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aUniversity of Augsburg, Universitätsstraße 6a, 86159 Augsburg, Germany
bTTTech Auto Germany GmbH, Emmy-Noether-Ring 16, 85716 Unterschleißheim,

Germany

Abstract

Modern safety-critical embedded applications like autonomous driving need to
be fail-operational, while high performance and low power consumption are de-
manded simultaneously. The prevalent fault tolerance mechanisms suffer from
disadvantages: Some (e.g. triple modular redundancy) require a substantial
amount of duplication, resulting in high hardware costs and power consump-
tion. Others, like lockstep, require supplementary checkpointing mechanisms to
recover from errors. Further approaches (e.g. software-based process-level re-
dundancy) cannot handle the indeterminism caused by multithreaded execution.
This paper presents a novel approach for fail-operational systems using hard-
ware transactional memory for embedded systems. The hardware transactional
memory is extended to support multiple versions, enabling redundant atomic
operations and recovery in case of an error. In our FPGA-based evaluation, we
executed the PARSEC benchmark suite with fault tolerance on 12 cores. The
evaluation shows that multiversioning can successfully recover from all transient
errors with an overhead comparable to fault tolerance mechanisms without re-
covery.
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1. Introduction

Embedded applications have a multitude of requirements for their execution
environment. Safety-critical applications like fully autonomous cars or fly-by-
wire electronic flight controls must be fail-operational, as a failure could directly
endanger human lives. If a transient error due to a single-event upset occurs,
detection and recovery need to be quick, as deadlines still have to be met. At
the same time, autonomous cars or advanced terrain awareness and warning
systems require high performance for purposes like image recognition. In addi-
tion, embedded systems often run on battery power, which makes a low power
consumption essential. Therefore, we consider heterogeneous multi-cores, which
consist of fast cores and energy efficient cores executing the same instruction
set, to be the best option.

It is hard to implement such a high performance, energy efficient and fail-
operational execution with state of the art fault tolerance mechanisms. Dual
modular lockstep execution is a widespread mechanism, which can be found
in many off-the-shelf CPUs like the ARM Cortex-R series [1] or some Infineon
Aurix CPUs [2]. However, lockstep execution fails to properly fulfill the re-
quirements of embedded systems, as it can only detect transient errors, but has
to rely on alternative mechanisms like checkpointing for recovery [3]. These
recovery mechanisms are often not implemented in hardware and thus result in
high overheads, even for an error-free execution, and might not be fault-tolerant
themselves. In addition, checkpointing is often only performed infrequently in
order to limit the overhead, which results in a large loss of progress when recov-
ering.

Triple modular redundancy is an alternative approach to fault tolerance,
which is often used in the aerospace industry. While it solves the error re-
covery problem of lockstep execution, it introduces new issues. The need for
three instances of the CPU increases power consumption and production costs
in significant ways. Further, the inherent indeterminism of multithreaded ap-
plications leads to divergent states in the redundant processors, which renders
such systems unsuitable for parallel applications [4].

If an appropriate hardware-based redundancy mechanism is unavailable, de-
velopers often rely on software-based fault tolerance. Such systems exhibit more
vulnerable parts, since only the redundant application is within the sphere of
replication, where it is protected from errors. The mechanisms for error de-
tection and recovery are inevitably susceptible to errors, which can lead to an
inoperable system or data loss [3]. Additionally, software-based fault tolerance
often suffers from a high performance overhead. Only a few implementations
can handle multithreaded execution, as differences in execution order between
the redundant instances can result in divergences (see Fig. 1 for an example).
These divergences can occur even with proper synchronization, as two threads
can enter a critical section in different orders in the redundant instances. The
common solution is to wait in the second redundant instance to ensure an iden-
tical order. However, this causes an additional performance overhead. Error
detection latencies can also be a problem, as many implementations trade high
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Figure 1: An incorrect execution can occur if the order of the transactions is not preserved
between the leading and trailing threads. In this example, thread 1 executes a transaction
which increments data by 1, and thread 2 executes a transaction which XORs data by 1. If
thread 1 is executed first (leading), the final result is 0. If thread 2 is executed first (trailing),
the final result is 2. Thereby, checksums differ and a rollback occurs.

error detection latencies for improved performance.
We present a novel approach for fault tolerance on embedded systems based

on multiversioning to mitigate those disadvantages. In addition to homogeneous
multi-cores, heterogeneous multi-cores are also supported as long as they execute
the same instruction set. In our approach, the application is only executed twice
in order to keep the overhead minimal. The underlying fault model regards
transient faults, which may corrupt data in a register, but main memory and
caches are assumed to be protected by ECC (see Fig. 2). Hardware checksum
calculation ensures that every single-bit error is caught. The duplicate execution
can also detect errors in instructions like the sine function, which are difficult to
check otherwise. Error detection is fast, as transactions offer a quick validation
interval. A transactional memory based rollback mechanism allows for cheap
recovery after detecting an error. The system also offers conflict detection,
which makes the execution of multithreaded transactional memory applications
possible. Consistency between the redundant executions is ensured by keeping
multiple versions of each data word.

A regular transactional memory system cannot fulfill these requirements.
One key problem is the preservation of the order of the transactions between
the leading and trailing execution to avoid unnecessary and potentially infinite
rollbacks. Fig. 1 depicts in detail why this is a problem. To solve this and other
issues we developed a transactional memory which supports multiple versions of
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Figure 2: The cores and data caches are extended to support transactional memory and
multiversioning. The register snapshot can also be stored external to the core, as its access
latency is not performance critical. The sphere of replication, marked by the dotted line,
covers the pipeline in the cores. The remaining components are protected by ECC.

the same data word. The multiversioning mechanism is described in more detail
in Section 4. A transactional memory based pthreads implementation ensures
backward compatibility for classic multithreaded applications, which rely on
atomic operations and cache coherence.

We performed an FPGA-based evaluation running the PARSEC benchmark
suite [5] on Xilinx MicroBlaze soft cores [6]. Although these cores are closed-
source, our approach can be integrated with unmodified processor cores like the
MicroBlaze, as it is mostly contained in the caches. All necessary communication
is handled over existing infrastructure like AXI busses, interrupt lines and trace
ports.

Altogether, our approach has the following five advantages:

• The system is fail-operational, as it can recover from errors.

• Homogeneous and heterogeneous multi-cores executing an identical in-
struction set are supported.

• Shared memory multithreaded applications can be executed redundantly.

• Transactional memory can be used for synchronization.

• No modifications to the cores are required.

Our work is structured as follows. First, we present related work. In Sec-
tion 3, our redundancy concept is explained. Section 4 describes the extension
to multithreaded execution using multiversioning. Section 5 consists of opti-
mizations, which improve the performance of our approach. In Section 6, we
present the evaluation of our approach. We evaluate runtime overhead, impact
of the optimizations, fault injection and error detection latency. This section
contains an explanation of the methodology and an analysis of the results. At
the end of the paper, a conclusion and an outlook on future work is given.
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This publication extends our previous paper [7] in the following ways:

• Description and evaluation of hardware optimizations

• Implementation of fault injection techniques

• Evaluation of the benchmarks’ susceptibility to errors and of the multi-
versioning recovery mechanism

2. Related Work

Process-Level Redundancy [8] is a software-based approach to provide fault
tolerance for single threaded applications. The approach replicates the process
multiple times. The processes are synchronized at every system call and the
parameter values are compared. In order to recover after an error, three in-
stances are required. The evaluation assumes that a sufficient number of free
cores is available for the redundant processes. As system calls can be far apart,
we expect the error detection latency to be unsuitable for embedded systems
which are typically subject to stringent real-time constraints.

The software approach of RomainMT enforces determinism for multi-thread-
ed applications to enable a redundant execution on the L4 microkernel [4]. On
externalization events, which for example are system calls, the states of the re-
dundant threads are compared to detect errors. This requires the redundant
threads to be in an identical state to avoid the false detection of an error. By
enforcing the same locking order of mutexes on every execution of a program,
the observable behavior will be identical, but only if no race-conditions exist
and no lock-free atomic memory accesses occur. RomainMT relies on an ex-
ternal checkpointing and recovery mechanism for DMR, but for triple modular
redundancy, forward error correction is possible by selecting the two error-free
threads.

In our previous work [9], we have already presented a hardware fault tol-
erance mechanism for single threaded applications, which is the foundation of
this approach. However, multiversioning, which is essential to realize multi-
threaded execution in the current paper, was not used in the previous paper.
Previously, we used the simulator gem5, which required very long evaluation
times. However, to be able to execute larger benchmarks, we shifted to an
FPGA implementation for this paper.

FaulTM-multi [10] is a hardware fault tolerance implementation utilizing
transactional memory. In contrast to our approach, FaulTM-multi is tightly
coupled. This results in several restrictions: It is not possible to have unequal
numbers of original and backup threads, which restricts parallelism. Addition-
ally, the cores, on which the threads run, need to be homogenous to avoid the
faster thread blocking at every transaction commit. Unsteady optimizations
like those described in [9] cannot be used either, as the original thread cannot
run ahead to compensate for any fluctuation.

In other previous work [11], we have described a software-based approach
to fault tolerance by utilizing the hardware transactional memory Intel TSX.
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Major parts of the approach are required to work around the limitations of Intel
TSX. It is necessary to start two separate processes, as it is not possible to share
the same memory for leading and trailing threads. Intel TSX does not support
multiversioning, either. There are overheads due to instrumentation, splitting
the execution into transactions, checksum calculation and transfer.

HAFT [12] is a software fault tolerance implementation utilizing transac-
tional memory. In contrast to our approach, HAFT uses instruction-level re-
dundancy. This makes it well suited for modern high performance out-of-order
CPUs, as they can often execute both instructions in a single cycle and cor-
rectly predict the comparison branch. However, the approach is less suited
for embedded or heterogeneous systems, as those often feature simple in-order
CPUs, which cannot overlap the execution of the redundant instructions.

Execution Replay of Multiprocessor Virtual Machines [13] implements a soft-
ware approach that allows the reproduction of the execution of virtual machines,
which can be applied for fault tolerance. The approach uses the MMU to mark
pages for either concurrent-read or exclusive-write. When a core executes an op-
eration that is not allowed in the current state of the page, the state is changed
and the transition is recorded as dependency in a log. During the repeated
execution, these recorded dependencies are used to exactly reproduce multi-
threaded execution. The conflict detection granularity is at page-level, while
we detect them a cache-line-level. Additionally, our ownership transitions are
quicker, since they are realized in hardware instead of software.

Samsara [14] improves upon the previous approach by splitting the execution
into chunks, comparable to our transactions. At the end of a chunk’s execution,
the accessed and dirty bits in the page table are used to detect conflicts. Sim-
ilarly, to transactional memory, conflicting chunks need to be repeated, which
requires the use of copy-on-write for each page written in a chunk. Since the
approach is also based on the page table, granularity is more coarse than with
our approach. Additionally, chunks have to be larger than our transactions to
accommodate for the copy-on-write and commit overhead. Therefore, we expect
the error detection latency in Samsara to be higher than with our approach.

Multiversion concurrency control [15] is a method used by databases to man-
age concurrent accesses. This technique is used by PostgreSQL, for example [16].
We suppose that hardware multiversioning support, like the one provided by our
approach, can be exploited by such applications to benefit performance.

3. Error Detection Mechanism

We assume a standard shared memory hierarchy, as depicted in Fig. 2, con-
sisting of multiple cores. All cores execute the same instruction set, but their
microarchitectural implementation can differ, e.g. to realize a combination of
fast and energy-efficient cores. The cores are connected to coherent private in-
struction and data caches. Optionally more (potentially shared) cache levels
might follow. Finally, all cores can access a common main memory.
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Figure 3: The single threaded application is split into transactions TXi, which are executed
redundantly on a leading core and a trailing core. For some time the checksums match, but
after TX4 a bitflip causes a mismatch. This results in a rollback and a restart of TX4.

3.1. Transactional Memory

In order to implement multiversioning, we have extended the memory hier-
archy in several ways. The cores themselves need to be extended with register
snapshots to enable rollback. The data caches store the read and write set.
They also implement the largest part of the logic necessary to handle version
selection and communication. If the code is not self-modifying, the instruction
caches can be left unchanged.

Our goal is to provide fault tolerance for the pipelines of the cores. We
assume that the memory hierarchy is already protected by means of ECC or
similar mechanisms. For reliable recovery, it is also necessary that the register
snapshots are protected from faults.

Our approach implements a leading/trailing execution concept similar to the
one we have used in [9]. The program is first executed on one or more leading
cores. Their results are then validated by one or more trailing cores, which
execute the same code.

To realize this concept, the execution is split into transactions (TXi in Fig. 3).
Contrary to regular transactions, those automatic transactions commit by them-
selves after a given time limit. The next transaction starts immediately after-
wards. However, manual transactions for concurrency control, where the bounds
are set by the programmer, can also be used if needed.

The most difficult aspect in implementing automatic transactions is deter-
mining the bounds. However, our transactional memory system provides multi-
ple features, which allow for an easy implementation: If a cache line is evicted,
conflict detection is still possible, as transaction meta data can be evicted to
memory. Additionally, all instructions, which are necessary for regular execu-
tion, can be issued in transactions. Therefore, it can be guaranteed that every
transaction, which abides to certain limits concerning runtime (in instructions)
and memory operations, will eventually commit. As those limits are independent
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of the actual instructions and memory addresses, they can easily be monitored
using simple counters. Register backup does not require a specific instruction,
either, which makes it possible to start transactions at any time. Therefore, the
bounds can be easily determined with low hardware costs.

3.2. Redundancy

An error cannot propagate to the other core, as both cores can only see
their own modifications to the memory. In the single threaded case, the first
transaction can be started simultaneously for the leading and the trailing thread.
If the leading thread is executed on a faster core, it will finish first. It can
then already start the next transaction, as long as it has sufficient speculative
resources.

While the transaction is running, a single checksum of all instruction out-
comes is calculated. Our definition of instruction outcome includes every output
signal caused by an instruction that affects the architectural state. For an arith-
metic instruction, for example, this can be the output register value and state
flags like carry, but also the next instruction address. The information of one
instruction outcome is concatenated and streamed to the hardware checksum
unit. Here a checksum is calculated by hashing the arbitrary sized input to
a constant size. Note that the input is not required as a whole to calculate
the checksum. This checksum is then compared after both transactions have
completed. If the checksums match, execution can continue regularly and the
checkpoints at the beginning of the transactions are deleted. If the checksums do
not match (after TX4 in Fig. 3), both cores need to roll back to the beginning
of their transactions. Consequently, the leading core might have to roll back
multiple transactions at once. After the rollback, both cores restart their trans-
actions. If the fault was transient, it does not occur again and the checksums
match after both transactions have been repeated.

4. Multiversioning

When executing multithreaded applications with fault tolerance, multiple
complications occur. It is no longer sufficient to just have a single leading
thread and a single trailing thread, as the transactions of all threads need to
be validated. As all threads in the process use the same address space and
transactions already save the register set, it is possible for a trailing thread to
quickly switch between validating the transactions of different leading threads.
However, it is still preferred to keep leading and trailing cores associated when
possible, as this will benefit cache locality. This feature has the additional
advantage that I/O operations and sensor inputs can be easily realized. The
leading core commits its transaction and leaves redundant mode to perform
the I/O operation alone. After the I/O operation is finished, resynchronization
between leading and trailing cores happens automatically, as the register set is
transferred anyway and the multiversioning takes care of the memory content.

The required ratio of leading and trailing cores depends on the underlying
system and the application. For homogeneous systems, it is usually close to
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Figure 4: Above, the same application as in Fig. 1 is shown, but this time executed with
multiversioning. From the perspective of the software, the execution on the leading core
behaves the same. The result after the first transaction is stored in version V1 and the result
after the second transaction in version V2. The version numbers of the leading transactions
are transferred to the trailing threads. Even if the thread 2 is executed first in the trailing
execution, it still loads version V1 as base. This is possible, as the version is still retained
from the leading execution. Thus, the final result is also 0. Version V1 is validated later and
the speculative resources are dropped, as version V2 is already available.

one. It is possible to use slower but more energy-efficient cores as trailing cores
as long as they execute the same instruction set. In this case, a different ratio
might be chosen. If an application has plenty of waiting time, the number of
trailing cores can be lowered, as it is useless to wait on the leading and the
trailing. The same can be done if the platform has means to accelerate the
trailing cores like perfect prefetching or forwarding branch outcomes [9]. The
trailing cores will simply switch between validating those leading cores that are
currently not waiting.

Not preserving the order between the leading and trailing execution within
a regular transactional memory system can cause unnecessary and potentially
infinite rollbacks (see Fig. 1). If situations like this happen frequently, which
is to be expected on high core count out-of-order CPUs, performance will be
poor, as rollbacks are expensive due to the work that needs to be executed again.
Further, consistent rollback checkpoints between all threads are necessary. It is
not sufficient to roll back only the transaction in which the error was detected, as
another transaction might have already read data written by that transaction.

In our approach, the fault-tolerant execution occurs on a system support-
ing multiple versions of the same memory word. This solves the indeterminism
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problem, as can be seen in Fig. 4. The transaction, in which the load is exe-
cuted, defines which version of a word is read. Every word has a safe version,
which is used for rollback if an error occurs and is only updated if the trailing
cores have validated the new value and all previous transactions. Additional
versions are used by the leading cores to store speculative values. Those will
be made visible to the other leading cores, as soon as the transaction has com-
mitted. The trailing cores generate versions, too. These are only used by the
same core to satisfy reads after writes in the same transaction. Other cores will
never see those values and they are dropped after the transaction is completed.
If a conflict is detected between two leading transactions, they behave like reg-
ular transactions, i.e. modifications are not visible to other transactions before
commit and in case of a conflict one is aborted and restarted.

Therefore, it is possible to execute shared memory multithreaded applica-
tions on our system. The preferred synchronization approach is to use trans-
actions. However, atomic operations are also supported. All randomness, like
different execution orders or pseudo random number generator seeds, are syn-
chronized between leading and trailing cores. Cache coherency is also main-
tained.

After a commit, the leading core continues with the next leading transaction.
A hardware queue is used to transfer the register set at the start of the previous
transaction to the trailing cores. Each queue entry also contains additional
data like the checksum and version number. It is possible to use the memory
bus for communication between the cores and the queue. However, a dedicated
interface reduces the overhead. A single queue can be shared between all cores,
as queue entries are quickly picked up by a trailing core. This trailing core
starts a new transaction with the same base version and executing the same
code as the corresponding leading core. Its results are invisible for all other cores
and dropped after the trailing core commits. Once this transaction commits,
the checksum is compared to its leading counterpart. If they and all previous
checksums match, the leading version is merged with the safe version and all
speculative data belonging to those transactions is freed.

If a mismatch is detected, a global rollback is initiated. To perform the
rollback, all currently running transactions on the leading and trailing cores
are aborted. It is then determined, which transaction is the last consecutively
confirmed. The memory is restored to the version that was produced by the
commit of this transaction. The register set of the corresponding leading core
is reset to the commit of that transaction. All other leading cores are reset to
their last previous commit. The trailing cores require no explicit reset, as they
will receive a new register set from the leading cores. This reset procedure can
be realized by either sending a reset signal to the cores or the use of interrupts.
As errors are expected to be rare, performance of the reset procedure is not of
primary concern.

