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Abstract

We establish computational results concerning the Lagrangian capacity from [CM18].
More precisely, we show that the Lagrangian capacity of a 4-dimensional convex toric
domain is equal to its diagonal. The proof involves comparisons between the Lagrangian
capacity, the McDuff–Siegel capacities from [MS22], and the Gutt–Hutchings capacities
from [GH18]. Working under the assumption that there is a suitable virtual perturbation
scheme which defines the curve counts of linearized contact homology, we extend the
previous result to toric domains which are convex or concave and of any dimension.
For this, we use the higher symplectic capacities from [Sie20]. The key step is showing
that moduli spaces of asymptotically cylindrical holomorphic curves in ellipsoids are
transversely cut out.
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Chapter 1

Introduction

1.1 Symplectic capacities and their uses
A symplectic manifold is a pair (X,ω), where X is a manifold and ω ∈ Ω2(X) is a
closed and nondegenerate 2-form on X. An example of a symplectic manifold is Cn with
the canonical symplectic structure

ω0 :=
n∑
j=1

dxj ∧ dyj.

An embedding φ : (X,ωX) −→ (Y, ωY ) between symplectic manifolds is symplectic
if φ∗ωY = ωX . A symplectomorphism is a symplectic diffeomorphism. Darboux’
theorem implies that any symplectic manifold (X,ω) is locally symplectomorphic to
(Cn, ω0). We point out that the analogue of this theorem in Riemannian geometry
is clearly false: such a theorem would imply that every Riemannian manifold is flat.
Conversely, Darboux’ theorem also implies that it is not possible to define local invariants
of symplectic manifolds that are analogues of the curvature of a Riemannian manifold.

There are, however, examples of global invariants of symplectic manifolds, for example
symplectic capacities. A symplectic capacity is a function c that assigns to every
symplectic manifold (X,ω) (in a restricted subclass of all symplectic manifolds) a number
c(X,ω) ∈ [0,+∞], satisfying

(Monotonicity) If there exists a symplectic embedding (possibly in a restricted subset
of all symplectic embeddings) (X,ωX) −→ (Y, ωY ), then c(X,ωX) ≤ c(Y, ωY );

(Conformality) If α > 0 then c(X,αωX) = α c(X,ωX).

By the monotonicity property, symplectic capacities are symplectomorphism invariants
of symplectic manifolds. There are many examples of symplectic capacities, a simple
one being the volume capacity cvol, defined as follows for a 2n-dimensional symplectic
manifold (X,ω). Since ω is nondegenerate, ωn/n! is a volume form on X. Define

vol(X) :=
∫
X

ωn

n! ,
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cvol(X) :=
(vol(X)

vol(B)

)1/n
,

where B = {z ∈ Cn | π|z|2 ≤ 1}. Symplectic capacities are especially relevant when
discussing symplectic embedding problems. Notice that by the monotonicity property,
a symplectic capacity can provide an obstruction to the existence of a symplectic em-
bedding. We provide an example from physics. A classical mechanical system is a
symplectic manifold (X,ω) together with a function H called the Hamiltonian. The
Hamiltonian vector field of H is the unique vector field XH on X such that

dH = −ιXHω.

Denote by φtH the flow of XH , which is a symplectomorphism. Liouville’s theorem for
a classical mechanical system says that for any subset O ⊂ X, the symplectic volume
cvol(φtH(O)) is independent of t. The proof of this statement works for any capacity
c replacing the volume capacity. So, for every symplectic capacity we get a theorem
analogous to Liouville’s theorem, giving restrictions on what regions of the phase space
flow onto other regions.

In more generality, one could say that a symplectic capacity is a quantitative
encoding of some specific property of symplectic manifolds. To make this state-
ment less vague, let us mention some symplectic capacities we will be working with in
this thesis.

(1) If (X,ω) is a 2n-dimensional symplectic manifold, a submanifold L ⊂ (X,ω) is
Lagrangian if dimL = n and ω|L = 0. The minimal symplectic area of L is
given by

Amin(L) := inf{ω(σ) | σ ∈ π2(X,L), ω(σ) > 0}.

Cieliebak–Mohnke [CM18, Section 1.2] define the Lagrangian capacity of (X,ω)
by

cL(X,ω) := sup{Amin(L) | L ⊂ X is an embedded Lagrangian torus}.

