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A B S T R A C T   

Understanding the impact of land use and land cover change on surface energy and water budgets is increasingly 
important in the context of climate change research. Eddy covariance (EC) methods are the gold standard for 
high temporal resolution measurements of water and energy fluxes, but cannot resolve spatial heterogeneity and 
are limited in scope to the tower footprint (few hundred meter range). Satellite remote sensing methods have 
excellent coverage, but lack spatial and temporal resolution. Long-range unmanned aerial systems (UAS) can 
complement these other methods with high spatial resolution over larger areas. Here we use UAS thermography 
and multispectral data as inputs to two variants of the Two Source Energy Balance Model to accurately map 
surface energy and water fluxes over a nutrient manipulation experiment in a managed semi-natural oak savanna 
from peak growing season to senescence. We use energy flux measurements from 6 EC stations to evaluate the 
performance of our method and achieve good accuracy (RMSD ≈ 60 W m− 2 for latent heat flux). We use the best 
performing latent heat estimates to produce very high-resolution evapotranspiration (ET) maps, and investigate 
the drivers of ET change over the transition to the senescence period. We find that nitrogen and nitrogen plus 
phosphorus treatments lead to significant increases in ET (P < 0.001) for both trees (4 and 6%, respectively) and 
grass (12 and 9%, respectively) compared to the control. These results highlight that the high sensitivity and 
spatial and temporal resolution of a UAS system allows the precise estimation of relative water and energy fluxes 
over heterogeneous vegetation cover.   

1. Introduction 

Evapotranspiration (ET) is the flux of water and energy from the 
Earth’s land surface to the atmosphere through the combination of 
evaporation and transpiration. It is the main cause of water loss from 
terrestrial ecosystems, and an important driver of regional climate 
(Famiglietti and Wood, 1991). Quantifying ET both temporally and 
spatially can yield significant benefits to society (Fisher et al., 2017), e. 

g., by increasing crop yield through precision irrigation (Nocco et al., 
2019; Payero et al., 2008), improving freshwater management, espe-
cially in areas with limited water (Lu et al., 2019), and reducing un-
certainty in weather and climate predictions (Arnault et al., 2016; 
Fersch et al., 2020; Heinzeller et al., 2018; Liu et al., 2012). For example, 
accurately capturing ET is fundamental to calculating water use effi-
ciency (WUE), a key metric describing the water usage of plants per unit 
plant production (Hatfield and Dold, 2019; Ogutu et al., 2021). The 
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United Nations Sustainable Development Goals (UN-SDGs) identify 
increasing WUE globally as key to boosting agricultural production and 
reducing water shortages (Ellison et al., 2017; United Nations, 2015). 
The United Nations Environment Programme has also emphasized the 
need for fine-scale measurements of environmental and biophysical 
variables across farming, pastoral, and forestry systems in order to 
measure the progress of SGDs into the future (UNEP, 2019). There is, 
however, a distinct knowledge gap in how different land use strategies 
affect ET, and thus WUE (Hatfield and Dold, 2019). 

High temporal and spatial reference observations are also required to 
evaluate the performance of low resolution, but wide-reaching, remote 
sensing data such as the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) global ET products (Kim et al., 2012), as well as to train 
and test landscape-scale simulations such as regional vegetation and 
climate models used to predict how both natural and managed ecosys-
tems may interact with a changing climate (Singh et al., 2021; Sylla 
et al., 2018; Wang et al., 2020). Climate model simulations and 
low-resolution remote sensing estimates of ET often disagree, perhaps 
owing to sub-pixel heterogeneity in biophysical parameters (Burch-
ard-Levine et al., 2021), and mismatch between the spatial scales of both 
products (Chao et al., 2021; Sullivan et al., 2019). 

To measure ET with high accuracy, established methods include 
using lysimeters (Gebler et al., 2015; Perez-Priego et al., 2017) and 
micrometeorology using eddy covariance (EC, Foken et al., 2012). While 
lysimeters can precisely measure soil water loss directly, they disturb the 
surface during installation, must be installed in large numbers to capture 
vertical and horizontal variability, and require manual intervention, so 
are difficult to deploy at scale. In contrast, EC provides a spatially in-
tegrated view of ecosystem-scale fluxes by measuring surface energy 
fluxes in combination with meteorological variables using instruments 
positioned above the vegetation canopy. 

An EC station measures fluxes over a footprint that represents the 
area upwind of the station that is contributing to the station’s flux 
measurements, and depending on the tower height, can reach hundreds 
of meters (Barcza et al., 2009). Footprints are usually calculated over a 
30 min period so that both small and large scale eddies are captured 
(Heidbach et al., 2017; Kljun et al., 2015). Footprint delineation de-
pends on a variety of atmospheric boundary layer conditions including 
windspeed and direction, atmospheric stability, turbulence, and surface 
characteristics such as surface roughness (Heidbach et al., 2017; Kljun 
et al., 2015; Rebmann et al., 2018). The accuracy of the estimated 
footprint depends on parameterization of the footprint model using data 
collected by instruments at the station. To limit possible sources of 
measurement error, and keep surface roughness constant, EC stations 
are usually located above the canopy of a homogeneous vegetation type, 
e.g., grass, forest, crop (Kljun et al., 2015). 

The disadvantage of the EC approach is that single stations cannot 
disentangle the individual flux signals in heterogenous ecosystems or 
differentiate among the vertical components of a mixed canopy (Knauer 
et al., 2018). The same issue is relevant to investigating land use prac-
tices on ET, whereby a single EC station would be required per land use 
category, e.g., fertilizer treatment or irrigation type, therefore the EC 
station approach alone can be costly and/or impractical when investi-
gating different drivers of ET in field-scale manipulation experiments 
(Barcza et al., 2009). 

To overcome some of the limitations of lysimeters and EC, remote 
sensing is increasingly being used to estimate ET. Spaceborne and 
airborne thermography can be used to estimate land surface tempera-
ture (LST) and, combined with meteorological and plant structural data, 
the surface energy budget can be calculated. Models are used to estimate 
net radiation (Rn), sensible (H), and ground (G) heat fluxes, and the 
budget residual is then attributed to the latent heat flux (LE) 

LE = Rn − H − G, (1) 

(Burchard-Levine et al., 2021; Guzinski and Nieto, 2019; Norman 
et al., 1995). On the basis of this LE estimate, evapotranspiration (ET) 

can be calculated. 
Accurately mapping ET through remote sensing is challenging, 

however, because ET is sensitive to a range of factors. Deriving LST from 
thermal imagery relies on accurate estimates of target surface emissivity 
and atmospheric transmittance, which can cause significant errors if not 
properly characterized (Heinemann et al., 2020; Schmugge et al., 2002). 
If the ground sampling distance (pixel size) is too large, pixels that 
represent a mix of LST and canopy temperature lead to greater errors 
(Burchard-Levine et al., 2021; Kustas et al., 2004; Susan Morana et al., 
1997). Furthermore, meteorological conditions such as windspeed, 
water availability (Allen et al., 1998; Feng et al., 2020), plant structure 
including canopy height, leaf area index, leaf shape, albedo, rooting 
depth (Gates and Hanks, 2015), and soil physical properties (Ekern 
et al., 2015) all contribute to uncertainty in ET estimates. These factors 
can be highly variable both spatially and temporally over small scales, e. 
g., within a single field over the course of day. Nevertheless, the promise 
of remote sensing is the possibility of generating spatially resolved maps 
of ET at field (and larger) scale at relatively low cost, and so it is a focus 
of current research. 

