM, were found to be smaller
than [18F]FDG and to only (partially) overlap with the regions
detected by FDG-PET [73]. Hypoxia markers were found to predict
poor outcome in early and advanced stage NSCLC patients and
might be helpful to guide dose escalation strategies [74, 75].
[18F]FLT-PET representing tumour cell proliferation has been used
to monitor treatment response during RCHT as well as during tar-
geted therapy [76–78].

Oesophageal cancer

Current ESMO and NCCN guidelines recommend staging PET/CT
using [18F]FDG to identify otherwise undetected distant metasta-
ses in patients suffering from oesophageal cancer (EC) [79, 80].
Specifically, FDG-PET should be carried out in patients who are
candidates for oesophagectomy to detect unknown metastatic
spread, which may prevent patients from undergoing futile sur-
gery. With the exception of cases with limited stage disease (i. e.,
cT1/2 cN0 M0) for which primary resection is indicated, the
remaining patients are candidates for combined treatment using

RCHT with either neoadjuvant or definitive intent [79, 80]. How-
ever, curatively intended high-dose radiotherapy to the thorax
could be associated with significant cardiac and pulmonary toxi-
city. Thus, limiting excessive radiation exposure to healthy tissue
is of great importance to current research. The status of PET-
based radiotherapy is less clear in EC than in NSCLC, although
patients with oesophageal squamous cell carcinoma share several
adverse features with lung cancer patients, especially a high rate
of cardiovascular comorbidities. In addition, surgical resection of
EC is associated with perioperative mortality estimated as high as
10%, without an improvement of OS when compared to definitive
RCHT in two phase-III studies [81, 82]. In contrast to this, survival
among patients with potentially curable oesophageal or oesopha-
gogastric-junction cancer was improved, when neoadjuvant RCHT
was administered [83]. However, parameters, which may be used
to predict response to neoadjuvant or definitive RCHT, are urgent-
ly warranted for an individually tailored treatment.

Currently, there is no gold standard for delineation of radiation
target volumes in EC. Nevertheless, several publications have
demonstrated that PET imaging may lead to improvement in the
efficacy of radiotherapy of EC. A large Dutch delineation study
showed that FDG-PET influenced the delineated volume in the
majority of benchmark cases [84]. Additionally, results from a
small prospective clinical trial suggest a significant benefit of
additional PET imaging, with 6 out of 20 patients enrolled receiv-
ing subsequent modifications to their radiation treatment follow-
ing FDG-PET/CT when compared to patients receiving conven-
tional imaging [85]. A recently published delineation proposal of
neoadjuvant target volumes in EC is also based on FDG-PET ima-
ging, optimally acquired in treatment position [86]. Furthermore,
preliminary retrospective data suggest that inclusion of PET into
treatment planning potentially improves survival compared to
conventional imaging [87].

Besides contributing to improved biological tumour delineation,
PET parameters are additionally associated with favourable out-
comes in neoadjuvant and definitive treatment settings. This holds
true for baseline PET-parameters but even more so for interim PET
parameters [88–92]. Novel PET-parameters (e. g. standard uptake
ratio, SUR) obtained at interim showed very encouraging results in
the selection of optimal candidates for organ preservation [93].
Moreover, the use of FDG-PET/CT for restaging following neoadju-
vant RCHT enables detection of distant interval metastases in up to
9% of cases [94, 95]. Recent clinical trials have also indicated that
response assessment by PET during chemotherapy can be used to
escalate local therapies in non-responders [96]. Collectively, a large
meta-analysis found that restaging by FDG-PET/CT may consider-
ably impact on treatment decision-making [94]. Nevertheless, the
clinical benefit of FDG-PET/CT for assessing response to definitive
radiochemotherapy or neoadjuvant treatment before surgery
remains controversial. Following German national guidelines, inter-
im PET imaging is not routinely recommended [97]. Therefore, the
further validation of the role and promising PET parameters with an
emphasis on objective quantitative parameters for response assess-
ment through prospective, multicentre studies is of utmost impor-
tance to further optimize personalized treatment approaches.
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Rectal cancer

