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Abstract. We study a PDE-constrained optimization problem, where the shape and liner material of

the nacelle of an aircraft engine are optimized in order to minimize the noise radiated by the engine.

More precisely, the acoustic problem is modeled by the Helmholtz equation with varying wavenumber

k on an exterior domain. A model reduction strategy is employed to alleviate the cost of the design

optimization: the minimal rational interpolation technique is used to construct a surrogate (w.r.t. k) for

the quantity of interest at fixed shape/material parameter values, and a parametric model order reduction

approach is employed to combine surrogates at different shape/material designs, resulting in a non-

intrusive methodology. Numerical experiments for shape and shape/material optimization are provided,

to showcase the effectiveness of the presented methodology.

1 INTRODUCTION

In this paper we aim at minimizing the fan noise radiated from an aircraft engine exhaust, by optimizing

(i) the shape of the nacelle of the aircraft engine and (ii) the impedance of the acoustic liner applied at

the interior portion of the nacelle. This physical problem is modeled by a PDE-constrained optimization

problem. In particular, we assume that the state problem fulfilled by the acoustic pressure u is a linear

scattering equation with wavenumber k varying within a fixed interval of interest K, and we look for the

minimum of the sound intensity at infinity, which we take as cost functional. Since the wavenumber k

varies, the optimal design depends on k.

The numerical solution of (parametric) PDE-constrained optimal control problems is often computation-

ally very expensive, since it requires to solve the (parametric) state problem many times. To alleviate

the computational cost, model order reduction (MOR) techniques [7, 11, 12, 13] may be used, where

a surrogate for the quantity of interest (QoI) is constructed. For our purposes, the important features

that the surrogate must possess are good approximation properties and fast evaluation. MOR methods

are often split into two phases: an expensive offline phase is carried out, during which the sampling is

performed and the surrogate of the QoI is assembled; the surrogate can then be cheaply evaluated at any

(new) parameter value during the online phase.
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An analysis of the structure of parametric-in-frequency interior Helmholtz boundary value problems has

been performed in [1], and then extended to scattering problems in [3]. There, the frequency response

map, which associates to each wavenumber the corresponding solution to the Helmholtz boundary value

problem, was proven to be meromorphic. In order to identify the pole-type critical values (i.e., the

complex resonances of the system), we look for a surrogate in the class of rational functions (with

respect to k). In the literature, we can find several strategies to build such approximations, e.g., Padé

approximation [2, 4], rational interpolation [10], and projection-based approaches [8]. In particular, in

the present paper we employ the minimal rational interpolation technique introduced in [15] to get an

approximation of the considered QoI w.r.t. k, at arbitrary (but fixed) designs.

In order to combine information at different shape/material values, a parametric model order reduc-

tion (pMOR) approach [14] is used, which allows to combine rational models over a (potentially high-

dimensional) parametric domain. We underline that the overall MOR approach is fully non-intrusive,

allowing the use of a “black-box” solver for the computation of the input samples.

As will be shown numerically in Section 4, the QoI of the problem at hand is not convex and it also

shows “localized” features with respect to the design parameters. This introduces additional complexity

in the numerical search of its minimum over a given parameter domain, since numerical optimization

algorithms might get stuck in local minima. Typically, this forces to explore the parametric domain

in an almost brute-force fashion, to prevent any local features to go unnoticed. On top of this, we

underline that the dependence of the state problem on shape and impedance parameters is not necessarily

available explicitly, particularly in our non-intrusive framework. As such, it may be impossible to obtain

information on the derivatives of the QoI with respect to the parameters, compelling the use a derivative-

free optimization strategy.

Brute-force numerical optimization algorithms are often unaffordable, since each of the (many) samples

of the QoI requires the expensive solution of the state PDE. In our case, the use of a cheap-to-evaluate

surrogate for the QoI, rather than the QoI itself, allows to use any (reasonable) optimization algorithm,

including the brute-force one. Note that, since the surrogate is known explicitly, derivative information

can be obtained, thus allowing the use of gradient/Hessian-based optimization algorithms.

Approximate-then-optimize approaches have been considered before. For instance, we can find many

examples of shape optimization problems in aeronautics solved by intrusive surrogate modeling meth-

ods, e.g., the reduced basis approach [12, 13]. However, generally speaking, such methods are limited,

since, on one hand, they cannot be applied in conjunction with black-box solvers, and, on the other hand,

they rely on an affine dependence on the parameters, which is usually impossible to achieve (exactly)

when geometric parameters are involved. This second issue can be overcome by constructing an affine

approximation of the problem (e.g., by defining appropriate spatial warping maps [12], or by the empir-

ical interpolation method [13]), with the resulting surrogate often having an increased complexity as a

consequence, thus leading to a higher computational cost, both offline and, more importantly, online.

Non-intrusive approaches, e.g., those based on Gaussian process regression (GPR) [7, 11], are usually

not affected by these two issues, and our proposed technique falls in this category. However, if one relies

on a smooth kernel for the construction of the surrogate (as in GPR), difficulties may arise if the QoI

displays sharp and localized features, as is the case here. In our approach, we employ rational (hence,

locally non-smooth) functions to overcome this limitation.
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Outline of the paper. The rest of the paper is organized as follows. In Section 2 we introduce the

parametric PDE-constrained optimal control problem. In Section 3 we describe the pMOR algorithm

employed to construct a surrogate of the QoI. Numerical results are presented in Section 4 for two

choices of design parameters. Finally, we draw our conclusions in Section 5.

2 PROBLEM SETTING

We consider a 3-dimensional region surrounding an engine exhaust, which we assume to be axisymmet-

ric. We exploit this symmetry to pose the optimal control problem in a 2D domain, which was originally

considered in [5] (where, however, the 3D domain displayed a planar symmetry instead of an axial one).

The geometry of the domain Ω (in its reference configuration) is depicted in Figure 1, where ΓN,0 denotes

the symmetry axis. The two boundary portions ΓL and ΓN,1 represent the boundary of the nacelle of the

aircraft engine: the exterior boundary ΓN,1 is assumed to be perfectly reflective, whereas at the interior

boundary ΓL an acoustic liner is applied to dampen engine noise. The noise source (which in the 3D

problem is also axisymmetric) is located at the engine exhaust ΓD. Moreover, the truncated computa-

tional domain Ω is assumed to be sufficiently large, i.e., Γ∞ is sufficiently far from the noise source, so

that the Sommerfeld radiation condition at infinity can be approximated by a first order absorbing bound-

ary condition on Γ∞. The nacelle angle θ ∈ Θ ⊂ R may vary, entailing a modification in the geometry of

the domain. We refer to Figure 2 for a graphical depiction of the configurations corresponding to θ = 0

and θ = π
8
. In the following, to stress the dependence on θ, we will denote the boundary of the nacelle

and the domain by ΓN,1(θ), ΓL(θ), and Ω(θ), respectively.

Ω

ΓD ΓN,0

Γ∞

ΓL

ΓN,1
θ

x1

x2

Figure 1: 2D geometry of the problem in the nominal configuration θ = 0. For reference, the length of

ΓD is 1. The 3D domain is obtained by a full revolution around ΓN,0.

We assume that the acoustic pressure u fulfills the following non-dimensionalized Helmholtz boundary

value problem 



−∂x1x1
u−∂x2x2

u− 1
x2

∂x2
u− k2u = 0 in Ω(θ)

u = g on ΓD

∂nu = 0 on ΓN,0 ∪ΓN,1(θ)
∂nu+ iυku = 0 on ΓL(θ)
∂nu+ iku = 0 on Γ∞

(1)

where (x1,x2) denotes the spatial variable, cf. Figure 1, and n is the outer unit normal to the boundary

(which, on ΓN,1(θ) and ΓL(θ), depends on θ). The somewhat unusual term 1
x2

∂x2
u arises when expressing
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the Laplace operator in cylindrical coordinates. Dirichlet boundary conditions are imposed on ΓD, with

g representing the noise source, homogeneous Neumann boundary conditions are imposed on ΓN,0 and

ΓN,1(θ), and Robin boundary conditions are imposed on ΓL(θ). The complex number υ ∈ ϒ is the

admittance of the liner, i.e., the reciprocal of the impedance factor χ. As Dirichlet datum we take

g(x2) = exp
(
π
(
cos2(2πx2)−1

))
,

cf. [5].

We are interested in optimizing the shape of the nacelle, as well as the liner impedance, so that the amount

of noise that propagates to the far field is minimized. In particular, we will assume the wavenumber k

to vary in the interval of interest1 K ⊂ R, so that optimal shape and impedance will be dependent on k.

As a measure of the acoustic noise (the QoI for our problem) we take y : K ×Θ×ϒ → R
+, defined as

the (non-dimensional) total sound intensity at infinity (in the 3D domain). By a cylindrical change of

variables and symmetry considerations, we can easily see that y equals

y(k,θ,υ) =

(
2π

∫
Γ∞

x2

∣∣v(k,θ,υ)
∣∣2ds

)1/2

=
∥∥∥
√

2πx2v(k,θ,υ)
∥∥∥

L2(Γ∞)
, (2)

with the output v : K ×Θ×ϒ → L2(Γ∞) being the sound pressure at infinity

v(k,θ,υ) = u(k,θ,υ)|Γ∞ . (3)

Now we are ready to rigorously define the two optimization problems that we will consider.

Shape optimization: For a fixed υ, for each k ∈ K, find θ⋆ = θ⋆(k) such that

θ⋆ =arg min
θ∈Θ

y(k,θ,υ). (4)

Shape and liner optimization: For each k ∈ K, find θ⋆ = θ⋆(k) and υ⋆ = υ⋆(k) such that

(θ⋆,υ⋆) =arg min
θ∈Θ,υ∈ϒ

y(k,θ,υ). (5)

3 CONSTRUCTION OF THE SURROGATE QOI

In this section, we will denote by ξ ∈ R
P and Ξ ⊂ R

P, P ≥ 1, a generic design parameter and parametric

domain, respectively. This will allow us to describe a unified strategy to deal with both optimization

problems (4) and (5) (for which, ξ = θ and P = 1, and ξ = (θ,Re(υ), Im(υ)) and P = 3, respectively), as

well as more general parameter-dependent optimization problems.

Due to the meromorphic structure of state problem (1), see [3], rational functions (with respect to k)

represent the natural class where to look for an approximant of the solution u for fixed values of ξ.

In particular, we employ the minimal rational interpolation method introduced in [15]. To construct

a global (i.e., dependent on both k and ξ) surrogate for u we rely on the pMOR approach introduced

1Our considerations extend naturally to K ⊂ C, which may be of interest if wave attenuation is included in the model.
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Algorithm 1 pMOR – Offline phase

1: function PMOR TRAIN(KN , ΞM)

2: for j = 1, . . . ,M do

3: for l = 1, . . . ,N do

4: Compute snapshot Ul j := u(kl,ξ j) ∈ H1(Ω)
5: end for

6: Using U1 j, . . . ,UN j, build k-surrogate û j ≈ u(·,ξ j) : K → H1(Ω) ⊲ See [15] for algorithm

7: Obtain k-surrogate for v(·,ξ j) by taking trace: v̂ j := û j|Γ∞ : K → L2(Γ∞)
8: Compute pole-residue decomposition of v̂ j ⊲ Poles∈ C, residues∈ L2(Γ∞)
9: end for

10: Combine pole-residue information over all ξ1, . . . ,ξM ⊲ See “pole-matching” in [14]

11: Convert from pole-residue to rational to obtain joint surrogate v̂ ≈ v : K ×Ξ → L2(Γ∞)
12: return v̂

in [14], which provides a strategy for combining the rational approximants obtained for obtained for

different training designs ξ1, . . . ,ξM.

In the case at hand, the presence of geometric parameters entails variations in the spatial domain and,

in turn, in its discretization. This causes issues in the construction of the joint surrogate of the solution

u itself, since approximants at different parameter values may be defined over different spatial meshes,

thus making their (linear or nonlinear) combination not easily computable. However, since the output v

is the restriction of u on a portion of the boundary independent of ξ, cf. (3), it is feasible to collect and

combine information on v, rather than on u, at different parameter configurations ξ. See also Remark 1.

Algorithm 1 summarizes the main steps carried out by the pMOR method in order the construct a surro-

gate for v. For simplicity, we assume that a set of training wavenumbers KN = {k1, . . . ,kN} ⊂ K and of

training parameter points ΞM = {ξ1, . . . ,ξM} ⊂ Ξ are given. Adaptive sampling strategies are available

both for k and ξ, and we refer to [14] for a more detailed discussion on the topic.

Remark 1 As already mentioned above, the key point that allows Algorithm 1 to actually work, is that

the output v is defined on the (ξ-independent) exterior boundary Γ∞, rather than on the whole domain

Ω(θ). Hence, it is straightforward to combine residues v̂ j for different values of j. We underline that,

in practical applications, the space L2(Γ∞) will be replaced by a finite dimensional (FE) subspace,

which could potentially depend on j because of different triangulations of Ω(θ). If this is the case, it

becomes important to restrict/extend all rational surrogates onto a common space, where they may be

freely combined. For instance, one could consider the smallest FE subspace of L2(Γ∞) which contains all

the residues: this corresponds to computing a new mesh for Γ∞, obtained by “overlaying” the different

meshes for ξ1, . . . ,ξM. In our numerical experiments this is not necessary, since, when constructing the

numerical mesh, we force the FE degrees of freedom on Γ∞ to remain the same for all θ.

The pMOR approach described above allows to build a surrogate for the output v introduced in (3). From

it, we can easily obtain a surrogate for the QoI y defined in (2), by taking the (weighted) L2 norm of v̂ on

Γ∞:

ŷ =
∥∥∥
√

2πx2v̂

∥∥∥
L2(Γ∞)

: K ×Ξ → R
+. (6)

The evaluation of the surrogate v̂ requires considerably less computational effort than computing the FE
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Algorithm 2 Goal-oriented pMOR – Offline refinement phase

1: function PMOR GOAL ORIENTED TRAIN(KN , Ξ(0), K̂T )

2: for n = 0,1, . . . do

3: Build pMOR surrogate v̂(n) from samples at KN ×Ξ(n) ⊲ Use Algorithm 1

4: Define ŷ(n) := ||
√

2πx2v̂(n)||L2(Γ∞)

5: Initialize Ξ(n+1) := Ξ(n)

6: for k ∈ K̂T do ⊲ Loop over test wavenumbers

7: Find the optimal point ξ̂
(n)
k of ŷ(n) at wavenumber k ⊲ Numerical optimization

8: Find ξ ∈ Ξ(n) which is closest to ξ̂
(n)
k

9: Add a discrete neighborhood (e.g., the forward points [14]) of ξ to Ξ(n+1)

10: end for

11: end for

12: return ŷ(n)

solution of (1), cf. the numerical examples in Section 4. In regard to the optimization problems (4)-(5),

this has the beneficial consequence of allowing to use any reasonable numerical optimization algorithm

for their solution. The choice of an efficient numerical optimizer is outside the scope of this paper. In our

numerical tests in Section 4, the numerical optimization is performed by a brute-force approach, where

the target function is sampled over a fine grid of parameters ξ, and their minimum is taken as solution.

Of course, alternatives are possible.

3.1 Adaptive surrogate refinement

If the training sets KN and ΞM in Algorithm 1 are chosen well, i.e., if enough snapshots are taken (at

good locations), then the surrogate ŷ can be expected to well approximate the QoI over the wavenumber

and parametric domains. As such, we may assume that the general location of the local minima of the

QoI are properly identified. Moreover, the rational nature of the surrogate allows to pinpoint even sharp

features that the QoI may display because of resonant (or almost resonant) behavior, see Section 4.

At the same time, in most applications, one might want to make the approximation of the the QoI sharper

around the minima, for a finer tuning of the optimal design/control. To this aim, we detail here an offline

goal-oriented surrogate refinement loop, which, given a reasonably accurate initial surrogate, tries to

improve its approximation quality around the optimal points. Obviously, this comes at a non-negligible

computational cost, since (potentially, many) new snapshots of the full order model have to be computed.

The procedure, which is summarized in Algorithm 2, relies on the definition of a set of T test wavenum-

bers K̂T ⊂ K, which need not have any relation to the training wavenumbers KN . Every time a new

surrogate is built, it is numerically optimized (e.g., by brute-force) at each of the test wavenumbers.

Then sample points are added near all the T newly computed optimal points. If the test set K̂T is “dense

enough”2 in K, this gives approximate information on the optimal design location over the whole K,

allowing to better drive the sampling over Ξ.

To complete Algorithm 2, we must prescribe a termination criterion for the outer loop. In practice,

2Choosing a large T is feasible, since the numerical optimization of the surrogate, which is repeated T times at each

refinement iteration, is quite cheap.
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the simplest option is setting a maximum number of refinement iterations. However, it is advisable to

complement it with some goal-oriented “convergence tests”, so that one may avoid oversampling. To

obtain our numerical results, see Section 4, we have implemented the following two additional tests:

given ξ̂
(n)
k , check if

(i) the optimal value has not changed much since the last iteration, i.e., in relative terms, if
∣∣∣ŷ(n)

(
k, ξ̂

(n)
k

)
− ŷ(n−1)

(
k, ξ̂

(n−1)
k

)∣∣∣≤ εyŷ(n−1)
(

k, ξ̂
(n−1)
k

)
; (7)

(ii) the optimal point has not changed much since the last iteration, i.e., if
∣∣∣ξ̂(n)k − ξ̂

(n−1)
k

∣∣∣≤ εξ. (8)

If either of these conditions is fulfilled, the local refinement of Ξ(n+1) near ξ̂
(n)
k is skipped. Thus, we stop

the outer loop if the maximum number of iterations is reached or if no refinement is performed.

4 NUMERICAL RESULTS

The numerical results in this section have been obtained through Python3 simulations run on the Hel-

vetios cluster3 at EPFL. More specifically, the pMOR surrogate was constructed using the RROMPy

package4. For each sampled value of θ, the corresponding mesh is generated through Gmsh [9].

For a given θ, the snapshots of u are sought in the space of continuous P1-FE on a regular triangulation

of Ω(θ), with approximately 5.6 ·104 degrees of freedom (the exact number has a slight dependence on

θ). The corresponding mesh size is ∼ 10−2 near ΓD and ∼ 5 ·10−2 near Γ∞.

4.1 Shape optimization

First, we consider as parameters the normalized wavenumber k ∈ K = [7,7.5] and the nacelle angle

θ ∈ Θ =
[
− π

24
, π

8

]
, while keeping the liner admittance fixed at υ = υ = 0 (perfect reflection on the whole

nacelle boundary). For illustrative purposes, we show in Figure 2 the FE pressure fields for k = 7.35 and

two different values of θ.

We build a surrogate model ŷ : K ×Θ×{υ}→ R
+ for the QoI by applying Algorithm 2, where

• the test set K̂T contains 11 equispaced points in K;

• the training wavenumber set KN is composed of the degree 10 Chebyshev nodes of K (N = 10);

• the initial training parameter set Ξ(0) contains 5 equispaced points in Θ;

• the convergence tolerances εy and εξ in (7)-(8) are set to 10−3 and 10−2, respectively.

The offline phase ends after 4 iterations of Algorithm 2. The final surrogate is based on 100 total FE

snapshots, which explore 10 different geometries. See Figure 3 for more details on the Θ-adaptivity.

Therein, we can observe that in many cases no local refinement is performed despite the presence of one

of the ξ̂
(n)
k , for some k ∈ KT . This is because the point in question is “inactive” according to at least one

of the termination criteria (7)-(8).

3epfl.ch/research/facilities/scitas/hardware/helvetios.
4Version 2.8.2. Source code available at c4science.ch/source/RROMPy.git.
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0

0.2

0.4

0.6

0.8

1

Figure 2: Plot of |u| at (k,θ,υ) = (7.35,0,0) (left) and (k,θ,υ) =
(
7.35, π

8
,0
)

(right). In the right plot, the

dark red regions near the engine are out of scale, reaching a maximum value of ∼ 7. The corresponding

values of the QoI are y(7.35,0,0) = 0.648 and y
(
7.35, π

8
,0
)
= 0.494.

We show in Figure 4 the restriction of ŷ(n) to k = 7.25, for n = 0 (initial coarse surrogate) and n = 3

(final surrogate). In particular, we highlight the presence of a local effect due to resonance (the singular

behavior close to 0) and the non-convexity of the QoI (demonstrated by the presence of local maxima).

The surrogate can be evaluated at a new frequency/design point (k,θ) in ∼ 0.25ms (average over ∼ 104

samples), whereas solving once the full order FE model takes ∼ 1.3s (average over ∼ 104 samples, not

including meshing). This allows for a significant speed-up in the online optimization phase. The results

of the optimization using the computed surrogate are shown in Figure 5, where the optimal design is

computed at 101 equispaced wavenumbers in K. As desired, the QoI is uniformly lower in the optimized

configuration. The improvement is only minor for small and large values of k (i.e., the QoI in the nominal

configuration is close to the optimal value for these wavenumbers), whereas for k ∈ [7.2,7.4] it is quite

noticeable. We also include some validation points, obtained by solving the full order FE problem in

the nominal configuration θ = 0, as well as in the optimal values θ = θ⋆(k) computed through numerical

optimization of the surrogate. The agreement between surrogate and full order model is quite good.

As a qualitative comparison, in Figure 6 we compare the values of the QoI y with its surrogate ŷ(3). Both

functions were evaluated on a tensor grid in the set K ×Θ. However, since the surrogate is considerably

cheaper to evaluate than the full order model, we were able to evaluate ŷ(3) on a much finer grid, yielding

a significantly more detailed plot. In particular, the surrogate allows to detect a so-called resonance

line (the sharp feature in the right plot) which could not have been identified by relying only on coarse

sampling of the full order model. This also gives a justification for the use of rational-based surrogates

for problems with (quasi-)resonant behavior, in contrast to commonly used non-intrusive techniques for

“smooth” problems, e.g., kernel methods like kriging [11] and RBFs [6].

A direct comparison between Figure 5 and Figure 6 shows that, for k ∈ [7.2,7.4], the noise reduction is

achieved by setting the optimal nacelle angle θ⋆ in such a way that the resulting configuration is almost at

resonance. This means that the resonant mode is used to “trap” acoustic energy near the exhaust, instead

of letting it escape towards Γ∞.

4.2 Shape and liner optimization

Given the satisfactory results from the previous section, here we enlarge the wavenumber range and

we add 2 more parameters to the problem, namely the real and imaginary parts of the liner admittance

υ = υR + iυI (sometimes referred to as conductance and susceptance, respectively). In particular, we

take k ∈ K = [7,8], θ ∈ Θ =
[
− π

24
, π

8

]
, υR ∈ ϒR = [0,1], and υI ∈ ϒI = [0,1]. We define the (complex)

8
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0 1 2 3

− π
24

0

π
24

π
12

π
8

iteration index n

θ

Figure 3: Offline sampling history. Large

dots are points added at the n-th iteration;

small dots are carried over from the previous

iterations. The gray lines are {ξ̂
(n)
k }k∈KT

.

− π
24

0 π
24

π
12

π
8

0.55

0.6

0.65

θ

ŷ(
7
.2

5
,θ
,0
)

Figure 4: Coarse initial surrogate ŷ(0) (dashed line) and

refined final surrogate ŷ(3) (full line) for k = 7.25. The

gray squares are samples from the full order model y.

7 7.1 7.2 7.3 7.4 7.5

0.4

0.5

0.6

k

ŷ(
k
,0
,0
),

ŷ(
k
,θ

⋆
(k
),

0
)

7 7.1 7.2 7.3 7.4 7.5
− π

24

0

π
24

π
12

π
8

k

θ
⋆
(k
)

Figure 5: On the left, surrogate QoI in the nominal θ = 0 (dashed line) and optimized θ = θ⋆(k) (full

line) configurations. Grey dots and squares denote validation samples from the full order model y in the

nominal and optimized cases, respectively. On the right, the surrogate optimal point θ⋆(k).