Spaceborne thermal imaging sensors present opportunities for 
mapping ET over very large spatial scales at moderate resolution. While 
thermal sensors on satellites are typically lower resolution than multi-
spectral imagers, data mining sharpener (DMS) approaches have been 
used to enhance moderate resolution LST products, e.g., 100–1000 m for 
the Landsat 8 and Sentinel 3 satellites, to the same resolution as multi-
spectral imagery from co-located sensors (Guzinski and Nieto, 2019). 
This approach has been successfully applied to map LST at 20 m reso-
lution, which may work well under largely homogenous forests or 
agricultural landscapes, but is still too coarse for differentiating between 
different vegetation types in many heterogenous natural and 
semi-natural ecosystems such as agroforestry, savannas, and shrublands 
(Burchard-Levine et al., 2021). Furthermore, spaceborne sensors cannot 
collect LST data under cloudy conditions. Airborne surveys overcome 
many of the drawbacks of spaceborne sensors, but can be prohibitively 
expensive and logistically difficult if using piloted aircraft. 

Unmanned aerial systems (UAS) have the potential to bridge the 
temporal and spatial scale gap between EC stations and satellite remote 
sensing (Simpson et al., 2021) and recent development in both aircraft 
and sensor technology have led to a wide range of applications to esti-
mate ET with UAS (e.g., Mokhtari et al., 2021; Nassar et al., 2022, 2021, 
2020; Nieto et al., 2019; Niu et al., 2020, 2021; Ortega-Farías et al., 
2016). Using a UAS can be advantageous because multiple surveys can 
be conducted per day (temporal resolution: EC > UAS > Satellites), and 
with a fixed-wing UAS the survey area can be hundreds of hectares in 
one flight (spatial coverage: Satellite > UAS > EC station) (Torres-Rua, 
2017). Furthermore, the ground sampling distance can be sub-meter 
because thermal infrared sensors are flown at low altitudes on the 
UAS (spatial resolution: UAS > EC station > satellite). This combination 
of high spatial and temporal resolutions and medium spatial coverage 
make the UAS a good candidate for applications such as precision 
agriculture (Niu et al., 2020), and mapping water stress and ET in eco-
systems with mixed vegetation (Nouri et al., 2015; Park, 2018). 
Furthermore, the UAS approach may be able to detect and estimate 
sub-site scale variability in ET so that the effects of different drivers, e.g. 
land use practice differences such as crop type or irrigation scheme, can 
be measured (Park et al., 2017). This may be particularly pertinent in 
water-limited, highly fragmented landscapes such as Sub-Saharan Africa 
where smallholder farms can adopt multiple land use practices in a 
relatively small plot (Kuivanen et al., 2016; Lowder et al., 2016). 

UAS remote sensing does have some limitations, foremost that this 
method is not a direct measurement of ET, but based on an energy 
balance model driven by measurements of temperature and vegetation 
structure. Furthermore, UAS based ET measurements are sensitive to 
cloud cover, windspeed, precipitation, and temperature, and cannot 
approach the temporal resolution of EC-based estimates (Mauder et al., 
2020). Miniaturized cameras may not have the radiometric quality of 
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larger, heavier sensors (Burchard-Levine et al., 2022; Kelly et al., 2019). 
UAS missions are generally limited to line-of-sight flights, flying is 
restricted in some areas, and the equipment can be expensive. 

Nevertheless, the many outstanding questions regarding the role of 
ET in local, regional and global hydrological systems warrant a range of 
approaches towards measuring ET over different spatial extents and 
with different resolution. Fisher et al. (2017) highlight some of these 
knowledge gaps and identify a need for ET maps with high accuracy, and 
high temporal and spatial resolution, that cover large areas and over 
long periods to address these research questions. Here, UAS ET mapping 
may provide additional spatial and temporal information as a comple-
ment to both EC station and satellite remote sensing methods, enabling 
land users and researchers to manage and monitor vegetation and water 
resources more efficiently (Niu et al., 2020). 

The goal of this study was to establish a protocol for UAS-based ET 
mapping in complex, heterogenous natural or semi-natural ecosystems 
that is accurate, able to resolve differences at individual plant scale, and 
inexpensive to deploy over km2-scale and larger areas. With this pro-
tocol established, we performed a case study, highlighting the UAS’ 
capability to map ET at very fine spatial resolution. We demonstrate the 
potential of the system to understand how plant-plant interactions, 
topography, and nutrient treatments affect ET at field scale. 

2. Methods 

Development of the methodology for UAS-based ET mapping had 
three main components:  

1 Estimate radiometric surface temperature based on thermal images 
captured with a UAS.  

2 Use these surface temperatures, along with plant physical properties 
estimated from UAS photogrammetry and multispectral images, to 
drive the Two Source Energy Balance Model (TSEB) and calculate 
energy and water fluxes. 

3 Assess the accuracy of mapped ET based on independent measure-
ments of ET from eddy covariance. 

To develop this method, we worked at a field site that is extensively 
instrumented for micrometeorological observations and where field 
trials with different nutrient manipulations are underway. 

2.1. Study area 

Here we studied a tree-grass ecosystem (dehesa) typical for central 
Iberia at Majadas de Tiétar, Caceres, Spain (5.776 ◦W, 39.939 ◦N, ca. 
265 m above sea level). Vegetation cover at the field site is characteristic 
of the region and consists of two main strata: an open tree canopy of 
Holm Oak (Quercus ilex) with a tree density around 20–25 stems ha− 1, 
and a herbaceous understory of annual grasses, forbs, and legumes 
(El-Madany et al., 2018). Typical leaf area index values range between 
1.5–2.0 m2m− 2 for individual trees, and 0.5–2.5 m2m− 2 (Bogdanovich 
et al., 2021) in the spatially and phenologically heterogeneous herba-
ceous layer (Migliavacca et al., 2017). We performed a single mea-
surement campaign between 5 and 21 May 2021, which corresponds to 
the end of annual peak productivity, and the beginning of the dry-down 
period in the ecosystem (Luo et al., 2018). The principal land use at the 
site is low-intensity cattle pasture during the winter and spring months 
(Burchard-Levine et al., 2019). 

The Majadas site is also used for a long-term nutrient manipulation 
experiment with three areas receiving different treatments: one area 
with additional nitrogen (FLUXNET site code ES-LM1), one area with 
combined addition of nitrogen and phosphorus fertilizer (ES-LM2), and 
a control area with no additional fertilizer input (ES-LMa). For details of 
the effect of fertilization on water use efficiency see El-Madany et al. 
(2018) and on productivity and phenology Luo et al. (2020). 

2.2. Eddy covariance station reference datasets 

Within each nutrient treatment area there are two eddy covariance 
stations capturing meteorological and surface energy balance data, with 
one measurement point each at grass- and tree-canopy level (1.6 and 15 
m above ground level respectively). The three sites are separated by at 
least 450 m, meaning their flux footprints do not normally overlap under 
prevailing wind directions (Fig. 1). 

Instruments on the 15 m towers provide both meteorological/irra-
diance and energy data for model inputs and UAS-flux estimate com-
parisons respectively (Table 1 for details). Both are integrated over 30 
min periods. Turbulent fluxes of momentum, H and water vapor (H2O 
Flux, LE, ET) were calculated from 3D-measurements of the vertical and 
horizontal wind components (R3–50 Gill Instruments, Lymington, GB) 
with an infra-red gas analyzer (LI7200 Licor Bioscience Lincoln, USA) to 
measure CO2 and H2O concentrations. Raw data were collected at 20 Hz 
using EddySoft (Kolle and Rebmann, 2009). Fluxes were subsequently 
calculated using EddyPro v. 6.2.0. In short, raw data were despiked, and 
coordinate rotation was performed using the planar fit method. Time 
lags between CO2 concentrations and vertical wind speed (w) were 
lag-corrected by maximizing the cross-correlation in predefined win-
dows. For H2O the lag-correction was performed based on bins of rela-
tive humidity. High and low frequency corrections were performed 
following Moncrieff et al. (2004) and Moncrieff et al. (1997). Quality 
control was performed following the 0–1–2 scheme of Mauder and 
Foken (2011), where 0 represents highest and 2 lowest quality 
measurements. 