(2) If (X,λ) is a nondegenerate Liouville domain (this implies that X is a compact
manifold with boundary together with a 1-form λ such that (X, dλ) is symplectic,
see Definition 2.31), one can define its S1-equivariant symplectic homology,
denoted SHS1(X,λ) (see Section 5.3). This is a Q-module which comes equipped
with a filtration, i.e. for every a ∈ R we have a Q-module SHS1,a(X,λ) and a map

ιa : SHS1,a(X,λ) −→ SHS1(X,λ).

In particular, we can define the S1-equivariant symplectic homology associated to
intervals (a, b] ⊂ R and (a,+∞) ⊂ R by taking the quotient:

SHS1,(a,b](X,λ) := SHS1,b(X,λ)/ιb,a(SHS1,a(X,λ)),
SHS1,(a,+∞)(X,λ) := SHS1(X,λ)/ιa(SHS1,a(X,λ)).

2



The positive S1-equivariant symplectic homology is given by SHS1,+(X,λ) =
SHS1,(ε,+∞)(X,λ), where ε > is a small number. The S1-equivariant symplectic
homology also comes with maps U and δ, which can be composed to obtain the
map

δ ◦ Uk−1 ◦ ιa : SHS1,(ε,a](X) −→ H•(BS1;Q)⊗H•(X, ∂X;Q).
The kth Gutt–Hutchings capacity of (X,λ) ([GH18, Definition 4.1]) is given by

cGH
k (X) := inf{a > 0 | [pt]⊗ [X] ∈ im(δ ◦ Uk−1 ◦ ιa)}.

(3) Let (X,λ) be a nondegenerate Liouville domain. There is a map

ιa,ε ◦ α−1 : H•(BS1;Q)⊗H•(X, ∂X;Q) −→ SHS1,a(X).

The kth S1-equivariant symplectic homology capacity was defined by Irie in
[Iri21, Section 2.5], and it is given by

cS
1

k (X) := inf{a > 0 | ιa,ε ◦ α−1([CP k−1]⊗ [X]) = 0}.

(4) Let (X,λ) be a nondegenerate Liouville domain. Choose a point x ∈ intX and a
symplectic divisor (germ of a symplectic submanifold of codimension 2) D ⊂ X
through x. The boundary (∂X, λ|∂X) is a contact manifold (Definition 2.17) and
therefore has a Reeb vector field (Definition 2.21). The completion of (X,λ)
(Definition 2.47) is the exact symplectic manifold

(X̂, λ̂) := (X,λ) ∪∂X (R≥0 × ∂X, erλ|∂X).

LetMJ
X(Γ)〈T (k)x〉 denote the moduli space of J-holomorphic curves in X̂ which

are positively asymptotic to the tuple of Reeb orbits Γ = (γ1, . . . , γp) and which
have contact order k to D at x. Finally, for `, k ∈ Z≥1, the McDuff–Siegel
capacities of (X,λ) ([MS22, Definition 3.3.1]) are given by

g̃≤`k (X) := sup
J∈J (X,D)

inf
Γ1,...,Γp

p∑
i=1
A(Γi),

where J (X,D) is a set of almost complex structures on X̂ which are cylindrical
at infinity and compatible with D (see Section 4.2) and the infimum is over tuples
of Reeb orbits Γ1, . . . ,Γp such that there exist k1, . . . , kp ∈ Z≥1 with

p∑
i=1

#Γi ≤ `,
p∑
i=1

ki ≥ k,
p∏
i=1
MJ

X(Γi)〈T (ki)x〉 6= ∅.

(5) Let (X,λ) be a nondegenerate Liouville domain. If one assumes the existence of
a suitable virtual perturbation scheme, one can define the linearized contact
homology L∞-algebra of (X,λ), denoted CC(X)[−1] (see Definitions 7.5, 7.11
and 7.12). We can then consider its bar complex B(CC(X)[−1]) (see Defini-
tion 7.6) and the homology of the bar complex, H(B(CC(X)[−1])). There is an
augmentation map (see Definition 7.16)

εk : B(CC(X)[−1]) −→ Q

3



which counts J-holomorphic curves satisfying a tangency constraint. For `, k ∈
Z≥1, Siegel [Sie20, Section 6.1] defines the higher symplectic capacities by1

g≤`k (X) := inf{a > 0 | εk : H(A≤aB≤`(CC(X)[−1])) −→ Q is nonzero},

where A≤a denotes the action filtration (Definition 7.14) and B≤` denotes the word
length filtration (Definition 7.9).