PET in primary staging

Regarding primary tumour staging, MRI is the gold standard and
established in all international guidelines. MRI allows a reliable
assessment of infiltration depth, mesorectal fascia involvement
or infiltration of adjacent organs owing to its excellent soft tissue
contrast [98]. In this aspect, MRI is superior to FDG-PET/CT ima-
ging. Regarding nodal status, no single modality achieves high
accuracy for the prediction of lymph node involvement. For MRI
staging, morphological features such as shape and signal intensity
outperform size [99]. Thus far, no study has compared MRI with
FDG-PET/CT regarding nodal status. There are a number of studies
showing partial superiority of FDG-PET imaging compared with
conventional imaging. Kwak et al. [100] analysed 473 patients
and found a sensitivity of 66 % with a specificity of 60 % using
FDG-PET/CT. On CT, there was a significantly lower specificity of
29% with slightly higher sensitivity of 87%. Overall, this resulted
in a non-significantly different accuracy of 63 % for FDG-PET/CT
and of 59% for CT only [100]. No difference was documented for
the detection rate of lymph node metastases. In another study,
univariate and multivariate analysis demonstrated that quanti-
tative parameters obtained from FDG-PET (MTV (SUVmax) were in-
dependent predictors of the presence of lymph node metastases
[101].

PET for radiation planning

The “classic” target volume for locally advanced rectal cancer in
the neoadjuvant setting includes the entire mesorectum in addi-
tion to the primary tumour, and thus also the rectum up to the
level of the promontory. Pelvic lymphatics are included depend-
ing on the clinical scenario (S3 guideline Colorectal Carcinoma
[102]). Usually, the entire target volume receives a uniform dose,
such that a highly precise delineation of the primary tumour is not
of clinical relevance. However, clinical trials are currently investi-
gating whether dose escalation to the primary tumour can lead
to an increase in complete remission rates and thus allow for an
organ-preserving approach in a larger number of patients [103].
Here, a precise definition of the primary tumour is relevant to
apply the highest possible dose to the primary tumour while suffi-
ciently sparing normal tissue. Several studies have compared MRI
and FDG-PET-based primary tumour definition. The FDG-PET-
based primary tumour delineation consistently resulted in a smal-
ler tumour volume compared to the MRI-based definition
[104, 105]. However, it should be taken into account that, as
described above, an excellent correlation with the actual tumour
extent has been established for MRI. For FDG-PET-based primary
tumour definition, these data are currently lacking. Furthermore,
it should be considered that the rectum shows an extremely vari-
able anatomy and a tumour volume generated based on “offline”
image data requires a large safety margin to be irradiated. Overall,
the utility of FDG-PET/CT in target volume definition in rectal can-
cer seems limited.

PET for response assessment

The prediction of a clinical complete remission is one of the major
challenges in establishing organ preservation strategies, as neither
endoscopic assessment nor MRI after therapy have shown reliable
sensitivity to date [106]. A promising approach is to incorporate
early changes in functional, quantifiable imaging data, such as
FDG-PET/CT [107]. In a prospective study comparing quantitative
imaging methods with molecular markers in terms of predictive
power for complete remission, imaging methods including FDG-
PET/CTwere shown to have the highest sensitivity of approximately
80% [108].

Anal cancer

The standard of care of non-metastatic anal cancer is definitive,
organ-preserving concurrent RCHT [109, 110]. Due to usually
high FDG-avidity of the primary tumour, locoregional lymph
node and distant metastases, FDG-PET/CT may provide useful
diagnostic information for RCHT planning [111–116]. Further-
more, PET-derived metabolic biomarkers including pre-treatment
SUVmax and MTV have shown prognostic significance in terms of
OS, PFS and event-free survival (EFS) [111, 117, 118].

FDG-PET/CT can be helpful in identifying the primary tumour,
but both the spatial resolution of PET and physiologic anal uptake
limit accurate T-staging [119, 120]. Thus, MRI and transanal
endoscopic ultrasound remain the clinical standard for T-staging
[121–123]. Although data on the use of FDG-PET/MRI are limited,
recent data indicate that PET/MR provides a more precise assess-
ment of the local extent of rectal cancers in evaluating cancer
length, nodal (N) status, and external sphincter involvement
[124]. There is good agreement between FDG-PET- and MRI-
based GTVs [125]. Accurate N-staging is crucial for dose prescrip-
tion and target volume delineation concerning (elective) lymph
node irradiation by consensus contouring guidelines and defini-
tion of boost volumes (simultaneously integrated or sequential)
for involved lymph node disease [126, 127]. A particular strength
of FDG-PET/CT is the additional detection of small lymph node
metastases in unsuspected pelvic and inguinal lymph nodes, and
the detection of occult distant metastases.