Footprints were estimated using the methodology outlined in Kljun 
et al. (2015). The datasets were rasterized at 1 m resolution and rotated 
− 90◦ to ensure correct orientation. Footprints were processed in R (R 
Core Team, 2020) using the FFP function v 1.41 (Kljun et al., 2015) 
according to the corresponding flight survey area and time. 

EC station-derived fluxes and the radiative fluxes often yield in an 
imbalance where the energy balance is not fully closed (for full details, 
see Mauder et al., 2020, 2018). Contrary to the EC-method for 
measuring fluxes, the UAS flux estimation method forces energy balance 
closure by adding any residual imbalance to LE. We perform the same 
closure method in the EC station data, as recommended by Burch-
ard-Levine et al. (2021) who compared EC-measured fluxes with remote 
sensing estimates at this site. 

2.3. Unmanned aerial system data collection and processing 

The airborne sensor used in this study was the Micasense Altum 
(Micasense Inc., Seattle, WA, USA), an integrated 6-band multispectral 
and thermal infrared sensor (Blue, Green, Red, Red-Edge, Near- Infrared 
and Longwave Infrared). The sensor was mounted onboard a Quantum 
Systems Trinity F90+ (Quantum-Systems GmbH, Gilching, Germany) 
fixed-wing vertical take-off and landing unmanned aerial vehicle. A full 
description of the UAS can be found in Simpson et al. (2021). 

Flight survey areas were planned to cover the maximum extents of 
each EC station footprint, and were adapted according to the wind di-
rection and strength, i.e., in stronger winds the survey area was widened 
in the upwind directed to ensure the EC footprint area would be 
captured in the survey. Flight parameters were maintained for all flights: 
altitude of 120 m (Above Ground Level), air speed of 17 m s− 1, and 
forward and sideward image overlap were set at 76% and 80%, 
respectively. The Altum was acclimatized (powered on) for 30 min 
before flights after rest periods (Kelly et al., 2019). Multispectral images 
of the Altum calibration panel were collected before and after each 
flight. Flight timings and survey areas are detailed in Table 2. Meteo-
rological and irradiance data for each flight are reported in Fig. 2. The 
data collection period corresponds with the transition between spring 
and summer, when many of the grasses and forbs in the understory start 
to senesce. This survey window was thus optimally timed, capturing the 
seasonal peak of biomass and photosynthesis, and the transition to 
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Fig. 1. Majadas Field Site plan showing the location and maximum footprints of the three above-tree canopy and three sub-tree canopy Eddy Covariance towers, 
where N = Nitrogen-added treatment site, C = Control fertilizer treatment site, and NP = Nitrogen-Phosphorous-added treatment site. Sampling points for spatial and 
temporal analyses are marked for tree (●) and grass (£) locations; note that grass sampling points are excluded around tracks. The Apogee ground control radiometer 
is also marked (black dot, white circle). The background image is a multispectral false-color composite orthomosaic of the whole survey area from Altum imagery 
collected at solar noon, 20/05/2021, where the bands are R = NIR, G = Red-edge, B = Red. Projected Coordinate System = WGS84 UTM 30 N. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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full-summer senescence in the grassland canopy. During this period, we 
aimed to capture ET variability brought about by this rapid phenological 
change (Luo et al., 2020). We demonstrate this effect in Fig. 3, which 
shows the change in NDVI from the first survey day (05/05/2021) to the 
last (20/05/2021). 

Raw Altum image trigger locations and orientations were calculated 
using the Post-Processing Kinematics (PPK) method which uses iBase 
base-station data to perform offset correction to the “rover” position 
data. Agisoft Metashape (St. Petersburg, Russia) software was used to 
apply vignetting, dark pixel and radiometric correction for each image, 
and to create two orthomosaics per survey area (at the native resolutions 
of the multispectral and longwave infrared bands, 0.05 and 0.82 m 
respectively). A single point cloud was generated from an Altum survey 
of the entire site performed at solar noon (around 14:00 local time) to 

reduce the effects of tree shadows on point accuracy. 

2.4. Energy flux mapping 

2.4.1. Two source energy balance (TSEB) and dual time difference (DTD) 
models 

TSEB was developed by Norman et al. (1995) and is an established 
model for producing spatially explicit flux estimates over different 
vegetation types and at different scales (Alhassan and Jin, 2020; Bell-
vert et al., 2021; Burchard-Levine et al., 2020; Guzinski and Nieto, 2019; 
Hoffmann et al., 2016; Simpson et al., 2021). It estimates LE as the re-
sidual of the energy balance by separating the energy exchange between 
vegetation and soil sources, using the radiometric surface temperature 
as the main boundary condition. Detailed explanations of the mechanics 
behind TSEB can be found in the literature (Burchard-Levine et al., 
2021; Niu et al., 2020; Norman et al., 1995). We used the open-source 
Python implementation of TSEB (Nieto et al., 2021) to perform 
pixel-based simulations to derive net radiation (Rn), sensible- (H), 
latent- (LE) and ground- (G) heat fluxes from a radiometric surface 
temperature, canopy height model, and green fraction rasters from UAS 
data, as well as a suite of meteorological and irradiation forcing data (for 
a summary, see Table 4 in Simpson et al., 2021). In this study we also 
used the TSEB Dual Time Difference model, which used a radiometric 
surface temperature layer taken up to 90 min after dawn when canopy 
and soil sensible heat fluxes are close to zero (Norman et al., 2000). 
Previous work has shown that this correction improved H estimations, 
and as a result, reduced biases in other fluxes (Brenner et al., 2018; Nieto 
et al., 2019; Simpson et al., 2021). 

However, one of the challenges of TSEB is that it is more sensitive to 
errors in absolute LST retrieval compared to contextual approaches such 
as METRIC (Niu et al., 2020), which may not need highly accurate LST 
retrievals/calibrations (which may be a more important issue with 
UAV-based sensors). For that reason, the Dual-Temperature Difference 
(DTD) was developed by (Norman et al., 2000) in order to take advan-
tage of the relative temperature increase in the morning. DTD therefore 
uses two thermal infrared measurements, one before sunrise and a sec-
ond one before noon, which in principle minimize potential systematic 
errors associated to the uncertainty in LST retrieval. Detailed de-
scriptions of the equations and workflows for both TSEB-PT and DTD are 
contained in recent literature (Nieto et al., 2019; Simpson et al., 2021). 
Full source code for TSEB is available at Nieto et al. (2021, https://doi. 
org/10.5281/zenodo.4761984). For further of evaluation of other 
UAS-based ET models, see (Niu et al., 2020; ). 

2.4.2. Land surface temperature estimation 
The Altum’s longwave infrared band retrieval was converted to 

radiometric land surface temperature using three different methods. The 
default method involves converting digital number (DN) to temperature 
(K) using 

TRAW = 0.001DN, (2)  

where TRAW is radiometric surface temperature (brightness tempera-
ture). The second method uses 

TEMP = 50.2 + 0.00837DN (3)  

where TEMP is the radiometric surface temperature determined with an 
empirical relationship where the relationship between DN and bright-
ness temperature is established using reference canopy temperature data 
collected using a high-accuracy infrared radiometer (Section 3.1, 
Simpson et al., 2021). It should be noted that we used the same sensor as 
in Simpson et al. (2021), and so this method may not be applicable to 
other Altum units, however the method is replicable. 

Thirdly we employed the methodology from Heinemann et al. (2020) 
to correct for errors borne from variability in target surface emissivity 
and atmospheric transmission using 

Table 1 
Details of the Eddy Covariance towers used in this study. Towers are named 
based on the fertilizer treatment zone within which they are located (C =
Control, N = Nitrogen-added, NP = Nitrogen-Phosphorous-added), and where 
the tower instruments are positioned above-tree canopy or below-tree canopy 
(-sub). Tower heights are measured in meters above ground.  

Name Elevation (m 
ASL) 

Location 
(Degrees) 

Fertilizer 
treatment 

Tower height 
(m) 

C 318 39.9403, 
− 5.7746 

Control 15 

C-sub 317 39.9405, 
− 5.7745 

Control 1.6 

N 317 39.9427, 
− 5.7786 

Nitrogen 15 

N-sub 318 39.9428, 
− 5.7791 

Nitrogen 1.6 

NP 321 39.9360, 
− 5.7759 

Nitrogen & 
Phosphorus 

15 

NP- 
sub 

321 39.9428, 
− 5.7791 

Nitrogen & 
Phosphorus 

1.6  

Table 2 
Details of flight take-off times, image counts, and areas surveyed within this 
study. Survey areas refer to the different fertilizer treatment sites, where N =
Nitrogen-added, C = Control, and NP = Nitrogen-Phosphorous-added. Survey 
area W refers to a single flight survey inclusive of all three treatment sites and 
Eddy Covariance towers.  

Date Time Image count Survey areas 

05/05/2021 07:30 1152 N, C, NP 
11:30 1093 N, C, NP 

11/05/2021 07:30 1712 N, C, NP 
10:20 475 N 
12:45 1567 N, C, NP 
16:25 1536 N, C, NP 

14/05/2021 07:30 1662 N, C, NP 
11:30 310 N 
12:30 1336 N, C, NP 
14:00 1604 N, C, NP 

15/05/2021 07:20 1605 N, C, NP 
10:15 1483 N, C, NP 

17/05/2021 07:10 1785 N, C, NP 
09:50 1542 N, C, NP 
11:30 1595 N, C, NP 
12:50 1748 N, C, NP 
14:30 1744 N, C, NP 
16:20 1588 N, C, NP 

19/05/2021 07:10 1854 N, C, NP 
09:50 1799 N, C, NP 
11:50 536 N 
12:35 1761 N, C, NP 
14:25 1733 N, C, NP 
15:50 1745 N, C, NP 

20/05/2021 11:30 1800 N, C, NP 
13:00 1787 N, C, NP 
14:20 2640 W  

J.E. Simpson et al.                                                                                                                                                                                                                              

https://doi.org/10.5281/zenodo.4761984
https://doi.org/10.5281/zenodo.4761984


Agricultural and Forest Meteorology 321 (2022) 108981

6

TLST =

[
BT4

sens − (1 − ϵ)τT4
bkg − (1 − τ)T4

air

ϵτ

]1/4

(4)  

where TLST is the emissivity and transmittance corrected land surface 
temperature, BTsens is the at-sensor “brightness temperature” (equivalent 
to Traw in this study) and Tair is air temperature (both in K), ε is emissivity 
and τ is transmittance (ranging 0–1, unitless). Tair was measured at the 
EC stations, whereas Tbkg was measured using a PCE-889B Pyrometer 
(PCE Deutschland GmbH, Meschede, Germany) (set to ε = 1, reported 
accuracy of 1 K) aimed at a crumpled sheet of aluminum foil at the 
beginning, midpoint and end of each flight. 

Emissivity maps were calculated on a per-pixel basis for grass areas 
only using an established method (Heinemann et al., 2020). Where pure 
grass or pure soil pixels have known emissivity values and represent 
maximum and minimum values respectively, this method calculates 
emissivity of mixed pixels based on the proportion of the pixel covered 
by green vegetation/soil. 

Our NDVI maps were created from Altum Near Infrared and Red 
bands at 0.82 m ground sampling distance. NDVI thresholds for pure soil 
and grass were derived from the midday flight on 05/05/2021 when the 
grass was its greenest, using the lowest (5th) and highest (99th) 

percentile NDVI values in the scene to represent pure soil and grass 
pixels respectively. The resultant thresholds were 0.048 and 0.677 for 
NDVIsoil and NDVIgrass, respectively. We applied a known emissivity 
value of 0.985 from Rubio et al. (1997) to the trees on site. Emissivity 
and transmittance estimates for soil, grass, and trees used as inputs for 
Eq. (4) were calculated based on Heinemann et al. (2020). 

We collected relative humidity and air temperature data from a 
Kestrel Drop D3 Environmental Data Logger (Kestrel Instruments, 
Boothwith, PA, USA), mounted in the payload sensor bay of the UAS to 
derive atmospheric water vapor content, at a fixed distance of 120 m 
that corresponds to the UAS flight altitude. Before outputting all 
radiometric surface temperature layers, we applied a shadow mask, 
calculated by using the 10th percentile values from the near infrared 
band which is particularly sensitive to shadows and vegetation (Rufe-
nacht et al., 2014). 

To assess the performance of each method described above for 
calculating radiometric surface temperature (TRAW, TEMP, TLST) from the 
UAS, we installed an SI-220 Apogee Infrared Radiometer (Apogee In-
struments, Inc, Logan, UT, USA, wavelengths 8–14 mm corresponding 
the Altum’s longwave infrared band, reported accuracy of 0.1 K), 
mounted on a tripod and angled 45◦ at the surface of a small lake 

Fig. 2. Meteorological and irradiance data measured over the study period at the three 15 m (Above-tree canopy) Eddy Covariance towers centered in control (C), 
Nitrogen-added (N), and Nitrogen-Phosphorous-added (NP) fertilizer treatment sites. Individual measurements are plotted as points, means of measurements from all 
3 towers are bold lines. Measured parameters are: air temperature (Tair), wind speed (u), air pressure (p) water vapor pressure above tree canopy (ea), incoming 
shortwave radiation (SWIN), and incoming longwave radiation (LWIN). gray vertical bars indicate UAS survey flight periods. 
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Fig. 3. Variations in Normalized Difference Vegetation Index (NDVI) between 05/05/02021 (a, c, e) and 20/05/2021 (b,d,f) at the Nitrogen-added (N) (a, b), 
Control (C) (c, d), and Nitrogen-Phosphorous-added (NP) (e, f) fertilizer treatment sites. The thick black polygons denote long-term footprint climatology areas, and 
gray polygons delineate tree crowns. Mean (x‾) and standard deviation (1σ) NDVI statistics are reported in each panel for both canopy layers (Tree and Grass). 
Projected Coordinate System = WGS84 UTM 30 N. 
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(Fig. 1). Data were collected every 20 s. Apogee water surface temper-
ature values were averaged according to the overpass time of the UAS, 
and thus served as reference values. 

2.4.3. Other TSEB inputs 
A canopy height model was created from a point cloud output from 

Agisoft Metashape produced from the data collected during the site- 
wide survey at solar noon (14:00 CEST) on 20/05/2021. We first pro-
cessed the point cloud in CloudCompare (Girardeau-Montaut, 2021); 
decimated the data using random sampling, manually subset to remove 
visible outliers, then cleaned using Statistical Outlier Removal (SOR) 
and noise filters. We then used the lidR package in R (Roussel and Auty, 
2021) for the remaining steps: 1) classify ground points using the Pro-
gressive Morphological Filter, 2) filter ground points, 3) classify noise 
(SOR), 4) filter ground points again, 5) create digital terrain model 
(DTM) using k-nearest neighbor approach with an inverse distance 
weighting in “grid_terrain”, 5) normalize height of non-ground and 
non-noise points against the DTM, 6) set all return number values to 1, 
7) use “grid_canopy” to convert normalized points to a pit-free canopy 

height model. As the Structure-from-Motion approach is not able to 
capture sub-canopy or grass structure well, we assumed a fixed height 
value of 0.25 m for the grass, based on the average of ~25 observations 
made in the field using a ruler. We also removed intermediate CHM 
values between the grass/tree layers (0.30–4 m) in order to remove 
mixed pixels in the CHM layer, but also to produce separate grass and 
tree processing masks. The site-wide CHM, grass and tree masks were 
then cropped and resampled to fit the radiometric surface temperature 
layers from each UAS survey. 

Green fraction (GF) refers to the proportion of the canopy covered in 
green vegetation. Daily GF was calculated using the multispectral data 
from the survey flights closest to solar noon. We derived GF per 0.82 m 
pixel (LWIR native resolution), using fCover from RStoolbox (Leutner 
et al., 2019) calculating the proportion of each 0.82 cm pixel covered by 
0.05 m pixels of NDVI values above a set threshold (0.25). This value 
was appropriate because 0.05 m pixels are rarely mixed. GF layers were 
cropped and resampled to fit each survey area radiometric temperate 
layer. For DTD processing, it was necessary to crop and resample all 
raster input data to fit the early morning flight. 

Leaf Area Index (LAI) data were taken from field surveys of both tree 
and grass vegetation strata. Tree LAI were sampled indirectly using an 
LAI-2200 plant canopy analyzer (LI-COR, Lincoln NB, USA,). A total of 6 
trees were measured individually, with LAI ranging between 2.01 and 
3.40 m2 m− 2 (mean: 2.71 m2 m− 2). Grass LAI measurements were 
collected over 22 plots (25 m x 25 m) randomly allocated over the CT, 
NT and NPT tower footprints. At each plot, two samples (total of 44 
samples) were acquired through destructive sampling and leaf scanning 
(Melendo-Vega et al., 2018; Mendiguren et al., 2015). We calculated 
means from both tree and grass surveys, and applied them as single 
values to the appropriate processing mask (2.40 and 1.95 m2 m− 2 

respectively). Meteorological and irradiance forcing data were taken 
from the EC stations that correspond with the flight survey time and 
area. 

2.4.4. TSEB and DTD model application 
We applied the TSEB and DTD models using pyTSEB (Nieto et al., 

2021), which allows the user to run TSEB based on a configuration file 
that defines model parameters and variable locations. This enabled us to 
create TSEB/DTD outputs for each survey area (N, C, NP), date, time, 
radiometric surface temperature (TRAW, TEMP, TLST) and each vegetation 
type (grass and tree). 

2.4.5. EC station-UAS flux comparison 
Within each flight, the UAS surveyed all six EC station footprints: in 

each fertilizer treatment area (survey area) EC stations mounted on tall 
and small towers capture above canopy and sub-canopy fluxes respec-
tively. We extracted sub-canopy fluxes from the grass-only TSEB/DTD 
outputs using the sub-canopy EC station footprint areas derived in 
Section 2.2.2, and above-canopy fluxes were extracted from tree and 
grass TSEB/DTD outputs, using the tall tower footprints. Pixel values for 
Rn, H, LE and G were then averaged within each footprint, and 
compared to the EC station estimate with corresponding time and 
location. All EC station flux estimates with quality flags more than zero 
were omitted from comparisons. To ensure comparability between TSEB 
and DTD estimates, we omitted the early morning flux comparisons from 
both datasets, as the energy fluxes are low at this time, and thus may 
artificially inflate performance statistics. 

2.4.6. Spatially distributed evapotranspiration estimates 
Each EC station estimates ET with the units g m− 2 s− 1. Instantaneous 

water fluxes can also be derived from latent heat flux (LE) layer from 
TSEB/DTD using the following equations, 

λ = (2.501 − 0.00237Tair) × 106 (5)  

and 

Table 3 
Summary of the statistical tests used to examine the spatial and temporal drivers 
of Evapotranspiration (ET) variability at the Majadas field site, using UAS im-
agery derived data. Here random variables are marked with (*). The Explanatory 
Variables Tested column describes model inputs but does not indicate the final 
variables used in the models. GAM stands for Generalised Additive Model, 
GLMM stands for Generalised Linear Mixed Model. In Data Subset, N = Nitrogen- 
added, C = Control, and NP = Nitrogen-Phosphorous-added fertilizer treatment 
sites.  

Model 
Number 

Objective 
tested 

Dataset subset Explanatory 
variables 
tested 

N Model 
used 

1 Time of 
Day, 
Vegetation 
Type 

Only data with 
no fertilizer 
treatment (O) 

Date, Time, 
Vegetation 
type 

29,760 GAM 

2 Date, 
Elevation, 
Vegetation 

Only data from 
midday 
(11:30–13:00) 

Date, 
Elevation, 
Time*, 
Vegetation 
Type 

11,106 GLMM 

Only data with 
no fertilizer 
treatment (O) 

3 Fertilizer 
Treatment 

Only data from 
N, C, NP areas 

Date*, 
Elevation, 
Time*, 
Fertilizer 
Treatment, 
Vegetation 
Type 

5057 GLMM 

Only data from 
midday 
(11:30–13:00) 

4 Tree Crown 
Area, Tree 
Height 

Only data from 
Trees 

Date*, 
Elevation, 
Time*, Tree 
Height, Crown 
Area 

6207 GLMM 

Only data from 
midday 
(11:30–13:00) 
Only data with 
no Fertilizer 
Treatment (O)  

Table. 4 
Error statistics of UAS-derived energy fluxes for the best-performing DTD-TEMP 
(Dual Time Difference, Empirical Temperature) model compared to Eddy 
Covariance tower measurements (n = 2094). For the complete comparison of all 
surface temperature and Latent heat flux models, see Table S1.  

Flux RMSD Bias Standard deviation 
(W m− 2) 

Ground Heat Flux (G) 25.45 16.61 19.39 
Sensible Heat Flux (H) 80.83 − 57.64 56.99 
Latent Heat Flux (LE) 60.23 9.13 59.87 
Net Radiation (Rn) 46.75 − 30.76 35.41  
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ET = LE
103

λ
, (6)  

where λ is the latent heat of vaporization (J kg− 1), Tair is air temperature 
( ◦C), ET is evapotranspiration (g m− 2 s− 1) and LE is the latent heat flux 
(W m− 2). 

We selected the best performing TSEB/DTD variant and radiometric 
surface temperature output (compared against EC estimates) to produce 
spatially distributed ET values. Each LE pixel was converted to ET using 
the bigleaf package for R (Knauer et al., 2018), using the relevant air 
temperature values from EC stations. The ET rasters were then averaged 
by the corresponding EC station footprint. The linear relationship be-
tween UAS and EC-derived ET was ascertained using regression analysis, 
and the slope and intercept coefficients were used to calibrate the final 
UAS ET estimates. 

2.4.7. Explanatory variables and sampling approach 
With the new spatial and temporal detail to energy and water flux 

mapping provided by the UAS compared to EC station and satellite 
remote sensing approaches, we examined some of the environmental 
and biophysical drivers of evapotranspiration variability at our study 
site. We devised our sampling approach to examine how ET varied as a 
function of 1) time of day, 2) date, 3) vegetation type (tree or grass 
canopy), 4) elevation, 5) fertilizer treatment, and for trees 6) crown area 
and 7) tree height. 

We sampled vegetation at a network of points across the tree and 
grass strata throughout the site. In total, 2517 tree canopies were 
identified in the UAS imagery using the CHM to delineate crown areas 
and treetop sampling points using the lidR and treetop packages in R 
(Roussel and Auty, 2021). An equal number of sampling points were 
randomly distributed across the site using the grass processing mask to 
limit their distribution, as displayed in Fig. 1. Areas around the tracks 
were discounted for grass sampling points, as the bare soil would in-
fluence ET readings. 

Here the temporal dimension (day, date) encompasses all of the 
random variability brought about by changing meteorological forcings 
and biophysical properties of the vegetation that may be associated with 
the temporal evolution of the vegetation (Figs. 2 and 3 highlight this 
variability). Given that many of these properties are used as, or corre-
lated with, TSEB model inputs, we simply use time/date as general 
proxies for changing conditions, and test these as random variables. 

Spatial variables were extracted for each sampling point from the 
following datasets: vegetation type was derived from the tree/grass 
masks, elevation was taken from the DTM for grass, and CHM minus tree 
height for trees, fertilizer treatment was conservatively delineated using 
average footprints around each tall EC station tower (N, C, and NP), all 
other points were classed as “O” (other), and tree height and crown 
diameter were derived from the CHM using the treetop package. All 
sampling points were then used to extract ET values using the raster 
package for R (Hijmans et al., 2021) and each ET value was assigned a 
relevant time and date stamp according to when the data were collected. 
The dataframe was then merged using the reshape2 package for R 
(Wickham, 2007) so that each response value (ET) had the corre-
sponding explanatory variables on the same row. 

To test the effects of the drivers (1–7) outlined above, the dataset had 
to be subsetted to ensure fair comparability between variables. For 
example, to examine the effect of survey date, and thus senescence, it 
was necessary to standardize the time of day, so only data from midday 
surveys were selected for this analysis. Table 3 outlines the datasets and 
models used in each analysis. Correlation between explanatory variables 
was assessed using the GGally package (Schloerke et al., 2021) in R; the 
only covariates were tree height and crown area. Given that crown area 
is observable from both aerial and satellite imagery, whereas tree height 
can be quickly estimated from the ground compared to crown area (e.g. 
using a clinometer), we explore both variables in Model 4. 

2.4.8. Statistical analyses 
We used Generalised Linear Mixed effect Models (GLMMs) of the 

Gaussian family (owing to the normal distribution of ET data) to test 
which explanatory variables (outlined in Section 2.4.7) were significant 
drivers of UAS-derived evapotranspiration on the tree grass ecosystem 
site at Majadas. GLMMs are suitable for evaluating both continuous 
(time or space) and categorical variables, which can be tested for their 
individual explanatory power, as well as their interactions with other 
variables. Here we differentiate between fixed and random explanatory 
variables, with fixed variables being accurately measured treatments, 
categories or variables, and random effects being temporal proxies (time 
of day, date of survey) which embody a wide range of potential vari-
ability. Explanatory variables were tested in R using backward selection, 
until only significant predictors remained in the model. Akaike’s Infor-
mation Criterion (AIC) values were used to select the most parsimonious 
model. We also used a non-parametric Generalised Additive Model to 
assess the non-linear effects of time on ET, using a smoothing function 
set to 3 degrees of freedom, to avoid model overfitting. 

3. Results 

3.1. Land surface temperature estimation 

We first tested the accuracy of the different methods for deriving 
radiometric surface temperature from the UAS thermal imagery. 
Compared to the spatially and temporally coincident reference surface 
temperatures measured using the Apogee Infrared radiometer, the 
radiometric surface temperature method with the lowest error was the 
empirical method TEMP (RMSD 2.62 K, bias − 0.44 K, standard deviation 
2.66 K), followed by TRAW (RMSD 4.21 K, bias 2.40 K, standard devia-
tion 3.56 K), and TLST (RMSD 13.51 K, bias 9.11 K, standard deviation 
10.46 K). 

3.2. EC station-UAS flux comparison 

Latent heat flux describes the energy consumed during ET, and is 
thus the most important flux for mapping ET Eqs. (4) and ((5)). LE was 
most accurately captured using the Dual Time Difference (DTD) model 
in conjunction with the empirical method for deriving radiometric sur-
face temperature TEMP, as demonstrated by its low RMSD, bias, standard 
deviation (Tables 4 and S1), and high R2, slope close to 1, and low 
intercept (Fig. 4a). The EC-UAS agreement in LE was especially strong 
for the sub-canopy layer (grass only), with an RMSD of 51 W m− 2, slope 
0.93, and R2 0.81 (Fig. 5). 

Although the DTD-TEMP combination did not yield the best estimates 
of Rn, H, and G, we use this model because our study focuses on ET 
mapping. Fig. 5 shows overestimation/underestimation of LE/H 
compared to the above canopy towers, with the converse being true for 
sub-canopy towers. 

3.3. Factors affecting evapotranspiration 

3.3.1. Temporal trends 
Here we divide temporal trends in ET into two time scales; ET as a 

function of time of day and date of survey (Model 1), and control for 
time of day to assess survey date in Model 2. Model 1′s explanatory 
power was substantial (adjusted R2 0.68, 95% CI 0.06, P < 0.001), with 
ET in trees being significantly higher than grass across the survey period 
(β = 0.02, τ = 117.3, P < 0.001). Time of the day was a statistically 
significant smooth term in the model, with ET peaking around midday in 
both grass and trees, then falling towards the evening (effective degrees 
of freedom = 2 and 2, F = 7379 and 17,607, P < 0.001 and P < 0.001 
respectively), although ET in trees is much greater (Fig. 6a). The 
advantage of using a UAS to map ET is that we can also map these 
temporal changes. Fig. 7 shows how ET evolves throughout the day, 
from very low values at around 10:00 (Fig. 7a), building towards the 
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peak at 14:30, then ET is reduced again by 16:30. By 16:30 the grassy 
areas return to similar ET values as 11:30, however ET in trees remains 
higher after the daily peak. 

By observing ET values from around midday only (11:30 – 13:00), it 
is then possible to examine how ET responded over the survey period in 
Model 2. As this subsetted dataset is also suitable for comparing the 
effects of elevation, and vegetation type, these variables are included in 
the model. As there is some variability in survey times for each date, we 

treat time of day as a random variable. The model’s explanatory power 
including fixed and random variables was substantial (conditional R2 =

0.63), as was the part related to the fixed variable alone (marginal R2 =

0.30). There was a significant interaction between date and vegetation, 
with ET in trees increasing significantly more over the survey period 
than grass (coefficient = 0.02, 95% CI = 0.002, t = 42.85, d.f. = 16,157, 
P < 0.001), see Fig. 6b. These patterns are clearly visible in the ET maps 
in Fig. 8, where tree and grass ET values are similar in the first two 

Fig. 4. Flux mapping performance of the UAS (predicted) compared to the Eddy Covariance (EC) measurements (observed). The plots highlight how different 
methods of deriving radiometric surface temperature, TEMP (Empirical relationship) (a, b), TLST (emissivity and transmittance corrected land surface temperature) (c, 
d), and TRAW (radiometric surface temperature) (e, f) influence UAS flux accuracy. Also shown are how the two modeling methods, DTD (Dual Time Difference) (a, c, 
e) and TSEB (Two-Source Energy Balance) (b, d, f) influence UAS derived flux accuracy. Plots show data from the sub-tree canopy (●) and above-tree canopy (▴) EC 
stations, where the sub-tree canopy comparison are grass only, and above-tree canopy comparisons include tree and grass. Plotted using custom routines from 
(Aphalo, 2021, https://github.com/aphalo/ggpmisc). 
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timesteps (05/05/2021 and 11/05/2021), however ET in the trees 
continually increases as the survey period progresses. Evidence of grass 
senescence is also visible in Fig. 8e, with extensive areas showing lower 
ET values. The variability of ET values increases in grass towards the end 
of the survey period Fig. 6b, which reflects the patchiness of the grass 
canopy (Fig. 8e). While there was also a significant interaction between 
date and elevation, this and other spatial trends will be presented in the 
following section. 

