

Review of cyanotoxicity studies based on cell cultures

Iliyana Sazdova, Milena Keremidarska-Markova, Mariela Chichova, Blagoy Uzunov, Georgi Nikolaev, Mitko Mladenov, Rudolf Schubert, Maya Stoyneva-Gärtner, Hristo S. Gagov

Angaben zur Veröffentlichung / Publication details:

Sazdova, Iliyana, Milena Keremidarska-Markova, Mariela Chichova, Blagoy Uzunov, Georgi Nikolaev, Mitko Mladenov, Rudolf Schubert, Maya Stoyneva-Gärtner, and Hristo S. Gagov. 2022. "Review of cyanotoxicity studies based on cell cultures." *Journal of Toxicology* 2022: 5647178. https://doi.org/10.1155/2022/5647178.

@_ **①**

Hindawi Journal of Toxicology Volume 2022, Article ID 5647178, 17 pages https://doi.org/10.1155/2022/5647178

Review Article

Review of Cyanotoxicity Studies Based on Cell Cultures

Iliyana Sazdova, Milena Keremidarska-Markova, Mariela Chichova, Hariela Chichova, Sazdova, Milena Keremidarska-Markova, Mariela Chichova, Mariela Chichova,

Correspondence should be addressed to Hristo S. Gagov; hgagov@uni-sofia.bg

Received 8 January 2022; Revised 28 February 2022; Accepted 25 March 2022; Published 25 April 2022

Academic Editor: You-Cheng Hseu

Copyright © 2022 Iliyana Sazdova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cyanotoxins (CTs) are a large and diverse group of toxins produced by the peculiar photosynthetic prokaryotes of the domain Cyanoprokaryota. Toxin-producing aquatic cyanoprokaryotes can develop in mass, causing "water blooms" or "cyanoblooms," which may lead to environmental disaster—water poisoning, extinction of aquatic life, and even to human death. CT studies on single cells and cells in culture are an important stage of toxicological studies with increasing impact for their further use for scientific and clinical purposes, and for policies of environmental protection. The higher cost of animal use and continuous resistance to the use of animals for scientific and toxicological studies lead to a progressive increase of cell lines use. This review aims to present (1) the important results of the effects of CT on human and animal cell lines, (2) the methods and concentrations used to obtain these results, (3) the studied cell lines and their tissues of origin, and (4) the intracellular targets of CT. CTs reviewed are presented in alphabetical order as follows: aeruginosins, anatoxins, BMAA (β -N-methylamino-L-alanine), cylindrospermopsins, depsipeptides, lipopolysaccharides, lyngbyatoxins, microcystins, nodularins, cyanobacterial retinoids, and saxitoxins. The presence of all these data in a review allows in one look to advance the research on CT using cell cultures by facilitating the selection of the most appropriate methods, conditions, and cell lines for future toxicological, pharmacological, and physiological studies.

1. Introduction

Cyanotoxins (CTs) are a large and diverse group of toxins produced by the peculiar photosynthetic prokaryotes of the domain Eubacteria, commonly known as cyanobacteria or blue-green algae, and since 1999 named Cyanoprokaryota [1, 2]. Some aquatic cyanoprokaryotes can develop in mass, causing so-called "water blooms" or "cyanoblooms" [3]. When such blooms are formed by

toxin-producing cyanoprokaryotic algae, they are considered harmful and are usually abbreviated as Cyano-HABs. The toxic substances are transported through the food webs and may reach people and animals by drinking water, or through other exposure routes, which include recreational activities or consumption of so-called "seafood", which includes both freshwater and marine organisms [3–5]. The excretion of toxic compounds may lead to environmental disasters—water poisoning,

¹Department of Animal and Human Physiology, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8 Dragan Tsankov Blvd., Sofia 1164, Bulgaria

²Department of Botany, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8 Dragan Tsankov Blvd. 1164 Sofia, Bulgaria

³Department of Cytology, Histology and Embryology, Faculty of Biology, St. Kliment Ohridski University of Sofia,

⁸ Dragan Tsankov Blvd, Sofia 1164, Bulgaria

⁴Faculty of Natural Sciences and Mathematics, Institute of Biology, Sts, Cyril and Methodius University, Skopje 1000, North Macedonia

⁵Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg 86159, Germany

extinction of aquatic life, and even to human death [3–5]. Current climate changes and anthropogenic press can intensify and increase the frequency of these hazardous ecological events [3, 6]. Although most research addresses aquatic toxin producers, there is a growing body of evidence on such producers from aeroterrestrial and extreme habitats, and among airborne algae as well, with a considerable number of detected toxins and outlining of additional exposure route through consumption of crops, which have been irrigated by contaminated water [7, 8].

Different approaches have been applied to classify CT, two of which are the most common: by the target of their action, or by chemical composition. By target, CT are classified as hepatotoxins, neurotoxins, dermatoxins, and cytotoxins, whereas chemically they are divided in peptides, alkaloids, phosphorylated cyclic N-hydroxyguanine, diaminoacids, and lipopolysaccharides, the last widely recognized as endotoxins. Prolonged use of drinking water, contaminated with low-doses CTs, may have also carcinogenic effect [6]. Thus, microcystin-LR (MC-LR), the most toxic MC, is considered to express tumor promoting effect mainly by violating phosphorylation-dependent regulations of cellular proteins [new 9 Brozman et al., 2020]. The pleiotropic downstream mechanisms link MC-LR-dependent inhibition of eucaryotic protein phosphatases (PPs) PP1, PP2A, phospho-PP4, and phospho-PP5 [2] to tumor promotion and neoplastic transformation by cell growth induction, reactive oxygen species (ROS) generation, oxidative stress, mitochondrial DNA impairment, and by the transformation of cell phenotype [9]. Chronic proinflammatory effect of MC-LR alone or a combination with another CT-like cylindrospermopsin (CYN) may additionally stimulate the neoplastic transformation and tumor progression [6, 10].

Cell cultures are very convenient for toxicological studies. They allow to reveal the mechanisms of cytotoxic effects, the affected tissues, intracellular targets, and ways to minimize cytotoxicity [11]. The use of human cell lines in toxicological studies is a fast and effective way to investigate the damaging effects of toxins in humans and to identify the most sensitive tissues.

Although different methods are developed for testing of toxins in cell- and animal-based studies, during the last years, the trials on the use of animals have significantly decreased. This is caused by the high cost of these types of clinical trials and increasing resistance to the use of animals for scientific studies. Therefore, the significance and use of cell lines is gradually increasing.

This review aims to present (1) the important results of the effects of CT on human and animal cell lines; (2) the methods and concentrations used to obtain these results, (3) the studied cell lines, and (4) the intracellular targets of CT. The presence of all these data in a review allows in one look to advance the toxicological and pharmacological studies of CT using cell cultures by facilitating the selection of the most appropriate methods, conditions, and cell lines.

2. Cyanotoxicity on Cell and Cell Cultures

- 2.1. Cytotoxicity of Aeruginosins (Table 1). Aeruginosin CT contains as a basic structure 2-carboxy-6-hydroxyoctahydroindol that are serine protease inhibitors [12]. They inhibit trypsin-like serine proteases and for this activity are important in the search for new anticoagulants [13].
- 2.2. Cytotoxicity of Anatoxins (Table 2). Anatoxins-a are two types of low molecular bicyclic amino alkaloids: anatoxin-a (ANTX) and homoanatoxin-a (hANTX). The best known of them is ANTX, which was the first to be identified as a low molecular alkaloid (165 Da). hANTX is a homologue of anatoxin-a with molecular weight 179 Da and has propionyl instead of an acetyl group at C-2. ANTX and anatoxin-a (S) (ANTX(S)) are neurotoxins. ANTX binds competitively to acetylcholine receptors, while anatoxin-a (S) inhibits acetylcholine esterase [2].
- 2.3. Cytotoxicity of BMAA(Table 3). β -N-methylamino-L-alanine (BMAA) is an environmental nonprotein and toxic amino acid that may harm nervous system via oxidative stress, binding to neuromelanin, forming high toxic metabolites like formaldehyde or inhibiting enzyme activity of glutathione reductase, β -amilase, catalase, and RNase H, and in this way to provoke sporadic neurodegenerative development, such as Alzheimer's disease and amyotrophic lateral sclerosis [20, 27, 28]. In addition, BMAA generates a carbamate, which is neurotoxin because it acts as ionotropic and metabotropic glutamate receptors agonist [21] and references therein.
- 2.4. Cytotoxicity of CYN (Table 4). CYN is a cyclic quinidine alkaloid combined with hydroxymethyl uracil [49]. It has two epimers, which are equally toxic and are differentiated by the hydroxyl bridge CYN and 7-epi-CYN, and an additional variant 7-deoxy-CYN occurs in natural waters [49]. CYN has been classified mainly as hepatotoxin, but it has also neurotoxic and genotoxic effects and inhibits protein synthesis [3]. It targets kidneys, lungs, heart, spleen, eyes, ovaries, T-cells, neutrophils, and vascular endothelium [50]. CYN may induce oxidative stress, decrease cell viability, and damage mitochondria (discussed by Chichova et al. [35]).
- 2.5. Cytotoxicity of Depsipeptides (Table 5). Depsipeptides are palmyramide A (Pal A), apratoxin D (AT D), coibamide A (CoA), ichthyopeptins A (Ich A) and B (Ich B), kahalalide F (KF), 4-Fluoro-3-methyl-benzylamino-KF (KF2), morpholin-4-yl-benzylamino-KF (KF4), homodolastatin 16 (HD16), lagunamide C–Lag C, pitipeptolides–Pit A-F, aurilides and wewakpeptins A-D. Depsipeptides show cytotoxic activity and are protease inhibitors selective for chymotrypsin, leukocyte, and pancreatic elastases. They negatively influence the metabolism of human astrocytes [63].

Table 1: Cytotoxicity of aeruginosir	TABLE
--------------------------------------	-------

Cell type	Assay	Conditions	Tissue of origin	Main effects	Targets	Ref.
Huh7 cells	EROD assay, treatment with TNF- α	Aeruginosin-865A 50 and 100 μmol/L	Human hepatoma cell line	Anti-inflammatory activity by inhibition of IL-8 and TNF- α expression; induce expression of cytochrome P_{450} 1A (CYP1A)	DNA	[12]
HLMVEC	IL-8 and ICAM-1 assay upon stimulation with human tumor necrosis factor α (hTNF-α)	Aeruginosin-865 0.1–100 μ g/mL/18 h of 0.1 ngm/L hTNF- α stimulated cells	Human lung microvascular endothelial cells	Anti-inflammatory activity by down-regulation of IL-8 (EC ₅₀ : 4.0 ± 1.7 mM) and intercellular adhesion molecule 1 (ICAM-1; 57.8 ± 15.5 mM)	Inhibits NF-kappa B translocation to the nucleus	[13]
WEHI- 13VAR	Lactate dehydrogenase (LDH) cytotoxicity assay	Aeruginosin-865 10–200 μM	Mouse fibrosarcoma cells	Cytotoxic effect of aeruginosin-865 at 200 µM only		[14]

Abbreviations: EROD – ethoxyresorufin-O-deethylase; hTNF α – human tumor necrosis factor α ; ICAM-1 – intercellular adhesion molecule-1; IL-8 – interleukin 8; TNF- α – tumor necrosis factor $a\alpha$.