Several studies focused on the impact of FDG-PET/CT for radia-
tion treatment planning and target volume definition. Two meta-
analyses focused on disease staging with a particular focus on
radiation treatment planning: FDG-PET/CT led to upstaging in
5–38%, and to downstaging in 8–27% of patients; the identifica-
tion of lymph node metastases lead to treatment plan adaptions in
12.5–59% of patients [120, 128]. Furthermore, recently published
data reported that up to 20–26% of FDG-PET positive lymph nodes
were located outside the target volume of common guidelines for
elective lymph node irradiation and would have been missed with-
out the FDG-PET/CT-derived information [129].

Additionally, FDG-PET/CT – performed 12 weeks after comple-
tion of RCHT – may be useful to identify patients with insufficient
metabolic response of the primary tumour predicting the need for
early salvage therapy [130, 131]. A metabolic partial response was
predictive for a significantly decreased 2-year PFS compared with
metabolic complete response [22–71% versus 95 % [131, 132]].
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However, as reported in the meta-analysis of Jones et al. [128],
FDG-PET/CT performed too early during follow-up occasionally
prompted unnecessary resection. Therefore, and since according
to current guidelines the final response of anal cancer should be
assessed as late as 26 weeks after RCHT, the timing of an FDG-
PET scan during follow up should be late and any consequences
should be drawn with caution.

Cervical cancer

External beam RCHT followed by 3D-planned MRI-based brachy-
therapy maximizes tumour doses for excellent local control rates
and is thus the standard of care [133]. Even though, lymph node
metastases are the most important prognostic factor in cervical
cancer patients, which is not considered in the current FIGO clas-
sification. This results in under- or overtreatment of patients and
an unacceptably high rate of postoperative RCHT [133, 134]. CT
and MRI have demonstrated disappointingly low accuracy rates
in primary lymph node staging. Consequently, in some countries
FDG-PET/CT has been increasingly used to overcome the limita-
tions in accurate lymph node staging. Since FDG-PET/CT suffers
from a high rate of false negative readings of up to 20 %, FDG-
PET/CT cannot replace laparoscopic staging [135, 136]. Thus,
laparoscopic staging is widely applied leading to upstaging in
> 30 % of locally advanced cervical cancer patients and allowing
for treatment triage (radical hysterectomy versus definitive
RCHT). Recently, the randomized trial Uterus-11 has shown that
laparoscopic staging did not only avoid under- or overtreatment,
but had an impact on disease-free survival and cancer-specific
survival, respectively, without increased toxicity rates [137].
Laparoscopic staging therefore remains the gold standard for
FIGO stage IIB and >IIB patients [137–139].

The implications of undertreating patients with false negative
para-aortic disease is disastrous, given the fact that the survival
rate for patients with histologically positive para-aortic lymph
nodes treated with extended-field radiation therapy is as high as
50% [140]. A prospective trial evaluated the use of laparoscopic
staging after (false) negative FDG-PET/CT and showed signifi-
cantly superior oncological outcomes for patients with lymph
node metastases < 5mm vs. > 5mm after surgical staging and
RCHT [141]. The shortcoming of the above mentioned Uterus-11
trial [137] is that FDG-PET/CTwas not used in that study. The idea
of combining the validation of FDG-PET/CT and laparoscopic stag-
ing has been discussed by the LilACS study group. The study
aimed at randomizing patients with FDG-PET/CT positive pelvic,
but negative para-aortic lymph nodes to either laparoscopic
lymph node dissection or pelvic RCHT [142]. Unfortunately, the
trial was not able to recruit a sufficient number of patients and
was subsequently closed. This approach should be the aim of a
future multicentre trial.

FDG-PET/CT-based therapy response assessment allows for a
reliable prediction of overall survival in patients with locally
advanced cervical cancer treated with concomitant RCHT [143].
This should be used within clinical trials to tailor adjuvant treat-
ment, e. g. maintenance treatment with immunotherapy in case
of persistent FDG uptake. In the setting of neoadjuvant RCHT,

data showed that early changes in metabolic FDG-PET parameters
might allow for differentiation of histopathological response of
the primary tumour [144]. However, negative results of two ran-
domized trials have now questioned the role of neoadjuvant che-
motherapy at all [145, 146]. FDG-PET/CT has a high sensitivity
and specificity in the detection of distant metastases, which may
lead to a change of the treatment intent [curative versus palliative
[147]]. However, FDG-PET uptake depends on the histological
subtype being highest in squamous cell carcinoma, whereas e. g.
mucinous adenocarcinoma often show only faint [18F]FDG uptake
resulting in a limited sensitivity in these subtypes [148].

Regarding restaging of cervical cancer, a recently published
meta-analysis showed a pooled sensitivity of 0.97 (0.95–0.99) for
FDG-PET/CT. 57% of the therapeutic approaches were modified
due to the results of FDG-PET/CT [149]. At present, according to
national guidelines, in the setting of recurrent cervical cancer,
FDG-PET/CT might be reserved for individual patient cases for tai-
lored treatment [150]. In the follow-up, FDG-PET/CT remains a
helpful tool after RCHT or radical hysterectomy, even in patients
with increasing tumour markers and negative MRI findings.

In the future, the use of hybrid PET/MRI protocols could con-
tribute to improve imaging of cervical cancer patients, and the
use of alternative PET radiopharmaceuticals, e. g., [68Ga]Ga-FAPI
is under investigation [151].

Prostate cancer

PET in primary staging

Accurate detection of intra- and extraprostatic tumour foci by
imaging is of high clinical relevance for radiation treatment plan-
ning in patients with primary and recurrent prostate cancer. A
large of number studies performed during the last 5 years has
shown that PET imaging with radiolabelled small molecule inhibi-
tors of the glutamate carboxypeptidase PSMA (prostate specific
membrane antigen) allows for more sensitive and specific detec-
tion of prostate cancer lesions than other imaging techniques.
Several radiolabelled PSMA inhibitors have been developed but
most of the clinical so far has been obtained with the ligand
[68Ga]Ga-PSMA-11 [152–154]. This radiotracer has recently been
approved by the FDA for imaging of primary and recurrent pros-
tate cancer. Several 18F-labelled PSMA inhibitors are being investi-
gated in prospective clinical trials; these tracers can be produced
in larger batch sizes and have better physical properties for PET
imaging. Furthermore, some of them show less urinary excretion,
which facilitates detection of primary tumours and local recurren-
ces. The diagnostic performance of these 18F-labelled tracers is
overall probably similar or superior to [68Ga]Ga-PSMA-11, but
head-to-head comparisons are so far limited [152–155]. There-
fore, the results of these various agents are summarized under
the name ‘PSMA-PET/CT’ in the following text.

In the primary setting, PSMA-PET/CT imaging can be applied
for initial staging in patients with high-risk profiles [156]. A pro-
spective phase III study (proPSMA) showed that the application
of PSMA-PET/CT has relevant impact on patient management
since the accuracy for lymph node and bone metastases is higher
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as compared to conventional imaging [157]. In particular the per-
formance of PSMA-PET/CT often leads to changes in TNM-staging
with subsequent alterations in radiation treatment planning.
Several retrospective analyses have also addressed this issue.
Dewes et al. [158] reported on a change in TNM stage in 8 of 15
patients or modifications of CTVs and changes in prescribed dose
in 5 and 12 patients, respectively. In another retrospective analy-
sis, PSMA-PET/CT was shown to have a major impact on final
radiotherapy planning in approximately one-third of the patients,
especially when no elective radiation to the pelvic lymphatic
drainage system was initially planned [159]. Recently, another
phase III trial has been started which randomizes patients with
unfavourable, intermediate, and high risk profiles to a group with
and a group without PSMA-PET for definitive radiotherapy plan-
ning (NCT04 457 245).