3.3.2. Spatial trends 
The effects of elevation were mediated by survey date; i.e. in Model 2 

there was a statistically significant but weak negative interaction effect 
of date and elevation on ET for the grass canopy (std. coeff. = − 0.007, 
std. 95% CI = − 0.01- − 0.01, t = − 6.94, d.f. = 16,154, P < 0.001). As the 
survey period progressed, ET in the lower elevations increased more 
than higher elevations, especially in trees (Fig. 9a). The spatial distri-
bution of these differences are plotted in Fig. 10, showing an overall 
positive change in ET in trees, and in much of the grassland areas. While 
there were isolated areas of grass at lower elevations showing a negative 
trend in ET (i.e. between N and C EC stations), the majority are at high 
elevations. Compared to grass, the effect of elevation over the survey 
period was less important for trees (std. coef = − 0.03, std. 95% CI =
− 0.05- − 0.01, t = − 3.26, d.f. = 16,254, P < 0.05). 

The GLMM model used for assessing the effect of fertilizer treatments 
(Model 3) yielded reasonable and significant explanatory power (con-
ditional R2 = 0.62, marginal R2 = 0.26). As shown in Fig. 9(b), the ef-
fects of both fertilizer treatments (addition of N and NP) on ET were 
significantly higher than the control (C) for both trees and grass (for N 
std. coeff = 0.4, std. 95% CI = 0.33–0.46, t = 11.69, d.f. = 5047, P < 
0.001 and for NP std. coeff.  = 0.41, std. 95% CI = 0.34–0.47, t = 11.68, 
d.f. =5047, P < 0.001), however the fertilizer effect was weaker for 
trees (for N std coeff. = − 0.21, std. 95% CI = − 0.30- − 0.11, t = − 4.41, d. 
f. = 5047, P < 0.001) and the NP treatment was not significantly 
different to N (std. coeff. = − 0.03, std. 95% CI = − 0.11- − 0.06, t =
− 0.64, d.f. = 5047, P = 0.512). These effects are seen in Fig. 11, which 
shows the midday ET for the three fertilizer treatments at the beginning 
and end of the survey period. The most evident effect is between the 

control and the two fertilizer treatments (Fig. 11c,d) vs (Fig. 11a,b) and 
(Fig. 11c,d) vs (Fig. 11e,f), where differences in ET between treatments 
is especially greater in grass compared to trees especially at end of the 
survey period. 

Model 4 was used to investigate how tree structural properties can 
influence ET, the model’s explanatory power of fixed effects (tree height 
and crown area) was very weak, but significant (marginal R2 = 0.01, P 
< 0.001). There was no significant interaction between tree height and 
canopy area on ET response, despite their correlation. The random ef-
fects of date and time were large, with a conditional R2 = 0.64. The 
spatial effects of crown area and height were very weak, but also positive 
and significant (std. coeff = 0.08, std. 95% CI = 0.06–0.1, t = 8.12, d.f. 
= 6195, P < 0.001, and std. coeff = 0.05, std. 95% CI = 0.04, 0.07, t =
5.67, d.f. = 6195, P < 0.001 respectively). These very weak trends can 
be observed in Fig. 9c and 9d. 

4. Discussion 

We provide the largest number of EC-UAS derived energy flux 
comparisons to date (324), showing significant spatial and temporal 
patterns of ET across a temperate oak savanna site during the senescence 
period in 2021. We clearly show how ET in trees and grass responds 
differentially during the day, during the progression of the senescence 
period, and in response to different fertilizer treatments. We use tem-
porality as a proxy for the changing meteorological and environmental 
conditions experienced both within and across days (Figs. 2 and 3). 
Unsurprisingly, ET peaks in both grass and trees around solar noon 
(Figs. 7a and 8e), with ET in trees being significantly higher than grass at 
all times. Over the survey period there was a significant and marked 
increase in ET for trees, however the signal was far weaker for grass 
(Fig. 6b). This can be explained by the interaction between a trend to-
wards environmental conditions that promote higher ET, e.g., increased 
air temperature, vapor pressure deficit (VPD), and incoming radiation 
(Fig. 2), and higher water availability in trees due to their deeper roots 
compared to grass (El-Madany et al., 2020). In two previous studies at 
the same site at Majadas de Tietar, Burchard-Levine et al. (2021) yielded 
accurate flux estimates of the TGE (compared to EC stations) using 

Fig. 5. (a) Above-tree and (b) sub-tree canopy flux comparisons between UAS and Eddy Covariance (EC) using the Dual Time Difference (DTD) energy balance model 
with empirical thermal calibration method (TEMP), with linear trend lines (colored) and standard error (gray shading). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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airborne LST data at 4.5 m, and resampled to 1.5 m ground sampling 
distance, which enabled them to separate tree and grass canopies. While 
their flux estimate accuracies were comparable to ours (RMSD ≈ 60 W 
m− 2 for LE), their overpass return interval was far greater (months 
apart), perhaps owing to the cost and logistical limitations of using 
manned aircraft. In another study, El-Madany et al. (2018) demon-
strated the sensitivity of the EC method to associate temporal flux 
variability to surface characteristics, however the method does not allow 
spatial separation of grass and tree canopies. Given that our approach 
still relies on EC station data for model inputs, as well as calibration and 
validation purposes, the UAS method should be seen as complimentary. 
Although model input data could be collected using mobile weather 

stations, radiometers, and pyranometers, further work is required in 
order to calibrate accurate UAS energy and water estimates completely 
independent of EC stations. 

We report fertilizer treatment as a significant driver of ET in the TGE, 
in agreement with previous work (El-Madany et al., 2021; Luo et al., 
2020). The effects are most prominent in the grass canopy where the 
addition of nitrogen and nitrogen phosphorus yielded significantly 
higher ET values compared to the control area (Figs. 9b, and 11). The 
addition of NP significantly increased ET in grass compared to N alone, 
however this effect was non-significant in trees. These overall results can 
be explained using previous studies (El-Madany et al., 2021; Luo et al., 
2020; Migliavacca et al., 2017) that showed significantly higher 

Fig. 6. Temporal trends of Evapotranspiration (ET) as a function of vegetation type, and (a) time of day, and (b) survey date. The boxplots show the ET distribution 
for the sampling points marked in Fig. 1. All pairs are different with high significance (P<0.001) except those marked. Diamond points (◆) denote the mean, and 
dashed lines denote trendlines from the generalised models described in Section 2.4.7. 
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Fig. 7. Evapotranspiration (ET) maps from 17/05/2021 of the Tree-Grass Ecosystem (TGE) at the Control fertilizer treatment site tower. Temporal changes in ET 
through a single day, at (a) 0950, (b) 1130, (c) 1250, (d) 1430, and (d) 1620 are shown. The higher ET values seen on the tracks in plot (a) are artifacts caused early 
in the morning when the tracks were warmed. Gray polygons denote tree crowns, Projected Coordinate System = WGS84 UTM 30 N. 
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Fig. 8. Development of Evapotranspiration (ET) during the survey periods in the Tree-Grass Ecosystem (TGE), on (a) 05/05/2021, (b) 11/05/2021, (c) 14/05/2021, 
(d) 17/05/2021 and (e) 19/05/2021. The maps show ET measured at midday (± 1 hour) only. 
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chlorophyll a + b (Cab), canopy nitrogen content (N%), and maximum 
carboxylation capacity (Vcmax) in N and NP fertilized grass canopies 
compared to the control over the same time period in 2014. Higher 
levels of these metabolic plant functional traits are linked to increases in 
gross primary productivity, photosynthesis and consequently transpi-
ration rates. Also, an increase of LAI as consequence of N fertilization led 
to increased grass transpiration (El-Madany et al., 2021; Luo et al., 
2020), that at the experimental site led to an earlier senescence in the N 
treatment because of faster depletion of soil moisture (Luo et al., 2020). 