7 7.1 7.2 7.3 7.4 7.5
− π

24

0

π
24

π
12

π
8

k

θ

7 7.1 7.2 7.3 7.4 7.5
− π

24

0

π
24

π
12

π
8

k

θ

0.4

0.5

0.6

0.7

Figure 6: Plot of y (left) and ŷ(3) (right). The color scale is the same for both plots. In the left plot, the

color is interpolated from samples at the 55 points in the grid of black dots.
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admittance domain as ϒ = {υR + iυI}υR∈ϒR,υI∈ϒI
.

We build a surrogate model ŷ : K ×Θ×ϒ → R
+ for the QoI by applying Algorithm 2, where

• the test set K̂T contains 11 equispaced points in K;

• the training wavenumber set KN is composed of the degree 20 Chebyshev nodes of K (N = 20);

• the initial training parameter set Ξ(0) is the sparse grid of depth 2 of Θ×ϒR × iϒI , which contains

25 points, see [14] and Figure 7;

• the convergence tolerances εy and εξ in (7)-(8) are both set to 10−2.

The offline phase ends after 10 iterations of Algorithm 2. The final surrogate is based on 1860 total FE

snapshots, which explore 93 points in the set Θ×ϒ, involving 10 different geometries and 42 different

admittance values. Due to the increased dimension of the parameter space, a fairly high amount of

snapshots of the full order model is required to build the surrogate.

We report the locations of the sample points in Figure 7, where we can observe a high concentration of

samples for small values of υR and υI . This is in agreement with what we obtain in the online phase,

where the minimizer for the surrogate QoI is computed at 101 equispaced wavenumbers in K. Indeed,

the optimal values υ⋆
R(k) and υ⋆

I (k) are below average for all k ∈ K, see Figure 9 (left) and (center).

As in the previous numerical test, we observe that the QoI is uniformly lower in the optimized configu-

ration, see Figure 8. However, the improvement is much more pronounced than in the previous example.

By looking at the optimal design in Figure 9, we can observe that an admittance υ of approximately

0.25+ 0.4i seems to work well over the whole wavenumber range, whereas the optimal geometry has

higher variability. We depict in Figure 10 the FE pressure u in the optimal design at the representative

wavenumber k = 7.35.

Also in this case, we achieve a significant speed-up by replacing the FE problem with the surrogate:

the surrogate can be evaluated at a new frequency/design point (k,θ,υ) in ∼ 2.6ms (average over ∼ 104

samples), whereas solving once the full order FE model takes ∼ 1.3s (average over ∼ 104 samples, not

including meshing).

5 CONCLUSIONS AND OUTLOOK

We have presented a non-intrusive model order reduction method based on rational approximation, which

can be used to construct a surrogate for the intensity of the noise radiated by an aircraft engine. The sur-

rogate is then minimized to identify the optimal value of the design parameters (geometry and material)

for all values of the wavenumber k varying within an interval of interest. Our numerical experiments

have confirmed the effectiveness of the proposed methodology.

Considering the positive results in the considered 2D example with 2 design parameters in addition to the

wavenumber, we believe our approach to be appropriate also for 3D scattering problems with a higher

number of design parameters, e.g., with a more refined parametrization of the geometry, so that not only

the nacelle angle, but also other features of the nacelle, may be optimized. In particular, we remark that

a MOR-based design optimization strategy like the one we propose may be even more beneficial for 3D

problems, thanks to the potential for an even more dramatic speed-up.
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pling set is denoted by hollow circles.
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Figure 8: Surrogate QoI in the nominal (θ,υ) = (0,0)
(dashed line) and optimized (θ,υ) = (θ⋆(k),υ⋆(k))
(full line) configurations. Grey dots and squares de-

note validation samples from the full order model y in

the nominal and optimized cases, respectively.
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Figure 9: Optimal values of υR (left), υI (center), and θ (right) found by optimizing the surrogate.
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Figure 10: Plot of |u| at (k,θ,υ) = (7.35,−0.0218,0.25+0.436i). The corresponding value of the QoI

is y(7.35,−0.0218,0.25+0.436i) = 0.261. See Figure 2 (left) for the solution in the nominal configu-

ration.
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parametric and stochastic Helmholtz maps. Adv. Comput. Math. (2020) 46.

[4] Bonizzoni, F., Nobile, F., Perugia, I., and Pradovera, D. Fast Least-Squares Padé approximation of
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