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Abstract
Continuous-time autoregressive processes have been
applied successfully in many fields and are particularly
advantageous in the modeling of irregularly spaced or
high-frequency time series data. A convenient nonlin-
ear extension of this model are continuous-time thresh-
old autoregressions (CTAR). CTAR allow for greater
flexibility in model parameters and can represent a
regime switching behavior. However, so far only Gaus-
sian CTAR processes have been defined, so that this
model class could not be used for data with jumps, as
frequently observed in financial applications. Hence, as
a novelty, we construct CTAR processes with jumps in
this paper. Existence of a unique weak solution and
weak consistency of an Euler approximation scheme is
proven. As a closed form expression of the likelihood is
not available, we use kernel-based particle filtering for
estimation. We fit our model to the Physical Electricity
Index and show that it describes the data better than
other comparable approaches.
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1 INTRODUCTION

Continuous-time stochastic models have become increasingly important in recent decades. In
particular, their successful application in derivatives pricing has brought them into the field of
mathematical finance. Due to the outstanding importance of autoregressive processes in classical
time series analysis, continuous-time processes with similar properties have been defined. The
class of continuous-time autoregressive moving average (CARMA) processes (see Brockwell, 2014
for an overview) plays an important role here. CARMA processes are a continuous-time equiv-
alent to classical ARMA time series. They allow the representation of a functional relationship
between successive observations. As with ARMA processes, this relationship is limited to lin-
ear behavior. To overcome this, Tong (1983) introduced the class of threshold autoregressions
(TAR) in discrete-time. Here, the parameters of an AR process are piecewise constant functions
depending on the value of a stochastic quantity. This construction allowed Tong (1983) to success-
fully map nonlinear relationships. Brockwell and Hyndman (1992) extended the class of CARMA
processes in the same way by defining continuous-time threshold autoregressions (CTAR). In
contrast to CARMA processes, however, there is no direct link to the discrete-time analogue, due
to the fact that for the continuous-time process any number of parameter changes between two
observations are possible. In addition, since a parameter change always corresponds to a discrete
transition, results for CARMA processes can not be transferred to CTAR. Therefore it is neces-
sary besides a proof of existence to develop own estimation methods for CTAR. The existence and
uniqueness of CTAR have been proved in Stramer et al. (1996). Moreover, in Brockwell and Hyn-
dman (1992) a consistent simulation scheme was specified, which forms the basis for a heuristic
procedure to estimate model parameters. Due to the discontinuity of the drift coefficient of the
stochastic differential equation that defines CTAR, these results do not follow from the standard
literature. However, it can be shown that the drift coefficient meets a linear growth condition.
Such a property has already been shown to be useful to prove the convergence of approximation
schemes for stochastic differential equation (SDE) (Gyöngy & Rasonyi, 2011; Yan, 2002). Also
the papers by Chan and Stramer (1998) and Stramer (1999) deal with approximations for mod-
els with discontinuous coefficients. In particular, Stramer (1999) considers a local linearization
scheme and this way extends the work in Chan and Stramer (1998) where the Euler scheme was
investigated. Those papers also assess the CTAR(1) and CTAR(2) model (however, without a jump
component, which is a main contribution of this paper, see below).

In addition to the occurrence of nonlinear dependencies, it has been found that data often has
characteristics that do not interfere with normal distribution assumptions. Especially in financial
markets extreme events can often be observed, which suggest the influence of a jump component.
While corresponding extensions have been defined for CARMA processes (Brockwell, 2001b;
Garcia et al., 2011), to our knowledge this is not the case for CTAR. This gap should be filled in this
work. In doing so, the first two parts of the work represent a generalization of the result in Brock-
well and Hyndman (1992). For the estimation, however, we present a new approach based on
kernel-based approximation of the likelihood found by particle filtering. This approach is based
on the idea of Rossi and Vila (2006). Kernel-based approximation in combination with particle
filters can also be found in Crisan and Miguez (2014).

The paper is structured as follows. Section 2 proves the existence of a CTAR driven by a jump
diffusion process using a generalized version of the Girsanov theorem. In Section 3 we show
that an Euler approximation of the stochastic differential equation defining the CTAR converges
weakly. This allows realizations to be generated from the unknown transition distribution. This

 14679469, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12597 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [18/05/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



640 LINGOHR and MÜLLER

is used in Section 4 to construct a maximum likelihood estimator using particle filtering methods.
We test its quality in a simulation study. Finally, we apply our new model to the Physical Electric-
ity Index and show that its use can provide a significant advantage over comparable models. For
the readers convenience we shifted the long proofs of Sections 2 and 3 to an Appendix A.

2 CTAR WITH JUMPS

Definition 1. A CTAR (p) with jumps {X(t)}t∈[0,T], T > 0, of order p ∈ N is defined as the first
component of the p-dimensional process {X(t)}t∈[0,T] with initial x0 ∈ Rp satisfying

dX(t) =
[
A(X(t))X(t) − 1p𝛽(X(t))

]
dt + 1p

[
𝜎dW(t) + dJ(t)

]
, (1)

X(0) = x0 a.s., (2)

with 1T
p = (0 · · · 0 1), A(x) =

(
0 Ip−1
a(x)T

)
, and parameter functions

a(x)T = (−api · · · −a1i) ∈ R
p
, 𝛽(x) = 𝛽i ∈ R, for x ∈ Ri ∶= [ri−1, ri). (3)

The threshold values −∞ = r0 < r1 < · · · < rl = ∞ partition the real line. SDE (1) is driven by
a Lévy jump-diffusion L(t) ∶= 𝜎W(t) + J(t), where 𝜎 > 0, {W(t)}t∈[0,T] is a standard Brownian
motion and J(t) =

∑Nt
i=1𝛾i is a compound Poisson process with constant intensity 𝜆 and jumps of

size 𝛾i
i.i.d∼ F

𝛾
independent of N. For p = 1, A(x) reduces to −a1(x).

By (3) we clearly see that the drift coefficient of the stochastic differential equation (1) is a
discontinuous function. Therefore construction of a (strong) solution by common theorems fails,
see for example, Protter (1990, V,3.). Fortunately, by use of Girsanov’s theorem a unique weak
solution still can be found.

Note, that in order to setup a CTAR model driven by a general Lévy process, we would have to
allow the driving noise to be of pure jump type, that is, to account also for the case 𝜎 = 0. However,
without Brownian motion, existence of a weak solution cannot be proven using any Girsanov-type
theorem. Hence, for this a completely different approach would have to be established.

Remark 1. A weak solution to a SDE driven by a Lévy jump-diffusion 𝜎W + J exists, if there is a
solution X on the driving system (Ω, ,F,P;Z), where Z = 𝜎

̃W + ̃J is a Lévy jump-diffusion with
driving terms ̃W

d
= W , ̃J

d
= J, see Jacod and Shiryaev (2002, III,§2c).

For application of the Girsanov formula it is essential that for a suitable measurable function
H ∶ [0,T] × D([0,T],R) → R, the Doleans–Dade exponential,

Z(t) ∶= Z(t,X) = exp
(

∫

t

0
H(s,X)dWs −

1
2∫

t

0
H(s,X)2ds

)
, 0 ≤ t ≤ T, (4)

is a true martingale. For X(t) ≡ W(t), Beneš approach, see Karatzas and Shreve (1998, 3.5.16),
shows that this is true under a growth condition on H. Klebaner and Lipster (2011) extended
this result for more general forms of the stochastic exponential. In the following theorem we
show that under a second order condition on L(t) this extension can be used to prove that there
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LINGOHR and MÜLLER 641

is a weak solution to (1) and (2) in sense of Remark 1. Furthermore this solution in unique and
nonexplosive.

Furthermore, we always use the canoncial 𝜎-algebra on D([0,T),R), that is, the Borel
𝜎-algebra associated with the Skorokhod topology.

Theorem 1. For each Lévy jump-diffusion {L(t)}t∈[0,T] as in Definition 1 with E(L(t)2) < ∞ and
x0 ∈ Rp, there is a unique (in law), nonexplosive weak solution of (1)-(2).

Proof. See Appendix A.1. ▪

Remark 2. The proof that ̂Pi appearing in Appendix A.1 (proof of Theorem 1) is a probability
measure can be carried out in the same way as for ̃P. The main argument here is that ̂Z is a
martingale by the same reasons as Z(t).

At first glance, our proof of uniqueness looks simpler as the one in Stramer et al. (1996,
theorem 2.1) for the case of no jumps, which is based on a result occurring, for example, in
Karatzas and Shreve (1998, proposition 5.3.10). However, this is because they have to prove first,
that a proper probability measure exists, which we have already done in the main part of the proof
of Theorem 1.

3 APPROXIMATION BY A DISCRETE-TIME PROCESS

In practical application it is often necessary to simulate trajectories of the considered stochastic
processes. This is because analytic expressions for functional relationships are hard to derive or
even do not exist. Therefore Monte Carlo methods are used instead. As for CTAR we do not know
how the explicit solution looks like so that, for simulation we have to rely on the defining SDE (1)
instead. The most common numerical solution to a SDE is given by the Euler method, a first-order
approximation. In the following an Euler representation for the CTAR with jumps is given and
we show that this approximation is consistent. This is not trivial as for proving consistency of the
Euler approximation one usually requires smoothness of the associated coefficient functions, see,
for example, Jacod et al. (2005).

Let (Ω,,P) be a probability space on which a solution {X(t)}t∈[0,T] to the SDE (1) with X(0) =
x0 exists. Then an approximation {Xn(𝜏k)}0=𝜏0<···<𝜏n=T , 𝜏k+1 − 𝜏k =∶ 𝛿 ≡ T∕n, to {X(t)}t∈[0,T] is
given by

Xn(𝜏k+1) = Xn(𝜏k) +
[
A(Xn(𝜏k))Xn(𝜏k) − 1p𝛽(Xn(𝜏k))

]
𝛿

+ 1p

[
𝜎𝜈k+1

√
𝛿 + 𝛾k+1qk+1

]
, k = 0, … ,n − 1, (5)

Xn(𝜏0) = x0
, (6)

where {𝜈k}
iid∼  (0, 1) approximates the increments of a standard Brownian motion, {𝛾k}

iid∼ F
𝛾

is a sequence of stochastic jump amplitudes with zero mean independent of the jump times
{qk}

iid∼ ber(𝜆𝛿). Thereby ber(p) denotes the Bernoulli distribution with parameter p. This type of
approximation of the process jump dynamic is also used in the Bernoulli Diffusion model, a dis-
cretized version of the Merton model, see Honoré (1998). If we extend the discrete time process
Xn to the unit interval by defining Xn(t) ∶= Xn(⌊t∕𝛿⌋𝛿), then {Xn(t)}t∈[0,T] is called the discretized
Euler scheme.
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642 LINGOHR and MÜLLER

In the following we prove that (5) is a valid approximation of the SDE (1) as the distribution
of Xn converges to the distribution of X. The construction of this proof is based on the ideas of
Yan (2002) who derived weak consistency of an Euler method with discontinuous coefficients
on C[0,T] using the occupation time formula. In the multidimensional case this requires the
existence of at least one projection of the set of discontinuities onto a coordinate axis with nonde-
generate diffusion coefficient such that the projected set has Lebesgue measure 0. Unfortunately,
this is not possible in our case. Therefore, beside extending the proof of Yan (2002) to D[0,T], we
adopt an idea of Brockwell and Williams (1997) to show that the local time technique can still be
used.

For this note that b(X) ∶= A(X1)X satisfies a linear growth condition similar to (A6),

‖b(Xn(t))‖2
≤ K[1 + ‖Xn(t)‖2], 0 ≤ t ≤ 1, n ∈ N,

for some K > 0, where ‖⋅‖ stands for the Euclidean norm in the appropriate space. In the following
w.l.o.g. we assume that T = 1, 𝛽 = 0, x0

≡ 0.

Lemma 1. If m
𝛾,k ∶= EF

𝛾

(𝛾k
1 ) < ∞ for k = 4, then E(‖Xn(t)‖4) < ∞ for all n ∈ N and t ∈ [0, 1].

Proof. As Xn(t) = Xn(𝜏k), 𝜏k ≤ t < 𝜏k+1, we only have to prove E(‖Xn(𝜏k)‖4) < ∞ for k =
0, 1, … ,n. Let n ∈ N be arbitrary but fixed. By

Xn(𝜏k+1) = Xn(𝜏k) +
1
n

b(Xn(𝜏k)) +
𝜎𝜈k+1
√

n
1p + 𝛾k+1qk+11p,

we find

E(‖Xn(𝜏k+1)‖4) ≤ 43
[

E(‖Xn(𝜏k)‖4) + 2K2

n4

(
1 + E(‖Xn(𝜏k)‖4)

)
+ 3𝜎4

n2 + 𝜆

n
m

𝛾,4

]
,

where we used (
∑m

i=1ai)4 ≤ m3(
∑m

i=1a4
i ) for any real numbers ai by Hölder’s inequality. The

statement follows now by induction on k. ▪

Lemma 2. If the condition of Lemma 1 is satisfied, then supn≥1 E(‖Xn(t)‖4) < ∞ for all t ∈ [0, 1].

Proof. See Appendix A.2. ▪

Proposition 1. If the condition of Lemma 1 is satisfied, then the Euler scheme {Xn ∶ n ≥ 1} is tight
in D[0, 1].

Proof. See Appendix A.3. ▪

Since {Xn ∶ n ≥ 1} is tight in D[0, 1], which is a separable and complete space under a metric
d0, topologically equivalent to the Skorokhod metric d, by Prohorov’s theorem, see Billings-
ley (1999, theorem 5.1), {Xn ∶ n ≥ 1} is relatively compact in D[0, 1] . Therefore each sequence
{Xni ∶ i ≥ 1} contains some subsequence {Xni(m) ∶ m ≥ 1} converging weakly to some X. By Sko-
rokhod‘s representation theorem, see Billingsley (1999, theorem 6.7), there exist random elements
Ym and Y taking values in D[0, 1], defined on a common probability space (Ω,,P), such that
(Ym) = (Xni(m)), ∀m, (Y) = (X) and Ym →

m→∞
Y almost surely in D[0, 1]. In addition, by Van
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LINGOHR and MÜLLER 643

der Vaart and Wellner (1996, addendum 1.10.5), Ym and Y can be chosen according to

Ym(⋅, 𝜔) = Xni(m)(⋅, 𝜙m(𝜔)), Y(⋅, 𝜔) = X(⋅, 𝜙(𝜔)), (7)

with measurable maps 𝜙m ∶ Ω→ Ω and P = P◦𝜙m, for m = 1, 2, … . If we define 𝜈

m
k ∶= 𝜈k◦𝜙m,

𝛾

m
k ∶= 𝛾k◦𝜙m and qm

k ∶= qm
k ◦𝜙

m, m = 1, 2, … , the distribution of the random variables is not
changed under P. Therefore for every m ≥ 1, Ym satisfies

Ym(t) = Ym(𝜏k) +
1

ni(m)
A(Y m

1 (𝜏k))Ym(𝜏k) + 1p

[
𝜎𝜈

m
k+1

√
ni(m)

+ 𝛾

m
k+1qm

k+1

]

, 𝜏k ≤ t < 𝜏k+1. (8)

Using the same representation of Ym for 𝛾m
≡ 0, that is, having no jump component in the driving

process, Yan (2002) proved, that Y is a weak solution of the approximated SDE. Hence, for this case
{Xni(m) ∶ m ≥ 1} converges weakly to the unique weak solution, which implies weak convergence
of the Euler scheme. Extending the local time technique of Yan (2002), we now show that the
occupation time of Y1 in the set of discontinuities Da ∶= {x ∈ R ∶ x = ri, i = 1, … , l} of the drift
function b is for 𝛾m

≠ 0 still of Lebesgue measure 0 almost surely. For this, let C2
b(R) denote the

space of continuous functions f on R with |f |, |f ′|, |f ′′| bounded by a constant b > 0.

Lemma 3. If the condition of Lemma 1 is satisfied, then for [Yp](t) ∶= [Yp,Yp](t), t ∈ [0, 1],

E[Yp](t) = t(𝜎2 +mJ,2𝜆).

Furthermore, for any f ∈ C2
b(R),

E[fb(Yi),Yp](t) = 0, i ≠ p.

Proof. See Appendix A.4. ▪

Lemma 4. If the condition of Lemma 1 is satisfied, then

E
(

∫

1

0
1(Y1(s) ∈ Da)ds

)
= 0.

Proof. See Appendix A.5. ▪

Lemma 5. If the conditions of Lemma 1 are satisfied, then

1
ni(m)

⌊tni(m)⌋∑

k=1
A(Y m

1 (𝜏k−1))Ym(𝜏k−1)
L1(Ω)
−−−−−→

m→∞ ∫

t

0
A(Y1(s))Y(s)ds.

Proof. See Appendix A.6. ▪

Theorem 2. If EF
𝛾

(𝛾4
1 ) <∞, then the Euler scheme defined in (5) weakly converges to the unique

weak solution of SDE (1) as n →∞.

Proof. See Appendix A.7. ▪
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644 LINGOHR and MÜLLER

4 STATISTICAL INFERENCE

In this section the problem of fitting a CTAR with jumps to a finite set of possibly irregu-
larly spaced data is considered. For (linear) CAR the explicit solution to the SDE (1) allows
to calculate the Gaussian likelihood of the observations with help of the discrete-time Kalman
recursions, see Jones (1981). For CTAR an explicit solution is not found and so this approach
cannot be used. If the data additionally is uniformly spaced, an alternative procedure for
estimation of CAR processes is given by their discrete-time representation. A sampled CAR
process satisfies a standard ARMA equation. By this fact fitting of a CAR process can be
traced back to fitting of an ARMA process (see Brockwell, 2014, and references therein).
Indeed, such a relationship does not hold for CTAR as noted by Hyndman (1992). Nonethe-
less, Gaussian CTAR models have been fitted to a variety of datasets. If the data are observed
frequently one can use the stochastic exponential (4) to get estimators of the autoregressive
parameters, see Brockwell et al. (2007). This approach is also possible for the CTAR with
jumps but since high-frequency data is rarely available in practice, we do not want to go into
detail here. Instead, we want to introduce an approach that can be used in a very general
setup.

Let Yn ∶= {y(t1), y(t2), … , y(tn)}, t1 < t2 < · · · < tn, be a set of observations, where w.l.o.g we
assume that ti − ti−1 = 𝛿 ∀i as the introduced procedures extend in an obvious way for irregu-
larly spaced data. For fitting of a CTAR process we are interested in evaluation of the likelihood
L(𝜃;Yn), being given by

L(𝜃;Yn) = f
𝜃
(y(t1))

n∏

i=2
f
𝜃
(y(ti)|Yi−1), (9)

where 𝜃 denotes the vector of all model parameters; f
𝜃

will be used from now on generically for
any density, where the exact meaning can be easily seen from its arguments.

A problem arising in representation (9) is that the densities f
𝜃
(y(ti)|Yi−1) for the CTAR process

are unknown. This makes a direct implementation of a maximum likelihood approach impossi-
ble. A possible way out is to estimate the parameters based on an estimator of the likelihood itself.
A method to find a suitable estimate ̂L(𝜃;Yn) is given via particle filters, also known as sequential
Monte Carlo methods.

Particle filters were introduced by Gordon et al. (1993), Kitagawa (1993, 1996) in the frame-
work of nonlinear and non-Gaussian state space models. Their use for likelihood evaluation was
investigated, for example, in Pitt (2002). Subsequently, a large number of publications appeared,
all addressing the application of particle filters in lots of different setups. As for continuous time
models, Fearnhead et al. (2008) and Johannes et al. (2009) used them for diffusion-driven models,
and Creal (2008) analyzed particle filters in different settings of Lévy-driven stochastic volatil-
ity models using Monte Carlo experiments. In the same framework such sequential Monte Carlo
methods were also used in Jasra et al. (2011). Of course, also lots of publications on adapted ver-
sions of particle filters (e.g., random-weight particle filtering, Fearnhead et al., 2010) in the context
of continuous time processes can be found in the literature.

Particle filters are Monte Carlo-type algorithms that represent the posterior density of a
stochastic process by sampling a set of particles. They are designed for hidden Markov models,
where the observations {yt|Xt}, conditional on a preliminary assumed to be unknown state Xt,
being independent and {Xt} is assumed to be Markovian. Obviously for our observations y(ti) and
the state vector X(ti) of (1) these assumptions are satisfied. Pitt (2002) used the representation
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LINGOHR and MÜLLER 645

f
𝜃
(y(ti)|Yi−1) =

∫
f
𝜃
(y(ti)|X(ti))f𝜃(X(ti)|Yi−1)dX(ti), (10)

to estimate the transition densities with help of Monte Carlo integration. The first density f
𝜃

in
the integrand is often called observation density. As for the CTAR process

f
𝜃
(y(t)|X(t)) = 𝛿X1(t)(y(t)), (11)

direct application of (10) is infeasible. Instead we restrict to the unknown state X(t) ∶=
(X2, … ,Xp)(t), and use

f
𝜃
(y(ti)|Yi−1) =

∫
f
𝜃
(y(ti)|X(ti−1), y(ti−1))f𝜃(X(ti−1)|Yi−1)dX(ti−1). (12)

instead. Now the integrand is not longer known explicitly, but can be approximated by

f
𝜃
(y(ti)|X

k
(ti−1),Yi−1)

=
∫

f
𝜃
(y(ti),X(ti)|X

k
(ti−1), y(ti−1))dX(ti)

≈
∫

1
L

L∑

j=1
Kh(y(ti) − ykj(ti))Kh(X(ti) − X

kj
(ti))dX(ti)

= 1
L

L∑

j=1
Kh(y(ti) − ykj(ti)), (13)

where Kh is a kernel with bandwidth h and {(y,X)kj(ti)}1≤j≤L are random variables from
f
𝜃
(X(ti)|X

k
(ti−1), y(ti−1)), conditional on {X

k
(ti−1)}1≤k≤N , X

k
(ti−1) ∼ f

𝜃
(X(ti−1)|Yi−1); the latter den-

sity f
𝜃

is often called filtering density. Now, by Monte Carlo integration of (12), we get

̂f
𝜃

(y(ti)|Yi−1) =
1

NL

N∑

k=1

L∑

j=1
Kh(y(ti) − ykj(ti)). (14)

By the properties of kernel density estimators, convergence of ̂f
𝜃

(y(ti)|Yi−1) to f
𝜃
(y(ti)|Yi−1) is

ensured. But this approximation requires N × L random number generations. A more efficient
approximation scheme is given by the convolution particle filter of Rossi and Vila (2006). Rossi and
Vila (2006) propose to sample from the joint density f (y(ti),X(ti)|Yi−1)) by first simulate Xk(ti) ∼
f
𝜃
(X(ti)|X

k
(ti−1), y(ti−1)) followed by generation of an observation according to g

𝜃
(y(ti)|Xk(ti)).

Then the density of (y(ti),X(ti)) is approximated by (yk(ti),Xk(ti)) with help of kernel density esti-
mation. For CTAR by (11) we only have to simulate from f

𝜃
(X(ti)|X

k
(ti−1), y(ti−1)) which can be

done directly with the Euler scheme presented in Section 3. Then

f
𝜃
(X(ti)|Yi) =

f
𝜃
(X(ti), y(ti)|Yi−1)

f
𝜃
(y(ti)|Yi−1)

≈
1
N

∑N
k=1Kh(y(ti) − yk(ti))Kh(X(ti) − X

k
(ti))

1
N

∑N
k=1Kh(y(ti) − yk(ti))

. (15)
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646 LINGOHR and MÜLLER

This approximation allows to generate samples according to f
𝜃
(y(ti)|Yi−1). For that, starting with a

guess of the initial states, we recursively resample from the set {X
k
(ti)}k with weights proportional

to (15) followed by an Euler step. Thus, an estimator for the likelihood of the CTAR with jumps is

̂L(𝜃,Yn) = ̂f
𝜃

(y(t1))
n∏

i=2

̂f
𝜃

(y(ti)|Yi−1), (16)

where L = 1 in (14).

Remark 3. Brockwell and Hyndman (1992) replaced the transition densities in (12) by Gaussian
densities with fitted first- and second-order moments and used Riemann sums to approximate
the integrals. Beside the lack of theoretical backing, for the highly nonlinear CTAR with jumps
model this method can be very inaccurate. Moreover, for large p and n, this approach suffers from
the complicated approximation of higher-dimensional integrals.

We now try to find the maximum likelihood estimator

̂
𝜃 = argmax

𝜃

L(𝜃,Yn),

by replacing the true likelihood L(𝜃,Yn) by its approximation ̂L(𝜃,Yn).
Sampling with respect to the the true transition density, Vila (2012) proved that (15) and

(16) converge almost surely to the true filtering density resp. likelihood by convergence proper-
ties of kernel density estimators. A similar result is still true if we use the Euler approximation
at the evolving step. Therefore we assume K to be a bounded, positive, symmetrical applica-
tion from Rp → R, such that ∫ Kd𝜆 = 1, where 𝜆 is the Lebesgue measure. If we further assume
lim||x||→∞ ||x||K(x) = 0, Kh is called Parzen–Rosenblatt kernel.

Lemma 6. Let KhN (x) ∶= K(x∕hN)∕hp
N , where K is a Parzen–Rosenblatt kernel and hN the band-

width parameter with 0 < hN ↘ 0 and Nhp
N →∞ as N → ∞. Furthermore we assume the transition

density f
𝜃

is a positive function satisfying f
𝜃
∈ Cb(Rp). Then

lim
N→∞

lim
𝛿sim→0

E(̂L(𝜃,Yn)) = L(𝜃,Yn),

where the expectation is build with respect to all simulated variables and 𝛿sim is the step size of the
Euler method in Section 3.

Proof. Given Xk(ti−1) ∼ f
𝜃
(X(ti−1)|Yi−1), 1 ≤ k ≤ N, and samples Xk

𝛿sim
(ti) generated by the Euler

method of Section 3 with step size 𝛿sim conditional on Xk(ti−1), using a kernel density estimator
of ̂f

𝜃

(X(ti)|Yi−1), we get

Ef (̂f
𝜃

(X(ti)|Yi−1)) = Ef

(
1
N

N∑

k=1
KhN (X(ti) − Xk

𝛿sim
(ti))

)

−−−−−−→
𝛿sim→0

1
N

N∑

k=1
Ef (KhN (X(ti) − Xk(ti))) −−−−−→N→∞

f
𝜃
(X(ti)|Yi−1),

where the expectation is taken with respect to f
𝜃
(X(ti)|Yi−1). The first limit is true because Kh ∈

Cb(Rp) and the weak convergence of Xkj
𝛿sim
(ti), whereas the last equation holds by the asymptotic
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LINGOHR and MÜLLER 647

unbiasedness of kernel density estimators in continuity points of f
𝜃
. By this it is easy to see that

the approximated resampling weights (15) converge to the true resampling weights. Obviously
this is also true for the likelihood approximation (14). Now the statement follows by induction
using an iterated expectations argument as the particle filter estimator of the likelihood function
is an unbiased estimator regardless of the number of particles N (see Pitt et al., 2012 for a direct
proof). ▪

Theorem 3. If the conditions in Lemma 6 are satisfied and ∫ K2d𝜆 < ∞, then

̂L(𝜃,Yn)
p

−−−−−−−−−−→
N→∞,𝛿sim→0

L(𝜃,Yn).

Proof. Using Markov’s inequality

P(|̂L(𝜃,Yn) − L(𝜃,Yn)| ≥ 𝜖) ≤
E
(
̂L(𝜃,Yn) − L(𝜃,Yn)

)2

𝜖
2 .

Hence, in view of Lemma 6 and by the Cauchy-Schwarz inequality it is sufficient to show

E
(
̂L(𝜃,Yn) − E(̂L(𝜃,Yn))

)2
→ 0, as N →∞, 𝛿sim → 0.

However, since ∀ti

Var

(
1
N

N∑

k=1
KhN (X(ti) − Xk

𝛿sim
(ti))

)

−−−−→
𝛿→0

1
Nhp

N
∫

K2(y)f
𝜃
(x + yh|Yi−1)dy−−−−−→

N→∞
0,

the statement follows by an iterated expectations argument as in the proof of Lemma 6. ▪

Remark 4. The direct application of Lemma 6 and Theorem 3 to CTAR is generally not possible
because we do not expect that the associated transition density is a continuous function. This
assumption is corroborated by the fact that for the Gaussian CTAR(1) the density of the stationary
distribution is discontinuous (Brockwell, 2001a). Since the discontinuities form almost surely a
(Lebesgue) null set (see Lemma 4), there is hope that the asymptotic of likelihood is still valid.
This, however, requires further investigation.

Chopin (2004), cf. also Malik and Pitt (2011), shows that for the particle filter-based estimator
of the likelihood function

√
N(̂L(𝜃,Yn) − L(𝜃,Yn))

d
−−−−−→

N→∞
 (0, 𝜎2

pf ), (17)

where 𝜎

2
pf is the particle filter variance and conditions under which 𝜎

2
pf < ∞ can be found. This

central limit theorem gives an idea about the error of likelihood approximation which can be
interesting for model comparison as we will show in Section 5.

Remark 5. In numerical application one usually uses the logarithmic likelihood, that is, log(L),
instead of L. Then the estimator log(̂L) is no longer asymptotically unbiased. Nevertheless by
Chopin (2004), a result similar to (17) is still valid for log(̂L), where a bias of magnitude−𝜎2

pf∕(2N)
has to be considered.
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648 LINGOHR and MÜLLER

Theorem 3 serves as a basis for the assumption that ̂
𝜃 = argmax

𝜃

̂L(𝜃,Yn) is a meaningful
estimator for our process. This is also supported by the results of Gourieroux and Monfort (1996),
which could show that given explicit densities

√
n( ̂𝜃 − 𝜃0)

d
−−→ (0, I−1(𝜃0)),

where I(𝜃0) is the expected information matrix at the true parameter value 𝜃0 as long as n,N →
∞ and

√
n∕N → 0. However, even if ̂L(𝜃,Yn) is a consistent estimator of a smooth likelihood

function and ̂
𝜃 is consistent, for a finite number of particles, it is hard to optimize (16) by

usual numerical procedures, as approximation of the likelihood by particle filtering leads to a
non-smooth behavior in 𝜃. This is because resampling particles, in fact, is sampling from a discrete
distribution. Thus, by each change of 𝜃, resampling weights will change, and so possibly some
particles are exchanged. As the replaced particles in general are not alike, ̂f

𝜃

(y(ti)|Yi−1) will shift
excessively. Maximizing the resulting rough surface can be extremely problematic. Note that this
also is not overcome by using common random numbers. Therefore, Campillo and Rossi (2009)
include the unknown parameters 𝜃 as an additional state. Although they do not assume any addi-
tional noise of the parameter state, parameter estimates in extended state space models suffer
from a strong dependence of close observations. In order to obtain an estimator that takes all
observations equally into account, we prefer a classic maximum likelihood approach. Lee (2008)
proposed a tree-based resampling scheme to smooth a likelihood obtained by particle filtering
with resampling by inducing significant correlation among the selected particles of consecutive
runs. Figure 1 shows the effect of algorithm 6 of Lee (2008) for linear CAR(2) in the first dimension
of the parameter space.

F I G U R E 1 Estimated log-likelihood for a CAR(2) model as a function of a1 using the smoothing procedure
of Lee (2008) (blue) and the vanilla particle filter (red). The true log-likelihood is shown in black. For the
smoothed log-likelihood we show the estimate for three sets of common random numbers.
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LINGOHR and MÜLLER 649

To test the general quality of the likelihood approximation for continuous-time autoregres-
sive models, beside the smoothed estimator log ̂L(𝜃,Yn), we also drew the true log-likelihood
log L(𝜃,Yn) of the CAR(2) calculated by the Kalman filter. We conclude that the smoothed
particle filter results in a likelihood estimate similar to the true density of the process.
This gives hope to find reasonable estimates of the parameters based on an optimization
of log ̂L(𝜃,Yn).

In selecting an optimization procedure to determine ̂
𝜃 two features of the utility function

̂L(𝜃,Yn) should be considered. First, calculation of ̂L(𝜃,Yn) can be computationally intensive,
which is a general drawback of many particle filter methods. The bottleneck of our method is
given by smooth resampling procedure of Lee (2008) which requires construction of a binary tree.
Construction of such a tree can be done in (NL log NL), see Lee (2008). Note that (15) is a mix-
ture distribution which is easy to sample from as long as K is selected appropriately. Therefore,
efficient ways of optimizing in the multidimensional search space are preferred. Secondly, the
smoothing algorithm of Lee (2008) only provides correlated likelihood estimates, but does not
guarantee continuity. A technique that can handle both is simultaneous perturbation stochastic
approximation (SPSA), see Spall (2003, chapter 7). SPSA is a steepest ascent algorithm,

̂
𝜃k+1 = ̂

𝜃k + ak ̂∇ ̂
𝜃k

L( ̂𝜃k,Yn), k = 1, … , Imax,

where ̂∇
̂
𝜃k

L( ̂𝜃k,Yn) is a finite difference estimate of the gradient calculated by randomly per-
turbing all elements of ̂

𝜃k together to obtain two measurements of L(⋅,Yn). In context of particle
filtering with intractable observation density g

𝜃
(y(t)|X(t)), SPSA was already used successfully by

Ehrlich et al. (2015). Table 1 reports the results of a simulation study in estimating the parame-
ters of a jump diffusion CTAR(2) process by SPSA with the smoothed particle filter likelihood as
utility function. The overall results are very satisfactory. Already with 500 observations meaning-
ful estimation results are obtained. An increase in the number of observations will also increase
the precision of the estimate in most cases. Since jumps are rare events, reliable estimates for
the parameters of the associated distribution can only be made with an even greater number of
observations.

T A B L E 1 Estimated coefficients based on 40 replicates on [0,T] of the CTAR(2) with jumps. The jumps are
±Unif(a

𝛾
, b

𝛾
) distributed. For simulating the processes we used a bandwith of 𝛿sim = 0.01 whereas observations

are taken according to the stepsize 𝛿obs = 1. For estimating the likelihood we used N = 2048 particles

a11 a12 a21 a22 𝝈 𝝀 a
𝜸

b
𝜸

r1

True 1.5 0.5 3 1 1 0.2 0.7 2.1 0.2
T = 500 Mean 1.27 0.40 2.97 0.87 0.94 0.42 0.57 1.77 0.28

Bias −0.23 −0.10 −0.03 −0.13 −0.06 0.22 −0.13 −0.33 0.08

SD 0.31 0.10 0.61 0.22 0.21 0.45 0.32 0.95 0.18

MSE 0.15 0.02 0.37 0.07 0.05 0.25 0.12 1.01 0.04

T = 1500 Mean 1.22 0.41 2.93 0.83 0.96 0.30 0.64 1.77 0.24

Bias −0.28 −0.09 −0.07 −0.17 −0.04 0.10 −0.06 −0.33 0.04

SD 0.20 0.05 0.39 0.22 0.11 0.18 0.38 0.56 0.10

MSE 0.12 0.01 0.16 0.08 0.01 0.04 0.15 0.42 0.01
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650 LINGOHR and MÜLLER

Looking at the MSE, we see clearly an improvement—with the exception of a22 and a
𝛾
. Such

phenomena can occur if the likelihood is quite flat around the maximum in the direction of those
two parameters. In this case the precise estimation for these specific parameters is more difficult
than for the other parameters, but at the same time the model fit is not deteriorating significantly,
for example, in view of the AIC criterion, since the likelihood changes only very slowly along
those parameters. Hence, also for those parameters precise estimates can only be achieved with
an even greater number of observations.

5 APPLICATION

Since the liberalization of the European energy market electricity, prices have shown a behavior
rarely seen in other commodity markets. A pronounced seasonal pattern driven by the seasonality
of demand is overlaid by a high volatility. Not only sudden outages of power plants but especially
the integration of renewable energy sources has led to an electricity production that is difficult to
predict. The fact that conventional power plants, in particular, are often unable to change their
production flexibly is used by market participants to impose extreme prices in times of high or low
demand. As failed supply is usually replaced fast by other flexible producers and extreme demand
arises only for a few hours even extreme price levels return back to the seasonal mean in short
time. The temporary persistence of deviations from the average level can be modeled by using a
stochastic process with mean reversion. To incorporate spikes jump-diffusions are routinely used
as driving process. However, as extreme prices are only temporary stable the true mean-reversion
will not be fast enough. In estimation, this leads to an erroneous specification of the degree of
mean-reversion, which will usually be upward biased. The common approach to overcome this is
using multi-factor models, see Bierbrauer et al. (2007). These have the drawback that separating
the effect of the different components can be difficult. Instead of combining different processes
Borovkova and Permana (2006) allowed the mean-reversion parameter to be a continuous func-
tion depending on the value the price. While this approach seems intuitively appealing, there is
no direct approach to transfer this to a multivariate model including higher autoregressive orders.
As CTAR allows for a linear interpolation of arbitrary accuracy of the mean-reversion function,
the CTAR with jumps can be seen as a multivariate extension to the model of Borovkova and
Permana (2006).

In Figure 2 the Phelix (Physical Electricity Index) of the years 2014–2015 is shown.
The Phelix is a stock market index on the European Power Exchange for trading electricity in

Germany and Austria. It represents the daily average of the day-ahead auction results. Here, we
consider the daily base load index, which is calculated as average over all 24 h every day, for all 7
days of the week. As the most important underlying on the derivatives market, accurate modeling
is of great importance. The CTAR with jumps is applied to the deseasonalized time-series, that is,

Y (t) = S(t) − Λ(t), t ≥ 0,

where S(t) is the price process and Λ(t) is a deterministic seasonality function. Motivated by the
seasonality function used in Benth et al. (2014), we take the seasonality function as a periodic
function

Λ(t) = m0 +
q∑

k=1
ak cos

(
2𝜋t
sk

)
+ bk sin

(
2𝜋t
sk

)
,
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LINGOHR and MÜLLER 651

F I G U R E 2 Physical electricity index January 1, 2014 to December 31, 2015

T A B L E 2 Estimated parameters of the seasonality function Λ(⋅)

m0 a1 b1 a2 b2 a3 b3

32.23 5.04 3.21 −1.58 1.22 −2.68 −2.30

where we take q = 3 and the periods sk are the dominant periods found by spectral analysis. The
first three significant periods are s1 = 7, s2 = 365 and s3 = 3.5. To estimate the parameters we used
least-squares (Table 2).

After subtracting Λ(t) from the price process, we want to test if there are really nonlinear
effects in Y (t), which would reinforce the use of a threshold model. Therefore we use an idea of
Borovkova and Permana (2006). For the Gaussian CTAR(1) as noted in Brockwell (2001a), the
stationary distribution has the density

𝜋(x) = k
𝜎

2 exp
(

a(x)x2

𝜎
2

)
, (18)

where k is a normalization constant. Thus, if we replace 𝜋 by a estimate of the observations
marginal density (e.g., a kernel estimator), then

− log(�̂�(x)) = a(x)
𝜎

2 x2 + log(𝜎2) − log(k).

By this,

− log (�̂�(x))′ ∝ a(x)x,

which should be a linear function if there is no nonlinear effect, that is, a(x) = a1. As (18) is only
valid for the Gaussian process, we first filter the spikes in the data by considering those price
movements as jumps which are outside of a ±2�̂� interval, where �̂� denotes the empirical stan-
dard deviation (note that this is just one possibility for filtering spikes, and also other procedures
might be reasonable). The derivative of the negative logarithmic density estimator is shown in
Figure 3 (for estimation we used the standard kernel function in R, which by default employs a
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652 LINGOHR and MÜLLER

F I G U R E 3 Estimated mean-reversion function (drift function)

Gaussian kernel; as bandwidth the function uses Silverman’s rule of thumb, cf. Silverman, 1986,
p. 48, equation (3.31)).

Figure 3 indicates that the mean-reversion is a nonlinear function with a high value for
extreme prices and a low value for normal price levels. This is exactly what we expect for electricity
prices and indicates the use of a nonlinear model.

To test if there is really a benefit in using a nonlinear autoregressive model we finally fit a
Gaussian CTAR(2), a linear CAR(2) driven by a jump-diffusion and a CTAR(2) with jumps to
Y (t), using the observations in 2015. As jump distribution we use ±Unif(a

𝛾
, b

𝛾
), as in the simu-

lation study (cf. Table 1). By Figure 3 the use of three regimes seems reasonable. As the upper
regime would include only very less observations, to get clear estimates, we restrict to one thresh-
old instead. This is also consistent with the fact that the negative jumps are dominant for our
observations. For the autoregressive order we assumed the same value as in Benth et al. (2014).
Table 3 contains all estimated model parameters, whereas Table 4 compares the fitted models by
means of the deviation of empirical moments, their likelihood values and the AIC and BIC.

First we see that a linear CAR is not able to model the skewness in the data. This is obvious
as this process is symmetric by definition as long as we use a driving process with unskewed
distribution. Furthermore for the Gaussian CTAR there is a large bias in the mean. This can
be explained by the dominant negative jumps in the data (see Figure 2), which cannot be ade-
quately represented by a continuous process. In order to generate such extreme values, however,
the parameters were estimated in such a way that the process is more frequently in the negative
region. This leads to a downward biased mean. For the CTAR with jumps the empirical moments
suit best to our data. This is further supported by its likelihood value which outperforms the
values of the other model.

A more sophisticated measure to compare different models is given by the AIC. We see that
the CTAR with jumps minimizes this criterion, from which we conclude that the use could
offer an advantage. In Table 4 we report log(L) calculated for N = 8192 and 𝛿 = 1∕50. The
corresponding standard deviation of the estimate was approximated numerically based on M =
200 simulations and can be found in Table 5.
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LINGOHR and MÜLLER 653

T A B L E 3 Fitted models for Phelix (2015)

Parameter CAR(2) w.j. CTAR(2) CTAR(2) w.j.
a11 (a1 resp.) 4.65 2.74 3.06

a12 – 2.13 2.07

a21 (a2 resp.) 3.11 6.38 4.86

a22 — 2.83 2.21

𝜎 37.05 38.73 28.89

𝜆 0.09 — 0.08

a
𝛾

19.38 — 49.30

b
𝛾

55.48 — 70.10

r1 - −4.65 −4.93

T A B L E 4 Linear CAR versus CTAR for Phelix (2015)

Phelix CAR(2) w.j. CTAR(2) CTAR(2) w.j.
Mean −0.01 0.01 −0.66 −0.03

SD 7.08 7.21 7.97 7.86

Skewness −0.54 0.00 −0.76 −0.33

Kurtosis 3.84 3.02 4.12 3.91

log(L) ⧵ −1145.54 −1139.94 −1125.20

AIC ⧵ 2303.08 2291.88 2268.40

BIC ⧵ 2345.15 2333.95 2331.50

T A B L E 5 Empirical standard deviation of log(̂L) based on M = 200 simulations

CTAR(2) CAR(2) w.j. CTAR(2) w.j.
�̂�pf 4.29 2.70 2.61

By these standard deviations and (17), the approximated log likelihood log(̂L) seems to be suf-
ficiently close to the true log likelihood log(̂L) for such a conclusion (the bias introduced by using
the logarithmic likelihood is negligible by Remark 5). Also the BIC is minimal for the CTAR(2)
with jumps, although a conclusion in favor of this model is not as compelling as with the AIC.

Another way of comparing, for example, the CTAR(2) w.j. and the CAR(2) w.j. model is to use
the quantity exp((AICCTAR(2)w.j. − AICCAR(2)w.j.)∕2)which is the (generalized) relative likelihood of
CAR(2) w.j. w.r.t. to CTAR(2) w.j. It is closely related to the likelihood ratio in the likelihood-ratio
test and can be interpreted as being proportional to the probability of minimizing the (esti-
mated) information loss (cf. Burnham and Anderson (2002, sections 2.8, 2.9.1, and 6.4.5). In our
application this leads to exp((2268.40 − 2303.08)∕2) ≈ 2.9 ⋅ 10−8, which means that CTAR(2) w.j.
minimizes the information loss with an extremely larger probability (factor 3.4 ⋅ 107) than CAR(2)
w.j. To develop a test for these model classes which compares, for example, the parameters aji
directly is, of course, an interesting task. A thorough investigation of this topic is, however, beyond
the scope of this publication and is therefore left to a subsequent paper.
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654 LINGOHR and MÜLLER

F I G U R E 4 Kernel density estimates: Daily spot price data (red thick curve), CTAR(2) w.j. (solid black
curve), CAR(2) w.j. (dotted curve), CTAR(2) (dashed curve)

Finally, as we use stationary processes, we compare the empirical distributions of the different
models (based on 105 simulations each) together with the one of the deseasonalized spot price
using kernel density estimates. The result is shown in Figure 4.

One can clearly see that the density curve of CTAR(2) w.j. is closer to the density curve of the
observed data than the curves from the two competing models.

6 CONCLUSION AND OUTLOOK

In this work we have extended CTAR such that the driving process can include a jump
component. In addition to the proof of the existence of the newly defined process, we have
introduced a consistent Euler method which enables the generation of observations from the
correct distribution. While these points represent extensions of the ideas used by Brockwell
and Hyndman (1992), we have examined a method for estimation that has not yet been
considered for continuous autoregressive processes. The particle filter utilized has been for-
mulated in such a way that it can be used for non-analytically representable densities and
observation quantities which depend deterministically on the state vector. In order to numer-
ically optimize the estimated objective function, a suitable procedure was selected and its
quality was tested by means of a simulation study. Finally, we have shown that CTAR with
jumps can offer a significant advantage over comparable models in describing electricity
spot prices.