In addition, in prostate cancer a clear dose-response relation-
ship could be described. The prospective multicentre phase III
study ‘FLAME’ demonstrated that dose escalation to intrapro-
static tumour lesions defined by MRI imaging resulted in a signifi-
cant improvement in recurrence-free survival [160]. However, it
can be assumed that the intraprostatic tumour mass determined
on the basis of PSMA-PET information can be contoured with a
higher sensitivity [161–164]. Zamboglou et al. [165] reported on
the feasibility of dose escalation to intraprostatic lesions defined
by [68Ga]Ga-PSMA to 95 Gy in 10 patients. Thus, a multicentre
phase II study from Germany is currently investigating focal dose
escalation to intraprostatic tumour volumes defined by combined
PSMA-PET/CT and MRI imaging (HypoFocal; DRKS00017570). Of
note, PET/CT imaging for prostate cancer in Germany almost is
now exclusively performed with PSMA-ligands and Choline-deri-
vatives have been completely replaced. Phase III studies are
already underway to investigate whether the use of PET/CT ima-
ging and the associated individualization of the therapeutic
approach leads to the expected improvement in oncological out-
come.

Salvage radiotherapy in recurrent prostate cancer

Before the introduction of PSMA-PET/CT, usually no extensive
imaging workup was indicated in low-level biochemical recur-
rence (increasing PSA out of the undetectable range) after radical
prostatectomy (RP) or a persisting PSA after RP before salvage
radiotherapy (SRT, start of RT at a PSA-level < 0.5 ng/ml) due to
the known limited accuracy of conventional staging with CT and
bone scintigraphy [166–168]. An exception is MRI with dynamic
contrast enhanced MRI (DCE-MRI) which shows excellent results
for identifying small areas of local recurrence, however has not
been widely used in clinical routine up to now [169, 170]. The
situation has changed substantially with PSMA-specific PET radio-
tracers, which show superior sensitivity and specificity for detect-
ing recurrent prostate cancer compared with conventional ima-
ging and also compared to other radiotracers such as choline-
based substances or fluciclovine [171–173]. PSMA-PET/CT
appears to be particularly effective at low PSA levels after radical
prostatectomy below 0.5 ng/ml when SRT to the prostate bed
would typically be initiated and may even detect recurrent disease
in 33 %–42 % of patients at PSA levels < 0.2 ng/ mL [174, 175].

Most studies used 68Ga-labelled PSMA compounds, however,
these are more and more replaced by 18F-labelled PSMA tracers,
as these can be produced in higher quantities and also mostly
have less renal excretion, thus showing superior image quality
adjacent to the bladder for identification of local recurrences
[176]. Recent reports also suggest that PET/MRI might be advan-
tageous in this respect and superior to PET/CT for detection of
local recurrences [177, 178].

Through improved characterization of recurrent prostate can-
cer, PSMA-targeted PET/CT has shown significant impact on
management decisions, such as by identifying patients with recur-
rence confined to the prostate or pelvic nodes [179, 180]. At a PSA
value of less than 0.5 ng/mL, PSMA-PET/CT detects lymph node
metastases in approximately 20 % of patients [181]. Thus, PSMA-
PET/CT in the setting of biochemical recurrence with low PSA values
changes patient management in nearly 50% of the patients accord-
ing to a review of 45 studies evaluating the use of PSMA-PET/CT in
the setting of biochemical recurrence [181].

Of special relevance in this respect is the identification of dis-
tant metastases, mostly to the bone, which can even occur in the
group with low-level biochemical recurrence (10% at a PSA level
< 0.5 ng/mL) and in case of oligometastatic disease might be irra-
diated as well or in more extensive metastatic disease might
change the original treatment concept completely [182]. More-
over, adaption of the radiation target volume was noted such as
extension of the field to include suspicious lymph nodes or in
case of atypically localized recurrences at the border of the stan-
dard target volume [183–185]. The success of PSMA-PET/CT has
also led to the inclusion in the German S3 guideline for diagnosis
and treatment of prostate cancer as an option for imaging in case
of low-level biochemical recurrence after RP before SRT [186].
However, it has to be stressed that in case of a negative PSMA-
PET result, SRT shall not be delayed as ‘blind’ prostate SRT remains
an effective treatment. Moreover, while one expects PSMA-PET
guided SRT with potentially also a dose-escalated simultaneous
integrated boost directed to the PSMA-positive local recurrence
to have a positive impact on the course of the disease, e. g.,
improved success rates concerning PSA-response, the ultimate
clinical value and influence on progression survival or even overall
survival is not yet known. This will be evaluated in ongoing pro-
spective randomized studies (Clinicaltrials.gov NCT01666808,
NCT03762759, NCT03525288) including a phase III study
(NCT03582774) in the setting of post-RP biochemical failure,
which compare the current standard of care (salvage RT to pro-
static fossa) with PSMA/fluciclovine PET-CT-guided SRT.

Malignant lymphoma

FDG-PET has significantly changed the treatment of malignant
lymphomas (ML) in recent years. This is especially true for radia-
tion oncology.

PET in the context of staging

In the case of exclusive radiation, e. g. in follicular lymphoma (FL)
or lymphocyte-predominant Hodgkin's lymphoma (HL), FDG-PET
plays a crucial role. Staging must be performed as accurately as
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possible to ensure, first, that early stage is present and, second,
that all affected lymph nodes are included in the target volume.
The use of FDG-PET has led to systematic up-staging in early
stages [187–189], at the same time showing improved PFS for
early stage FL [190, 191]. Also in the context of combined treat-
ment with chemotherapy followed by consolidative radiotherapy
according to the involved site (ISRT) definition, PET helps to define
a correct and adequate target volume size [192].

The benefits of PET in the context of target
volume definition

FDG-PET has played a critical role in early stage ML radiation
treatment planning. CT-morphologically normal lymph nodes
can be included in the target volume when positive on FDG-PET
[193–196]. This can reduce recurrences due to geographical mis-
ses [194, 197, 198]. Also, in advanced stages, extranodal involve-
ment can be better detected, implementing FDG-PET in the
ILROG guidelines for treatment of ML [199–201]. Whenever
FDG-PET is performed as part of staging, the patient positioning
is usually not identical to that for radiation therapy. Thus, FDG-
PET and the planning CT scans need to be fused for the treatment
planning purposes. Since spatial discrepancy in the area of affec-
ted lymphomas may arise, the ISRT definition is applied, which
takes into account a greater uncertainty in positioning [200].
Whenever the FDG-PET scan is performed in the setting of a treat-
ment planning PET/CT, the imprecision of the CTV definition is
very small and consequently, the involved node (INRT) definition
can be used [202].

The utility of PET for therapy stratification
in the combined modality setting

Based on the Lugano criteria, PET is used as part of the re-staging
of ML [203]. Assessment is based on a 5-point scale, the Deauville
Score (DS), which evaluates lymphoma activity in comparison
with the mediastinum and liver. In various studies, two main treat-
ment stratification approaches have been and are being pursued;
(1) whether a negative progression PET can de-escalate therapy,
e. g., by omitting radiotherapy or reducing chemotherapy, and
(2), whether therapy escalation can be performed by a positive
interim PET. Therefore, in particular a DS3 score is sometimes
evaluated differently in escalation and de-escalation studies
[204, 205]. The statement of a metabolic complete remission
after chemotherapy has prognostically favourable significance for
patients with both HL and diffuse large-cell B-NHL (DLBCL). How-
ever, local recurrences still occur in some cases when radiotherapy
has not been given because of negative PET after chemotherapy.
This is particularly confirmed in a number of studies for early
stages [204–208]. The data on FDG-PET-guided radiotherapy in
HL is now secure for intermediate and advanced stages. In DLBCL,
the results of the pivotal trials are not yet conclusive. However,
FDG-PET-guided radiotherapy indication in the advanced stages
seems to be established here as well.

Future prospects

PET/CT, PET/MRI and radiomics in radiotherapy planning

Multimodal FDG-PET/CT and PET/MRI data have been shown by
various studies to improve RT planning in different aspects, such
as better patient selection and precision in target delineation
[58, 193, 209–215]. Inclusion of PET/CT or PET/MRI data into
radiation dose planning requires dedicated acquisition protocols
[216–220] to ensure reproducible manual or automatic contour-
ing of tumour regions [210, 221–223].

Furthermore, PET/CT and PET/MRI data can be used for auto-
mated high-throughput radiomics analyses [224, 225]. In such
studies, standardised quantitative image characteristics are
extracted to develop models that support the diagnosis of
tumour diseases, the prediction of therapy adaptation, or the
prognosis of therapy response, using modern methods of artificial
intelligence [226–231]. For applicability in clinical practice, efforts
on a standardised and reproducible radiomics workflow are deci-
sive [232–237]. To further improve reliability, imaging character-
istics may be combined with molecular and clinical information in
a multi-omics approach [238].