TABLE 2: Cytotoxicity of ANTX, hANTX and ANTX(S).

Cell type	Assay	Conditions	Tissue of origin	Main effects	Targets	Ref.
RAW 264.7, BV-2, N2a	MTT assay, caspase-glo 3/7 assay, ELISA, TNF- α measurement	MC-LR, CYN, ANTX-a	Murine macrophage-like RAW264.7, immortalised microglial BV-2, neuroblastoma N2a cell lines	CYN, MC-LR and ANTX in a mixture are 3–15 times more potent at inducing apoptosis and inflammation	TNF-α	[15]
Oocytes, M10 cells	Patch-clamp, ⁸⁶ Rb ⁺ influx	ANTX	Xenopus oocytes, human hepatoma cell line	α 7-nAChR agonist with EC ₅₀ = 0.58 μ M (nicotinic current in oocytes), α 4 β 2-nAChR EC ₅₀ : 48 n M by ⁸⁶ Rb ⁺ influx in M10 cells	α7-nAChR, α4β2-nAChR, Ach	[16, 17]
GH_4C_1	⁴⁵ Ca ²⁺ influx, [³ H]- ACh release,	hANTX water extract, 1–20 mg/mL	Rat anterior pituitary cell line	hANTX-activated voltage- gated Ca ²⁺ channels and AChR release	Voltage-gated Ca ²⁺ channels, AChR	[18]
Chromaffin cell culture	HPLC	ANTX 0.1–100 μM	Bovine adrenal chromaffin cell culture	Catecholamine release activation above $0.3 \mu M$ ANTX	Secretion of catecholamines	[19]

 $Abbreviations: Ach-acetylcholine; AChR-acetylcholine \ receptor; CYN-cylindrospermopsin; HPLC-high-performance liquid chromatography; MC-LR-microcystin-LR; \ MTT-3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium \ bromide; \ nAChR-nicotinic \ acetylcholine \ receptor.$

- 2.6. Cytotoxicity of Lipopolysaccharides (LPS, Table 6). LPS consist of lipid A, the core polysaccharides (mainly glucosamine) and an outer polysaccharide chain, and are common compounds of the cell walls of cyanoprokaryotes and Gram-negative bacteria [49]. They have an inflammatory effect and promote cytokine secretion [3].
- 2.7. Cytotoxicity of Lyngbyatoxins (Table 7). Lyngbyatoxins were first identified from Moorea producens (formerly Lyngbya majuscula). They are tumor-promoting agents which bound eucaryotic protein kinase C (PKC) isozymes [3].
- 2.8. Cytotoxicity of MCs (Table 8). MC are cyclic non-ribosomal heptapeptides with low molecular weight (800–1100 Da), which contain several uncommon non-proteinogenic amino acids such as N-methyldehydroalanin

(MDHA) derivatives and the uncommon β -amino acid 3amino-9-methoxy-2,6,8-trimethyldeca-4,6-dienoic (ADDA). MC are lipophilic toxins very resistant to hydrolysis, oxidation, and high temperatures. The main route of human exposure is the ingestion of contaminated drinking water, consumption of contaminated food or algal dietary supplements, and body contact, while more occasional routes are hemodialysis and inhalation. MC are classified mainly as hepatotoxins because they block eucaryotic PP (PP1, 2A and phosphoprotein phosphatases PPP4, PPP5) [2] through irreversible covalent binding [97]. Chronic and subchronic exposure to MC seems to be tumor promoting because they can increase the incidence of hepatic tumors in humans. MC could also enhance the oxidative stress. Additional target of MC in high concentrations is the ß-subunit of ATP synthase, causing mitochondrial apoptotic signaling. MC have hepatotoxic and tumor promoting action [3].

TABLE 3: Cytotoxicity of BMAA.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Ref.
HepG2 cells, Caco- 2	Isotopically labelled amino acids; metabolic activity; apoptotic and necrotic assays		Human hepatocellular carcinoma and human colorectal epithelial adenocarcinoma cell line	BMAA did not affect the common proteinogenic amino acid metabolic pathways; in the presence of amino acids cellular uptake of BMAA is substantially reduced	[20]
SH-SY5Y	LDH assay; qPCR; Western Blot	L-BMAA 1 mM/ 17 h	Human neuroblastoma cells	Conversion of procaspase-3 (32 kDa) to active caspase-3 p17 and apoptosis	[21]
SH-SY5Y	LDH assay; qPCR; Western Blot	L-BMAA 1 mM/ 17 h and longer for 24–96 h	Human neuroblastoma cells	Misincorporation of L-BMAA protein aggregation, upregulation of lysosomal enzymes and apoptosis; proteolitic stress in prolonged exposure	[22]
SH-SY5Y		Low L-BMAA (≥0.1 mM)/48 h; high L-BMAA (≥2 mM)/48 h	Human neuroblastoma cells	Low L-BMAA increases protein ubiquitination, 20S proteasomal and caspase 12 activity, stress marker CHOP expression; enhances phosphorylation of elf2α in SH-SY5Y cells; high L-BMAA increases ROS and protein oxidization	[23]
OEC	LDH assay, MTS assay, Ca ²⁺ influx assay, DCFDA assay for ROS, DNA damage assay	BMAA 0.1–3 mM/ 48 h	Rat olfactory ensheathing cells (special glial cells)	Cytotoxic, increases Ca ²⁺ influx, and ROS production; disrupts mitochondrial activity	[24]
Primary neurons	LDH assay, MTS assay, Ca ²⁺ influx assay, DCFDA assay for ROS, DNA damage assay	BMAA 0.1–1 mM/ 48 h	Primary neurons were obtained from 16 to 19 old foetuses and mixed brain cell cultures	BMAA increases Ca ²⁺ influx and DNA damage, enhances production of ROS, disrupts activity of mitochondria	[25]
SH-SY5Y, HT22, Neuro-2a	MTT assay, siRNA transfection, flow cytometry for DNA content	BMAA 1-3 mM/ 12, 24, and 48 h	Human neuroblastoma cells; mouse hippocampal cell line; mouse neuroblastoma cell line	L-BMAA-induced ER-stress mediated apoptosis via upregulation of ER-stress sentinels, phosphorylation of JNK, p38 and ERK, CHOP activation	[26]
SH-SY5Y, MRC-5, HUVEC	Liquid chromatography tandem mass spectrometry, radiolabeled ³ H-BMAA assay, LDH assay,	0.3 mM BMAA and 300 mM L- serine for 96 hours	Human neuroblastoma and human lung fibroblast cell line, human umbilical endothelial cells	BMAA is misincorporated in place of L-serine into human proteins and this is inhibited by L-serine	[22]

Abbreviations: CHOP – C/EBP homologous protein; DCFDA – 2',7'-Dichlorofluorescin diacetate assay; ER – endoplasmic reticulum; JNK – c-Jun *N*-terminal kinase; MTS – 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium.

2.9. Cytotoxicity of Nodularins (Table 9). Nodularins (NODs) are cyclic nonribosomal pentapeptides and contain several unusual nonproteinogenic amino acids such as N-methyldidehydroaminobutyric acid and the $\beta\beta$ -amino acid (all-S, all-E)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (ADDA). Ten variants have been discovered with nodularin-R being the predominant toxin variant. NODs are relatively stable compounds, with low sensitivity to light or temperature. NOD affects hepatocytes binding their PPs by noncovalent bonds, which increases the rate of phosphorylation. They are often attributed to gastroenteritis, allergic irritation reactions, and liver diseases. Nodularin-R is the most notorious as a potent hepatotoxin that may cause serious damage to the liver of humans and other animals. NODs have similar effects as microcystins and weak carcinogenicity [3].

2.10. Cytotoxicity of Retinoids from Cyanobacteria (Table 10). Retinol, a novel retinoic acid (RA) analogue 7-hydroxy RA, 4-oxo-RA, and several analogues were identified in

cyanobacterial blooms [110]. They act as RA receptors that may cause different malformations, as well as to have a teratogenic effect on aqueous animals.

2.11. Cytotoxicity of saxitoxins (Table 11). Saxitoxin (SXT) is a collective name for a group of more than 20 cyclic nonribosomal peptide molecules, formed by sulphation at different sites of two basic molecules: SXT and neo-SXT. Based on their toxicology, SXT are grouped in three classes—carbamate derivatives, gonyautoxins, N-sulfocarbomoyl derivatives, and decarbomoyl derivatives—decarbamoylsaxitoxin. They have a neurotoxic effect by blocking voltage-gated sodium channels [3].

3. Limitations

Studies on cell cultures cannot reveal all possible effects of toxins on the human body. This is due to the following reasons: (1) no matter how many cultures are tested, they will not cover the whole variety of cells in the body; (2) there are often significant differences between the cells in culture,

Table 4: Cytotoxicity of CYN.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Targets	Ref.
CaCo-2	Neutral red uptake	1.1 mg/g dw; 0.08–1.25 mg dw/mL/48 h	Immortalized human colorectal adenocarcinoma cell line	Cytotoxicity, EC $_{50}$: 0.4 ± 0.1 mg dw/mL		[29]
CaCo-2	Transepithelial electrical resistance (TEER)	CYN 1–10 μM/ 3–24 h	Immortalized human colorectal adenocarcinoma cell line	16.7–20.5% intestinal permeability in 24 h; epithelial integrity not significantly altered		[30]
CaCo-2	Permeability of pseudoepithelial layer	CYN 1.9–48 μM/ 24–48 h	Immortalized human colorectal adenocarcinoma cell line	Apparent permeability: 3.45×10^{-7} cm/s (absorptive), 6.41×10^{-7} cm/s (secretive); epithelial permeability (increase): Tenfold (absorptive), 0.7-fold (secretive);		[31]
CaCo-2, NCI- 87, HCT-8, HuTu-80, Vero, C3A, HepG2	MTT assay for cell viability	CYN 0.25–5 μM/ 1–7 days	Gastro-intestinal and hepatic cell lines	CYN sensitivity decreased in cell lines as follows: $Gastric > duodenal > ileal > colonic; \\ EC_{50} is 6.5 \pm 3.3 \mu M \ for \ CaCo-2$		[32]
CaCo-2, HepaRG	Cytokinesis-block micronucleus assay	CYN	The same human hepatocyte cell line	CYN increased the frequency of micronuclei in binucleated cells	Cytochrome P450	[33]
CaCo-2	Bradford assay for total protein content, MTS reduction for cell viability, GSH and ROS content, electron microscopy	CYN 0.7–96 μM/ 24–48 h	The same	Lipid degeneration, mitochondrial damage, nucleolar segregation with altered nuclei, ultrastructur	Membranes, mitochondria, nuclei, endosomes	[34]
HIEC-6	MTT assay	CYN 1.0–11 μM/24 h	Human intestinal epithelial cell line	Reduced cell viability by 13.4% and 21.8%		[35]
mES	Real-time PCR (RT-PCR)	CYN 0–1 μg/ mL/24–168 h	Undifferentiated mouse embryonic stem cell	EC50 0.86 μ g/mL/24 h, LOEC is 1 μ g/mL	Oct4 Brachyury Nestin	Reference [36]
HepG2	MTS test, flow cytometry, RT-PCR	0.125, 0.25, 0.5 μg/mL CYN + MC-LR, 1 μg/mL/24 and 72 h	Human hepatocellular carcinoma cell line	DNA double-strand breaks after 72 h, upregulation of CYP1A1 by CYN and CYN + MC-LR via CDKN1A and GADD45 A genes, cells arrested in G0G0/G1 phase	DNA	[37]
Rat hepatocytes	LDH leakage; cysteine, ATP, and GSH assay	CYN 2.5–5 μM/12 h	Rat hepatocyte cell culture	Inhibition of GSH synthesis	GSH, cytochrome P450	[38]
Mouse hepatocytes	LDH leakage, protein synthesis	CYN 2.5–5 μM/ 4–18 h	Mouse hepatocyte cell culture	Inhibition of LDH leakage, max at 0.5 μM CYN; CYN, 1–5 μM lead to 52%–82% cell death	Protein synthesis, cytochrome P450	[39]
HepG2	MTS assay, live/dead staining, qPCR, flow cytometry, confocal z- stack imaging	CYN 0.125, 0.25, 0.5 μg/ mL/72 h	Human hepatocellular carcinoma cell line	CYN deregulated genes for phase I and II enzymes, for cell proliferation; apoptosis and DNA damage response	DNA, expression of many enzymes	[40]
WIL2-NS	Centromere staining, PCR, cytokinesis-block micronucleus assay	CYN 1, 3, 6, 10 μg/mL/24 h	Lymphoblastoid cell-line	Cytogenetic damage by DNA- and kinetochore/spindle-dependent mechanisms	Centromere, micronuclei	[41]
HepG2	LDH leakage, MTT assay, flow cytometry, immunocytochemical	CYN 0.1-0.5 μg/mL/ 24-96 h	Human hepatoma cells	Genotoxic effect by DNA double-strand breaks	DNA	[42]
CLC	staining	CYN 0.1, 0.5, 1 μg/mL/24 h	Common carp (Cyprinus carpio L.) leucocyte cell line	Decreased cell membrane integrity, GSH/GSSG ratio, inhibited cell proliferation, DNA damage, increased ROS and ATP levels (1 µg/mL)	Micronuclei, GSH, ATP, SOD	[43]
HepG2	MTS assay, qPCR, flow cytometry	CYN 0.5 μg/ mL/24 or 72 h, biphenols 10 μg/mL	Human hepatoma cells	Deregulation of some genes was more pronounced after exposure to the mixture	DNA	[44]
CaCo-2		. 0	Immortalized human colorectal adenocarcinoma cell line	Apparent permeability of the pseudoepithelial cell layer to MC-LR		[45]
A7r5	AO/EB staining assay and comet assay, flow cytometry, qRT-PCR	CYN 20, 200, 2000 nM/24 h	Rat vascular smooth muscle cells	CYN induced apoptosis in a dose- dependent manner, DNA damage	Actin, p53, Bax/ Bcl2, SOD, CAT and GPX	[46]

Table 4: Continued.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Targets	Ref.
LLC-PK1	Flow cytometry, qRT- PCR	$1.0\mu\mathrm{g/mL}$	Renal epithelial cells derived from proximal tubules	CYN induced necrosis and increased gene expression of Na+/K+-Atpase	Na ⁺ /K ⁺ -ATPase activity	[47]
Human keratinocytes	LDH leakage, WST-1 cell proliferation assay, Scratch test, crystal violet assay	1, 10 μg/mL for 24/48h	Primary human keratinocytes	CYN induced cytotoxicity, impaired migration, and inhibition of proliferation		[48]

Abbreviations: AO/EB staining – acridine orange/ethidium bromide staining; ATP – adenosine triphosphate; CAT – catalase; GPX – glutathione peroxidase; GSH – glutathione; MTS – 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide; RP-PCR–reverse transcription polymerase chain reaction; RT-qPCR – quantitative reverse transcription polymerase chain reaction; SOD – superoxide dismutase.

TABLE 5: Cytotoxicity of depsipeptides.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Targets	Ref.
N2a, NCI H- 460	MTT assay	Pal A IC ₅₀ : 17.2 μM/24 h; 39.7 μM/48 h	Neuro2a mouse neuroblastoma cells; human lung carcinoma cells	Blockage of the voltage- gated sodium channel, modest cytotoxic effects.	Voltage-gated sodium channel	[51]
NCI H-460	MTT reduction	20 μg/well	Human lung carcinoma cells	Cytotoxicity, IC ₅₀ : $2.6 \text{ nM}/48 \text{ h}$	G1-phase cell cycle arrest, apoptosis	[52]
60 cancer cell lines	Flow cytometry		Human cells from lung, colon, leukemia, melanoma, CNS, ovarian, prostate, breast and renal cancers	Cytostatic and cytotoxic effects – increase the number of cells in G_1 , little change in G_2/M and loss of cells in S-phase. GI_{50} for CoA: 2.8 nM to MDA-MB-231 7.4 nM to LOX IMVI 7.4 nM to HL-60(TB)	Novel unknown mechanism; no effect on tubulin or actin in cytoskeletal assays	[53]
MDCK cells infected with influenza virus A/WSN/33/ London (H1N1)	Dye uptake assay using neutral red	Ich A and B in nontoxic conc. 12.5–100 µg/ mL/30 min.	Canine kidney	Antiviral activity, IC50: 12.5 μg/mL	Non-trypsin protease inhibition	[54]
60 human cancer cell lines (NCI- 60 cell lines)	Biokinetics reader, fluorescence detection, acute toxicity determination, MTT assay, hollow fiber assay		Human leukemia, melanoma, lung, colon, CNS, ovarian, prostate, breast and renal cancer cell lines	Antitumor and antifungal activities; GI_{50} for NCI-H322M: KF2-0.131 μ M; KF4-0.133 μ M; KF-0.191 μ M; $GI_{50}=0.123~\mu$ M for human prostate (DU-145); $GI_{50}=0.453~\mu$ M for breast cancer (HS 578T) cell lines. IC ₅₀ for <i>C. neoformans</i> : KF-1.53 μ M, KF2-0.95 μ M	_	[55]
WHCO1, WHCO6, ME180	MTT assay		WHCO1,06-esophageal and ME180-cervical cancer cells	Cytotoxicity: IC ₅₀ for HD16 WHCO1-4.3 µg/ mL; WHCO6-10.1 µg/ mL; ME180-8.3 µg/mL	_	[56]

Table 5: Continued.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Targets	Ref.
P388, A549, PC3, HCT8, SK-OV	MTT assay, scintillation counting		P388-murine leukemia, A549-lung carcinoma, PC3- prostate cancer, HCT8 -ileocecal colorectal adenocarcinoma and SK-OV- ovarian cancer cells	Cytotoxicity and antimalarial activity; IC ₅₀ for cancer lines: P388-24.4 nM; A549-2.4 nM; PC3-2.6 nM; HCT8-2.1 nM; SK-OV-4.5 nM; IC ₅₀ for <i>Plas. Falciparum</i> -0.29 μ M Cytotoxicity and	Mitochondria- induced apoptosis, lag C selectively binding to the prohibitin	[57]
HT-29, MCF7	MTT assay, disc diffusion assay		HT-29 colon adenocarcinoma, MCF7 breast cancer cells	antimycobacterial activity against M . $tuberculosis$. For HT-29 IC ₅₀ : Pit A-13 μ M; Pit B-13 μ M; Pit C-67 μ M; Pit D > 100 μ M; Pit E-75 μ M; Pit F-87 μ M and for MCF7 IC ₅₀ : Pit A-13 μ M; Pit B-11 μ M; Pit C-73 μ M; Pit D -	-	[58]
HeLa cells	WST-1 assay, Immuno- precipitation	100 nM aurilide	Human cervical cancer cells	>100 μM; Pit E – >100 μM; Pit F-83 μM Cytotoxicity, mitochondria-induced apoptosis Cytotoxicity for	Prohibitin 1, optic atrophy 1	[59]
NCI-H460, neuro-2a	MTT reduction.		NCI-H460 – human lung tumor, neuro-2a – mouse neuroblastoma cell lines	NCI-H460 LC ₅₀ is: Wew A-0.65 μ M; wew B-0.43 μ M; wew C-5.9 μ M; wew D-3.5 μ M; for neuro-2a LC ₅₀ : Wew A - 0.49 μ M; wew B-0.20 μ M; wew C-10.7 μ M; wew D-1.9 μ M		[60]
60 human cancer cell lines (NCI- 60 cell lines), MEFs	Immunoblot, MTT assay, Trypan blue exclusion, LDH assay, caspase activity assay, autophagy assays, EGF receptor degradation assays		Human cancer cells from leukemia, melanoma, lung, colon, CNS, ovarian, prostate, breast, renal cancers	Cytotoxicity, apoptosis, and inhibition of cell growth. EC_{50} cytotoxicity is < 100 nM for human U87-MG and SF-295 cells, and for mouse embryonic fibroblasts	Caspase-3, extensive cytoplasmic vacuolization, mTor- independent pathway	[61]
HCC2218, UACC-893, T- 47D and >50 others	Growth inhibition assay, immune- precipitation study, SEAP secretion assay		Human breast, ovarian, endometrial, pancreatic, skin, lung, and colon cancer cell lines; rat pancreatic exocrine cell line	Cytotoxicity, blocking of cotranslational translocation. $IC_{50} = 5-50 \text{ nM}$ for different cell types	Sec61 in the ER membrane.	[62]

Abbreviations: EGF - epidermal growth factor; SEAP - secreted embryonic alkaline phosphatase.

the primary cell lines and the cells in the body tissues in the quantity and quality of expressed proteins (genes expression), metabolic pathways and cell function [113–115]. Therefore, results from cells in culture cannot be directly transferred to the tissue of origin or of which they will form.

(3) Numerous regulations are active continuously and simultaneously in the organism, and their cross-influence cannot be simulated in experiments with cell cultures. (4) Parameters like LC_{50} or ID_{50} are different for cells in culture and human body.

TABLE 6: Cytotoxicity of LPS.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Ref.
Microglia	Superoxide anion (O ₂ ⁻) generation, cell viability by LDH release, thromboxane B ₂ (TXB ₂), immunoassay, gelatinase zymography for matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9), rat-specific ELISA for cytokines and chemokines	Microcystis aeruginosa LPS strain UTCC 299; 0.1–100,000 ng/mL/ 17 h E. coli LPS (0.1–100 ng/mL) as control	Rat neonatal brain microglia	Enhanced O_2^- generation, limited inflammatory mediator generation; MMP-9, macrophage inflammatory protein-2 (MIP-2/CXCL2) release, TXB ₂ , concurrent with maximal O_2^- generation; elevated TXB ₂ , MMP-9, tumor necrosis factor α (TNF- α), interleukin 1- α (IL-1 α), and interleukin-6 (IL-6), macrophage inflammatory protein 1 α (MIP-1 α /CCL3), and MIP-2/CXCL2; LPS activates brain microglia <i>in vitro</i> and the release of O_2^- , inflammatory	[64]
Microglia		0.1–100 000 ng/mL Oscillatoria sp. LPS; 17 h	Rat neonatal microglia	mediators Classical and alternative activation; pro-inflammatory and anti- inflammatory mediator release	[65]
Microglia		Scytonema javanicum and S. ocellatum LPS	Rat neonatal microglia	Concentration- dependent O ₂ ⁻ , MMP- 9, IL-6 TNF-α, MIP- 2/CXCL-2, CINC-1/ CXCL-1, MIP-1α/ CCL3, IL-10 release	[66]
Meningioma cells and meningioma-primary human macrophage	Sandwich immunoassay	Cyanobacterial LPS antagonist (CyP) 1–20 μg/monolayer	Human meningioma cells and meningioma-primary human macrophage co- cultures	Cyanobacterial LPS inhibits cytokine production and augments the anti-inflammatory response when combined with benzylpenicillin	[67]
Microglia	Immunocytochemical and immunofluorescent assay, ELISA, immunoblotting, live-cell imaging analyses	Cyanobacteria- derived TLR4 antagonist—a highly (95%) purified form of LPS-like molecule from Oscillatoria planktothrix sp. 20 µg/mL for 24 h,	Primary cultures from mouse spinal cords	TLR4 antagonists could be considered as a candidate of protective agents for motor neurons in degenerative diseases	[68]
Spleen cells			<i>In vitro</i> cultures of murine spleen and thymus cells	Increased proliferation of spleen cells; enhanced IL-1 production from peritoneal macrophages	[69]

Table 6: Continued.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Ref.
hTHP-1	ELISA, real-time PCR	Cyanobacterial LPS antagonist (CyP) from Oscillatoria planktothrix FP1; 10 µg/mL/5 h	Human THP-1 monocytic cell line	CyP is able to induce cross-tolerance to E . coli LPS by inhibiting TNF- α production	[70]

Table 7: Cytotoxicity of lyngbyatoxins.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Targets	Ref.
Fibroblasts			Primary mouse thymus fibroblasts	80% inhibition of cell proliferation, morphology and attachment in 24 h		
FL	MTT assay, [³ H]- thymidine	15 mg/mL (w/v) of the cyanobacterial extract/4 h or 24h for MTT test; 24 h	Normal amniotic cells, human	Stimulation of MTT reduction after $4 h > 40\% vs$ control cells; decreased cell viability to 32% of controls in 24 h	DNA, cell membrane,	[70]
A2058	incorporation assay	for [³ H]-thymidine incorporation assay	Human metastatic melanoma	Cytotoxic in 24 h	cytoskeleton	
RD			Human embryonic myosarcoma	Cytotoxic in 24 h		
3T3			Mouse embryonic fibroblasts	92% inhibition of cell proliferation		
L1210	MTT	Lyngbyatoxin A and 12-epi-lyngbyatoxin A/18 h	Mouse lymphocytic leukemia cell line	Cytotoxic effect; IC ₅₀ = 8.1 μM lyngbyatoxin A; IC ₅₀ = 20.4 μM 12-epi- lyngbyatoxin A	PKC isozymes	[71]
HL-60 C	Test of induction of cell adhesion	Lyngbyatoxin A and	Human promyelocytic leukemia cells	A and 700 ng/mL debromoaplysiatoxin		
DS 19	Test of inhibition of terminal differentiation	debromoaplysia toxin/ 48 h	Mouse erythroleukemia cells transformed by Friend leukemia virus strain 745A	Inhibition of terminal differentiation in 50% of the cells with 0.35 ng/mL Lyngbyatoxin A and 150 ng/ mL debromoaplysiatoxin	Cell membrane	[72]
Neuro-2a	MTT	24 h	Mouse neuroblastoma cells	Cytotoxicity IC ₅₀ = 2.2 μ M of hermitamides A; IC ₅₀ = 5.5 μ M hermitamides B		[73]
СНО	Patch-clamp	0.1 – $30\mu\mathrm{M}$ neodebromoaplysia toxin G and H	Chinese hamster ovary cells	Potassium channel Kv1.5 block; $IC_{50} = 1.79 \mu\text{M}$ debromo aplysiatoxin G and $IC_{50} = 1.46 \mu\text{M}$ debromoaplysia toxin H	Voltage-gated potassium channels Kv1.5 (KCNA5)	[74]

Table 8: Cytotoxicity of MC.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Targets	Ref.
CaCo-2	Immuno- localization of MC uptake	MC-LR 1–75 μM/30 min–24 h	Immortalized human colorectal adenocarcinoma cell line	Artificial epithelial cell layer is highly permeable to MC-LR		[45]
CaCo-2	Gene expression, transcriptomics	MC-LR 10–100 μM/ 4–24 h	The same	Oxidative stress	ERK/MAPK and cell cycle pathway molecules	[75]
CaCo-2	Comet assay, MTT assay (for viability)	MC-LR 0.2–10 μM/ 4–48 h	The same	20% damaged DNA after 0.2 μM/4 h MC-LR; 40% reduced cell viability after MC-LR 10 μM/48 h,	DNA	[76]
CaCo-2	Protein phosphatase (PP) inhibition, LDH leakage, cell morphology and proliferation	1–50 µM MC- LR, -LF and -LW for 22–48 h	The same	PP inhibition—3.0 nM MC-LF, 3.8 nM MC-LW, 1.0 nM MC-LR, EC ₅₀ of LDH leakage: 25% (50 µM MC-LR), 36% (MC-LW), 51% (MC-LF), chromatin cell shrinkage, condensation, membrane blebbing, and cytoskeletal reorganization	PP, cell membrane, chromatin, cytoskeleton	[77]
CaCo-2	Bradford assay, MTS reduction (for viability), neutral red uptake	MC-LR, –RR and -YR, 50–200 μM/ 24–48 h	The same	EC ₅₀ reduction of total protein content by MC-LR 111.1 \pm 3 μ M/24 h and MC-RR $^{>}$ 200 μ M/48 h; neutral red uptake—MC-YR 57.3 μ M/48h	Protein synthesis	[78, 79]
CaCo-2	Immuno- localization of microcystins	MC-LR, -RR, 1-50 μM/ 30 min-24 h	The same	Facilitated MC uptake in <1 h by organic anion transporters, active excretion	Organic anion transporters 3A1 and 4A1	[80]
HIEC-6	Cell counting Kit-8 for viability, western blot, TEER, PP2A activity	MC-LR 0–50 μM/ 6–24 h	Human intestinal (colon) epithelial cell line	Viability–12.5 μM/24 h; TEER at 50 μM/12 h and at 12.5 μM/24 h; apoptosis at 12.5 μM/ 24 h; western blot at 12.5 μM/24 h; occludin; claudin not affected), 25 μM/24 h; ZO-1; PP2A activity decreases from 12.5 μM/24 h	PP2A, occludin, claudin	[81]
HEK293	Western blot, luciferase assay, rtPCR	MC-LR 10 μM/ 24 h	Human embryonic kidney cells	PP2A inhibition, enhanced proto- oncogene C-myc expression	PP2A, c-Myc protein, proto- oncogene C-myc	[82]
NCC	PP2A, PP2B, PP2C activity, western blot, Akt, p38, JNK, PI3K assays, genechip analyses;	MC-LR, 0.0001–1.0 μg/ 24 h	Immortalized colorectal crypt cells	Constitute activation of Akt/p38 and JNK/MAPK pathways	Akt, p38, JNK	[83]
HBE1, 16HBE14o-	RT-PCR, western blot, RTCA, neutral red uptake	MC-LR 1–20 μM/48 h	Human bronchial epithelial cell lines	No effect on viability, ERK1/2 and p38 activities were not changed	ERK1/2 and p38 not influenced	[9]