Implementing multiversioning requires major changes to the caches. How-
ever, some systems might already offer many of the required features. For
example, systems with Intel TSX already offer conflict detection and support at
least two versions of each cache line. Therefore, the adaption of such a system is

10



expected to be easier than the adaption of a system without any native support
for versioning. The approach is largely independent of the microarchitectural
implementation and can be implemented in its basic variant without changes to
the cores. However, some modifications to the cores can be made to improve
performance or fault detection.

For user space applications, our system offers the same interface as regu-
lar transactional memory systems. Explicit transactions for synchronization,
similar to those in classic transactional memory, are available. The automatic
transactions that are used for redundancy do not require any special handling
by the programmer. The tm begin operation commits the running automatic
transaction and starts a new explicit transaction. It is possible to either commit
the explicit transaction with the tm commit operation or abort it with tm abort.
In both cases, the core will start a new automatic transaction.

The operating system uses an additional control register to manage multi-
versioning. This control register can be used to configure cores as leading or
trailing cores. It can also be used to disable redundancy or automatic transac-
tions, when code should not be executed redundantly, e.g. for I/O.

Porting a user space application to our platform mainly concerns synchro-
nization. As the speculative values within transactions are invisible for other
cores, adjustments to synchronization constructs are necessary. For the most
part, these only happen at the library level. Changes to the application source
code are only necessary if synchronization constructs are implemented directly.
Atomic operations can be replaced by small transactions, which only encapsulate
the memory accesses and corresponding operations, which should be executed
atomically. For example, an atomic increment is replaced by a transaction con-
taining a regular load, the add instruction and a regular store. As transactions
guarantee atomicity, the semantics of the operation does not change. By com-
mitting the transaction right away, the modified value becomes visible to other
cores immediately. For more details regarding the implementation see [17].

5. Optimizations

Various optimizations were implemented to improve the performance of the
multiversioning system.

5.1. pthreads Library

We have replaced all operations in our implementation of the pthreads li-
brary to use native transactions instead of atomic operations. For example, we
have replaced the atomic swap in the routine to lock a mutex with a trans-
action, which aborts if the mutex is already locked. This reduces the number
of committing transactions significantly in comparison to simply replacing the
atomic operation. Thus, the memory load is reduced. It is not necessary for the
trailing cores to validate aborted transactions, as they have no influence on the
system state, allowing them to catch up if they fell behind.
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5.2. Validation of Automatic Transactions

On ordinary transactional memory systems, every transaction performs con-
flict detection. In our approach, the code executed in automatic transactions
does not require conflict detection, since it is functional without transactions
in the non-redundant case. Some care still needs to be taken to ensure that
changes to the same cache line by different cores are merged properly. However,
a major part of conflict detection, referred to as “validation”, can be disabled
to improve performance. Synchronization constructs can still use explicit trans-
actions with conflict detection even if the validation of automatic transactions
is disabled.

One general issue, which affects many transactional memory applications to
varying degrees, is false sharing. This effect occurs when two threads access
different words in the same cache line without synchronization. This is also a
minor issue for systems without transactional memory, as it causes cache line
bouncing. This issue mainly occurs when applications access an array with their
thread ID as an index. It can also occur if different data structures share the
same cache line by chance.

By default, every transaction performs full conflict detection. If a conflict
is detected, all except one conflicting transactions are restarted. Due to false
sharing this can happen quite often. If an application is ported from a non-
transactional implementation, the conflict detection is not necessary, as the same
code works without conflict detection. It is not possible to disable write-after-
write conflict detection, as this would make complicated merges of cache lines
that were changed by two or more cores simultaneously necessary. However,
the second core can request the first transaction to commit prematurely. This
costs some performance, but is better than aborting. Read-after-write conflicts
can be handled likewise. Read-after-read conflicts cause no issues, even in the
base implementation, as both transactions can continue with the cache line in
shared state.

Write-after-read conflicts require special consideration. We observed that
write-after-read conflicts can often be ignored. Write-after-read conflict detec-
tion is the most expensive, as conflicts, in which the write occurs first, can be
detected by the existence of the new version without any overhead. Therefore,
ignoring write-after-read conflicts does not only reduce overhead from the re-
peated execution of aborted transactions, but also from conflict detection itself.
However, if a benchmark contains race conditions, these can cause trouble with
redundant execution. If the order of the trailing execution is swapped, the trail-
ing cores might now return a different result. This then causes a rollback of the
whole system. Contrary, if write-after-read conflicts are handled on the leading
cores, only a single core has to roll back for each conflict. Note that a write to
a single cache line can still cause conflicts with multiple reading cores, which
can result in additional rollback even if the conflicts are handled on the leading
cores.
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5.3. Bloom Filter

Another way to reduce conflict detection overhead is the use of a Bloom
filter [18]. A Bloom filter is a constant size, probabilistic data structure imple-
menting a set. It is possible to add memory addresses to the set. One can also
query, whether a specific address is contained in the set. However, the more
addresses are added, the higher the probability that a query falsely returns that
the address is contained in the set (false positive). It is not possible for a query
to falsely return that an address is not contained (false negative). Therefore,
this data structure is well suited for conflict detection, as a false conflict only
costs performance, while a missed conflict could cause wrong outputs.

In our implementation, the Bloom filter is used to optimize write-after-read
conflict detection. Every core has its own associated Bloom filter. The Bloom
filter can be placed outside of the core, since it only requires the address of the
accessed cache line and some control signals. When a transaction reads a cache
line, its address is added to that core’s Bloom filter. When a transaction writes
a cache line, every other Bloom filter is queried for its address. If a Bloom filter
returns that it contains the address, regular conflict detection and resolution is
performed for the corresponding core. This optimization reduces the number of
cache misses and the overhead for commits, as it is not necessary to iterate the
readset if the bloom filter did not indicate any hits. The Bloom filter is reset
on commit or abort of the transaction on the corresponding core.

The implementation used in the FPGA is kept simple, as the number of
accessed cache lines in each transaction is rather small, and fast lookups are
required. Therefore, only a single hash function is calculated for each entry.
The corresponding bit in the constant size memory is set to one, when the entry
is inserted. To query whether the entry is contained, it is sufficient to return the
corresponding bit. If the allowed transaction size is increased, a more complex
Bloom filter, which uses multiple hash functions, should be used. In such a
Bloom filter an entry is only considered contained if the corresponding bits of
all hash functions are one. Using the optimum number of hash functions results
in a minimal false positive probability.

5.4. Cache Line Compression

In the basic variant, an additional cache line is allocated for each new version
of a cache line. The additional cache line is referenced by a pointer (e.g. stored
in the ECC bits). This can be optimized by directly storing the changed data in
the field for the address of the version. Note that this optimization is in contrast
to the overall approach, processor dependent and the precise may change when
a different instruction-set-architecture is used.

Cache line compression is possible if at most eight bytes have changed. The
change has to consist of two aligned words of four bytes each, one at an even
index (third address bit is zero) and one at an odd index (third address bit
is one) in the cache line. Allowing this split increases the likelihood that a
stack cache line can be compressed. Because of the index requirement only
one comparison is required per memory access, as the CPU must split accesses
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so that every access is aligned to the bus width of four bytes. If more data
is written, the additional cache line is allocated and the existing changes are
transferred to free the address field.

This optimization reduces the number of cache misses, as the cache miss for
version allocation is avoided. Additionally, fewer cache lines are evicted prema-
turely. The optimization also reduces the overhead when reading or writing a
version that is not the safe version. If the required version is stored in another
cache line, at least one additional cycle is required to access it. This overhead
is avoided, as the address field can be accessed in the first cycle.

5.5. Fresh Fetch

When a new version is allocated, the data of the cache line is copied to a
fallback cache line. This means that a cache line, which has not been accessed
for a long time, is written. In most cases, this causes a cache miss. This
optimization avoids the overhead of the actual fetch by clearing cache lines
to zero instead of fetching them if they will be completely overwritten. This is
always the case for version allocations. Note that the overhead for the writeback
of dirty cache lines can still occur.

5.6. Sticky Trailing Threads

When a transaction commits on the leading core and multiple trailing cores
are ready, the trailing core that confirms the transaction is selected arbitrarily.
If sticky trailing threads are enabled, trailing cores, whose previous transaction
was from the same leading core, will be preferred. Most of the time, one trailing
core will stick to validating exactly one leading core. This reduces cache misses,
as the trailing core’s cache already contains some reused cache lines from the
last transaction, e.g. the stack.

5.7. Important Writes

The data written by trailing cores does not need to be preserved for further
execution, as all later transactions use the leading core’s version. For fault
detection, it is included in the checksum, but the actual changed value is not
stored. We assume the cache and main memory are protected by other means
like ECC. Therefore, the data written by the trailing core is not needed to ensure
their correctness.

However, sometimes the data is necessary to correctly execute the trailing
transaction. Assume a case where a transaction first writes a location, then
reads it and finally overwrites it. The read value is stored neither in the safe
version nor the leading version. Therefore, the trailing core has to actually
perform these stores.

We use a 128 bit Bloom filter with a single hash function to detect these
stores. When the leading core reads a cache line, which is already contained
in the writeset, it adds its address to the Bloom filter. The Bloom filter is
transferred to the trailing core together with the registers using the shared
hardware queue. The trailing core then checks this Bloom filter on every write
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and only performs it if the address is contained. This ensures that every write,
which can influence the rest of the transaction is actually performed. The
probabilistic nature of the Bloom filter can only result in unnecessary writes,
but never in missed writes.

This optimization reduces cache misses in the trailing core, as cache lines,
which are written but never read, are not fetched. Additionally, less cleanup
is required at the end of the trailing transaction, as less versions were created.
Therefore, the trailing core is ready to execute the next transaction more quickly,
which results in less waiting time for the leading cores.

6. Evaluation

We evaluated our multiversioning approach in concern to runtime overhead,
scaling, impact of optimizations, fault injection and error detection latency.
First, we describe our methodology. Then, separate analyses of the evaluated
metrics follow.

6.1. Methodology

We implemented our approach on the Xilinx Virtex UltraScale+ FPGA
VCU118 Evaluation Kit. This board features the XCVU9P FPGA and two
4 GB DDR4 memories. A USB port is available for JTAG and UART. The
other components on the board were not used for our evaluation.

Our design features 12 MicroBlaze [6] cores with support for single precision
floating point operations. The cores are connected to coherent private data
caches and instruction caches (each 16 kB, 4-way set associative). The caches
are interconnected to both memory controllers and an UART module. Our
extensions are implemented in the caches and addressed by a memory-mapped
interface. CPU registers are backed up using the trace port. Thus, no changes to
the closed-source MicroBlaze cores were necessary. The design runs at 50 MHz
with the main limiting factors for the clock rate being the performance counters
and assertions.

We used the PARSEC Benchmark Suite [5] version 3.0 for the evaluation.
Note that this is not a throughput evaluation with multiple single threaded
processes, but a runtime evaluation, where the benchmarks are run with multiple
synchronized threads. To support the benchmark execution on the MicroBlaze,
we had to port the pthreads library. As the benchmark freqmine does not
support pthreads execution, it is missing from the evaluation. fluidanimate
and facesim are also missing, as they do not support arbitrary thread counts.
In particular, 12 threads are not supported. Some other modifications were
necessary to compile the benchmarks, as their targeted C standard is too old
for our build environment.

Except for fault injection, the benchmarks used the simmedium configura-
tion. The limiting factors for input set size are the slow transfer of the input files
via JTAG and the large number of different configurations. In total, this evalu-
ation requires 1456 individual benchmark runs. The benchmarks were executed
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entirely, but only the region of interest was considered for the measurement
the execution times. The region of interest is predefined by the creators of the
benchmarks and contains the parallel part of the execution. It excludes the
initialization logic which is irrelevant for our evaluation. As we only have a sin-
gle FPGA board available and due to time constraints, we have executed each
configuration only once for runtime analysis. As there is no operating system
and the per benchmark runtime is rather long (1 minute for streamcluster with
12 threads to 2 hours for swaptions with 1 thread), the variance is quite low. To
validate the correct execution, the outputs were copied back to the host machine
and compared to x86 executions with the same thread count. We had to add
additional outputs to the benchmark raytrace, as it discards its outputs.

To ensure proper operation of our system, we performed a fault injection
analysis. The injection is performed in hardware, but is triggered by software
running on the host machine. As the cores are closed source, we had to add the
injection logic at gate level. We are also limited in the ways, in which we can
inject faults. The injection is implemented by xor gates in front of the register
set’s write port. The other input is set to zero by default, but the host machine
can change this value. If a bit is set to one, it remains high until a register is
written. This is done to increase the number of faults, which have a chance to
affect the application output. Otherwise, many attempts would be wasted to
cache misses or instructions, which do not write registers.

We collected the region of interest’s start and end times for each benchmark.
Before the benchmark starts, the host machine selects a random time in this
period. It then triggers the injection once the selected time has elapsed. The
core and affected bit are also chosen randomly. The only condition for a core
to be eligible is that it has to be active. Therefore, the injection includes non-
redundant, leading and trailing cores.

