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The assimilation of observations in limited area models (LAMs) allows to find the best
possible estimate of a region’s meteorological state. Water vapor is a crucial constituent in
terms of cloud and precipitation formation. Its highly variable nature in space and time is
often insufficiently represented in models. This study investigates the improvement of
simulated water vapor content within theWeather Research and Forecasting model (WRF)
in every season by assimilating temperature, relative humidity, and surface pressure
obtained from climate stations, as well as geodetically derived Zenith Total Delay (ZTD)
and precipitable water vapor (PWV) data from global navigation satellite system (GNSS)
ground stations. In four case studies we analyze the results of high-resolution convection-
resolving WRF simulations (2.1 km) between 2016 and 2018 each in every season for a
650 × 670 km domain in the tri-border-area Germany, France and Switzerland. The impact
of 3D VAR assimilation of different variables and combinations thereof, background error
option, as well as the temporal and spatial resolution of assimilation is evaluated. Both
column values and profiles derived from radiosondes are addressed. Best outcome was
achieved when assimilating ZTD and synoptic data at an hourly resolution and a spatial
thinning distance of 10 km. It is concluded that the careful selection of assimilation options
can additionally improve simulation results in every season. Clear effects of assimilation on
the water budgets can also be seen.

Keywords: assimilation, WRF, GNSS, water vapor, data thinning, background error, assimilation frequency, water
cycle

INTRODUCTION

The careful selection of the model system, forcing data or model options and settings contribute to
high-quality simulation results in limited area models (LAMs). But also convection permitting
models with state-of-the-art model-physics, which have undergone a thorough model setup (Prein
et al., 2015; Wagner et al., 2018), are not necessarily a true reflection of reality. Lorenz (1965) claimed
early that simulation quality strongly depends on the initial state of a model. Thus, data assimilation,
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which is the procedure of optimizing the initial state (Daley, 1991;
Navon, 2009; Guerova et al., 2016) may contribute to improve
simulation results. Especially tropospheric water vapor with a
highly variable nature in space and temporal variations that can
reach more than 50% within a few hours (Johasson et al., 1998)
places high demands on model performance. Water vapor is a
crucial constituent in terms of cloud and precipitation formation,
so special attention is required also to its vertical distribution.
Thus, remote sensing data, providing profiles or column values of
water vapor information are promising candidates for
assimilation into LAMs. Improvement by the assimilation of
Interferometric Synthetic Aperture Radar (InSAR) data was
demonstrated for weak and moderate precipitation (Pichelli
et al., 2014) and also for other hydrometeors (Mateus et al.,
2016). The history of assimilation of Global Navigation Satellite
System (GNSS) microwave signals goes back to the early 1990’s
(Bevis et al., 1992). Different products are currently utilized.
Profiles from radio occultation, i.e., a remote sensing
technique used for measuring the physical properties of a
planetary atmosphere from the GNSS, are operationally
assimilated by weather services, such as the Met Office, Météo
France, European Centre for Medium-Range Weather Forecasts
(ECMWF) and the German Weather Service (DWD), to reduce
biases of temperature, wind and humidity in their operational and
reanalysis models (Poli et al., 2008; Rennie, 2010; Anlauf et al.,
2011). Studies assimilating Precipitable Water Vapor (PWV) and
Zenith Total Delay (ZTD) derived from GNSS data are the most
common. Rohm et al. (2019) and Giannaros et al. (2020)
presented recent results assimilating GNSS data in the WRF
model. A positive or neutral impact on the forecast of rain
amount, rain location and humidity is reported (De Pondeca
and Zou, 2001; Poli et al., 2008; Bennitt et al., 2017; Lindskog
et al., 2017; Mascitelli et al., 2019; Hdidou et al., 2020). Largest
improvements are obtained during heavy-precipitation and
storm events (Cucurull et al., 2004; Nakamura et al., 2004;
Vedel and Huang, 2004; Macpherson et al., 2008; Yan et al.,
2009a; Boniface et al., 2009).

It is obvious that it is more difficult to improve upon
simulation results when the modeled state of the atmosphere
is already close to reality (Gutman et al., 2004; Boniface et al.,
2009). That is one reason why considerable improvements are
mainly reported for convective events where open cycle
simulations naturally have difficulties achieving reasonable
results. Nevertheless, the potential for improvements also
exists for other seasons and episodes, but probably on a lower
magnitude. While of course the quality of the input data and the
associated bias correction play an important role (Dee, 2005;
Eyre, 2016), other options to further optimize the assimilation
process and thus potentially improving simulation results, are
given less consideration.

One of these options refers to the variable which is assimilated,
for instance from GNSS data. GNSS signals are bent, attenuated
and delayed both by the ionosphere and the troposphere. Those
parts can be separated, as the ionospheric delay can be mostly
reduced by linear combination of double-frequency observations,
allowing to conclude on the water vapor content which is
responsible for the “wet” delay in the troposphere (Bevis et al.,

1992). A common approach is to map the GNSS signal in the
zenith direction and integrate it over a certain period of time to
receive a vertical column above each station as ZTD (Dach et al.,
2007). Applying variational data assimilation methods enables
direct assimilation of ZTD observations, since these techniques
rely on observation operators to compute the model equivalent
observables from the model prognostic variables (De Pondeca
and Zou, 2001; Vedel and Huang, 2004; Poli et al., 2007; Yan et al.,
2009b). The overall model performance depends on the quality of
the ZTD observations, but also on the reliability of model
pressure and temperature. No further pre-processing is
necessary whereas for the assimilation of PWV the separation
of the hydrostatic delay (Saastamoinen, 1972) and the calculation
of the PWV from the wet delay based on surface pressure and
temperature data is necessary. If also synoptic measurements are
available at the GNSS station location, PWV can be calculated
very accurately, potentially even outperforming ZTD
observations. Therefore, the assimilation of PWV is an
alternative to ZTD (Falvey and Beavan, 2002; Nakamura et al.,
2004; Guerova et al., 2006; Smith et al., 2007; Oigawa et al., 2018).