Table 8: Continued.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Targets	Ref.
DLD-1, HT- 29	Western blot, RT- qPCR, knockdown of SMAD2 by siRNA, migration and invasion assay	MC-LR, 0.1–50 nM/24 h	Human colorectal cancer cells	Induction of SMAD2 signal transducer and transcriptional modulating protein expression, its activating phosphorylation by PI3K/Akt, increased migration (epithelial- mesenchymal transition of both cell types)	PI3K/Akt, SMAD2,	[84]
BALB/c	mRNA	MC-LR 1–1000 nmol/ L/6 h	Mouse peritoneal macrophages	Decreased transcription of mRNA for iNOS, IL- 1β, TNF-α, GM-CSF, and IFN-γ; reduced inflammatory response to LPS	iNOS, IL-1 β , TNF- α , GM-CSF and IFN- γ	[85]
RAW 264.7 macrophages	Western blot, ELISA	MC-LR, 1–1000 nmol/ L/30 min–24 h	Abelson leukemia virus-transformed cell line from BALB/c mice	Activation of NF- κ B with 1000 nM and ERK1/2 with 100 nM; TNF- α synthesis (1 nM)	NF-κB, ERK1/2, TNF-α	[86]
HepG2	RT-qPCR, Western blot, MTT assay, mitochondrial membrane potential (MMP)	MC-LR, 0.01–5 μM/3, 6, 12 and 24 h	Human hepatocellular carcinoma cell line	MMP loss, SOD induction in hypoxia, inhibitory apoptosis protein (c-IAP2) upregulated in normoxic condition	Mitochondrial dehydrogenase, SOD, c-IAP2	[87]
A549	MTT assay, PP2A activity, Western blot, proliferation	MC-LR, 0.5–10 μM/24 h	Human non-small- cells lung cancer cells	Rearrangements of filamentous actin and microtubules due to PP2A/C (>1 µM) and p38 MAPK activation (0.5–10 µM); p-Blc-2, p-	Microtubules and filamentous actin (cytoskeleton), PP2A/C, p38,	[88]
HEK293	Western blot, cell detachment, PP2A activity, MTT assay	MC-LR, 0.5–10 μM/24 h	Human embryonic kidney cells	Bad (1.0–10 μM) PP2A inhibition (>5 μM); PP2A activation (1–2 μM); cell anoikis Rearrangement of	PP2A catalytical and regulatory subunits	[89]
PC12	Western blot, PP2A activity, immuno- fluorescence	MC-LR, 0.1–10 μM/6 h	Pheochromocytoma cells of the rat adrenal medulla	filamentous actin and microtubules due to PP2A (>0.5 µM) and p38 MAPK	PP2A, p38 MAPK, HSP27	[90]
HL7702	PP2A activity, western blot, immuno- fluorescence	MC-LR, 5 or 10 μM for 30 min to 24 h;	Human normal liver cell line	Activation of p38 MAPK, JNK and ERK1/2, HSP27-sensitive cytoskeleton reassembly, PP2A inhibition in 6–24 h; activated phosphorylation of tau (by P38 MAPK) and VASP	p38 MAPK, JNK, ERK1/2, PP2A; tau and VASP components of cytoskeleton	[91, 92]
SMMC-7721	PP2A activity, western blot, PKA activity and Rac1/ Cdc42 activity immuno- fluorescence, immuno- precipitation	MC-LR, 0.5–10 μM/24 h	Human liver cancer cell line	p-HSP27, p-VASP and p- cofilin contributed to cytoskeleton change; PP2A inhibition (>0.5 μM); disorder of cytoskeleton	HSP27, VASP, cofilin, PKA, Rac1, PP2A	[93]

Table 8: Continued.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Targets	Ref.
HepaRG	Cytopathic effects, RNA quantified by Agilent RNA 6000 Nano kit	MC-LR, -RR 10, 100 and 1000 ng/2 h	Human hepatocyte cell line	Increase of RNA of apoptotic and inflammatory gene; many cellular pathways activated		[94]
HL7702	Real-time cell analyzer (RTCA) proliferation, cell cycle analysis, western blot, PP2A activity, MTT assay, immuno- fluorescence	MC-LR, 1, 5, 10 μM/1–96 h	Human normal liver cell line	MC-LR promoted HL7702 cell proliferation (36–48 h); activation of Akt/S6K1 cascade; PP2A activity (>1 μM), hyper- phosphorylation of Bcl-2, Bad, c-Myc and c-Jun, 1–10 μM	PI3K/Akt/S6K1, hyper- phosphorylation of Bcl-2, Bad, c-Myc and c-Jun	[95]
НВЕ	MTT and Annexin V/PI assay, ROS and MMP measurements, western blot	MC-LR, 1, 10, 20, 30, 40 µg/ mL/24, 48 h	Human bronchial epithelial cells	Inducing mitochondria- dependent apoptosis (1–40 µg/mL), MMP decreases at 10 µg/mL	Caspases	[89]
Huh7		MC-LR, 0.5–50 µM/ 6–72 h	Human hepatoma cells	5 μM MC-LR induced PP2A mRNA expression, p-CREB, expression of NF-κB, IFN-α, and several INFα-stimulated genes are activated	NF-κB, p-CREB, DNA	[96]

Abbreviations: CREB – cAMP responsive element-binding protein; ERK/MAPK – extracellular signal-regulated kinase/mitogen-activated protein kinase; GM-CSF – granulocyte macrophage colony-stimulating factor; IFN- γ – interferon gamma; iNOS – inducible nitric oxide synthase; JNK-c – Jun N-terminal kinases; mRNA – messenger RNA; siRNA – small interfering RNA, VASP – vasodilator-stimulated phosphoprotein.

Table 9: Cytotoxicity of nodularins.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Targets	Ref.
CLC	Fluorometric cell membrane integrity, cell viability and ROS measurements, caspase-glo 3/7 assay, ELISA	NOD, 0.001, 0.01, 0.05, 0.1 μg/mL/ 24 h	Carp leukocyte cell line and head kidney leukocytes	Cell viability, membrane integrity at $0.1 \mu g/mL$, DNA fragmentation and caspases $3/7$ activation at $> 0.1 \mu g/mL$, ROS increase in 60min in $> 0.01 \mu g/mL$, GSH decrease at $> 0.001/24 \text{h}$	GSH/GSSG, DNA, membranes, caspases	[98]
CLC and kidney leucocytes	Fluorometric cell viability, ROS and nitrogen species (NS) measurements	0.001, 0.01, 0.05, or 0.1 μg/ mL/24 h	Carp leukocyte cell line, kidney leukocytes	Cytotoxicity $\geq 0.05 \mu g/mL$, ROS and NS increase, expression of TNF- α , IL-10, less TGF- β	DNA expression	[99]
HepG2	Micronucleus assay, Flow cytometry, comet assay, DNA damage	NOD, 1–10 μg/mL, for 6, 12, 24, 48 h	Human hepatoma cell line	DNA damage >1 μ g/mL, apoptosis from1 μ g/mL/48 h	DNA, cellular and mitochondrial membranes	[100]
HepG2	RT-PCR, siRNA, flow cytometry, transfection of NF-κB immunobloting	NOD, 2.5, 5, 7.5, 10 μM/ 24 h	Human hepatoma cell line	Induces fas receptor (fas) and fas ligand (FasL) expression and apoptosis	NF-κB pathway, fas, FasL	[101]
HepG2 and Huh7	ATF-6 activity qPCR, TNF- α ELISA, immunoblotting	NOD, 0.1, 1, 5 μM for 24, 48 and 72 h	Human hepatoma cell lines	Induction of TNF-α protein, CAAT/enhancer-binding protein-homologous,	TNF-α, ERK 1/2 MAPK, ER, IL-8, CHOP ER- stress—2.5 nM	[102]
HepG2	qPCR, MTT assay, comet assay, cytokinesis micronucleus assay	NOD, 0.01, 0.1 and 1 μg/mL	Human hepatoma cell line	DNA damage; apoptosis (BAX, BCL2) genes, ROS increase, oxidative stress	DNA, ROS	[103]

TABLE 10:	Cytotoxicity	v of c	vanobacterial	retinoids.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Targets	Ref.
P19/ A15	Bioluminescence reporter assay; calcein AM cell viability assay	0.25, 0.5, 1 and 2 g dm/l/24 h; water extracts 2.5x-20x environmental water/24h	Murine embryonal carcinoma cells stably transfected with firefly luciferase gene	Retinoid-like activity, max 263 ng retinoid eq/L; cytotoxic effect at 20x	RAR	[104]
P19/ A15	Bioluminescence reporter assay;	0.25, 0.5, 1 and 2 g dw/l/24h	Murine embryonal carcinoma cells	Retinoid-like activity	RAR	[105]
P19/ A15	RAR/RXR transactivation assay	Cyanobacterial extracts 0.125–2 g dw/l/24 h	Murine embryonal carcinoma cells	Retinoid acid receptor (RAR) activity	RAR	[106]
P19/ A15	Bioluminescence reporter assay	Cyanobacterial extracts 0.25–2 g dm/l and exudates $2.5\times-20\times/24$ h	Murine embryonal carcinoma cells	Retinoid acid receptor activity	RAR	[107]
P19/ A15	Bioluminescence reporter assay	1x–20x concentrated cyanobacterial and algal exudates/24h	Murine embryonal carcinoma cells	Retinoid-like activity	RAR	[108]
HepG2	MTT, comet assay, cytokinesis-block micronucleus (cytome) assay	0.04–2 mg/mL/24h for MTT, 0.2 mg dm/mL/24h for cytokinesis-block micronucleus assay	Human hepatocellular carcinoma cells	Significant genotoxic effects of retinoic acid from the extracts	DNA	[109]

TABLE 11: Cytotoxicity of SXT.

Cell type	Assay	Conditions	Tissue of origin	Main effects	Ref.
Neuro- 2A	HPLC, LC-MS/MS, Jellett rapid test, MTT assay	STX, 0.05–200 ng/ mL	Mouse neuroblastoma cell line	Screening assay for determination of toxicity and comparison of various methods for detection of toxins	[111]
IEC-6, Caco-2	HPLC,	Gonyautoxin, $100 \mu\text{M}$ for 1–60 min	Human colorectal, adenocarcinoma cell line	IEC-6 cells secrete the toxin, Caco-2 cells absorb it Na ⁺ -dependently	[112]

4. Perspectives

The use of cell cultures in toxicological studies will remain the main approach due to its speed, relatively low cost, reproducibility, precision with respect to the studied intracellular components, and ethical acceptability. The use of cell cocultures [116–118] and *in vitro* formed organ-like structures such as artificial neuronal network [119], cardiomyocyte spheroids with contractile activity [120], and organ-on-a-chip systems [121], which are functionally closer to the human body [11], will increase in the future.

5. Conclusion

The presence of all these data on the cytotoxicity of aeruginosins, anatoxins, cylindrospermopsin, depsipeptides, lipopolysaccharides, lyngbyatoxins, microcystins, nodularins, cyanobacterial retinoids, and saxitoxins in a review is a great advantage. It allows the advancement of research on CT using cell cultures by facilitating the selection of the most appropriate methods, conditions, and cell lines for toxicological and pharmacological studies. In addition, it could increase the use of CT in functional studies of their intracellular targets. Therefore, this review allows in one look to advance the toxicological, physiological, and pharmacological studies of CT by the knowledge of their harmful effects with a focus on human and animal health as well as on environmental protection.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

Iliyana Sazdova and Milena Keremidarska-Markova are Joint lead authors. This paper was funded by the Scientific Research Fund of the Ministry of Education and Science of Bulgaria (project KP-06-OPR 03/18 from 19.12.2018) and by the Ministry of Education and Science of Bulgaria (DO1-275/16.12.2019 "INFRAACT" of Bulgarian NRRI).

References

- [1] J. Komárek and K. Anagnostidis, "Cyanoprokaryota, Part 1: chroococcales," in *Süßwasserflora von Mitteleuropa*, H. Ettl, G. Gärtner G, and H. Heynig, Eds., Gustav Fischer Verlag, Jena, Germany, 1999.
- [2] J. Komárek and K. Anagnostidis, "Cyanoprokaryota, Part 1: chroococcales," in *Süßwasserflora von Mitteleuropa*, H. Ettl, G. Gärtner, H. Heynig, and D. Mollenhauer, Eds., Spektrum Akademischer Verlag, Heidelberg, Germany, 2008.
- [3] G. A. Codd, J. Meriluoto, and J. S. Metcalf, "Introduction: cyanobacteria, cyanotoxins, their human impact, and risk management," in *Handbook of Cyanobacterial Monitoring* and Cyanotoxin AnalysisJohn Wiley & Sons, Hoboken, NJ, USA, 2017.

[4] B. W. Ibelings, L. C. Backer, W. E. A. Kardinaal, and I. Chorus, "Current approaches to cyanotoxin risk assessment and risk management around the globe," *Harmful Algae*, vol. 40, pp. 63–74, 2014.

- [5] Z. A. Mohamed, M. Hashem, S. Alamri, A. Campos, and V. Vasconcelos, "Fungal biodegradation and removal of cyanobacteria and microcystins: potential applications and research needs," *Environmental Science and Pollution Re*search, vol. 28, no. 28, pp. 37041–37050, 2021.
- [6] B. Kubickova, P. Babica, and K. Hilscherová, "Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system," *Environmental Sciences Europe*, vol. 3131 pages, 2019.
- [7] G. Gärtner, M. Stoyneva-Gärtner, and B. Uzunov, "Algal toxic compounds and their aeroterrestrial, airborne and other extremophilic producers with attention to soil and plant contamination: a review," *Toxins*, vol. 13, 2021.
- [8] W. K. Hofbauer, "Toxic or otherwise harmful algae and the built environment," *Toxins*, vol. 13, no. 7, 2021.
- [9] O. Brózman, B. Kubickova, P. Babica, and P. Laboha, "Microcystin-LR does not alter cell survival and intracellular signaling in human bronchial epithelial cells," *Toxins*, vol. 12, 2020.
- [10] T. A. Ullman and S. H. Itzkowitz, "Intestinal inflammation and cancer," *Gastroenterology*, vol. 140, no. 6, pp. 1807–1816, 2011
- [11] D. Pamies and T. Hartung, "21st century cell culture for 21st century toxicology," *Chemical Research in Toxicology*, vol. 30, no. 1, pp. 43–52, 2017.
- [12] S. Faltermann, S. Hutter, V. Christen, T. Hettich, and K. Fent, "Anti-inflammatory activity of cyanobacterial serine protease inhibitors aeruginosin 828A and cyanopeptolin 1020 in human hepatoma cell line Huh7 and effects in zebrafish (*Danio rerio*)," *Toxins*, vol. 8, no. 7, p. 219, 2016.
- [13] A. Kapuścik, P. Hrouzek, M. Kuzma et al., "Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent," *ChemBioChem: A European Journal of Chemical Biology*, vol. 14, no. 17, pp. 2329–2337, 2013.
- [14] I. Veselá, P. C. Kolísková, and V. Kuchařová, ""Cytotoxic effect of aeruginosin-865, resveratrol and capsaicin on mouse fibroblasts and cells derived from fallow deer," *Nat Product Commun*, vol. 13, 2018.
- [15] L. Takser, N. Benachour, B. Husk, H. Cabana, and D. Gris, "Cyanotoxins at low doses induce apoptosis and inflammatory effects in murine brain cells: potential implications for neurodegenerative diseases," *Toxicology Reports*, vol. 3, pp. 180–189, 2016.
- [16] P. Thomas, M. Stephens, G. Wilkie et al., "(+)-Anatoxin-a is a potent agonist at neuronal nicotinic acetylcholine receptors," *Journal of Neurochemistry*, vol. 60, no. 6, pp. 2308–2311, 1993.
- [17] M. Amar, P. Thomas, C. Johnson, G. G. Lunt, and S. Wonnacott, "Agonist pharmacology of the neuronal α 7 nicotinic receptor expressed in Xenopus oocytes," *FEBS Letters*, vol. 327, no. 3, pp. 284–288, 1993.
- [18] P. Aas, S. Eriksen, J. Kolderup et al., "Enhancement of acetylcholine release by homoanatoxin-a from Oscillatoria formosa," *Environmental Toxicology and Pharmacology*, vol. 2, no. 2-3, pp. 223–232, 1996.
- [19] L. Molloy, S. Wonnacott, T. Gallagher, P. A. Brough, and B. G. Livett, "Anatoxin-a is a potent agonist of the nicotinic acetylcholine receptor of bovine adrenal chromaffin cells," *European Journal of Pharmacology: Molecular Pharmacology*, vol. 289, no. 3, pp. 447–453, 1995.

[20] R. van Onselen and T. G. Downing, "ββ-N-methylamino-Lalanine inhibits human catalase activity: possible implications for neurodegenerative disease development," *International Journal of Toxicology*, vol. 38, no. 2, pp. 129–134, 2019.

- [21] R. A. Dunlop, J. T. Powell, J. S. Metcalf, G. J. Guillemin, and P. A. Cox, "L-Serine-Mediated neuroprotection includes the upregulation of the ER stress chaperone protein disulfide isomerase (PDI)," *Neurotoxicity Research*, vol. 33, no. 1, pp. 113–122, 2018.
- [22] R. A. Dunlop, P. A. Cox, S. A. Banack, and K. J. Rodgers, "The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation," *PLoS One*, vol. 8, p. e75376, 2013.
- [23] O. Okle, K. Stemmer, U. Deschl, and D. R. Dietrich, "L-BMAA induced ER stress and enhanced caspase 12 cleavage in human neuroblastoma SH-SY5Y cells at low non-excitotoxic concentrations," *Toxicological Sciences*, vol. 131, no. 1, pp. 217–224, 2013.
- [24] A. S. Chiu, M. M. Gehringer, N. Braidy, G. J Guillemin, J. H Welch, and B. A Neilan, "βGliotoxicity of the cyanotoxin,β-methyl-amino-L-alanine (BMAA)," *Scientific Reports*, vol. 3, p. 1482, 2013.
- [25] A. S. Chiu, M. M. Gehringer, N. Braidy, G. J. Guillemin, J. H. Welch, and B. A. Neilan, "βExcitotoxic potential of the cyanotoxin β-methyl-amino-l-alanine (BMAA) in primary human neurons," *Toxicon*, vol. 60, no. 6, pp. 1159–1165, 2012.
- [26] H. Shen, K. Kim, Y. Oh et al., "βNeurotoxin β-N-methylamino-L-alanine induces endoplasmic reticulum stress-mediated neuronal apoptosis," *Molecular Medicine Reports*, vol. 14, no. 5, pp. 4873–4880, 2016.
- [27] R. van Onselen and T. G. Downing, "BMAA-protein interactions: a possible new mechanism of toxicity," *Toxicon*, vol. 143, pp. 74–80, 2018.
- [28] S. Downing, R. van Onselen, G. Kemp, and T. G. Downing, "βMetabolism of the neurotoxic amino acid β-N-methylamino-L-alanine in human cell culture models," *Toxicon*, vol. 168, pp. 131–139, 2019.
- [29] J. Fastner, R. Heinze, A. R. Humpage, U. Mischke, G. K. Eaglesham, and I. Chorus, "Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates," *Toxicon*, vol. 42, no. 3, pp. 313–321, 2003.
- [30] D. A. Fernández, M. C. Louzao, and N. Vilariño, "Evaluation of the intestinal permeability and cytotoxic effects of cylindrospermopsin," *Toxicon*, vol. 91, pp. 23–34, 2014.
- [31] S. Pichardo, V. Devesa, M. Puerto, D. Vélez, and A. M. Cameán, "Intestinal transport of cylindrospermopsin using the Caco-2 cell line," *Toxicology in Vitro*, vol. 38, pp. 142–149, 2017.
- [32] S. M. Froscio, S. Fanok, and A. R. Humpage, "Cytotoxicity screening for the cyanobacterial toxin cylindrospermopsin," *Journal of Toxicology and Environmental Health, Part A*, vol. 72, no. 5, pp. 345–349, 2009.
- [33] E. Bazin, A. Mourot, A. R. Humpage, and V. Fessard, "Genotoxicity of a freshwater cyanotoxin, cylindrospermopsin, in two human cell lines: caco-2 and HepaRG," *Environmental and Molecular Mutagenesis*, vol. 51, pp. 251–259, 2010.
- [34] D. Gutiérrez-Praena, S. Pichardo, and Á. Jos, "Biochemical and pathological toxic effects induced by the cyanotoxin

- Cylindrospermopsin on the human cell line Caco-2," *Water Research*, vol. 46, pp. 1566–1575, 2012.
- [35] M. Chichova, O. Tasinov, and M. Shkodrova, "New data on cylindrospermopsin toxicity," *Toxins*, vol. 13, 2021.
- [36] K. J. Reid, K. Lang, S. Froscio, A. J. Humpage, and F. M. Young, "Undifferentiated murine embryonic stem cells used to model the effects of the blue-green algal toxin cylindrospermopsin on preimplantation embryonic cell proliferation," *Toxicon*, vol. 106, pp. 79–88, 2015.
- [37] L. Díez-Quijada, K. Hercog, and M. Śtampar, "Genotoxic effects of cylindrospermopsin, microcystin-LR and their binary mixture in human hepatocellular carcinoma (HepG2) cell line," *Toxins*, vol. 12, 2020.
- [38] M. T. Runnegar, S.-M. Kong, Y.-Z. Zhong, and S. C. Lu, "Inhibition of reduced glutathione synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes," *Biochemical Pharmacology*, vol. 49, no. 2, pp. 219–225, 1995.
- [39] S. M. Froscio, A. R. Humpage, P. C. Burcham, and I. R. Falconer, "Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes," *Environmental Toxicology*, vol. 18, no. 4, pp. 243–251, 2003.
- [40] K. Hercog, M. Štampar, A. Štern, M Filipič, and B Žegura, "Application of advanced HepG2 3D cell model for studying genotoxic activity of cyanobacterial toxin cylindrospermopsin," *Environmental Pollution*, vol. 265, p. 114965, 2020.
- [41] A. R. Humpage, M. Fenech, P. Thomas, and I. R. Falconer, "Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin, cylindrospermopsin," *Mutation Research: Genetic Toxicology and Environmental Mutagenesis*, vol. 472, no. 1-2, pp. 155–161, 2000.
- [42] A. Štraser, M. Filipič, M. Novak, and B. Żegura, "Double strand breaks and cell-cycle arrest induced by the cyanobacterial toxin cylindrospermopsin in HepG2 cells," *Marine Drugs*, vol. 11, pp. 3077–3090, 2013.
- [43] A. Sieroslawska and A. Rymuszka, "Cylindrospermopsin induces oxidative stress and genotoxic effects in the fish CLC cell line," *Journal of Applied Toxicology*, vol. 35, no. 4, pp. 426–433, 2015.
- [44] K. Hercog, A. Štern, and S. Maisanaba, "Plastics in cyano-bacterial blooms—genotoxic effects of binary mixtures of cylindrospermopsin and bisphenols in HepG2 cells," *Toxins*, vol. 12, 2020.
- [45] J. Henri, A. Huguet, J.-M. Delmas, A. Besson, P. Sanders, and V. Fessard, "Low in vitro permeability of the cyanotoxin microcystin-LR across a Caco-2 monolayer: with identification of the limiting factors using modelling," *Toxicon*, vol. 91, pp. 5–14, 2014.
- [46] Q. Zhang, L. Wang, G. Chen, M. Wang, and T. Hu, "Cylindrospermopsin impairs vascular smooth muscle cells by P53-mediated apoptosis due to ROS overproduction," *Toxicology Letters*, vol. 353, pp. 83–92, 2021.
- [47] A. C. N. Moraes, D. S. Freire, H. Habibi, J. Lowe, and V. F. Magalhães, "Cylindrospermopsin impairs tubular transport function in kidney cells LLC-PK1," *Toxicology Letters*, vol. 344, pp. 26–33, 2021.
- [48] M. Adamski, E. Zimolag, A. Kaminski, J. Drukała, and J. Bialczyk, "Effects of cylindrospermopsin, its decomposition products, and anatoxin-a on human keratinocytes," *The Science of the Total Environment*, vol. 765, p. 142670, 2021.