Every benchmark was executed 50 times on the variant without as well as
on the variant with redundancy. The validation of automatic transactions is
enabled to ensure that race conditions cannot cause checksum mismatches. We
used all 12 available cores and the maximum thread count. The benchmark
raytrace was not included in the analysis, as it takes a long time (∼ 1h) for
initialization. The benchmark canneal was excluded, too, as its output fluctu-
ates too much to detect errors. Except for the benchmark x264, all benchmarks
use the simsmall configuration to allow for quicker injection attempts. The
benchmark x264 crashes if the number of threads is greater than the number of
frames. Therefore, it requires the simmedium configuration.

We can validate the outputs of all used benchmarks. Therefore, we can
differentiate the following groups of outcomes:

• Valid output, benign error, error corrected

• Invalid output, silent data corruption

• Freeze

• Crash
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Furthermore, we can detect, whether a global rollback was performed in the
fault tolerant variant. Remember that a global rollback can only be caused by
a checksum mismatch and the first checksum mismatch always causes a global
rollback, but additional mismatches before the rollback do not cause another
one. Therefore, the presence of the global rollback indicates, whether the fault
was detected.

Part of this evaluation was already performed in our previous publication [7].
All benchmark outputs in the old evaluation were successfully validated. How-
ever, while performing the fault injection testing, we noticed that some bench-
marks occasionally crash even without injected fault. Resolving these crashes
required changes to the linker scripts and compiler flags, which sometimes
impacted performance. Notice that this does not necessarily result in worse
speedups, as the the baseline is affected as well. We decided that consistency in
this publication is more important than comparability with our previous work.
Therefore, we use the updated versions of the benchmarks for all figures in this
evaluation.

6.2. Execution Time Overhead

We analyzed the runtime and scalability of our approach. We expect the
execution time of a dual modular redundant approach to be between the runtime
of the non-redundant variant with half the core count and twice the runtime of
the non-redundant variant with the same core count.

The execution with half the core count forms a lower bound, as our approach
executes the benchmark twice (once on the leading cores and once on the trailing
cores). This estimation is however overly optimistic, as our approach requires
continuous communication. Issues like false sharing, which reduce the scaling
of the non-redundant multithreaded application, also affect our approach nega-
tively. In theory, it is possible for our approach to outperform this bound, if the
application blocks frequently due to synchronization, but still scales very well.
However, we consider this kind of application as purely academic and do not
expect it to occur in practice.

Executing the application twice one after another forms an upper bound for
the runtime. An approach to fault tolerance should be able to outperform this
bound in order to best the naive “execute it twice and compare the results”
software approach. Notice that this naive approach does however suffer from
two major disadvantages: The error detection latency is very long, as it lasts
from the first instruction of the first run to the comparison after the execution
of the second run. In addition, it is not possible to easily implement recovery,
as executing the program a third time takes a long time and the initial state
might not be available anymore.

For 12 cores, the geometric mean of the slowdown comparing the redundant
variant to the non-redundant baseline is 2.16. Below, we describe the results
shown in Fig. 5 in detail.

The benchmark vips behaves as expected. An analysis of the benchmark
shows that the execution without redundancy follows Amdahl’s Law. The ex-
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Figure 5: These charts show the speedup of the various PARSEC benchmarks in the different
configurations at a certain core count. All speedups are relative to the single threaded exe-
cution without redundancy and consider only the region of interest. For the variant without
redundancy, the benchmarks were launched with the core count as thread count parameter.
For the variant with redundancy, half the core count (i.e. the leading core count) was used
as parameter. The lower bound of the expected range is the execution without redundancy
repeated twice. The upper bound of the expected range is the execution without redundancy
executed twice in parallel with half the core count. Note that especially at low core counts
the expected range is hidden behind the line for redundancy for some benchmarks, as the
runtimes are so close together.
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ecution time with redundancy is in the range, in which one would expect an
approach like ours.

The benchmark blackscholes is embarrassingly parallel. Some of the used
floating point operations are implemented in software on the MicroBlaze, which
results in the threads having different runtimes. As there is no work balancing
and due to the memory controller acting as a bottleneck, the benchmark does
not reach a perfect speedup. There are minor false sharing issues with our
approach, as the data is split over multiple arrays with no padding between
threads. However, very little global data is written, which reduces the impact
of this issue.

The benchmark bodytrack uses a thread pool for parallelization. As this
thread pool contains as many threads as cores and there is an additional main
thread, common context switches are required. In addition, some parts of the
application in the region of interest are not parallelized. These two aspects
result in a shallow speedup curve. Our approach cannot take advantage of the
lack of parallelization, as the sections are too long to cover them with the loose
coupling. Thus, the speedup of our approach behaves more similar to the non-
redundant variant, which executes one after the other, than the parallel one.

The benchmarks dedup, ferret and raytrace are limited by main memory
bandwidth. A large shared l2 cache would most likely improve the performance
for both the baseline and our approach. Our approach would profit further
from it, because the trailing cores access the same data as the leading cores
with some delay. Thus, a sufficiently large shared l2 cache would eliminate the
trailing memory access altogether.

The benchmark x264 stops scaling at high thread counts due to synchro-
nization constructs. As the waiting threads do not consume any resources like
memory bandwidth or trailing runtime, our approach does well. The 8 core
redundant run shows that executing more iterations for benchmarking would
be favorable. Sometimes the benchmark x264 takes longer to complete for no
obvious reason. We suspect that an unlucky memory allocation ordering leads
to an unfavorable interleaving of memory regions.

The benchmark swaptions shows irregular scaling. This is however unrelated
to the platform or the approach, as it is caused by the small input size. In the
simmedium configuration, 32 work items are partitioned between the threads.
This works out well for e.g. 4, 8 and 11, but poorly for e.g. 9, 10 and 12, which
results in the steps in the speedup graph.

The benchmark canneal mostly uses a custom synchronization mechanism.
Pointers are accessed automatically and can contain a special value to signal that
the object is locked for writing. If the object is locked, busy waiting is performed.
This synchronization approach does not scale well with multiversioning, as the
many explicit atomic operations result in many small transactions. In addition,
the system cannot detect when a thread is waiting, which means the trailing
cores waste much time to confirm waiting loops. To optimize such an application
for our system, one would need to replace the atomic operations by transactions.
In this case, this would be easily possible, as the main operation is a simple
swap, which easily fits in a single transaction, eliminating the need for locking
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altogether. Note however that regular transactional memory optimization rules
still apply (i.e. those transactions would most likely be too small).

The benchmark streamcluster uses many barriers. Sometimes barriers follow
directly after each other with no code between them. Barriers are problematic
for our approach, as they can force the leading cores to wait for the trailing cores
to catch up, if just one thread accesses a cache line, whose available versions have
been used up. This cache line can even be the cache line containing the barrier.
If the code executed between the barriers is too short, the transaction will not
reach its intended length, meaning that even more versions are consumed. To
optimize the benchmark, one should try to reduce the number of barriers needed.
For our approach, it is better to execute short serial work (like adding the result
of all threads) redundantly on all threads instead of just one, as this benchmark
does, to remove additional barriers.