While previous studies have detected ET differences in fruit trees as a 
response to different watering treatments (Park et al., 2017), or under 
different nutrient treatments (El-Madany et al., 2021) we are the first to 
assess the effects of fertilizer treatment on ET using the UAS approach. 
Our results show an important application for the UAS ET mapping 
method in understanding how land management practices can affect 
water use and the surface energy balance. These methods would be 
particularly useful for understanding how agroforestry practices (Kuyah 
et al., 2019), land use change (Heald and Spracklen, 2015), and different 

Fig. 9. Spatial drivers of Evapotranspiration (ET) variability in a tree-grass ecosystem. The effect of elevation (proxy for position on the hill) was very weak but 
significant in Model 2. (height above ellipsoid shown). Subplot (a) shows a tendency for lower ET at lower elevations early in the survey period, however this trend 
weakens after 11/05/2021 where ET at lower elevations is similar or greater than that of higher elevations. The large increase in ET between 11/05/2021 and 14/ 
05/2021 corresponds to an increase in air temperature and incoming radiation (Fig. 2.). In (b) we show ET values in grass and trees over three different fertilizer 
treatment sites (C = Control, N = Nitrogen-added, NP = Nitrogen-Phosphorous-added) as well as the significance of difference between means. Subplot (c) shows ET 
as a function of tree height (Model 3), while (d) presents ET as a function of tree crown area (Model 4). Sample sizes can be found in Table 3. 
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irrigation practices (Sugita et al., 2017) can influence energy fluxes and 
ET. This method would also be practical for researching drought resis-
tant crops, or monitoring the establishment of afforestation/refor-
estation projects (Wheeler et al., 2021) where sapling mortality has been 
reportedly high (e.g., Coleman et al., 2021). While others have suc-
cessfully mapped biomass and yield traits using remote sensing methods 
(Yang et al., 2020), we demonstrate a method for mapping ET which 
would enable researchers and land users to map water use efficiency, e. 
g., as biomass or yield gain per unit evapotranspiration, at new temporal 
and spatial resolutions. High fidelity and resolution UAS ET datasets 
could also be used to evaluate and calibrate lower resolution spaceborne 
remote sensing data and earth system model output that typically have a 
resolution ≤1 km. Within one pixel there could be multiple farms, land 
uses and vegetation types, each contributing differentially to the surface 
energy and water balance. Without understanding this sub-grid het-
erogeneity, it is not possible to disentangle the drivers of flux 
heterogeneity. 

We also assessed how elevation, tree height and crown area influ-
enced ET, these however were less important than vegetation type, 
short- and long-term environmental variations and fertilizer treatment. 
These results are unsurprising because the site is relatively flat (eleva-
tion 317.6 ± 2.3 m), and the trees are relatively homogeneous in stature 
(tree height 8.56 ± 1.3 m, crown area 93.6 m2 ± 32 m2). Nevertheless, 
small but significant signals were detected. The elevation and date 

interaction may be driven by the changes in water availability as the 
survey period progressed, that is, areas lower down the hill possibly 
remained wetter for longer than the tops of the hills. This would explain 
the equalization in ET between tops and bottoms of the hill on the last 
days of the surveys. A possible explanation for the increased response of 
ET with tree height and crown dimensions may be firstly that larger trees 
may have deeper roots, and are thus less water limited, together with the 
fact that these taller canopies are also better coupled with the atmo-
sphere, and with larger LAI values, and therefore they are more effective 
in dissipating heat. This phenomenon may also be an artifact of LST 
retrieval methods, whereby smaller trees have a higher circumference to 
surface area ratio. Therefore, warmer (grass) pixels surrounding the 
trees may have more influence on the interior pixels of the tree, i.e., an 
edge effect (FLIR, 2018). While we addressed this effect by removing 
pixels from around tree edges, the effect may be unavoidable for the 
smallest trees. 

While we followed the protocols of Heinemann et al. (2020) for LST 
retrieval using UAS thermal infrared cameras, the TLST datasets had the 
largest errors compared to our ground control measurements. It is 
possible that this method is unsuitable for LST derivation on vegetation 
types other than dense crop, especially as the method does not account 
for the emissivity of senescent vegetation. We achieve reasonable LE 
accuracies using the correction coefficients derived in (Simpson et al., 
2021), but also using the factory correction factor (TRAW). A noteworthy 

Fig. 10. Spatial distributions of midday estimated Evapotranspiration change over the entire period of this study (05/05/2021 – 19/05/2021). The three fertilizer 
treatment sites are denoted as C = Control, N = Nitrogen-added, NP = Nitrogen-Phosphorous-added, and data is overlaid on a topographic map of the site. 
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Fig. 11. The effects of three fertilizer treatments on Evapotranspiration (ET), namely Nitrogen-added (a, b), Control (c, d), and Nitrogen-Phosphorous-added (e, f). 
The maps show midday ET from two survey dates at the beginning, 05/05/2021 (a, c, e), and the end 10/05/2021 (b, d, f) of the study. Mean (x‾) and standard 
deviation (1σ) ET statistics are reported in each panel for both canopy layers. Layers are displayed in PCS WGS 84 UTM 30 N. 
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pattern emerged in our accuracy assessment; the above canopy EC sta-
tions encompassing both tree and grass fluxes yielded slightly poorer LE 
agreement than the below-canopy EC stations. This is perhaps owing to 
the cooling effects of tree shadows affecting EC station measurements, 
but not UAS estimates where the shadows are masked. While the DTD 
method was used to derive ET layers for analysis, similar accuracies are 
reported using the TSEB-PT method, where there is no need to collect a 
radiometric surface temperature dataset shortly after sunrise, however if 
this approach is used we recommend that some calibration of the ther-
mal infrared camera is conducted, either using a black body reference 
(Kelly et al., 2019), or an empirical method as in Simpson et al. (2021). 
Given the errors in the DTD and TSEB-PT methods were similar, even 
when less accurate LST data were used (Fig. 4), this suggests that model 
uncertainty may be driven by other input sources such as LAI and green 
fraction, especially during the end of the survey when senescence de-
velops. Further work on improving these datasets could yield further 
accuracy benefits. 

5. Conclusions 

In this study, we demonstrated the utility of an integrated 
multispectral-thermal infrared unmanned aerial system for deriving 
very high-resolution gridded evapotranspiration estimates using the 
TSEB and DTD models. Given the high sensitivity, spatial (< 1 m), and 
temporal resolution of these estimates, we were able to investigate some 
of the drivers of ET change in a tree-grass savanna ecosystem during a 
seasonal transition phase (spring-summer). As increased environmental 
pressures such climate extremes (Hatfield et al., 2014) and landscape 
fragmentation can exacerbate water shortages (Ewers and Banks-Leite, 
2013; Osborne et al., 2018), there is a need to better understand how 
different configurations of canopy height, plant functional groups, e.g., 
in an agroforestry context, and land management practices, e.g. appli-
cations of fertilizer or irrigation, influence water use in real-world sce-
narios. Here the UAS becomes an invaluable tool alongside eddy 
covariance measurements and satellite estimates, respectively address-
ing the spatial and temporal limitations of each approach. By measuring 
land-atmosphere interactions at multiple scales we may reduce uncer-
tainty in, e.g., future climate change projections. This field of research 
has the potential to leverage a number of Sustainable Development 
Goals, e.g. SDG 2 (Zero Hunger), SDG 6 (Clean Water and Sanitation), 
SDG 13 (Climate Action) and SDG 15 (Life on Land) (UNEP, 2019). 
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