New PET tracers

While amino-acid-based PET tracers, somatostatin receptor
specific PET tracers and PSMA ligands are already used for radia-
tion therapy planning in gliomas, meningiomas and prostate can-
cer [see above and [239]], radiotracers showing specific aspects of
tumour biology such as proliferative activity and cancer-associa-
ted fibroblasts might be of relevance for biological target defini-
tion. The most commonly used radiopharmaceutical for imaging
cell proliferation is [18F]FLT (the use of PET with [18F]FLT is referred
to as FLT-PET in the following text) [240]. Contrary to FDG-, FLT-
PET identifies the proliferating cell compartment within the GTV
and could potentially be used to define tumour sub-volumes
with high proliferative activity. Escalation of radiation dose within
these regions could improve the tumour control probability by
diminishing accelerated repopulation [53]. Several investigators
evaluated the effectiveness of FLT-PET for radiotherapy planning
in oropharyngeal tumours, oesophageal carcinoma, and NSCLC
but it has not found its way into clinical routine [241, 242]. In
recent years, more promising is a novel group of tracers targeting
the fibroblast activation protein (FAP) on the so-called cancer-
associated fibroblasts (CAFs), such as [68Ga]Ga-FAPI [243]. Due
to its high tumour to background contrast in many malignancies,
which often is superior to that for [18F]FDG, there is also rising
interest in the use of FAP-specific PET for radiation treatment
planning [244, 245]. Promising first preliminary results in HNSCC
with [68Ga]Ga-FAPI and PET suggest it might help in accurately
assessing the extent of tumour spread prior to treatment start to
reduce the area exposed to radiation and thereby reduce toxicities
[245]. An optimized radiation therapy planning and reduction of
the treatment field is also reported in lung cancer where differen-
tiating tumour from normal tissue is often difficult with [18F]FDG
in particular when the lung is affected by inflammatory conditions
or chronic obstructive pulmonary disease [246]. However, large
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prospective trials are necessary to define the future role of FAPI-
PET for radiation therapy planning [247].

There has also been significant progress in imaging with radiola-
belled antibodies and antibody fragments. Labelling of these pro-
teins with 89Zr via the chelator DFO is a routine process, which only
rarely affects their ligand binding properties. Clinical studies have
shown that radiolabelled antibodies allow for imaging of a variety
of important targets including, for example, HER2, CA19–9, and
PD-L1 [248–250]. Using these antibodies PET imaging may there-
fore reveal biological changes during radiotherapy, e. g. the up- or
down-regulation of PD-L1. Broader clinical use of radiolabelled anti-
bodies is currently limited by the significantly higher radiation dose
from the long-lived isotope 89Zr. However, PET/CT systems with
several fold higher sensitivity than existing scanners are currently
entering the clinic. These systems allow imaging with radiolabelled
antibodies at radiation doses similar to FDG-PET/CT [251].

PET-based dose painting

Imaging biomarkers measured with hypoxia tracers such as
[18F]FMISO and [18F]FAZA but also with routine [18F]FDG have been
shown to be prognostic for outcome after radiotherapy [43, 46, 48,
209, 252–256]. Consequently, radiation treatment adaptation by
means of PET-guided dose escalation or de-escalation to account
for individual radiation sensitivities in tumour sub-regions, so-called
dose painting, seems attractive and might enable for increased
tumour control rates and/or reduced toxicity [51, 252, 257]. Final
results from randomized studies are necessary to estimate the full
potential of PET-based dose painting RT [51, 252, 258, 259].

Reimbursement

Unfortunately, only few of the presented, internationally accepted
indications for PET/CT are currently recognized and reimbursed by
German statutory health insurances in the (outpatient) setting. A
more thorough discussion of this delicate issue can be found in
[260]. However, the authors of this article are convinced that this
technique is a very powerful tool for optimal patient care and
therefore hope for future adjustment of reimbursement regula-
tions to allow for excellent patient care in accordance with (inter-
national) recommendations and guidelines.

Conclusions

In conclusion, PET/CT is an established tool for radiation therapy
planning of various tumour entities in different clinical scenarios.
Large multi-centre, prospective trails are needed to further
enhance evidence for improved oncological outcomes due to incor-
poration of this imaging technique into patient management.
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