It can also be seen that the benchmark prefers even thread counts in the
multiversioning variant. If all threads try to write to the same cache line at
the same time, the available speculative versions (two in this implementation)
for this cache line will run out quickly. Further threads then have to wait until
those versions get confirmed by the corresponding trailing transactions. As this
benchmark makes heavy use of barriers, threads will always reach such code
sections at the same time, which means it will be completed in batches of two.
Thus, an odd thread count will result in another batch, which contains only
one thread. Writing such code should be avoided, as there will also be some
serialization, when executed without redundancy, due to the cache line bouncing
between the cores. However, a cache miss is significantly cheaper than a trailing
transaction, which makes the effect less prevalent for the baseline.

The benchmark streamcluster is also a prime example for the impact of false
sharing. The source code contains a constant called CACHE_LINE, which controls
the padding between the memory regions of the different threads. It is initially
set to 32. However, the cache line size, which is used in our platform, is 64.
Changing this value accelerates the application by 38.6 %.

6.3. Optimizations

We have implemented several optimizations (see Section 5) to improve the
performance. These optimizations are already enabled in Fig. 5.

Fig. 6 shows the effects of each hardware optimization by itself. We did
not enhance the baseline pthread library with support for redundant execution.
Additionally, using a version of a library that is unsuitable for the employed
hardware is unreasonable. Therefore, we did not evaluate it. For this evaluation
each configuration was executed three times. The median execution time was
used to calculate the speedups shown in Fig. 6.

The speedup of the different optimizations does not stack additively, as they
aim at similar aspects. If one optimization has already reduced the number of
cache misses, the possible further acceleration by other similar optimizations is
limited. Furthermore, some optimizations directly reduce the effect of others.
For example, not validating automatic transactions reduces the effect of the
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Figure 6: This bar chart shows the speedups of various configurations relative to the single
threaded baseline without transactions or redundancy. The configurations were run on 6
leading and 6 trailing cores with multiversioning enabled. Only the region of interest is
considered. Each bar represents the median runtime for that benchmark configuration. The
error indicators extend to the slowest and fastest runtimes, respectively. The bars are in the
same order as the legend entries.

Bloom filter as less conflict detection is performed. Compression reduces the
effect of fresh fetches, as fallback cache lines are required less often.

At the same time, it is also possible that the combination of two optimiza-
tions results in a larger acceleration than the sum of them. For example, a
benchmark might be limited by the performance of its trailing cores. This
makes all optimizations affecting the leading cores seem useless by themselves.
Optimizations affecting the trailing cores only improve runtime to the level of
the leading cores. However, if all optimizations are applied at once, the achieved
acceleration is greater, as now neither the initial runtime of the leading cores
nor the trailing cores is limiting.

Disabling the validation of automatic transactions has a large effect on some
benchmarks. If the effect is that large, it cannot be explained by reduced conflict
detection overhead alone. This means that there are transactions, which aborted
and retried if automatic transactions are validated. The explanations for this
behavior are false sharing and race conditions, as we have seen from a detailed
analysis of the results. The variant of the benchmark streamcluster, which is run
here, uses the wrong cache line size (see Section 6.2). Therefore, this benchmark
suffers from false sharing.

However, the benchmarks canneal and x264 are not free from race condi-
tions. Disabling the validation of automatic transactions for those benchmarks
is not without downsides. It can no longer be guaranteed that the trailing core
reads the same data as the leading core. The mismatch is then detected as a
transient fault and all cores are rolled back in order to retry. Depending on
the frequency of the race condition, it can immediately occur again. In this
evaluation, there was an average of 20.5 global rollbacks in canneal and 0.8 in
x264 when the validation of automatic transactions is disabled. The optimal
solution would be to fix the source code, as those race conditions can result in

21



Table 1: Error Detection Latency

Benchmark Average [cycles] Maximum [cycles]
vips 9,833 181,129

blackscholes 9,985 25,263

bodytrack 9,855 30,976

dedup 8,621 150,333

ferret 9,697 156,534

raytrace 8,359 59,790

x264 10,492 108,198

swaptions 9,852 29,083

canneal 7,765 31,780

streamcluster 8,890 49,056

overall 9,335 181,129

The average error detection latency is the average number of cycles between every in-
struction and its corresponding checksum comparison. The maximum latency spans from
the first cycle in a leading transaction to the checksum comparison of the corresponding
trailing transaction. These values were measured for the whole benchmark with 6 leading
cores and 6 trailing cores.

wrong results even on other architectures.
Other effective optimizations include cache line compression and important

writes. We did not observe any benchmark becoming slower if a certain op-
timization is enabled. Additionally, the hardware cost for most optimizations
is negligible. For example, disabling the validation of automatic transactions
only involves a single AND gate, since the signals for automatic transaction and
conflict already exist. Other optimizations like fresh fetch are probably already
included in more sophisticated systems. Therefore, there is no downside to en-
abling most optimizations even if the achieved acceleration is low. Disabling
the validation of automatic transactions is the obvious exception because it can
lead to livelocks due to infinite global rollbacks as described above.

6.4. Error Detection Latency

We have also analyzed the error detection latency on a system with 6 leading
and 6 trailing cores. The average and maximum values are shown in Table 1.

The resulting average values clearly reflect the targeted transaction duration
of 10,000 cycles. Many automatic transactions hit this target quite accurately
and a trailing core is ready right away to validate the transaction. However,
for most benchmarks the average is lower, as synchronization operations explic-
itly commit the transaction before the time limit is reached. Some automatic
transactions are longer than the target. This happens, as we can only commit
transactions at memory instructions. We suffer from this constraint, because
the MicroBlaze is closed-source. In a more comprehensive implementation, this
would most likely not be an issue.

The worst case error detection latency is significantly higher for most bench-
marks, as the speculative nature of transactional memory can result in load
spikes on the trailing cores. Those load spikes result in waiting times before a
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transaction can be validated. Another reason for large error detection latency
are threads that switch from one trailing core to another and incur more cache
misses than the corresponding leading transaction. Thus, the trailing core takes
longer than the planned 10,000 cycles to complete validation. These extreme
cases occur very rarely, though, which makes it very likely that an error will
occur during a time, when the error detection latency is short. Note that there
already is a two-fold increase between the maximum and average latency, as,
for each transaction, the maximum latency spans from first instruction to the
checksum comparison, while the average is taken from the latency between each
instruction and the checksum comparison.