- [49] L. Barsanti, P. Coltelli, V. Evangelista et al., "The world of algae, Algal Toxins: Nature, Occurrence, Effect and Detection," in Algal Toxins: Nature, Occurrence, Effect and Detection. NATO Science for Peace and Security Series A: Chemistry and Biology, L. Barsanti, A. M. Frassanito, V. Passarelli, and P. Gualtieri, Eds., Springer, Berlin, Germany, 2008.
- [50] S. Pichardo, A. M. Cameán, and A. Jos, "In vitro toxicological assessment of Cylindrospermopsin: a review," *Toxins*, vol. 9, 2017.
- [51] M. Taniguchi, J. K. Nunnery, N. Engene et al., "Palmyramide A, a cyclic depsipeptide from a palmyra atoll collection of the marine CyanobacteriumLyngbya majuscula," *Journal of Natural Products*, vol. 73, no. 3, pp. 393–398, 2010.
- [52] M. Gutiérrez, T. L. Suyama, N. Engene, J. S. Wingerd, T. Matainaho, and W. H. Gerwick, "Apratoxin D, a potent cytotoxic cyclodepsipeptide from Papua New Guinea collections of the marine cyanobacteria Lyngbya majuscula and Lyngbya sordida," *Journal of Natural Products*, vol. 71, no. 6, pp. 1099–1103, 2008.
- [53] R. A. Medina, D. E. Goeger, P. Hills et al., "Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp," *Journal* of the American Chemical Society, vol. 130, no. 20, pp. 6324-6325, 2008.
- [54] E. N. Zainuddin, R. Mentel, V. Wray et al., "Cyclic depsipeptides, ichthyopeptins A and B, from Microcystis ichthyoblabe," *Journal of Natural Products*, vol. 70, no. 7, pp. 1084–1088, 2007.
- [55] A. G. Shilabin and M. T. Hamann, "In vitro and in vivo evaluation of select kahalalide F analogs with antitumor and antifungal activities," *Bioorganic & Medicinal Chemistry*, vol. 19, no. 22, pp. 6628–6632, 2011.
- [56] M. T. Davies-Coleman, T. M. Dzeha, C. A. Gray et al., "Isolation of homodolastatin 16, a new cyclic depsipeptide from a Kenyan collection of lyngbya majuscula," *Journal of Natural Products*, vol. 66, no. 5, pp. 712–715, 2003.
- [57] A. Tripathi, J. Puddick, M. R. Prinsep et al., "Lagunamide C, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Lyngbya majuscula," *Phytochemistry*, vol. 72, no. 18, pp. 2369–2375, 2011.
- [58] R. Montaser, V. J. Paul, and H. Luesch, "Pitipeptolides C-F, antimycobacterial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula from Guam," *Phytochemistry*, vol. 72, no. 16, pp. 2068–2074, 2011.
- [59] S.-i. Sato, A. Murata, T. Orihara et al., "Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin," *Chemistry & Biology*, vol. 18, no. 1, pp. 131–139, 2011.
- [60] B. Han, D. Goeger, C. S. Maier, and W. H. Gerwick, "The wewakpeptins, cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena," *Journal of Organic Chemistry*, vol. 70, no. 8, pp. 3133–3139, 2005.
- [61] A. M. Hau, J. A. Greenwood, C. V. Löhr et al., "Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells," *PLoS One*, vol. 8, no. 6, 2013.
- [62] K.-C. Huang, Z. Chen, Y. Jiang et al., "Apratoxin A shows novel pancreas-targeting activity through the binding of sec 61," *Molecular Cancer Therapeutics*, vol. 15, no. 6, pp. 1208–1216, 2016.
- [63] T. Elersek, L. Bláha, H. Mazur-Marzec, W. Schmidt, and S. Carmeli, "Other cyanobacterial bioactive substances," in Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, J. Meriluoto, L. Spoof, and G. A. Codd, Eds., John Wiley & Sons, Hoboken, NJ, USA, 2017.

[64] A. M. S. Mayer, J. A. Clifford, M. Aldulescu et al., "Cyanobacterial microcystis aeruginosa lipopolysaccharide elicits release of superoxide anion, thromboxane B2, cytokines, chemokines, and matrix metalloproteinase-9 by rat microglia," *Toxicological Sciences*, vol. 121, no. 1, pp. 63–72, 2011.

- [65] A. M. S. Mayer, J. Murphy, D. MacAdam et al., "Classical and alternative activation of CyanobacteriumOscillatoriasp. lipopolysaccharide-treated rat microgliain vitro," *Toxicologi*cal Sciences, vol. 149, no. 2, pp. 484–495, 2016.
- [66] L. C. Klemm, E. Czerwonka, M. L. Hall, P. G Williams, and A. M. S Mayer, "Cyanobacteria scytonema javanicum and scytonema ocellatum lipopolysaccharides elicit release of superoxide anion, matrix-metalloproteinase-9, cytokines and chemokines by rat microglia in vitro," *Toxins*, vol. 10, no. 4, 2018.
- [67] R. Oliver, K. J. Staples, J. Heckels, C. Rossetti, M. Molteni, and M. Christodoulides, "Coadministration of the cyano-bacterial lipopolysaccharide antagonist CyP with antibiotic inhibits cytokine production by an in vitro meningitis model infected with Neisseria meningitidis," *Journal of Antimicrobial Chemotherapy*, vol. 67, no. 5, pp. 1145–1154, 2012.
- [68] M. De Paola, A. Mariani, and P. Bigini, "Neuroprotective effects of toll-like receptor 4 antagonism in spinal cord cultures and in a mouse model of motor neuron degeneration," *Molecular Medicine*, vol. 18, no. 1, pp. 971–981, 2012.
- [69] M. Molteni, A. Bosi, V. Saturni, and C. Rossetti, "MiR-146a induction by cyanobacterial lipopolysaccharide antagonist (CyP) mediates endotoxin cross-tolerance," *Scientific Reports*, vol. 8, no. 1, p. 11367, 2018.
- [70] I. Teneva, D. Asparuhova, B. Dzhambazov, R. Mladenov, and K. Schirmer, "The freshwater cyanobacteriumLyngbya aerugineo-coerulea produces compounds toxic to mice and to mammalian and fish cells," *Environmental Toxicology*, vol. 18, no. 1, pp. 9–20, 2003.
- [71] W. Jiang, W. Zhou, H. Uchida et al., "A new lyngbyatoxin from the Hawaiian cyanobacterium moorea producens," *Marine Drugs*, vol. 12, no. 5, pp. 2748–2759, 2014.
- [72] H. Fujiki, M. Mori, M. Nakayasu, M. Terada, T. Sugimura, and R. E. Moore, "Indole alkaloids: dihydroteleocidin B, teleocidin, and lyngbyatoxin A as members of a new class of tumor promoters," *Proceedings of the National Academy of Sciences*, vol. 78, no. 6, pp. 3872–3876, 1981.
- [73] L. T. Tan, T. Okino, and W. H. Gerwick, "Hermitamides A and B, toxic malyngamide-type natural products from the marine cyanobacterium lyngbya majuscula," *Journal of Natural Products*, vol. 63, no. 7, pp. 952–955, 2000.
- [74] H. H. Zhang, X. K. Zhang, and R. R. Si, "Chemical and biological study of novel aplysiatoxin derivatives from the marine cyanobacterium lyngbya sp," *Toxins*, vol. 12, 2020.
- [75] P. Zeller, H. Quenault, A. Huguet, Y. Blanchard, and V. Fessard, "Transcriptomic comparison of cyanotoxin variants in a human intestinal model revealed major differences in oxidative stress response: effects of MC-RR and MC-LR on Caco-2 cells," *Ecotoxicology and Environmental* Safety, vol. 82, pp. 13–21, 2012.
- [76] B. Žegura, M. Volčič, T. T. Lah, and M. Filipič, "Different sensitivities of human colon adenocarcinoma (CaCo-2), astrocytoma (IPDDC-A2) and lymphoblastoid (NCNC) cell lines to microcystin-LR induced reactive oxygen species and DNA damage," *Toxicon*, vol. 52, pp. 518–525, 2008.
- [77] P. Vesterkvist, J. Misiorek, L. Spoof, D. Toivola, and J. Meriluoto, "Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 Cells," *Toxins*, vol. 4, no. 11, pp. 1008–1023, 2012.

[78] M. Puerto, S. Pichardo, Á. Jos, and A. M. Cameán, "Comparison of the toxicity induced by microcystin-RR and microcystin-YR in differentiated and undifferentiated Caco-2 cells," *Toxicon*, vol. 54, no. 2, pp. 161–169, 2009.

- [79] M. Puerto, S. Pichardo, Á. Jos, and A. M. Cameán, "Microcystin-LR induces toxic effects in differentiated and undifferentiated Caco-2 cells," *Archives of Toxicology*, vol. 84, no. 5, pp. 405–410, 2010.
- [80] P. Zeller, M. Clément, and V. Fessard, "Similar uptake profiles of microcystin-LR and -RR in an in vitro human intestinal model," *Toxicology*, vol. 290, no. 1, pp. 7–13, 2011.
- [81] Y. Zhou, X. Xu, B. Yu, and G. Yu, "Characterization of in vitro effects of microcystin-LR on intestinal epithelial cells," *Environmental Toxicology*, vol. 32, no. 5, pp. 1539–1547, 2017.
- [82] H. Fan, Y. Cai, P. Xie et al., "Microcystin-LR stabilizes c-myc protein by inhibiting protein phosphatase 2A in HEK293 cells," *Toxicology*, vol. 319, pp. 69–74, 2014.
- [83] Y. Zhu, X. Zhong, S. Zheng, Z. Ge, Q. Du, and S. Zhang, "Transformation of immortalized colorectal crypt cells by microcystin involving constitutive activation of Akt and MAPK cascade," *Carcinogenesis*, vol. 26, no. 7, pp. 1207–1214, 2005.
- [84] Y. Ren, M. Yang, M. Chen et al., "Microcystin-LR promotes epithelial-mesenchymal transition in colorectal cancer cells through PI3-K/AKT and SMAD2," *Toxicology Letters*, vol. 265, pp. 53–60, 2017.
- [85] T. Chen, P. Shen, J. Zhang, and Z. Hua, "Effects of microcystin-LR on patterns of iNOS and cytokine mRNA expression in macrophagesin vitro," *Environmental Toxicology*, vol. 20, no. 1, pp. 85–91, 2005.
- [86] O. Adamovsky, Z. Moosova, M. Pekarova et al., "Immunomodulatory potency of microcystin, an important water-polluting cyanobacterial toxin," *Environmental Science and Technology*, vol. 49, no. 20, pp. 12457–12464, 2015.
- [87] X. Zhang, P. Xie, X. Zhang et al., "Toxic effects of microcystin-LR on the HepG2 cell line under hypoxic and normoxic conditions," *Journal of Applied Toxicology*, vol. 33, no. 10, pp. 1180–1186, 2013.
- [88] H. Wang, K. Xu, B. Wang et al., "Microcystin-LR induces a wide variety of biochemical changes in the A549 human non-small cell lung cancer cell line: roles for protein phosphatase 2A and its substrates," *Environmental Toxicology*, vol. 32, no. 3, pp. 1065–1078, 2017.
- [89] T. Li, P. Huang, J. Liang, W. Fu, Z. Guo, and L. Xu, "Microcystin-LR (MCLR) induces a compensation of PP2A activity mediated by α 4 protein in HEK293 cells," *International Journal of Biological Sciences*, vol. 7, no. 6, pp. 740–752, 2011.
- [90] G. Meng, Y. Sun, W. Fu, Z. Guo, and L. Xu, "Microcystin-LR induces cytoskeleton system reorganization through hyperphosphorylation of tau and HSP27 via PP2A inhibition and subsequent activation of the p38 MAPK signaling pathway in neuroendocrine (PC12) cells," *Toxicology*, vol. 290, no. 2-3, pp. 218–229, 2011.
- [91] Y. Sun, J.-h. Liu, P. Huang, Z.-l. Guo, and L.-h. Xu, "Alterations of tau and VASP during microcystin-LR-induced cytoskeletal reorganization in a human liver cell line," *Environmental Toxicology*, vol. 30, no. 1, pp. 92–100, 2015.
- [92] Y. Sun, G.-m. Meng, Z.-l. Guo, and L.-h. Xu, "Regulation of heat shock protein 27 phosphorylation during microcystin-LR-induced cytoskeletal reorganization in a human liver cell line," *Toxicology Letters*, vol. 207, no. 3, pp. 270–277, 2011.

[93] H. Wang, J. Liu, S. Lin et al., "MCLR-induced PP2A inhibition and subsequent Rac1 inactivation and hyper-phosphorylation of cytoskeleton-associated proteins are involved in cytoskeleton rearrangement in SMMC-7721 human liver cancer cell line," *Chemosphere*, vol. 112, pp. 141–153, 2014.

- [94] A. D. Biales, D. C. Bencic, R. W. Flick, A. Delacruz, D. A. Gordon, and W. Huang, "Global transcriptomic profiling of microcystin-LR or -RR treated hepatocytes (HepaRG)," *Toxicon X*, vol. 8, p. 100060, 2020.
- [95] J. Liu, H. Wang, B. Wang et al., "Microcystin-LR promotes proliferation by activating Akt/S6K1 pathway and disordering apoptosis and cell cycle associated proteins phosphorylation in HL7702 cells," *Toxicology Letters*, vol. 240, no. 1, pp. 214–225, 2016.
- [96] V. Christen, N. Meili, and K. Fent, "Microcystin-LR induces endoplasmatic reticulum stress and leads to induction of NFκB, interferon-alpha, and tumor necrosis factor-alpha," *Environmental Science and Technology*, vol. 47, no. 7, pp. 3378–3385, 2013.
- [97] Y. Li, J. Li, H. Huang et al., "Microcystin-LR induces mitochondria-mediated apoptosis in human bronchial epithelial cells," *Experimental and Therapeutic Medicine*, vol. 12, no. 2, pp. 633–640, 2016.
- [98] A. Rymuszka and A. Sieroslawska, "Comparative studies on the cytotoxic effects induced by nodularin in primary carp leukocytes and the cells of the fish CLC line," *Toxicon*, vol. 148, pp. 7–15, 2018.
- [99] A. Rymuszka, A. Sieroslawska, and Ł. Adaszek, "Cytotoxic and immunological responses of fish leukocytes to nodularin exposure in vitro," *Journal of Applied Toxicology*, vol. 41, no. 10, pp. 1660–1672, 2021.
- [100] A. Lankoff, A. Wojcik, V. Fessard, and J. Meriluoto, "Nodularin-induced genotoxicity following oxidative DNA damage and aneuploidy in HepG2 cells," *Toxicology Letters*, vol. 164, no. 3, pp. 239–248, 2006.
- [101] G. Feng, Y. Li, and Y. Bai, "Induction of Fas receptor and Fas ligand by nodularin is mediated by NF-κB in HepG2 cells," *Toxicology and Applied Pharmacology*, vol. 251, no. 3, pp. 245–252, 2011.
- [102] N. Meili, V. Christen, and K. Fent, "Nodularin induces tumor necrosis factor-alpha and mitogen-activated protein kinases (MAPK) and leads to induction of endoplasmic reticulum stress," *Toxicology and Applied Pharmacology*, vol. 300, pp. 25–33, 2016.
- [103] A. Štern, A. Rotter, M. Novak, M Filipič, and B Žegura, "Genotoxic effects of the cyanobacterial pentapeptide nodularin in HepG2 cells," Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, vol. 124, pp. 349–358, 2019.
- [104] L. Sehnal, T. Procházková, M. Smutná, J. Kohoutek, O. Lepšová-Skácelová, and K. Hilscherová, "Widespread occurrence of retinoids in water bodies associated with cyanobacterial blooms dominated by diverse species," Water Research, vol. 156, pp. 136–147, 2019.
- [105] M. Pípal, J. Legradi, M. Smutná et al., "Neurobehavioral effects of cyanobacterial biomass field extracts on zebrafish embryos and potential role of retinoids," *Aquatic Toxicology*, vol. 228, p. 105613, 2020.
- [106] A. Jonas, S. Scholz, E. Fetter et al., "Endocrine, teratogenic and neurotoxic effects of cyanobacteria detected by cellular in vitro and zebrafish embryos assays," *Chemosphere*, vol. 120, pp. 321–327, 2015.

[107] J. Priebojová, K. Hilscherová, T. Procházková, and E. Sychrová, "Intracellular and extracellular retinoid-like activity of widespread cyanobacterial species," *Ecotoxicology* and *Environmental Safety*, vol. 150, pp. 312–319, 2018.

- [108] M. Smutna, J. Vecerkova, J. Priebojova, M. Pipal, M. Krauss, and K. Hilscherova, "Variability in retinoid-like activity of extracellular compound mixtures produced by wide spectra of phytoplankton species and contributing metabolites," *Journal of Hazardous Materials*, vol. 414, pp. 125412–125439, 2021.
- [109] M. Bittner, A. Štern, and M. Smutná, "Cytotoxic and genotoxic effects of cyanobacterial and algal extracts—microcystin and retinoic acid content," *Toxins*, vol. 13, 2021.
- [110] K. Kaya and T. Sano, "Cyanobacterial retinoids," in *Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis*, J. Meriluoto, L. Spoof, and G. A. Codd, Eds., John Wiley & Sons, Hoboken, NJ, USA, 2017.
- [111] A. R. Humpage, A. Ledreux, S. Fanok et al., "Application of the neuroblastoma assay for paralytic shellfish poisons to neurotoxic freshwater cyanobacteria: interlaboratory calibration and comparison with other methods of analysis," *Environmental Toxicology & Chemistry*, vol. 26, no. 7, pp. 1512–1519, 2007.
- [112] D. Andrinolo, P. Gomes, S. Fraga, P. Soares-da-Silva, and N. Lagos, "Transport of the organic cations gonyautoxin 2/3 epimers, a paralytic shellfish poison toxin, through the human and rat intestinal epitheliums," *Toxicon*, vol. 40, no. 10, pp. 1389–1397, 2002.
- [113] R. J. Geraghty, A. Capes-Davis, J. M. Davis et al., "Guidelines for the use of cell lines in biomedical research," *British Journal of Cancer*, vol. 111, no. 6, pp. 1021–1046, 2014.
- [114] J. R. Lorsch, F. S. Collins, and J. Lippincott-Schwartz, "Fixing problems with cell lines," *Science*, vol. 346, no. 6216, pp. 1452-1453, 2014.
- [115] R. Wang, E. Karpinski, and P. K. Pang, "Two types of calcium channels in isolated smooth muscle cells from rat tail artery," *American Journal of Physiology*, vol. 256, no. 5 Pt 2, pp. H1361–H1368, 1989.
- [116] K. Yao, W. Li, and K. Li, "Simple fabrication of multicomponent heterogeneous fibers for cell Co-culture via microfluidic spinning," *Macromolecular Bioscience*, vol. 20, p. e1900395, 2020.
- [117] H. Yamazoe, Y. Hagihara, and H. Kobayashi, "Multicomponent coculture system of cancer cells and two types of stromal cells for in vitro evaluation of anticancer drugs," *Tissue Engineering Part C Methods*, vol. 22, no. 1, pp. 20–29, 2016.
- [118] P. Miranda-Azpiazu, S. Panagiotou, G. Jose, and S. Saha, "A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing," *Scientific Reports*, vol. 8, no. 1, p. 8784, 2018.
- [119] H. A. Enright, D. Lam, and A. Sebastian, "Functional and transcriptional characterization of complex neuronal cocultures," *Scientific Reports*, vol. 10, p. 11007, 2020.
- [120] N. Zhelev, R. Kaske, and J. Bown, "Validation of a novel assay for cardiology drug screening using hESC-derived cardiomyocyte spheroids – mini-hearts," *Journal of Biotechnology*, vol. 231, 2016.
- [121] A. Kobuszewska, D. Kolodziejek, and M. Wojasinski, "Study of stem cells influence on cardiac cells cultured with a cyanide-P-trifluoromethoxyphenylhydrazone in organ-on-achip system," *Biosensors*, vol. 11, no. 5, 2021.