Deriving the stationary distribution of a CTAR model with jumps would be an interesting task.
However, this follows not directly from the concepts used so far. Moreover, note that even for the
Gaussian CTAR model the stationary distribution has been found only for p = 1, compare with
Equation (18). Of course, an approximation approach based on simulations of the process seems
feasible. However, since we do not need the stationary distribution for our purposes, we skipped
this investigation to another paper.
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LINGOHR and MÜLLER 655

Another interesting question is how to calculate the forward price (usually written as
EQ(ST|t)) based on our CTAR model and a risk neutral probability measure Q. A general idea
to find risk neutral probability measures, also in the field of electricity price models, is using Ess-
cher transforms, since they preserve the structure of the model dynamics, compare Benth and
Sgarra (2012). In particular, the new measure is equivalent to the old one and the process with
respect to the new measure inherits important features as, for example, the independent incre-
ment property. For an overview of how to apply Esscher transforms in the financial context see for
example, Gerber and Shiu (1994). For estimating the forward price in our CTAR context, a sim-
ilar approach as in Benth et al. (2014, sections 3 and 4.6), could probably be used. In that paper,
the authors derived pricing formulas for electricity forwards based on a CARMA(2,1) spot price
dynamics and also used Esscher transforms.
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APPENDIX . PROOFS

A.1 Proof of Theorem 1
First we adopt the idea of Brockwell (1994), attributing a solution of (1) to a solution of a
one-dimensional SDE. To this end, fix x0 ∈ Rp and note that L(t) = 𝜎W(t) + J(t) has characteris-
tics (0, 𝜎2t, 𝜆dt × F

𝛾
). Writing equation (1) in coordinate form, we get

dX1(t) = X2(t)dt,
dX2(t) = X3(t)dt,

⋮

dXp−1(t) = Xp(t)dt,
dXp(t) = [−apX1(t) − · · · − a1Xp(t) − 𝛽]dt + dL(t),

(A1)

where we have abbreviated aj(X1(t)) and 𝛽(X1(t)) to aj and 𝛽, respectively. Assuming X(0) = x0,
we can write X(t) in terms of {Xp(s), 0 ≤ s ≤ t} using the relation

Xj(t) = x0
j + ∫

t

0 ∫

sp−1−j

0
· · ·
∫

s2

0
Xp(s1)ds1 · · · dsp−j, j = 1, 2, … , p − 1. (A2)

The resulting functional relationship will be denoted by

X(t) = F(t,Xp). (A3)

Substituting (A3) into the last equation in (A1), we see that it can be written in the form,

dXp(t) = G(t,Xp)dt + dL(t), (A4)

where G(t,Xp), like F(t,Xp), depends on {Xp(s), 0 ≤ s ≤ t}.
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LetΩ = D([0,T),R) be the Skorokhod space,  the canonical 𝜎-algebra and F = (t)0≤t≤T the
canoncial filtration. Now, G ∶ [0,T) × D([0,T),R) → R is progressively measurable, see Karatzas
and Shreve (1998, 1.1.13). We now want to show by use of the Girsanov formula for semimartin-
gales, that there is a (weak) solution of equation (A4). For this, let P be a probability measure
under which the coordinate mapping process L(t)(𝜔) = 𝜔(t), 0 ≤ t ≤ T, 𝜔 ∈ Ω, is a Lévy process
with the given characteristics. For this mapping L =  . Then we define for all t ≥ 0,

Z(t) ∶= Z(t,L) = exp
(

∫

t

0

G(s,L)
𝜎

dW(s) − 1
2∫

t

0

G2(s,L)
𝜎

2 ds
)
, (A5)

By (A2), the function G(t,L) satisfies the linear growth condition

G2(t,L) ≤ K
[

1 + sup
s≤t

L2(s)
]
, t ≤ T. (A6)

Since E(L(t)) = 0, by Cont and Tankov (2004, 3.17), L(t) is a martingale and by Karatzas and
Shreve (1998, 1.3.7), L2(t) is a submartingal. Therefore Doob‘s inequality can be used to show that
by (A6) and E(L2(t)) <∞, G(t,L) satisfies the conditions of Klebaner and Lipster (2011). Hence,
Z(t) is a martingale and

̃P(t,A) ∶= E(1AZ(t)), A ∈  (t), 0 ≤ t ≤ T, (A7)

defines a consistent family of probability measures, see Karatzas and Shreve (1998, p. 191). By
Girsanov’s theorem for semi-martingales (Jacod & Shiryaev, 2002, 3.24, III) the characteristics of
L(t) relative to ̃P(t) are

(

∫

t

0
𝜎𝜌(s)ds, 𝜎2t,Y ⋅ t ⋅ 𝜆F

𝛾

)
, (A8)

where Y is a measurable nonnegative function and 𝜌(t) is a predictable process uniquely deter-
mined by the equations

Y = MP
𝜇

L

(
Z

Z−
| ̃

)
, (A9)

[Zc
,Lc] =

∫
𝜎𝜌(s)Z(s−)ds. (A10)

In Equation (A9), MP
𝜇

(X| ̃) is the conditional expectation of X on the probability space ( ̃Ω, ̃ ,MP
𝜇

)
(see Jacod & Shiryaev, 2002,3.15, III, for further details) and [X ,Y ] = {[X ,Y ](t)}t∈[0,T] is the
quadratic covariation of X ,Y , see Protter (1990,6, II).

As Z(t) is continuous, Zc(t) = Z(t−) = Z(t). We conclude Y ≡ 1 directly and 𝜌(s) = G(s,L(s))∕𝜎
since

[Zc
,Lc](t) = [Z, 𝜎W] (t) =

[
1 +
∫

Z G
𝜎

dW , 𝜎W
]
(t)

= 𝜎

∫

t

0
Z(s)G(s,L)

𝜎

d[W ,W](s) =
∫

t

0
Z(s)G(s,L)ds =

∫

t

0
𝜎𝜌(s)Z(s)ds.
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Hence by Jacod and Shiryaev (2002, 2.32, II) the process

̃L(t) ∶= L(t) −
∫

t

0
G(s,L)ds, 0 ≤ t < T, (A11)

has characteristics (0, 𝜎2t, 𝜆dt × F
𝛾
) under ̃P. As ̃L(t) is a Lévy process, see Jacod and

Shiryaev (2002, 4,19, II), (x0 + L(t), ̃L(t)) is a weak solution of (A4) in sense of Remark 1. Further-
more by Klebaner and Lipster (2011, 5.1) this solution does not explode on any finite time interval
[0,T], that is supt∈[0,T] E(Xp(t)2) < ∞.

To prove that the solution is unique in law, assume there are two weak solutions (X i
,Li),

(Ωi
,

i
,Pi), i = 1, 2, to (A4) with the same initial value x0. Now, using the above arguments

reversed, the process X i(t) is a Lévy jump-diffusion with characteristics (0, 𝜎2t, 𝜆dt × F
𝛾
) for the

probability measure ̂Pi(t) on  i
t , according to the prescription d ̂Pi(t)∕dPi(t) = ̂Z(t,X i), where

̂Z(t,X i) = exp
(
−
∫

t

0

G(s,X i)
𝜎

dW(s) − 1
2∫

t

0

G2(s,X i)
𝜎

2 ds
)
.

Therefore, for 0 = t0 < t1 < · · · < tn ≤ T and Γ ∈ (Rn+1), we have

P1 [(X1(t0), … ,X1(tn)) ∈ Γ
]
=
∫Γ

1
̂Z(s,X1)

d ̂P1 =
∫Γ

1
̂Z(s,X2)

d ̂P2

= P2 [(X2(t0), … ,X2(tn)) ∈ Γ
]
,

concluding that the solution is unique in law. ▪

A.2 Proof of Lemma 2
First note that by Equation (5),

Xn(t) = 1
n

⌊tn⌋∑

i=1
b(Xn(𝜏i−1)) +

⌊tn⌋∑

i=1

𝜎𝜈i√
n

1p +
⌊tn⌋∑

i=1
𝛾iqi1p,

and so by Hölder’s inequality,

‖Xn(t)‖4
≤ 43

⎡
⎢
⎢
⎣

‖‖‖‖‖‖

1
n

⌊tn⌋∑

i=0
b(Xn(𝜏i−1))

‖‖‖‖‖‖

4

+

(
⌊tn⌋∑

i=1

𝜎𝜈i√
n

)4

+

(
⌊tn⌋∑

i=1
𝛾iqi

)4⎤
⎥
⎥
⎦
.

By the fact that
∑⌊tn⌋

i=0 b(Xn(𝜏i−1)) is constant for ⌊tn⌋∕n ≤ t < ⌊t(n + 1)⌋∕n, Hölder’s inequality, the
at most linear growth of ‖b(X)‖ and the Cauchy–Schwarz inequality,

‖Xn(t)‖4
≤ 43

⎡
⎢
⎢
⎣
t3
∫

t

0
‖b(Xn(s))‖4ds +

(
⌊tn⌋∑

i=1

𝜎𝜈i√
n

)4

+

(
⌊tn⌋∑

i=1
𝛾iqi

)4⎤
⎥
⎥
⎦

≤ 43
⎡
⎢
⎢
⎣
t32K2

(
t +
∫

t

0
‖Xn(s)‖4ds

)
+

(
⌊tn⌋∑

i=1

𝜎𝜈i√
n

)4

+

(
⌊tn⌋∑

i=1
𝛾iqi

)4⎤
⎥
⎥
⎦
.
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660 LINGOHR and MÜLLER

Therefore there exist two positive constants c1 and c2 independent of n such that

E
(
‖Xn(t)‖4

)
≤ c1 + c2

[

∫

t

0
E
(
‖Xn(s)‖4

)
ds
]
,

where the equality holds by Tonelli’s theorem and Lemma 1. Let f n
t ∶= E(‖Xn(s)‖4), then f n

t ≤

c1 + c2∫
t

0 f n
s ds. Now by Gronwall’s lemma, f n

t ≤ c1 exp(c2t) ≤ c1 exp(c2). This concludes the lemma,
as c1 and c2 are independent of n. ▪

A.3 Proof of Proposition 1
To prove the tightness of the sequence {Xn ∶ n ≥ 1}, we use Ethier and Kurtz (1986, theorem
9.8.6). By applying Markov‘s inequality and Lemma 2, we get first that for all t in [0, 1],

lim sup
n≥1

P(||Xn(t)|| ≥ a) ≤ lim sup
n≥1

E(‖Xn(t)‖4)
a4 ≤

C
a4 −−−−−→a→∞

0.

This shows, that conditions (a) in Ethier and Kurtz (1986, theorem 7.2) holds. To use Ethier and
Kurtz (1986, theorem 9.8.6), by Ethier and Kurtz (1986, theorem 9.8.8), it remains to prove that

E
(
‖Xn(t + h) − Xn(t)‖ ‖Xn(t) − Xn(t − h)‖

)
≤ Ch, t ∈ [0, 1], 0 ≤ h ≤ t, (A12)

for some C > 0. Note that for h ≥ 1∕n,

E(‖Xn(t + h) − Xn(t)‖4) = E
⎛
⎜
⎜
⎝

‖‖‖‖‖‖

⌊(t+h)n⌋∑

i=⌊tn⌋+1

1
n

b(Xn(𝜏i−1)) +
𝜎𝜈i√

n
1p + 𝛾iqi1p

‖‖‖‖‖‖

4⎞
⎟
⎟
⎠

≤ 33E
⎛
⎜
⎜
⎝

‖‖‖‖‖‖

1
n

⌊(t+h)n⌋∑

i=⌊tn⌋+1
b(Xn(𝜏i−1))

‖‖‖‖‖‖

4

+

(
⌊(t+h)n⌋∑

i=⌊tn⌋+1

𝜎𝜈i√
n

)4

+

(
⌊(t+h)n⌋∑

i=⌊tn⌋+1
𝛾iqi

)4⎞
⎟
⎟
⎠

≤ 33h

(
1
n

⌊(t+h)n⌋∑

i=⌊tn⌋+1
E(‖b(Xn(𝜏i−1))‖4) + 3𝜎2

n
+ 𝜆m

𝛾,4

)

≤ Ch,

where C > 0 is independent of n and we used the Cauchy–Schwarz inequality, the at most linear
growth of ‖b(X)‖ and Lemma 1. Since

(
Xn(t + h) − Xn(t)

)
∧
(
Xn(t) − Xn(t − h)

)
= 0, h <

1
n
,

condition (A12) holds. Therefore {Xn ∶ n ≥ 1} is tight in D[0, 1]. ▪

A.4 Proof of Lemma 3
By the almost sure representation (8) it follows that

Y m
p (⋅) = y0

p +
1

ni(m)

⌊⋅ni(m)⌋∑

k=1
b(Ym(𝜏k−1))1p +

⌊⋅ni(m)⌋∑

k=1

𝜎𝜈

m
k√

ni(m)
+

⌊⋅ni(m)⌋∑

k=1
𝛾

m
k qm

k .
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LINGOHR and MÜLLER 661

Y m
p (t, 𝜔) is a cadlag function in t and therefore bounded on [0, 1] for each 𝜔 ∈ Ω. As Y m

p (t, 𝜔) is
constant in t everywhere except of its ni(m) jump points, it is of finite variation almost sure. There-
fore Y m

p (t) is a pure jump semi-martingale with respect to its natural filtration 
m
t = 𝜎(Y m

p (t) ∶
0 ≤ t ≤ 1), thus, by Jacod and Shiryaev (2002, I.4.52),

[Y m
p ](t) =

⌊tni(m)⌋∑

k=0
(ΔY m

p (𝜏k))2 =
⌊tni(m)⌋∑

k=1

(
1

ni(m)
b(Ym(𝜏k−1))1p +

𝜎𝜈

m
k√

ni(m)
+ 𝛾

m
k qm

k

)2

=
⌊tni(m)⌋∑

k=1

[
1

n2
i(m)

b(Ym(𝜏k−1))21p +
𝜎

2(𝜈m
k )2

ni(m)
+ (𝛾m

k )2(q
m
k )2+

+
2𝜎𝜈m

k

n3∕2
i(m)

b(Ym(𝜏k−1))1p +
2𝛾m

k qm
k

ni(m)
b(Ym(𝜏k−1))1p +

2𝜎𝜈m
k√

ni(m)
𝛾

m
k qm

k

]
.

and so,

E[Y m
p ](t) =

⌊tni(m)⌋∑

k=1

[
1

n2
i(m)

E
(

b(Ym(𝜏k−1))21p
)
+ 𝜎

2

ni(m)
+

m
𝛾,2𝜆

ni(m)

]

.

Now note that ‖b(X)‖ has at most linear growth. At the same time, by Kurtz and Protter (1991,
theorem 2.2), [Y m

p ](t)
p

−−−−−→
m→∞

[Yp](t), as [X] = X2 − 2 ∫ X−dX and Ym −−−−−→
m→∞

Y a.s. From Lemma 1
it can be seen that E[Y m

p ]2(t) is uniformly bounded for all t and m, and, therefore, [Y m
p ] is uniformly

integrable.
For the proof of the second statement w.l.o.g assume p = 2. Note that f (Y m

p ) is still a
semi-martingale as f is twice continuously differentiable. Hence, by the Lipschitz continuity of f
and the Cauchy–Schwartz inequality, we get

E[f (Y m
1 ),Y m

2 ]
2(t) = E

⎛
⎜
⎜
⎝

⌊tni(m)⌋∑

k=1
Δf (Y m

1 (𝜏k))ΔY m
2 (𝜏k)

⎞
⎟
⎟
⎠

2

≤ ⌊tni(m)⌋E
⎛
⎜
⎜
⎝

⌊tni(m)⌋∑

k=1
(Δf (Y m

1 (𝜏k)))2(ΔY m
2 (𝜏k))2

⎞
⎟
⎟
⎠

≤ ⌊tni(m)⌋b2E
⎛
⎜
⎜
⎝

⌊tni(m)⌋∑

k=1
(Δ(Y m

1 (𝜏k)))2(ΔY m
2 (𝜏k))2

⎞
⎟
⎟
⎠

≤
tb2

ni(m)

⌊tni(m)⌋∑

k=1

(
E(Y m

2 (𝜏k−1)4)
) 1

2
(

E(ΔY m
2 (𝜏k))4

) 1
2 ≤

Cb2

ni(m)
−−−−−→

m→∞
0,

where for the last inequality we used Lemma 1 and
∑⌊tni(m)⌋

k=1

(
E(ΔY m

2 (𝜏k))4
) 1

2 ≤ C, for some C > 0
independent of ni(m). This can be proved in the same way as in the proof of Proposition 1. By Kurtz
and Protter (1991, theorem 2.2), we know in addition that [f (Y m

1 ),Y m
2 ](t)

p
−−−−−→

m→∞
[f (Y1),Y2](t), as

[X ,Y ] = XY − ∫ X−dY − ∫ Y−dX , if (f (Y m
1 ),Y m

2 )
p

−−−−−→
m→∞

(f (Y1),Y2)) in the Skorohod topology on
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662 LINGOHR and MÜLLER

DR2[0, 1]. But this is obvious, as Ym a.s.
−−−−−→

m→∞
Y and the continuous mapping theorem. Therefore,

by the same argument as above, [f (Y1),Y2](t) = 0, ∀t, a.s.. ▪

A.5 Proof of Lemma 4
We first consider the case p = 1. Apart from the driving noise, Y1 has then the same properties
as the process considered in Yan (2002, section 2). Therefore, we simply can extend the proof
found there which is using the occupation time formula for a SDE driven by a Brownian motion.
However, there is an extension of this formula for semi-martingales, see Protter (1990, section
IV.5, corollary 1), and by Kurtz and Protter (1991, theorem 2.2), Y1 is a semi-martingale. Let Lx be
the local time of Y1. Then

∫

1

0
1(Y1(s) ∈ Da)d[Y1](s) =

∫x∈Da

Lx
1dx = 0,

since 𝜆(Da) = 0 and Lx(t) < ∞ a.s. as each cadlag function has at most countable many
discontinuities (Billingsley, 1999, p. 124). We conclude the lemma by Lemma 3 and 𝜎

2 +
mJ,2𝜆 > 0.

To prove the Lemma in case of p ≥ 2 we adopt an argument of Brockwell and Williams (1997),
to show that even for a degenerate diffusion coefficient the amount of time that Y1 spends in a
neighborhood of r1 is small with respect to the Lebesgue measure. W.l.o.g. we only consider p = 2,
l = 2 and r1 = 0. For K > 0 define 𝜈K ∶= inf{t ∈ [0, 1] ∶ ‖Y(t)‖ ≥ K} and fix 𝜖 such that K > 1 >

2𝜖 > 0. Then we choose a function g ∈ C3
b(R), where g is such that g(y) = ∫ y

0 ∫
w

0 g′′(u)dudw and g′′
is an even function, g′′(y) = 1 for 0 ≤ y ≤ 𝜖, g′′(y) = 0 for 2𝜖 ≤ y ≤ K and g′′(y) is nonincreasing
for 𝜖 ≤ y ≤ 2𝜖. In particular for |y| ≤ K, |g′(y)| ≤ 2𝜖 and |g(y)| ≤ 2𝜖K. Thus, we may assume g′′ is
defined for |y| > K such that |g(y)| ≤ 4𝜖K and |g′(y)| ≤ 2𝜖 for all y. Brockwell and Williams (1997)
used a martingale property of Y2g′(Y1) to show 𝜆({|Y1| ≤ 𝜖}) −−−−→

𝜖→0
0. Instead, we utilize a more

direct approach based on the integration by parts formula for semi-martingales, see Protter (1990,
II.2), to derive

E
(

∫

t∧𝜈K

0
g′′ (Y1(s))Y 2

2 (s)ds
)
= E

(
Y2(t ∧ 𝜈K)g′(Y1(t ∧ 𝜈K))

)

− E
(

∫

t∧𝜈K

0
g′(Y1(s))dY2(s)

)
− [g′(Y1),Y2](t ∧ 𝜈K) ≤ CKt𝜖, a.s.,

by Lemma 2, Lemma 3 and the boundedness of g′, where C > 0. Thus, on letting 𝜖 tend to zero,
t → 1, and then K → ∞,

E
(

∫

1

0
Y 2

2 (s)1{0}(Y1(s))ds
)
= 0.

As ∫ 1
0 1{0}(Y2(s))ds = 0, a.s. (see case p = 1), it follows ∫ 1

0 1{0}(Y1(s))ds = 0, a.s.. This completes the
proof. ▪

A.6 Proof of Lemma 5
As the first p − 1 components of A(X1)X are continuous functions of X by Ym a.s.

−−−−−→
m→∞

Y, Lemma 2
and the dominated convergence theorem, the statement can be proved directly for all components
unequal to p. For the last component we have to use Lemma 4 in addition.
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LINGOHR and MÜLLER 663

By Skorokhod’s representation theorem,

d(Ym
,Y) −−−−−→

m→∞
0, a.s..

As Skorokohod convergence implies that Ym(t) −−−−−→
m→∞

Y(t) for all continuity points t of Y
(Billingsley, 1999, p. 124), we have

bp(Ym(t)) −−−−−→
m→∞

bp(Y(t)), ∀t ∈ DY ∩ Da(Y1), a.s.,

where DY is the set of jump times of Y and Da(Y1) ∶= {t ∈ [0, 1] ∶ Y1 ∈ Da}. As (Y m) = (Xni(m)),
by the at most linear growth of ‖b(X)‖ and the proof of Lemma 2, supm≥1 E‖b(Ym(t))‖4 is dom-
inated by some constant on [0, 1]. Therefore {bp(Ym(t))1{t∈DY∩Da(Y1 )}

}m≥1 is uniformly integrable.
By Vitali‘s convergence theorem,

bp(Ym(t))1{t∈DY∩Da(Y1)}
L1(Ω)
−−−−−→

m→∞
bp(Y(t))1{t∈DY∩Da(Y1 )}

, ∀t ∈ [0, 1]. (A13)

Hence, we get

E|||
1

ni(m)

⌊tni(m)⌋∑

k=1
bp(Ym(𝜏k−1)) −

∫

t

0
bp(Y(s))ds|||

≤ E
||||||

1
ni(m)

⌊tni(m)⌋∑

k=1
bp(Ym(𝜏k−1)) −

∫

t

0
bp(Ym(s))ds

||||||
+ E

|||||∫

t

0
bp(Ym(s))ds −

∫

t

0
bp(Y(s))ds

|||||

≤ E|bp(Ym
𝜏⌊tni(m)⌋−1

)||t − 𝜏⌊tni(m)⌋−1| +
∫

t

0
E|bp(Ym(s)) − bp(Y(s))|ds−−−−−→

m→∞
0,

since |t − 𝜏⌊tni(m)⌋−1| ≤ 1∕ni(m), E(𝜆
(

DY ∪ Da(Y1)
)
) = 0 by Lemma 4, Equation (A13) and the domi-

nated convergence theorem. ▪

A.7 Proof of Theorem 2
We define

Zm(t) ∶= Ym(t) − 1
ni(m)

⌊tni(m)⌋∑

k=1
A(Y m

1 (𝜏k−1))Ym(𝜏k−1)

= 1p

⎡
⎢
⎢
⎣

⌊tni(m)⌋∑

k=1

𝜎𝜈k
m

√
ni(m)

+
⌊tni(m)⌋∑

K=1
𝛾k

mqk
m
⎤
⎥
⎥
⎦
,

Z(t) ∶= Y(t) −
∫

t

0
A(Y m

1 (s))Y
m(s)ds.

As Ym −−−−−→
m→∞

Y a.s. and Lemma 5, Zm converges to Z in probability. Therefore, we only have to
prove

Zm
p (t)

d
−−−−−→

m→∞
𝜎W(t) +

N(t)∑

i=1
𝛾i =∶ Z∗(t). (A14)
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664 LINGOHR and MÜLLER

Then, Yp(t)
d
= ∫ t

0 bp(Y(s))ds + 𝜎W(t) +
∑N(t)

i=1 𝛾i, that is, Y is the unique weak solution of SDE (1).
Since Xni(m) converges weakly to Y and (Y) = (X), the Euler scheme converges weakly to the
unique weak solution of SDE (1).

To prove (A14), we use Billingsley (1999, theorem 13.5). First, for any 𝜖 > 0,

P(|Z∗(1) − Z∗(1−)| > 𝜖) = P(|𝛾N(1)(N(1) − N(1 − 𝛿))| > 𝜖) = 0,

by the continuity in probability of N(t). Next, denote by TN ⊂ [0, 1] the set of discontinuities of
N(t). W.l.o.g. let t1 < t2, t1, t2 ∈ TN . Then

Eei(s1Zm(t1)+s2Zm(t2)) = Eei(s1+s2)Zm(t1)+is2(Zm(t2)−Zm(t1)) = Ee
i(s1+s2)

⌊t1ni(m)⌋∑

k=1

𝜎𝜈

m
k√ni(m)
+is2

⌊t2ni(m)⌋∑

k=⌊t1ni(m)⌋+1

𝜎𝜈

m
k√ni(m)

× Ee
i(s1+s2)

⌊t1ni(m)⌋∑

k=1
𝛾

m
k qm

k +is2

⌊t2ni(m)⌋∑

k=⌊t1ni(m)⌋+1
𝛾

m
k qm

k
.

By Donsker‘s theorem, see Billingsley (1999, theorem 14.1), the first factor converges to
Eei(s1W(t1)+s2W(t2)). To prove that the second factor tends to Eei(s1

∑N(t1)
i=1 𝛾i+s2

∑N(t2)
i=1 𝛾i), we show

∑⌊tn⌋
i=1 𝛾

m
i qm

i
d

−−−−−→
n→∞

∑N(t)
i=1 𝛾i. This is true, because by the law of total probability

P(
⌊tn⌋∑

i=1
𝛾

m
i qm

i ≤ x) =
∞∑

k=1
F
𝛾1+ … +𝛾k (x)bin

(
⌊tn⌋, 𝜆

n

)
(k),

where bin(⌊tn⌋, 𝜆∕n) −−−−−→
n→∞

pois(𝜆t), since ⌊tn⌋𝜆∕n−−−−−→
n→∞

𝜆t. Now, to conclude the proof of (A14),
it is sufficient that Zm fulfills a certain tightness condition, compare Billingsley (1999, inequality
(13.14)), namely for s ≤ u ≤ t, s,u, t ∈ [0, 1], and m ≥ 1,

E|Zm(u) − Zm(s)|2𝛽|Zm(t) − Zm(u)|2𝛽 ≤ c(t − s)2𝛼 ,

where 𝛽 ≥ 0, 𝛼 > 1∕2 and c > 0. This is true, as

E|Zm(u) − Zm(s)|2|Zm(t) − Zm(u)|2 = E|Zm(u) − Zm(s)|2E|Zm(t) − Zm(u)|2 ≤

≤

⎛
⎜
⎜
⎝
E
||||||

⌊uni(m)⌋∑

k=⌊sni(m)⌋+1

𝜎𝜈

m
k√
n

||||||

2

+ E
||||||

⌊uni(m)⌋∑

k=⌊sni(m)⌋+1
𝛾

mpm
k

||||||

2⎞
⎟
⎟
⎠

×
⎛
⎜
⎜
⎝
E
||||||

⌊tni(m)⌋∑

k=⌊uni(m)⌋+1

𝜎𝜈

m
k√
n

||||||

2

+ E
||||||

⌊tni(m)⌋∑

k=⌊uni(m)⌋+1
𝛾

mpm
k

||||||

2⎞
⎟
⎟
⎠
≤

≤ (⌊uni(m)⌋ − ⌊sni(m)⌋)(⌊tni(m)⌋ − ⌊uni(m)⌋)
(
𝜎

2

n
+mJ,2

𝜆

n

(
1 − 𝜆

n

))2

≤

≤

{
c(u − s + 1

n
)(t − u + 1

n
) ≤ 4c(t − s)2, t − s ≥ 1

n
, s < u < t,

0 else.

▪
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