If the error detection latency is too high for the intended application, it
can be lowered by reducing the targeted transaction length. This does not
only reduce the average, but also the maximum. One has to expect a decline
in performance, though, as this will cause an increased transaction boundary
overhead. It can be considered to increase the targeted transaction length to
reduce overhead. However, this will only work for some benchmarks. If the
error detection latency becomes too large, cache lines will be evicted, before the
trailing cores have validated them, which results in more cache misses. Thus,
increasing the targeted transaction length will only improve performance for
benchmarks with a low cache miss rate.

6.5. Fault Injection

Fig. 7 shows the results of the fault injection without redundancy. Most runs
complete correctly even if faults are present. Especially, the benchmarks blacksc-
holes, vips, x264 and bodytrack mask faults effectively. In the cases in which
the bitflip influences the output, the result is likely a crash. These crashes are
mostly invalid instruction or unaligned access exceptions. An invalid instruction
exception can be caused by a corrupted return address. Since no MMU is used,
the core tries to execute the data at the invalid address as instructions instead
of throwing a segmentation fault. However, it is very unlikely that a random
memory location contains a sufficiently long sequence of valid instructions. The
MicroBlaze cores can only handle aligned memory accesses. Therefore, an un-
aligned access exception is thrown if the lower bits of a pointer are corrupted.
The benchmarks streamcluster, dedup and ferret also tend to freeze. This can
happen if the most significant bit of a loop counter is flipped. As most loops
use signed counters, this means that the loop will be executed around 2 billion
times, which takes so long that the timeout in our benchmarking script triggers.
Faulty outputs are possible if the flipped bit affects actual data. However, they
are quite unlikely. In our evaluation, faulty outputs have only occurred in the
benchmarks streamcluster, dedup, swaptions and bodytrack.

As shown in Fig. 8, our multiversioning approach prevented all undesirable
outcomes in our evaluation. In 72.8 % of the runs a global rollback was necessary.
A global rollback only occurs if a checksum mismatch was detected. The main
cause why a bitflip does not result in a checksum mismatch is that the containing
transaction was aborted. Aborted transactions are not validated by the trailing
cores, as they cannot influence the program output. Many aborted transactions
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Figure 7: Without redundancy the effect of injected faults can be observed. Each bench-
mark was executed 50 times and a single bitflip was injected to a random core in each run.
After the benchmark completed or timed out, the output was validated and classified as cor-
rect, faulty output, crash or freeze. Rollbacks can only occur in the redundant variant with
multiversioning.

Figure 8: This bar chart shows the results of the fault injection, when redundancy with
multiversioning is used. Each benchmark was executed 50 times and a single bitflip was
injected to a random core in each run. After the benchmark completed or timed out, the
output was validated and classified as correct, faulty output, crash or freeze. In this evaluation,
every output was correct. Sometimes, a global rollback was required to achieve this.
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happen while the thread is waiting for a synchronization construct or the core
is idle. These bitflips would not have affected program output in the baseline
variant either. Therefore, the number of rollbacks in Fig. 8 exceed the number
of faulty executions in Fig. 7. The bitflip itself can also be the reason for the
transaction abort. For example, it can shift the stack pointer to overlap with a
different thread. The conflicting memory accesses are detected and one of the
transactions is aborted.

Note that a checksum mismatch does not necessarily mean that an undesir-
able outcome would have happened without redundancy. For example, it might
hit a comparison, for which only the sign bit is relevant. In this case, bitflips in
the lower bits do not influence the program output. Therefore, the likelihood
of a checksum mismatch correlates more strongly with the transaction success
rate than an application’s susceptibility to errors. For example, the benchmark
dedup has the most undesirable outcomes in the baseline, but has executed
slightly below average global rollbacks. Contrary, the benchmark blackscholes
has executed the most global rollbacks, but is one of the benchmarks with the
least undesirable outcomes in the baseline. The high number of checksum mis-
matches in this benchmark is mainly caused by the low number of transaction
aborts, as the threads process independent work items.

The timing impact of global rollback was below the regular runtime fluctua-
tion caused by varying memory response times and thread ordering. The largest
contribution to the timing overhead is the staggered restart of the cores. Stag-
gered restarts have the advantage that checksum mismatches caused by false
sharing are resolved, as the offending transactions run successively. Therefore,
an infinite loop of global rollbacks is avoided.

7. Conclusion & Future Work

In this paper, we have shown that multiversioning is a viable approach to
implement fail-operational multithreaded applications. For the evaluation, we
have ported the pthreads library. Atomic operations are supported, too. There-
fore, we assume that most shared memory parallelization libraries could also
be easily ported. Most benchmarks already perform well (2.16 geometric mean
slowdown) even without changes. If an application runs slowly, simple changes,
like ensuring proper padding to avoid false sharing, can result in large per-
formance gains, e.g. 38.6 % in streamcluster. Hardware optimizations, which
provide additional performance without changing the software, are also avail-
able. Only if the application is optimized heavily for execution on a specific
non-transactional-memory architecture, larger changes might be necessary. The
approach also features a low error detection latency of 9,335 cycles on average,
making it suitable for use in systems that require common output. The evalu-
ation has also shown that our approach can reliably detect errors and recover
from them. A measurable performance overhead of the global rollback was not
observed. Thus, we conclude that our approach should be applicable to most
shared memory applications on general purpose and embedded systems.
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Currently, our prototype is limited in the types of faults it can handle. For
example, injecting a large number of bitflips will eventually lead to a freeze,
as the core tries to access an invalid address. As it never receives a response,
it cannot enter the interrupt handler to perform the rollback. Note that this
situation is rare, as few address ranges behave this way. We plan to add an
MMU to prevent such situations. Furthermore, we want to switch the recovery
mechanism from interrupts to resets so that we can recover from more situations.

The results do not even show the full potential of this approach. Further
optimizations like perfect prefetching and branch outcome forwarding, which
we have already presented in [9] are not yet included. These optimizations ac-
celerate the trailing cores, which reduces the number of trailing cores needed.
This enables a system developer to either improve the performance by switching
them to leading cores or reduce the power consumption by turning them off.
Due to our previous work [9], we see great potential in applying this approach
to large heterogeneous systems that execute the same instruction set to allow
for high performance, energy efficiency and fail-operational execution. Thus,
we plan to replace the currently used closed-source MicroBlaze core with open-
source in-order and out-of-order RISC-V cores. In future work, we will also
investigate further applications for multiversioning. For example, an accelera-
tion of database accesses might be possible. Furthermore, synchronization of
sensor data between tasks on an embedded system can be realized using mul-
tiversioning. A possible integration of our Transaction Management Unit [19]
simplifies the adoption on embedded systems.
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