The assimilation efficacy is not only determined by the type of
variable, but also by the temporal and spatial sampling density.
Correlated observation errors in space and time become more
frequent with increasing assimilation frequency, which usually
also affects assimilation results (Guerova et al., 2016). Little effort
has been spent on taking into account the correlated observation
errors within the data assimilation process since calculation times
are increased in this way. Stewart et al. (2013) presented some
promising attempts on how to handle these correlations, such as
diagonal approximations, eigendecomposition approximations
and Markov matrices. The common approach is to bypass the
spatial problem by data thinning. Liu and Rabier (2002) relate the
observation error correlations (OR) to an optimal horizontal
thinning distance. They conclude that an OR correlation of
0.2–0.3 is favorable. Mile et al. (2019) followed up on this idea
and performed evaluations based on the Desroziers method
(Desroziers et al., 2005). They showed that a thinning distance
between 10 and 20 km best fits those requirements. They used a
20 km thinning distance for their further simulations. Mateus
et al. (2018) applied a thinning distance of 15 km for their InSAR
assimilation runs. A thinning distance of 10 km is applied by
Boniface et al. (2009) and Yan et al. (2009b) and also Meteo
France use this thinning distance within the AROME model
(Guerova et al., 2016). In general, a compromise must be found
between a maximum surplus of water vapor measurements and
the drawbacks of possible correlations of the background error by
using data thinning and assimilation frequency.

The background error (BE) is a further factor that influences
assimilation quality. It controls how the information obtained
from observations is distributed into the model space. Depending
on model and assimilation method there is a variety of techniques
and approaches (Rabier, 2005; Guerova et al., 2016; Carrassi et al.,
2018). Concentrating on the variational assimilation schemes in
the Weather Research and Forecasting Model (WRF), several BE
options exist (Skamarock et al., 2008). The so-called cv3 is a global
BE which can be applied to any domain. The main difference
compared to cv5 and cv6 is the use of the vertical recursive filter to
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model the vertical covariance. cv5 and cv6 use an empirical
orthogonal function, described in Barker et al. (2004), which
are domain specific and have to be calculated with either forecast
difference (NMC method) (Parrish and Derber, 1992) or
ensemble-based perturbations (Fisher, 2003). Additionally,
those BE are usually calculated for a certain event or episode.
In this way, they are often superior to the cv3 approach (Guo
et al., 2006). Especially variables representing column values such
as PWV or ZTD may show different vertical distributions of
water vapor and therefore differences in assimilation results
depending on the applied BE. cv6 introduces six additional
correlation coefficients in the definition of the balanced part of
analysis control variables. As a consequence, moisture analysis is
multivariate, in the sense that temperature and wind may lead to
moisture increments (Skamarock et al., 2008). Only few studies
addressed the difference in performance of the latter two BE
options. Dhanya and Chandrasekar (2016) for instance show
small improvements of cv6 compared to cv5 for a monsoon event
in India.

Our study examines the potential for improvement of water
vapor simulations by the choice of assimilation options and
effects on water cycle components. We explicitly refrain from
any kind of modifications to the model code. Various assimilation
runs for 4 episodes in all seasons were performed to assess the
impact of assimilation frequency in space and time, the choice of
assimilation variable and the background error option. These
factors can influence assimilation quality irrespective from the
used model or assimilation system. We apply WRF at a

convection permitting scale for one domain spanning over the
south-western part of Germany and neighbouring countries.
Based on the comparison with station data and radiosondes
we investigate whether 1) setups and preferred options can be
identified which may help to improve assimilation results
regarding water vapor, 2) an added value due to the
assimilation of different variables can be obtained for each
season and 3) systematic effects on the water budget are observed.

The paper is structured as follows: in Section Materials and
Methods, we give an overview of the assimilation experiments
including the pre-processing of datasets, the assimilation strategy
and the statistical measures used for comparison and validation.
This is then followed by the presentation of the results (Section
Results) with a subsequent discussion (Section Discussion).
Finally, we close with the conclusions.

MATERIALS AND METHODS

Study Region and Meteorological Data
Our study region encompasses the eastern part of France, the
northern part of Switzerland and the southwestern part of
Germany with the Black Forest, the Upper Rhine Graben and
the Vosges in the center (west to east; Figure 1). The Upper Rhine
Valley is one of the warmest regions of Germany with an annual
mean temperature of 10°C and low annual precipitation amounts
(approx. 600 mm/a), but with a high convective activity in the
summer months. 1,500 mm/a of annual precipitation amounts

FIGURE 1 |Overview of the WRF domain with evaluation area (bright area), synoptic stations (black dots), additional precipitation stations (purple crosses), GNSS
stations (red dots) and radiosonde stations (blue dots).
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are observed in the low mountain ranges of the Black Forest, the
Vosges and the Swiss Jura and approximately 1,000 mm/a in the
flatter western and northwestern area.

A total of approximately 250 synoptic stations and further 100
precipitation stations from the German Met. Service (DWD)
located within our domain serve as basis for validation and partly
assimilationmeans. These stations are quality controlled and only
available for the German part of the domain (black dots and
purple crosses in Figure 1). The variables relative humidity,
temperature, pressure and precipitation are considered.

Data from radiosondes are provided by the Integrated Global
Radiosonde Archive (IGRA) homepage (IGRA, 2022). There are
two radiosonde stations in the area where observations were
assimilated. The Idar-Oberstein radiosonde offers measurements
every 6 h in the western part of the domain and the Stuttgart
radiosonde, located a bit more to the south-east, provides ascent
data every 12 h for all episodes (blue dots in Figure 1). A
comprehensive set of quality controls was applied to remove
gross errors from radiosonde data (Durre et al., 2006). A variety
of meteorological variables such as pressure, temperature and
humidity were obtained at different altitudes varying with each
sounding.

GNSS Data
Data of the GNSS Upper Rhine Graben Network (GURN) are
used in this work. The GURN consists of 66 stations and their
GNSS observations were processed with the GAMIT/GLOBK
software (V10.7) (Herring et al., 2018). Several advanced models
were used: For instance, the state-of-the-art Vienna Mapping
Function 1 (Boehm et al., 2006) and the a priori zenith
hydrostatic delay from the European Centre for Medium-
Range Weather Forecasts (ECMWF) (Simmons and Gibson,
2000). The tropospheric delay was estimated as Zenith Total
Delay (ZTD) every hour together with north and east gradients
every 12 h. The higher-order ionospheric delay was modeled with
ionospheric data from the Centre for Orbit Determination in
Europe (Schaer and helvétique des sciences naturelles.
Commission géodésique, 1999) and the International
Geomagnetic Reference Field 12 (Thébault et al., 2015). The
cut-off angle was set as 10° and the observations were
weighted according to their post-fit phase residuals. The IGS
final orbits and ITRF2014 reference frame (Altamimi et al., 2016)
were used. Solid Earth tides, ocean tides, and pole tides were
conventionally modeled and corrected. The GNSS-derived ZTD
estimates can be split into two parts: Zenith Hydrostatic Delay
(ZHD) and Zenith Wet Delay (ZWD). The ZHD are estimated
with the Saastamoinen model (Saastamoinen, 1972). The GNSS-
derived ZWD is calculated as the differences between the ZTD
and ZHD. Then, Precipitable Water Vapor (PWV) is retrieved
from the GNSS-derived ZWD:

PWV � 106

ρw · Rw · k3
Tm

+ k′2( )ZWD (1)

where ρw is the density of liquid water (in kg m−3); Rw is the gas
constant for water vapor (in J kg−1 K−1), k2′ = 22.1 K hPa−1 and
k3 = 373,900 K2 hPa−1 are physical constants (Bevis et al., 1994).