The previous examples illustrate the fact that capacities can be defined using many tools
that exist in symplectic geometry. If a capacity encodes a quantitative property between
symplectic manifolds, then an inequality between two capacities encodes a relationship
between said properties. So, capacities are also an efficient language to describe quanti-
tative relations between properties of symplectic manifolds. Consider also that one can
chain inequalities together to obtain new inequalities. In fact, one of the main goals of
this thesis is to compute the Lagrangian capacity of convex or concave toric domains
(a toric domain is a special type of Liouville domain, see Definition 2.35). We give two
results in this direction (Theorems 6.41 and 7.65), and the proof of both results con-
sists in composing together several inequalities between capacities (namely the capacities
cGH
k , g̃≤1

k and g≤1
k which were defined above), where each of those inequalities is proven

separately. Notice that in this case, we are able to compute the Lagrangian capacity
of (some) toric domains, whose definition only concerns Lagrangian submanifolds, by
considering other capacities whose definition concerns holomorphic curves in the toric
domain.

1.2 Historical remarks
The first symplectic capacity, the Gromov width, was constructed by Gromov [Gro85],
although at this time the nomenclature of “symplectic capacity” had not been intro-
duced. The notion of symplectic capacity was first introduced by Ekeland–Hofer in
[EH89]. In the sequel [EH90], the authors define the Ekeland–Hofer capacities cEH

k

(for every k ∈ Z≥1) using variational techniques for the symplectic action functional.
The Hofer–Zehnder capacity [HZ90, HZ11] is another example of a capacity which
can be defined by considering Hamiltonian systems. One can consider spectral capac-
ities, which are generally defined as a minimal or maximal action of an orbit (Hamilto-
nian or Reeb) which is “topologically visible”. The Gutt–Hutchings capacities [GH18],
S1-equivariant symplectic homology capacities [Iri21], and Siegel’s higher symplectic ca-
pacities [Sie20] mentioned above are examples of this principle. Other authors have used
constructions like this, namely Hofer [Hof93], Viterbo [Vit92, Vit99], Schwarz [Sch00],
Oh [Oh02b, Oh02a, Oh05], Frauenfelder–Schlenk [FS07], Schlenk [Sch08] and Ginzburg–
Shon [GS18]. Using embedded contact homology (ECH), Hutchings [Hut11] defines the
ECH capacities cECH

k (for every k ∈ Z≥1).

1To be precise, the definition we give may be slightly different from the one given in [Sie20]. This
is due to the fact that we use an action filtration to define g≤`

k (X), while the definition given in [Sie20]
uses coefficients in a Novikov ring. See Remark 7.18 for further discussion.
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1.3 Main results
As explained before, one of the main goals of this thesis is to compute the Lagrangian
capacity of (some) toric domains. A toric domain is a Liouville domain of the form
XΩ := µ−1(Ω) ⊂ Cn, where Ω ⊂ Rn

≥0 and µ(z1, . . . , zn) = π(|z1|2, . . . , |zn|2). The ball,
the cylinder and the ellipsoid, which are defined by

B2n(a) := {z = (z1, . . . , zn) ∈ Cn | π|z|2 ≤ a},
Z2n(a) := {z = (z1, . . . , zn) ∈ Cn | π|z1|2 ≤ a},

E2n(a1, . . . , an) :=
{
z = (z1, . . . , zn) ∈ Cn

∣∣∣∣ n∑
j=1

π|zj|2

aj
≤ 1

}
,

are examples of toric domains.2 The diagonal of a toric domain XΩ is

δΩ := max{a | (a, . . . , a) ∈ Ω}.

It is easy to show (see Lemmas 6.19 and 6.20) that cL(XΩ) ≥ δΩ for any convex or
concave toric domainXΩ. Cieliebak–Mohnke give the following results for the Lagrangian
capacity of the ball and the cylinder.

Proposition 6.21 ([CM18, Corollary 1.3]). The Lagrangian capacity of the ball is

cL(B2n(1)) = 1
n
.3

Proposition 6.22 ([CM18, p. 215-216]). The Lagrangian capacity of the cylinder is

cL(Z2n(1)) = 1.

In other words, if XΩ is the ball or the cylinder then cL(XΩ) = δΩ. This motivates the
following conjecture by Cieliebak–Mohnke.

Conjecture 6.23 ([CM18, Conjecture 1.5]). The Lagrangian capacity of the ellipsoid is

cL(E(a1, . . . , an)) =
( 1
a1

+ · · ·+ 1
an

)−1
.

A more general form of the previous conjecture is the following.

Conjecture 6.24. If XΩ is a convex or concave toric domain then

cL(XΩ) = δΩ.

The goal of this project is to prove Conjecture 6.24. We will offer two main results in
this direction.

2Strictly speaking, the cylinder is noncompact, so it is not a toric domain. We will mostly ignore
this small discrepancy in nomenclature, but sometimes we will refer to spaces like the cylinder as
“noncompact toric domains”.

3In this introduction, we will be showcasing many results from the main text. The theorems appear
here as they do on the main text, in particular with the same numbering. The numbers of the theorems
in the introduction have hyperlinks to their corresponding location in the main text.
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(1) In Theorem 6.41, we prove that cL(XΩ) = δΩ whenever XΩ is convex and 4-
dimensional.

(2) In Theorem 7.65, using techniques from contact homology we prove that cL(XΩ) =
δΩ for any convex or concave toric domain XΩ. More specifically, in this case we
are working under the assumption that there is a virtual perturbation scheme such
that the linearized contact homology of a nondegenerate Liouville domain can be
defined (see Section 7.1).

Notice that by the previous discussion, we only need to prove the hard inequality
cL(XΩ) ≤ δΩ. We now describe our results concerning the capacities mentioned so
far. The key step in proving cL(XΩ) ≤ δΩ is the following inequality between cL and g̃≤1

k .

Theorem 6.40. If (X,λ) is a Liouville domain then

cL(X) ≤ inf
k

g̃≤1
k (X)
k

.

Indeed, this result can be combined with the following results from [MS22] and [GH18].

Proposition 6.37 ([MS22, Proposition 5.6.1]). If XΩ is a 4-dimensional convex toric
domain then

g̃≤1
k (XΩ) = cGH

k (XΩ).

Lemma 6.28 ([GH18, Lemma 1.19]). cGH
k (N2n(δ)) = δ (k + n− 1).

Here,

N2n(δ) :=
{

(z1, . . . , zn) ∈ Cn

∣∣∣∣ ∃j = 1, . . . , n : π|zj|
2

δ
≤ 1

}
is the nondisjoint union of cylinders. Combining the three previous results, we get
the following particular case of Conjecture 6.24. Since the proof is short, we present it
here as well.

Theorem 6.41. If XΩ is a 4-dimensional convex toric domain then

cL(XΩ) = δΩ.

Proof. For every k ∈ Z≥1,

δΩ ≤ cL(XΩ) [by Lemmas 6.19 and 6.20]

≤ g̃≤1
k (XΩ)
k

[by Theorem 6.40]

= cGH
k (XΩ)
k

[by Proposition 6.37]

≤ cGH
k (N(δΩ))

k
[XΩ is convex, hence XΩ ⊂ N(δΩ)]

= δΩ(k + 1)
k

[by Lemma 6.28].

The result follows by taking the infimum over k.

6



Notice that in the proof of this result, we used the Gutt–Hutchings capacities because the
value cGH

k (N2n(δ)) is known and provides the desired upper bound for cL(XΩ). Notice
also that the hypothesis of the toric domain being convex and 4-dimensional is present
because we wish to use Proposition 6.37 to compare g̃≤1

k and cGH
k . This suggests that we

try to compare cL and cGH
k directly.

Conjecture 6.42. If X is a Liouville domain, π1(X) = 0 and c1(TX)|π2(X) = 0, then

cL(X,λ) ≤ inf
k

cGH
k (X,λ)

k
.

We will try to prove Conjecture 6.42 by mimicking the proof of Theorem 6.40. Unfortu-
nately we will be unsuccessful, because we run into difficulties coming from the fact that
in S1-equivariant symplectic homology, the Hamiltonians and almost complex structures
can depend on the domain and on a high dimensional sphere S2N+1. