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Abstract: Targeting molecular alterations as an effective treatment for isocitrate dehydrogenase-
wildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1
(SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in
lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma.
Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM
and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in
these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP,
Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To
a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong
expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling
revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively.
Furthermore, a notable difference in the amount of LD between GBM and HGA was observed.
Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and
invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial
for a concomitant suppression of protumoral microglia/macrophages.
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1. Introduction

Personalized therapies have been successfully developed during the past two decades
for a subset of malignant tumor entities. However, for isocitrate dehydrogenase (IDH)-
wildtype glioblastoma (GBM) patients, molecular targeted treatment has not yet been
established, and the overall prognosis of patients with this highly malignant brain tumor
remains poor. Emerging evidence demonstrates the important role of lipid metabolism in
cancer cells. Identifying key aspects of the lipid metabolism that are specifically engaged
with tumorigenesis suggests a new strategy to treat malignancies [1,2]. Recently, increased
lipid metabolism, regulated by the transcription factor sterol regulatory element-binding
protein-1 (SREBP-1), has been shown to be characteristic for GBM. SREBP- 1 in its inac-
tive state is an integral membrane protein of the endoplasmic reticulum. Sterol-O-Acyl
Transferase 1 (SOAT1) is one of the key target enzymes of SREBP-1 activation and catalyzes
the esterification of free cholesterol with fatty acids to cholesterol esters, which are then
transferred into lipid droplets (LD) as a storage pool for cholesterol and fatty acids.

SOAT1 has been shown to be of relevance as a prognostic marker and potential
therapeutic target for several tumors. Thus, high SOAT1 expression has been demonstrated
to be associated with unfavorable prognosis in high-risk prostate cancer (PCa) [3]. Inhibition
of cholesteryl ester formation with avasimibe, a SOAT1 inhibitor initially developed for
the treatment of atherosclerosis [4], in a cell culture model of PCa, was able to reduce the
viability of the cells and to lower in vitro indicators of cell migration and invasiveness [5].
Generally, inhibition of SOAT1 could effectively suppress SREBP-1 and, consequently, GBM
growth [6,7]. In particular, avasimibe suppresses GBM cell growth in vitro significantly [8,9].
Mitotane is the only FDA-approved SOAT1 inhibitor and is in clinical use for the treatment
of the orphan disease adrenocortical carcinoma [10]. SOAT1 expression is associated with
unfavorable prognosis but does not predict response to mitotane monotherapy. Patients
treated with mitotane frequently exhibit moderate to severe neurological adverse effects,
such as dizziness and fatigue, which are not yet mechanistically understood [11].

Higher SOAT1 expression has been demonstrated in GBM compared to astrocytoma
of lower malignancy (CNS WHO grades 2–3), with absence of expression in pilocytic
astrocytoma, CNS WHO grade 1, and control brains with cortical dysplasia [3]. The same
study reported that the amount of cytoplasmic LD is elevated in GBM and inversely
correlates with patients’ survival [3]. These results have to be taken with caution due
to the high tumor heterogeneity of GBM with a high proportion of glioma-associated
microglia/macrophages.

The aim of our study was to refine the analysis of SOAT1 expression in the GBM
microenvironment. We therefore assessed SOAT1 expression by immunohistochemistry
in tumor tissue from patients with GBM and IDH-mutant astrocytoma, CNS WHO grade
4 (HGA), using normal brain as a control that could also be relevant for the observed
neurotoxic side effects of SOAT1 inhibitors such as mitotane.

2. Results
2.1. Tissue Samples

We retrospectively evaluated specimens from 27 IDH wildtype GBM, CNS WHO
grade 4 and 3 HGA, CNS WHO grade 4 with immunohistochemical evidence of the IDH1
R132H mutation. All patients were resected or biopsied at the Department of Neurosurgery
of the University Hospital Würzburg, Germany, between January 2012 and March 2016. The
tumors were histologically assessed and graded on formalin-fixed and paraffin embedded
tissue sections by experienced neuropathologists, according to the criteria of the World
Health Organization [12]. (Table 1).
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Table 1. Demographic and molecular data of glioma samples.

No. Age at Surgery Gender Diagnosis WHO MGMT-Status IDH-Status

1 79 M GBM 4 methylated wt
2 63 M GBM 4 unmethylated wt
3 72 F GBM 4 methylated wt
4 80 M GBM 4 unmethylated wt
5 67 F GBM 4 methylated wt
6 74 F GBM 4 methylated wt
7 68 M GBM 4 unmethylated wt
8 58 M GBM 4 methylated wt
9 77 M GBM 4 methylated wt

10 65 F GBM 4 methylated wt
11 71 M GBM 4 methylated wt
12 66 F GBM 4 unmethylated wt
13 78 M GBM 4 methylated wt
14 63 M GBM 4 methylated wt
15 57 F GBM 4 methylated wt
16 61 F GBM 4 methylated wt
17 69 M GBM 4 unmethylated wt
18 73 M GBM 4 methylated wt
19 56 F GBM 4 unmethylated wt
20 62 F GBM 4 methylated wt
21 54 M GBM 4 methylated wt
22 56 M GBM 4 unmethylated wt
23 81 F GBM 4 methylated wt
24 83 F GBM 4 unmethylated wt
25 72 M GBM 4 methylated wt
26 71 M GBM 4 methylated wt
27 59 M GBM 4 methylated wt
28 41 F HGA 4 methylated mutant
29 39 M HGA 4 methylated mutant
30 47 M HGA 4 methylated mutant

GBM: glioblastoma; HGA: high-grade astrocytoma; WHO: CNS WHO grade; MGMT-Status: O6-methylguanine-
DNA methyl-transferase promoter methylation status; IDH-status: isocitrate dehydrogenase status; wt: wildtype.

2.2. Single Staining

Immunoperoxidase single staining of GBM samples suggested SOAT1 to be more
pronounced in microglia and macrophages rather than in tumor cells. An unequivocal
expression of SOAT1 in tumor cells could not be definitely established (Figure 1).
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Figure 1. (a) GFAP staining of glioblastoma tumor cells; (b) CD68 positivity of tumor associated 
microglia and macrophages; (c) SOAT1 expression in GBM (scale bar 200 µm). 
Figure 1. (a) GFAP staining of glioblastoma tumor cells; (b) CD68 positivity of tumor associated
microglia and macrophages; (c) SOAT1 expression in GBM (scale bar 200 µm).

In normal brain, no specific SOAT1 expression was observed in neurons, oligodendro-
cytes, and astrocytes in any of the analyzed regions. However, the microglia, cells of the
choroid plexus and circulating intravascular monocytes showed specific staining (Figure 2).
In macrophages of peripheral organs (liver, lung, tonsil, and lymph node) SOAT1 was also
strong expressed. Figure 3 shows an example of the staining in lung and tonsil.
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2.3. Multiple Fluorescence Labeling

Multiple carbocyanine labeling revealed SOAT1 colocalization with either astroglial
GFAP or Iba1 in microglia/macrophages (Figure 4), additional to its colocalization with
IDH1 R132H in HGA cells. (Figure 5). In all tumor samples, the proportion of SOAT1-
positive microglia/macrophages was higher than that of tumor cells.
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2.4. Oil Red O Staining

Notably, GBM and HGA tumor samples showed differently distributed LD. Whereas
GBM exhibited abundant LD in tumor cells, HGA appeared nearly devoid of them
(Figure 6).
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3. Discussion

Despite aggressive treatment with surgery, radiation, and chemotherapy, GBM remains
an incurable and invariably recurrent brain tumor. To date, no pharmacological intervention
has been demonstrated to substantially influence the course of the disease. For this reason,
there is increasing interest in the development of targeted therapies not only aiming at
the tumor cells but also at the microenvironment, including the macrophage/microglia
compartment, which is known to be crucial for tumor invasiveness and progression.

In this study, we analyzed the expression of SOAT1, recently identified as the target
molecule of mitotane, which is approved as an orphan drug for the treatment of adreno-
cortical carcinoma. Our goal was to explore its expression in GBM and HGA, the most
frequent malignant brain tumors in adults [13,14], as a rationale for its future therapeutic
inhibition in these tumors.

In our panel of 27 GBM and 3 HGA, CNS WHO grade 4, only a small proportion
of the tumor cells displayed SOAT1-immunoreactivity. In contrast, strong and extensive
expression was observed in glioma-associated macrophages, in both tumor entities. Geng
et al. described a higher expression in GBM tissue compared to astrocytoma of lower
histological grades (2–3) based on single immunolabeling [3]. However, this approach
might prevent the high precision in identification of positive and negative cell types
within the tumor tissue. GBM contain a large proportion of macrophages compared
to astrocytomas of lower grades, which predominantly comprise small-sized ameboid
microglia [15]. This could be an explanation for the higher SOAT1-expression in GBM
compared to low-grade astrocytoma in the mentioned study. In recent years, there has
been more and more discussion about the modulation of the immune cells as a therapeutic
approach in GBM. The high SOAT1-expression in tumor-associated macrophages could
be the basis for a therapeutic attempt with mitotane, in GBM patients with no further
therapeutic options. Future investigations of the in vitro effect of SOAT1 inhibition on
macrophage polarization would be of interest in this regard.

By applying triple immunofluorescence labeling, we are the first to provide evidence
for SOAT1 co-expression with immunoreactivities for Iba1 and IDH1 R132H positive
cells, respectively.

Another interesting and novel result of the present study was the notable difference in
the amount of cytoplasmic LD between GBM and HGA. As already mentioned, elevated
lipogenesis, regulated by SREBP-1, is a novel characteristic of GBM. SREBP-1 activation is
negatively regulated by endoplasmic reticulum cholesterol, and SOAT1 is a key enzyme
converting endoplasmic reticulum cholesterol to esters for storage in LD. In a previously
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published study, an inverse correlation between the amount of LD and patient survival was
observed in GBM, however, without IDH-status specification [3]. In our cohort, the HGA
were nearly completely devoid of LD accumulation, whereas GBM showed an abundance
of them. This might be a consequence of the differences in pathogenesis between both
tumor entities. Tumor evolution studies involving the sequencing of paired initial and
recurrent IDH-mutant tumors have suggested that mutation of the IDH gene is an early
event in tumor formation [16,17], and the mutation indirectly alters the level of lipid
synthesis [18,19]. The results of our analysis underline the differences between both tumor
subtypes and raise doubt regarding a potential therapy success by suppression of SOAT1
in HGA.

Studies regarding SOAT1 expression in healthy brains were lacking to date. In our
study, the expression of SOAT1 appeared restricted to microglial cells, whereas other
cell types, such as neurons, astrocytes, and oligodendroglia, remained negative. This
suggests that the neurological adverse events seen in mitotane-treated patients are not
on-target effects mediated by SOAT1 inhibition. This is in accordance with several studies
reporting moderate neurotoxicity in individual patients treated with high-dose mitotane
for adrenocortical carcinoma [20–22]. However, we could demonstrate SOAT1 expression
in peripheral macrophages. The clinical impact of this finding remains unclear regarding a
possible relationship to the well-known systemic side effects of mitotane.

4. Materials and Methods

Formalin-fixed normal brain tissue obtained from the local Brain Bank served as
controls. Two whole brains from patients without brain tumor or other cerebral lesions
were cut into coronal slices. Following a standardized protocol, 17 brain specimens were
sampled in each case, including areas such as the frontal, temporal, parietal, occipital lobes,
the cingulate gyrus and the striatum, the basal forebrain including the amygdala, thalamus,
and the anterior and posterior hippocampus; midbrain including the substantia nigra; pons
including the locus coeruleus; medulla oblongata, vermis, and cerebellar cortex. We also
analyzed the SOAT1 expression in macrophages of peripheral organs (liver, lung, tonsil,
and lymph node).

All tissue samples were obtained with the consent of the patients or next of kin and
according to the guidelines of the national and local ethics committees. The study was
approved by the local ethics committee of the University of Würzburg (internal application
number 99/11) and performed in accordance to the ethical standards described in the most
recent version of the Declaration of Helsinki.

4.1. Single Immunohistoperoxidase Staining

Sequential 3 µm-thick paraffin sections were stained by applying classical immunohis-
tochemical methodology. Sections were deparaffinized by drying on Superfrost plus slides
(Fisher Scientific, Schwerte, Germany), heated at 56 ◦C overnight, and washed with mixed
xylenes, 100% ethanol, and 95% ethanol.

The astroglial origin of astrocytic tumor cells was confirmed by immunopositivity
for the glial fibrillary acidic protein (GFAP; 1:200, mouse monoclonal antibody, Clone 6F2,
Dako, Hamburg, Germany). The astrocytes of adjacent brain parenchyma served as internal
positive controls.

A monoclonal mouse antibody directed against CD68 (1:200, clone IS609, Dako, Ham-
burg, Germany) was applied to identify intratumoral microglial cells and macrophages.

IDH1 mutational status was determined utilizing a specific antibody for the R132H
mutation (1:100, monoclonal mouse antibody, clone H09, Dianova, Hamburg, Germany).
Cases with a mutation confirmed by sequence analysis and immunohistochemistry) served
as controls. In case of immunohistochemical negativity, the genomic DNA was extracted
from the tumor tissue using a DNA Isolation Kit for formalin-fixed and paraffin-embedded
tissue (Qiagen, Hilden, Germany) and the region around codon 132 of IDH1 and codon
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172 of IDH2 was amplified by PCR using specific primers (Life Technologies, Darmstadt,
Germany). The purified amplificates were analyzed by pyrosequencing.

Immunoperoxidase labeling of SOAT1 was performed as previously described based
on a rabbit polyclonal antibody (1:1000, rabbit polyclonal antibody, ab39327, Abcam,
Cambridge, UK) [10]. Adrenal gland tissue served as the positive control for this staining.

For detection, link- and label-antibody from the SS Multilink HRP kit (DCS, LP000-UL,
Hamburg, Germany) and the ultraView Universal DAB Detection Kit (Ventana Medical Sys-
tems, 760-500, Darmstadt, Germany) were used according to the manufacturer’s instructions.

All immunoperoxidase-labeled sections were counterstained for 2 min with hema-
toxylin (Sigma-Aldrich, Taufkirchen, Germany).

4.2. Oil Red O Staining

To detect lipid droplets in tumor samples, fresh-frozen GBM and HGA tissue from our
study cohort was stained with lipid stain Oil Red O (Dianova, Hamburg, Germany) accord-
ing to the manufacturer’s protocol. Four µm-thick frozen tissue sections were incubated
in propylene glycol followed by incubation in Oil Red O solution and differentiation in
propylene glycol (Sigma-Aldrich, Taufkirchen, Germany). After incubation in hematoxylin,
the slides were rinsed with water and finally covered using an aqueous mounting medium
(ab64230, Abcam, Cambridge, UK).

4.3. Immunofluorescence Labeling

Triple immunofluorescence staining was performed in order to identify the SOAT1
positive cell types in the GBM and HGA samples. Briefly, slides mounted with deparaf-
finized 5 µm thick sections were extensively washed with 0.1 M Tris-buffered saline, pH 7.4
(TBS), prior to blocking nonspecific binding sites for subsequently applied immunoreagents
with 5% normal donkey serum in TBS containing 0.3% Triton X-100 for 1 h in a humidity
chamber. The tissue was incubated overnight with one of the following mixtures, which all
contained rabbit-anti-SOAT1 antibody (1:100 in the blocking solution, abcam, Cambridge,
UK): I) guinea pig-anti-GFAP (1:200; 173,004, Synaptic Systems, Göttingen, Germany) and
biotinylated Solanum tuberosum lectin (STL; 20 µg/mL; B-1165, Vector, Burlingame, CA,
USA); II) guinea pig-ionized calcium binding adapter molecule-1 (Iba1; 1:100; 234,004,
Synaptic Systems, Göttingen, Germany) and biotinylated STL (20 mg/mL; Vector); or
III) mouse-anti-IDH (1:20; Dianova, Hamburg, Germany) and guinea-pig-anti-Iba1 (1:100;
Synaptic Systems, Göttingen, Germany). Following several rinses with TBS, the sections
were left to react for 1 h with mixtures of carbocyanine (Cy)3-donkey-anti-rabbit IgG,
Cy2-donkey-anti-guinea pig, and Cy5-streptavidin (for I and II) or Cy3-donkey-anti-rabbit
IgG, Cy2-donkey-anti-mouse IgG, and Cy5-donkey-anti-guinea pig IgG (for III); all fluo-
rochromated antibodies were from Dianova as supplier for Jackson ImmunoResearch West,
Grove, PA, USA and used for 1 h at 20 µg/mL TBS containing 2% bovine serum albumin.
Next, the tissue was washed again with TBS, and its autofluorescence was quenched by
treatment with Sudan Black B according to Schnell et al. (1999). Finally, the sections were
coverslipped with glycerol gelatin (GG1, Sigma-Aldrich, Taufkirchen, Germany).

In the histological control experiments, the omission of primary antibodies and bi-
otinylated STL resulted in the expected absence of any cellular staining.

Pictures from multiple fluorescence labeling were made with a microscope Biorevo
BZ-9000 (Keyence, Neu-Isenburg, Germany).

5. Conclusions

SOAT1 suppression might be a new therapeutic option in regard to targeting GBM
growth and invasiveness. The higher expression in cells related to neuroinflammation
compared to the tumor cells, could be of significance for a concomitant suppression of pro-
tumoral microglia/macrophages. The importance of the newly reported SOAT1 expression
in peripheral organs remains largely unclear and requires further investigation.
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