Tm denotes the vertical weighted mean temperature of the
atmosphere (in K) which was estimated as:

Tm � ∫ e
T dz∫ e
T2 dz

≈
∫ ei
Ti
Δhi∫ ei

T2
i
Δhi

(2)

in which ei and Ti denote the average vapor pressure (in hPa) and
average temperature (in K) of the atmosphere at the ith layer,
respectively, and Δhi denote the atmosphere thickness of the ith
layer (m). The ith layer of the atmosphere indicates the
atmosphere between the ith and (i + 1) th pressure level. The
vertical profiles of relative humidity and temperature obtained
from ERA5 datasets were used to calculate Tm. For more details
on the calculation, readers are referred to (Yuan et al., 2021).

WRF Model
The WRF Model (version 3.9.1.1) (Skamarock et al., 2008) was
applied in this investigation as a limited area model (LAM) to
downscale global atmospheric reanalysis data. The setup of
physical parametrization schemes was widely adopted from
another work in this region (Wagner et al., 2018). The
respective list of selected parameterizations is summarized in
Table 1. The ERA5 reanalysis dataset (Hersbach et al., 2020) with
an hourly resolution provided the forcing data at our WRF
domain boundaries. Due to its high spatial resolution of
approximately 31 km and 138 vertical model levels we directly
downscaled to our target domain. In this way we omitted
intermediate domains which may falsify main circulation
patterns and reduced computational time.

For themodel domain in Figure 1we used amesh of 309 × 319
grid cells with 2.1 km horizontal resolution and 72 vertical eta
levels which were spaced according to theWRF standard method.
We only evaluated the inner area of 209 × 219 cells to exclude
possible boundary artifacts from the analysis (bright area in
Figure 1) due to the large grid scaling factor.

Assimilation
WRF features 3D and 4D variational data assimilation schemes.
4D VAR is computational more expensive, but enables
assimilations at the exact time of observation whereas 3D
VAR uses a single assimilation time (Barker et al., 2003;
Barker et al., 2004). In addition to the variational assimilation
schemes, respective hybrid schemes exist in WRF with an
additional Ensemble Transform Kalman Filter (ETKF)
component. The benefit of the hybrid system is that the static

TABLE 1 | WRF Model settings: RRTM (Mlawer et al., 1997), Dudhia (1989),
WSM6 (Hong and Lim, 2006), Shin and Hong (2013), and Noah-MP (Niu et al.,
2011).

Physics option Scheme

Longwave radiation RRTM
Shortwave radiation Dudhia
Microphysics WSM6
Planetary Boundary Layer Shin-Hong
Land Surface Model Noah-MP
Cumulus parametrization no
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(background) covariances of the variational schemes are
combined with ensemble covariances to estimate the complex,
flow-dependent forecast-error statistics (Wang et al., 2008a;
Wang et al., 2008b). Since we consider only episodes with a
duration of several days and observations exhibiting the same
temporal resolution as our assimilation frequency, we selected the
3D VAR scheme for our study.

Data assimilation merges numerical weather prediction
(NWP) states and observations considering their respective
error statistics to achieve an improved initial state. Variational
data assimilation schemes accomplish this step by iteratively
minimizing the following cost function (Ide et al., 1999;
Barker et al., 2003; Barker et al., 2004):

J x( ) � 1
2

x − xb( )TB−1 x − xb( ) + 1
2

y −H x( )( )TR−1 y −H x( )( )
(3)

Based on the background field xb and the observations (y), an
improved estimate of the atmospheric state x is obtained based on
maximum likelihood principles. H denotes the forward
observation operator, used to transform the model variables
into observations’ space. All observations, in 3D VAR, refer to
the same time. R represents the observation error covariance
matrix containing information about observations’ errors and
their correlation. B denotes the corresponding covariance matrix
for the background error.

The background error covariance matrix is calculated separately
for each of the selected episodes based on theNMC-method (Parrish
and Derber, 1992). Therefore, averaged forecast differences of the 12
and 24 h forecast (valid at the same time) of month-long WRF
simulations were applied. The simulations were performed for the
same month in which each of the episodes occurred and with the
same setup as our open cycle simulations. In this way we derived
necessary statistics which best fitted our target region and episode.
For the background error option cv5 the control variables
streamfunction, unbalanced velocity potential, unbalanced
temperature, pseudo relative humidity, and unbalanced surface
pressure are used. The pseudo relative humidity is defined as the
quotient of specific humidity and saturated specific humidity from
the background field. The difference to the cv6 option is this
moisture control variable. In cv6 this variable is the unbalanced
portion of the pseudo relative humidity (Wang et al., 2015).

There are many factors influencing the quality of GNSS
assimilations in LAMs. The calculation of ZTD from slant
delays involves uncertainties as well as the applied observation
operator in the model (Singh et al., 2019). Differences between
exact station altitude and model altitude is a further source of
uncertainty. The calculation of ZHD within the model has to be
taken into account, since model top from LAMs are usually
significantly lower than, for example, reanalysis data (Lindskog
et al., 2017). Therefore, bias correction is usually performed. The
common approach is to apply a mean correction (Bennitt and
Jupp, 2012; Rohm et al., 2019; Giannaros et al., 2020) to correct a
possible offset. Arriola et al. (2016) presented a variational bias
correction which treat possible errors muchmore flexible, but it is
currently not implemented in WRF.

In our study, we had a thorough look at this data base, before
we assimilated ZTD data. Firstly, we compared GNSS data with
our forcing data ERA5 for the spring episode and also for the
entire year of 2016 based on ZTD. Small biases between ±4 mm
and only two stations with a maximum bias of −7 to −8 mm were
obtained for all stations which were used in our assimilation
experiment. According to Eq. 4, the calculation of ZHD in WRF
is not dependent on the model top, so that additional corrections
are not considered necessary:

ZHDWRF � 0.0022767pWRF

1 − 0.00266 cos 2φ( ) − 0.00000029 h
(4)

with pWRF pressure fromWRFmodel, height h and latitude φ of a
GNSS station. More information about the observation operator
can be found in Rohm et al. (2019).

Secondly, tests assimilating ZTD and PWV provide similar
results. Consequently, the treatment of ZHD by the observation
operator works well and no additional uncertainties are obviously
induced by assimilation. For both simulations over 95% of
observations pass the quality control mechanisms in the WRF
assimilation system. Only inconsistencies in GNSS station heights
turned out to be very sensitive for assimilation results. Taking
into account the exact station elevations (including tower or
building, if necessary) removed inconsistencies. Furthermore, we
used the TEQC software (Estey and Meertens, 1999) to check the
quality of raw GNSS observations and excluded low-quality
observations. We did not perform any further bias correction
for our experiments, because of two reasons: 1) only minor ZTD
biases were obtained, when compared to ERA5; 2) uncertainties
may be introduced into the system when mean biases are
calculated from simulations without assimilation (i.e., open
cycle runs) or from other datasets. Our results show that there
is a feedback of ZTD assimilation on temperature which in turn
impacts the calculation of humidity (profiles) in WRF. In a
combined assimilation with temperature this may lead to
inconsistencies if ZTD was bias corrected in advance.

Selection of Episodes and Experiments
Four episodes were selected for evaluation according to the
following criteria: 1) representing typical weather conditions of
the region and season, 2) including wet and dry days, 3) a
moderate amount of rain in the whole domain and 4) good
data availability. An overview of rain characteristics and driving
meteorological mechanism for each episode is shown in Table 2.
The spring episode lasted from 11 to 22 of April 2016 and showed
a mean precipitation amount of 35 mm especially until the 16 of
April with partly convective activity. This spring episode was
chosen to test the different options for assimilation. The summer
episode (13–23 of July 2018) is characterized by highly variable
convective conditions in space and time, although only a mean of
15 mm of total rainfall was observed based on the precipitation
stations in our domain. The autumn episode lasted from 16 to 31
of October 2018. The observed 20 mm of precipitation was
mainly obtained at the end of the episode with moderate
intensities, from October 27 on. The winter episode (6–20 of
January 2017) showed light precipitation from 9 to 17 of January

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 8695045

Wagner et al. GNSS Assimilation in LAM Simulations

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


with mean amounts of 30 mm. The latter three episodes were
used to test whether the obtained best assimilation setup for
spring adds value for simulations of other seasonal periods.

An hourly update cycle was used for the ERA5 data for all
simulation experiments. To allow for the slow temporal spinup of
soil related model variables, a preliminary so-called “open cycle”
simulation over several weeks was done before each episode.
These simulations were performed without assimilation, but with
the same settings as the assimilation runs. They provided the
initial conditions at the lower boundary for the subsequent
assimilation runs. In order to test the impact of the
assimilation of observations, the open cycle simulations serve
as basis for comparison for our assimilation experiments. Unless
explicitly mentioned otherwise, only the first forecast hour is
evaluated in this study. In this way assimilation usually show
largest impact and meteorological variables in the model should
be in balance. This particularly applies to the comparison of
moisture and precipitation values at the same time. The
assimilation of observations modifies only the moisture
variables, but not precipitation. In Table 3 an overview of the
different experiments is given, with applied abbreviation, episode
dates, assimilation variables and special settings.

Statistical Measures
Besides common statistical measures such as mean error or
standard deviation, the Kling Gupta-efficiency (Gupta et al.,
2009) is applied:

KGE � 1 −
����������������������������
cor − 1( )2 + qd − 1( )2 + qm − 1( )2√

(5)
where qd � dsd(sim)

dsd(obs) and qm � mean(sim)
mean(obs).

This goodness-of-fit measure combines three well-known
metrics which can be used to describe the accordance of two
variables: The correlation (cor) showing the relative relationship,
the quotient of the respective standard deviations (dsd) revealing
the variability bias (qd) and the quotient of mean (mean)
comparing the magnitudes of two datasets (qm; mean bias).
The KGE values range between –Infinity and +1. According to
Knoben et al. (2019), an improvement compared to the average
value is obtained if KGE > −0.41.

Precipitation shows a very high temporal and spatial
variability, and the comparison of model pixels with point
data from stations brings additional uncertainties. Categorical
skill scores such as probability of detection (POD), false alarm
ratio (FAR) and frequency bias (FBI) were therefore used for the
comparison with precipitation stations (Wilks, 2011). In addition,
a subdivision was made according to light (0.1–2.5 mm),
moderate (2.5–10 mm) and heavy precipitation (> 10 mm)
(DWD, 2022). The three skill scores are based on contingency
tables comparing the hits and misses of simulation and
observation.

a b
c d

( ) � YES/yes NO/yes
YES/no NO/no( ) (6)

with uppercase and lowercase denoting observed event and
prediction, respectively.

The probability of detection in Eq. 7 gives the number of
correct hits compared to total observations. A value of 1 is
optimal. The false alarm ratio in Eq. 8 gives the number of
false positives in total predictions. Small values are desirable. The
frequency bias in Eq. 9 compares the “total forecast yes” with the
“total observed YES.” Values greater than 1 are overforecast, less
than 1 are underforecast.

POD � a

a + c
(7)

FAR � b

a + b
(8)

FBI � a + b

a + c
(9)

TABLE 2 | Overview of chosen episodes with date, rain mean [mm] (maximum intensity [mm/h]) and driving meteorological mechanisms. Rain values are derived from
German precipitation stations.

Season Date Rain Prevailing Meteo. Mechanism

Spring 11/04–22/04/16 35 (15.4) wet air masses (atlantic ocean); partly thunderstorms
Summer 13/07–23/07/18 15 (36.8) wet air masses (south and west); high lability and thunderstorms
Autumn 16/10–31/10/18 20 (8.1) high pressure areas; atlantic depressions (northwest); stormy
Winter 06/01–20/01/17 30 (13.8) cold air (northeast), stratiform rain and snow; partly stormy

TABLE 3 | Overview of assimilation experiments with abbreviations representing
the assimilated observations: e.g., OPCY = open cycle, ZTDSYN = synoptic
and ZTD data with the following additions: 10 (thinning distance of 10 km), 6 h (6 h
cycling rate), cv5 (cv5 BE option), sp, su, au, andwi (spring, summer, autumn, and
winter); additionally, date, assimilation variables and special settings are
revealed.

Abbreviation Date Variables Special Settings

PWVsp 11/04–22/04/16 PW —

ZTDsp 11/04–22/04/16 ZTD —

ZTD10sp 11/04–22/04/16 ZTD thinning = 10 km
ZTD20sp 11/04–22/04/16 ZTD thinning = 20 km
SYNsp 11/04–22/04/16 SYN —

SYN10sp 11/04–22/04/16 SYN thinning = 10 km
SYN20sp 11/04–22/04/16 SYN thinning = 20 km
ZTDSYN6hsp 11/04–22/04/16 ZTD, SYN frequency = 6h
ZTDSYNcv5sp 11/04–22/04/16 ZTD, SYN cv5
ZTDSYNspsu 11/04–22/04/16 ZTD, SYN cv6 from summer
ZTDSYNsp 11/04–22/04/16 ZTD, SYN —

OPCYsp 11/04–22/04/16 — —

ZTDSYNsu 13/07–23/07/18 ZTD, SYN —

OPCYsu 13/07–23/07/18 — —

ZTDSYNau 16/10–31/10/18 ZTD, SYN —

OPCYau 16/10–31/10/18 — —

ZTDSYNwi 06/01–20/01/17 ZTD, SYN —

OPCYwi 06/01–20/01/17 — —
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A bootstrap technique was used to determine the significance of
the evaluations. According to Wilks (2011) and Bliefernicht et al.
(2019), the time series of observations and simulations are
recalculated from old pairs of values by random selection with
replacement. This was repeated 1,000 times. Then, the contingency
tables were derived from each new pair of time series and the
categorical skill scores were recalculated. The confidence interval
with a level of 95% then resulted from the 5 and 95% percentile of
these distributions. If the contingency intervals of two experiments
overlap, the differences are considered non-significant.

RESULTS

Assimilation Variable
In WRF the assimilation of both, PWV and ZTD are possible.
Hence, we start with a comparison of assimilation results for these
two variables.

Figure 2 gives an overview of the performance of all
simulation experiments compared to precipitation time series
of 350 stations in the German part of our domain separated into
light (0.5–2.5 mm; A) and moderate rain (2.5–10 mm; B). The
colored bars indicate the confidence intervals of the respective
experiment regarding the three different skill scores POD, FAR
and FBI. This evaluation is only performed for light andmoderate
rain, since there are too few pairs of value for heavy rain. The
assimilation of ZTD resulted in a better FAR and FBI (ZTDsp in
Figure 2A). Small improvements are also obtained for POD (light
rain) and moderate rain skill scores but without significance
(Figure 2B).

Deviating results were obtained for the comparison with
radiosonde data for the location Stuttgart. According to
Figure 3B, on average, the assimilation run with PWV is
slightly better than the corresponding ZTD run. A closer
inspection shows that there are periods of time in which one
or the other variant performs better. According to Figure 3A, the

FIGURE 2 | Comparison of all simulations with hourly precipitation amounts at approx. 350 stations regarding POD, FAR and FBI for (A) light rain (0.1–2.5 mm/h)
and (B) moderate rain (2.5–10 mm/h). Confidence intervals (95%) of the respective simulation are presented as color bars. With abbreviations representing the
assimilated observations: e.g., OPCY, open cycle; ZTDSYN, synoptic and ZTD data with the following additions: 10 (thinning distance of 10 km), 6h (6 h cycling rate), cv5
(cv5 BE option), sp, su, au, and wi (spring, summer, autumn, and winter).
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main differences with respect to the mixing ratio (MR), occur at
altitudes below 4,000 m. This is also where the main water vapor
resides and, in the first half of the episode, where rain is falling.
Higher values for the mixing ratio in the profile for ZTD
(Figure 3A) are usually linked with peaks in the integral
values of PWV (not shown). The variations of the mixing
ratio go along with those of temperature (T). Figure 3C
reveals a clear impact on temperature, also for the first part of
the episode. Variations with height and slightly higher
temperatures were observed by assimilating ZTD. The impact
was visible also for higher altitudes.

Data Thinning
Data thinning is a necessary procedure, when the background
error correlations are not additionally considered and when the
spatial density of data to assimilate is very high, at least below

10 km. The spatial distance of the GNSS stations used here is
typically larger than 20 km, with a few pairs of stations spaced less
than 10 km apart. Synoptic stations exhibit a much higher spatial
density, often below 10 km.

We performed six simulations which are briefly evaluated in
the following: three for assimilating ZTD with thinning distances
of 10 and 20 km, and without data thinning. Additionally, the
same procedure was applied to three assimilation runs of synoptic
data (SYN).

The comparison of SYN with radiosonde data reveals smaller
mean errors for a thinning distance of 10 km but slightly
increased standard deviations (Figures 4A,B). For ZTD the
improvement is less clear with a slight decrease of the
standard deviation for 10 km thinning distance (Figures
4C,D). These small differences appear at altitudes of approx.
2,000 m. The comparison with precipitation stations don’t show

FIGURE 3 | Difference of the mixing ratio (MR) with height (A) and temperature (T) (C) for assimilating ZTD (red) and PWV (green) at the Stuttgart location for the
spring episode and difference of corresponding PWV values and radiosonde data (B).
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reliable differences among the various simulations of SYN or
ZTD. For light rain (Figure 2A; bars 2–7) no differences are
found and for moderate rain (Figure 2B; bars 2–7) only
tendencies are observed, which are not significant.

Assimilation Frequency
In principle, the temporal assimilation cycle rate determines
how closely the simulation is coupled to the observations. If the
assimilation of observations adds value, then a higher rate of
assimilation should lead to better simulation performance. To
evaluate this aspect, we performed simulations with assimilation
of ZTD and synoptic station data using an assimilation
frequency of 1 and 6 h, respectively. Indeed, a higher rate of
assimilation improves the POD with precipitation stations as
shown in Figure 2A (ZTDSYN6hsp vs. ZTDSYNsp) with a
slightly higher FBI value. The differences for moderate rain
(Figure 2B) are not significant, but show the same tendencies.
The mean KGE at the radiosonde location for the column
integrated value of PWV is higher for the hourly assimilation
rate at Idar-Oberstein (Figure 5F), but lower at Stuttgart

(Figure 5B). Systematic differences were obtained for the
mixing ratio profiles shown in Figures 5A,E; below 1,500 m
the mixing ratio based on the hourly assimilation rate is lower,
but at about 2000 m an obvious increase of mixing ratio values
becomes apparent. This characteristic is constant throughout
the whole episode and therefore widely independent of the
meteorological situation. The results for temperature
(Figures 5C,G) reveal similar patterns with low variations
above 2000 m, an area of transition between 1,500 and
2000 m and obvious differences below. In these lower
2000 m, the daily cycle becomes apparent, but not at higher
altitudes. One obtains weaker, but similar patterns for the
comparison of the 6 hourly cycle run with the open cycle
simulations (Figures 5D,H). Consequently, this feature is not
an effect of the assimilation rate. It is rather the result of the
strong influence that assimilation has essentially in the lower
2,000 m of the atmosphere, with little impact on the
layers above.

An added value of a higher assimilation rate becomes obvious
when considering the comparison with radiosonde profiles also

FIGURE 4 |Mean error and standard deviation of the mixing ratio profile for the spring episode comparing the assimilation of synoptic data with thinning distances
of 10 km (red) and 20 km (green) with radiosonde data from Stuttgart (A), Idar-Oberstein (B) and the respective results for assimilating ZTD for both locations (C,D).
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for altitudes below 2,000 m (Figure 6) with lower mean errors
and standard deviations.

Best Setup
In order to identify the optimal setup and also to find the main
reason for the sudden change of assimilation patterns at
elevation about 2,000 m above ground presented in
Figure 5, the assimilation of synoptic and ZTD data was
evaluated independently. One does not see an additional
positive effect when assimilating SYN only or ZTD only for
the comparison with precipitation stations (Figure 2, SYNsp/
ZTDsp vs. OPCYsp) and the mean PWV at Stuttgart
(Figure 7). The contour plot of Figures 7A,C clearly reveals
that the assimilation of synoptic data is mainly responsible for
the distribution of patterns above and below 1,500–2000 m also
apparent in Figure 5. Synoptic stations influenced assimilation

results mainly up to a height of 2,000 m with a maximum
between 1,500 and 2,000 m in this evaluation. The assimilation
of ZTD leads to much smoother differences of the mixing ratio
with height, although the main effects are also observed below
2,000 m (Figure 7C).

The individual assimilation of both datasets shows drawbacks
for certain time steps as can be seen from Figures 7B,D. Those
variations often compensate each other. Overestimation due to
the assimilation of one variable coincide with underestimations
due to the other variable. The contour plots of Figure 7 support
these findings and furthermore show that these variations occur
usually at similar altitudes; overestimations in Figure 7B when
assimilating SYN are mostly compensated by lower values based
on the ZTD assimilation (Figure 7C) and vice versa. The
evaluation of the ZTDSYN-experiments are jointly addressed
for all episodes in subsection Seasonal Differences.

FIGURE 5 | Difference of the mixing ratio (MR) with height (A) and temperature (T) (C) for the combined assimilation of ZTD and synoptic data at the Stuttgart
location with 1 h (red) and 6 h (green) resolution for the spring episode and difference of corresponding PWV values and radiosonde data (B). (D) shows the respective
comparison of the open cycle run and the combined assimilation of ZTD and synoptic data with 6 h cycling rate for temperature. (E–H) are the respective comparisons
for Idar-Oberstein.
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Background Error
The background error (BE) strongly influences how observations
are assimilated into the model. The prerequisite for a successful
assimilation is the correct temporal interaction of BE and
assimilation period. In Figure 8 we show the impact of a BE
obtained in spring and one in summer for the spring episode. For
the integral PWV values (Figure 8B) moderate variations were
obtained with a higher KGE (0.945 vs. 0.905) for the correct
interaction of spring BE and spring episode. Additionally,
significant shifts of water vapor in the vertical profile became
apparent which can strongly influence the generation of
precipitation.

In addition to the temporal correspondence of the BE, the BE
option determines how assimilated variables are treated within

the model. In WRF the multivariate cv6 option considers also
feedback mechanisms of assimilated variables on other
meteorological quantities which are physically dependent. This
allows feedback of temperature on water vapor and thus probably
enables a faster temporal spinup in the model with updated initial
conditions. In theory, the cv6 option should be superior
compared to the cv5 option, especially for high assimilation
frequencies and when water vapor is assimilated.

No significant differences for the comparison with
precipitation stations are observed. Tendencies of
improvement for the cv6 option and moderate rain are shown
for FAR and FBI (Figure 2B). Figure 9 indicates that there are
only minor differences between both simulations at the
radiosonde’s locations, thus a closer look at individual

FIGURE 6 | As in Figure 4, but for the comparison of the assimilation of ZTD and synoptic data with 1 h (red) and 6 h (green) cycling rate at the Stuttgart (A) and
Idar-Oberstein (B) location.

FIGURE 7 |Difference of themixing ratio (MR) with height at the Stuttgart location for the spring episode, comparing the open cycle simulation (red) with assimilating
(A) synoptic data only (green) and (C) ZTD only (green) and difference of corresponding PWV values and radiosonde data (B,D).
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timesteps is necessary. At 14th of April at 4 p.m. a shift of mixing
ratio with height becomes apparent in Figure 9A. The cv6 option
shows an increase of water vapor at about 1,400 m, but a
reduction at 3,800 m. This does not necessarily change the
integral PWV value but can influence the generation of
precipitation, when moisture saturation is reached at certain

levels or not. The differences in PWV at the radiosonde
locations are indeed almost negligible.

Figure 10 shows a comparison of vertical profiles at the
Stuttgart site for time step 14th of April 2016 12 p.m., when
only temperature is assimilated. For altitudes below 5,500 m the
mean error is widely reduced with the cv6 option. This clearly

FIGURE 8 |Difference of the mixing ratio (MR) with height (A) for the combined assimilation of ZTD and synoptic data based on the BE obtained in April 2016 (spring
episode, red) and the BE obtained in July 2018 (summer episode, green) at the Stuttgart location for the spring episode and difference of corresponding PWV values and
radiosonde data (B).

FIGURE 9 | Difference of the mixing ratio (MR) with height (A) for the combined assimilation of ZTD and synoptic data based on the cv6 BE option (red) and the cv5
BE option (green) and bias of corresponding PWV values and radiosonde data for Stuttgart (B) and Idar-Oberstein (C,D).
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reveals the benefit that temperature can have on water vapor
through feedback when applying the cv6 option.

Seasonal Differences
Based on the best identified setup for assimilating synoptic stations
and ZTD from GNSS stations with the cv6-option (ZTDSYN), we
run simulations for four episodes in four different seasons. We
investigate whether improvements can be achieved by assimilation
for each season.

In Figure 11, the profiles of simulated mixing ratios are
compared to radiosonde data at Stuttgart for every available time
step and evaluated for their mean error and standard deviation. The
respective profiles for Idar-Oberstein are shown in Figure 12.
During the spring episode, assimilation mainly affects the mixing
ratios at altitudes below 3,000 m, improving the mean error and
standard deviation. In winter, the improvement was somewhat
smaller, but still noticeable below 3,000 m. Overall, the greatest
improvements were achieved in the summer months and also at
higher altitudes. Almost no effect of assimilation is apparent in
autumn.

The assimilation increased precipitation amounts in spring
and summer. One indication for this is that the number of
forecasts of light and moderate rain are increased in Figure 2
(FBI, ZTDSYN vs. OPCY, green and red bars). In autumn and
winter precipitation amounts are reduced by assimilation and
also FBI is getting smaller (yellow and blue bars). The POD is
improved by assimilation in spring with no effect on FAR and in
summer both POD and FAR are improved. In autumn FAR is
improved, but not POD. In winter the high FBI is reduced by
assimilation which leads to improvements of FAR, but again a
lower POD value. These results are mainly based on light rain

(Figure 2A) since moderate rain evaluations reveal similar
results, but are usually not significant.

Water Budget
In order to evaluate the impact of assimilation on the water
budget and to understand the mechanisms which may modify the
respective components, the mean sub-daily evolution of
evapotranspiration, net radiation, latent heat and sensible heat
of the domain mean was analyzed first. In Figure 13 we compare
results for the spring episode originating from the open cycle
simulation, the assimilation of GNSS data and synoptic station
data, and GNSS data only. If only GNSS data was assimilated
(ZTD), evapotranspiration (ET) remains almost unchanged.
Though, due to the increase of atmospheric water vapor in the
spring episode, cloudiness is probably enhanced and solar
radiation is reduced at the surface, leading to smaller surface
fluxes. This effect can be seen by a reduction of net radiation in
the model and an increase of precipitation (PREC) in spring
(Table 4). The reduced net radiation fluxes at the surface are
shown by slightly reduced latent heat and sensible heat fluxes
around noon. The additional assimilation of synoptic station data
(especially temperature) shows a direct impact on
evapotranspiration and also feeds back to net radiation
(Figure 13A). Energy fluxes are modified, showing a reduction
of sensible heat (SH) and an increase of latent heat (LH) during
daytime compared to the open cycle simulation (see Figure 13B).
In this way, a small additional impact of evaporation on
precipitation is possible.

The same mechanisms and effects of assimilating GNSS
and synoptic station data become apparent for the other
seasons (Table 4). The summer episode is comparable with

FIGURE 10 | Mean error of the mixing ratio (A) and temperature (B) for the 14th of April 2016 12 p.m. comparing the assimilation of temperature only with
radiosonde data, based on the cv6 BE option (red) and the cv5 BE option (green) for Stuttgart.

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 86950413

Wagner et al. GNSS Assimilation in LAM Simulations

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


the spring episode, showing a reduction of the Bowen-ratio
(BO, ratio of sensible heat and latent heat) and an increase of
precipitation and evapotranspiration. In autumn,
precipitation is reduced and no effect on
evapotranspiration is observed. Yet, the Bowen ratio is
increased since only sensible heat is increased, not latent
heat. In winter, precipitation is also reduced by assimilation.
Latent heat and therefore evapotranspiration is increased, but
since sensible heat is also increased the Bowen ratio shows
only minor changes.

DISCUSSION

We chose a thinning distance of 10 km, which is in accordance
with the results presented in Mile et al. (2019). The differences in
our evaluations are small and not significant, but in our study
region only very few GNSS stations are affected by spatial
thinning and still we see certain differences. For other
domains the optimal thinning distance might vary due to

differences of model grid spacings, temporal resolution and
assimilation variables or their respective quality. Our results
show that it is worth to take this aspect into consideration.

More frequent observations of good quality should improve
the forecasts. This is not always the case. Differences between
simulation and observations or even biases of observations can
propagate deeper into simulation results due to a higher
assimilation frequency and thus increase the discrepancy
between model and reality. For example Nykiel et al. (2016)
also showed comparisons for 1 and 6 h assimilation cycling rates.
According to their results, the 6 h cycle performs better than the
1 h cycle. They claimed that the model needs a certain spinup
time to reach stable conditions after changing the initial state
which seems to be not satisfyingly fulfilled by the 1 h frequency
simulation. If such effects occur, the use of Digital Filter
Initializations [DFI; (Skamarock et al., 2008)] may reduce
potential initial model imbalances, but this was not tested
within this study. Based on the analysis of the simulations
presented here, such effects were not evident. Improvements
due to a higher assimilation rate prevailed. The reason is that

FIGURE 11 | As in 4, but for the open cycle simulation (red) and the assimilation of ZTD and synoptic data (green) in spring (A), summer (B), autumn (C) and
winter (D).
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FIGURE 12 | As in 4, but for the open cycle simulation (red) and the assimilation of ZTD and synoptic data (green) in spring (A), summer (B), autumn (C) and winter
(D) at Idar-Oberstein.

FIGURE 13 |Daily cycle of the domain mean regarding net radiation (nrad) and evapotranspiration (et) (A), and sensible heat (sh) and latent heat fluxes (lh) (B) for the
open cycle simulation (opcy), best assimilation setup (ztdsyn) and assimilating ZTD only (ztd) for the spring episode.
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for certain individual time steps the assimilation clearly brings
added value. If assimilation times do not match with these time
steps, important observations might get ignored and thus
potential improvements reduced. It is possible, that a
compromise between the applied assimilation frequencies of 1
and 6 h performs best. We did some tests with a 3 h assimilation
frequency, but differences between 1 and 3 h frequencies were not
significant.

If reducing spinup times potentially deteriorates the
simulation results, the choice of the background error option
can mitigate detrimental effects. In WRF, the multivariate cv6
option considers also feedback mechanisms of assimilated
variables on other meteorological variables which are
physically dependent. This allows, for instance, feedback of
temperature on water vapor and probably leads to a faster
temporal model spinup due to updated initial conditions. This
is the main reason why the multivariate BE option cv6 showed
benefits compared to the cv5 option. Hints for that behaviour can
be found in the faster and often more intense reaction of PWV for
cv6 in Figures 9B,Dwhen observed PWV values change. Another
advantage of the BE option cv6 compared to the cv5 option is that
for individual time steps the assimilation of only temperature can
have a significant benefit on water vapor results.

However, the BE comprises more than just different BE
options. Especially the temporal dependence of the BE is
important. Poli et al. (2007) reported convergence problems
for some minimizations when observation error estimates are
applied in summer which were calculated for another season of
the year. They showed that the ZWD assumed background error
reveals a strong seasonal dependence and concluded that
adjustments are necessary for summer episodes. Our results
confirm these findings. It is therefore important to use a BE
that is suitable in terms of time, location (domain-dependent)
and also for the assimilated variables (BE option) for performing
the simulation. The hybrid background error techniques found in
WRF are a very promising set of tools for future studies in this
respect: A flow-dependent estimation of the background error
statistics is implemented there by combining static and ensemble-
estimated error covariances (Wang et al., 2008a; Wang et al.,
2008b).

Regarding the choice of variables, the assimilation of ZTD
offers advantages as compared to PWV. Slightly improved results
were obtained and no additional pre-processing is required. The
differences as compared to the assimilation of PWV are minor
and not every model system provides an operator for assimilating

ZTD. ERA5 is used for both, the calculation of PWV from GNSS
data and also as forcing data for WRF. Correlated errors in the
PWV assimilation experiment may explain the better
performance of ZTD, though ERA5 provides forcing data only
at the domain boundaries. No differences were found between
mean temperature profiles at the radiosonde locations (not
shown). Either ZTD or PWV must be used in WRF, when
simultaneously GNSS stations and for instance InSAR data are
assimilated. There is no evidence in our results against the use of
PWV. Assuming equivalent ZHD calculations for both the
preparation of PWV from GNSS measurements and the
separation of ZTD into ZWD and ZHD in WRF, the
differences between PWV and ZTD are only related to
pressure and temperature. Pressure is usually very
conservative, so that differences arise mainly due to
temperature. The positive influence of the additional
assimilation of temperature can be interpreted exactly in this
direction: a meaningful assimilation of water vapor on the basis of
ZTD is only guaranteed by reasonable temperature data.
Therefore, it is advisable to assimilate temperature data at the
same time when assimilating ZTD.

The effect of assimilating ZTD and synoptic station data
simultaneously can be seen in our best assimilation setup. The
assimilation of synoptic stations lead to larger variations with
altitude at heights between 1,500–2,000 m, which can also lead to
deterioration compared to open cycle simulations. The additional
assimilation of ZTD often reduced these falsified patterns.
However, there is no guarantee that such a simultaneous
assimilation of different variables always yields added value;
this should be evaluated for each individual setup. Here, the
reliability of temperature data plays an important role.

In general, improvements are possible for all seasons based on
such an optimal setup, even though the impact onmean statistical
values might be small. The reliability of the obtained differences
(confidence intervals) is often large due to the short duration of
our episodes. Additionally, radiosonde data is only available every
6 or 12 h. We applied an update cycle of 1 h for ERA5 which
restricted the self-development of meteorological patterns in
WRF. Choosing an update cycle of 6 h instead of 1 h may
therefore also lead to a larger impact of assimilation. The
added value by assimilation is usually much higher for
individual time steps. It also needs to be noted that no
significant deterioration was observed by assimilation. The
seasonal results show that it is very important to have an open
cycle simulation as reference to evaluate potential benefits of the

TABLE 4 | Water cycle and energy budget components from simulations without assimilation (opcy), best assimilation setup (ztdsyn) and assimilating ZTD only (ztd, only
spring) for our four episodes in every season considering the domain mean.

Spring Summer Autumn Winter

Opcy ztdsyn ztd Opcy ztdsyn Opcy ztdsyn Opcy ztdsyn

PREC [mm] 47.0 55.5 55.3 19.8 20.9 29.1 27.1 33.8 31.5
ET [mm] 27.0 28.1 27.0 37.4 38.0 4.1 4.1 2.1 2.8
BO [-] 0.5 0.4 0.5 0.6 0.5 1.1 1.5 −2.2 −2.1
LH [W/m2] 65.3 67.9 65.0 97.7 99.9 7.2 7.3 4.6 6.1
SH [W/m2] 31.8 28.9 31.6 54.8 51.0 8.0 10.6 −10.4 −13.0
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assimilation process. In autumn, very good results and high
agreement with validation data were already obtained with the
open cycle simulation leaving almost no room for further
improvement. The same holds true for winter, where the
improvement by assimilation was limited to the reduction of
humidity in the model and an improved false alarm ratio. In
summer, convection with high temporal and spatially variability
is very difficult to model in space and time, so assimilation of
observations is most promising for such episodes and the largest
improvements can be obtained there. Since improvements are
often difficult to achieve for other rain episodes, a thorough
selection of assimilation options may determine whether a
simulation is improved by assimilation or not.

We only evaluated a selection of possible influencing factors and
corrections in this study. The use ofmore variable bias corrections of
GNSS data is very promising. Arriola et al. (2016) successfully
applied a variational bias correction and showed the advantages
compared to a static one. Additionally, many forward observation
operators show potential of improvement. Singh et al. (2019), Singh
et al. (2021) introduced an improved observation operator which
takes also hydrometeors into account.

Our evaluation of the water budget shows the main impact of
the assimilation of GNSS data and temperature on simulation
results and the two associated effects: The assimilation of water
vapor data (e.g., GNSS, InSAR, etc.) can lead to a modification of
precipitation amounts when saturation excess is reached. This
usually also has an impact on runoff, which has not been
evaluated in this study. In contrast, the assimilation of
temperature data or any other source of energy (e.g.,
radiation) is able to modify the energy fluxes and impacts the
water balance primarily through evaporation. However, a small
impact on precipitation is also possible through feedback, which
leads to an additional improvement in our experiments.
Consequently, all components of the water cycle can be
strengthened or weakened by the assimilation process
depending on the differences between model state and
assimilated observational data.

CONCLUSION

This study showed that the best assimilation setup is a combination
of parameter selection, spatial thinning, assimilation frequency and
background error settings. The high spatial and temporal
resolution of 10 km and 1 h shows that the added value of high
information density largely outweighs possible observational error
correlations. Improvements in overall performance are achieved, in
particular, through the joint assimilation of water vapor and energy

variables such as temperature. By choosing the corresponding
multivariate background error option cv6, we were able to
achieve an improvement for each of the episodes considered
here. The evaluation of the water cycle shows that all
components of the water cycle can be affected by our
assimilation tests.

In general, the consideration of feedback processes between
water vapor and energy variables during assimilation seems to
have further potential for improvement and it is certainly
worthwhile to investigate this aspect further in the future.
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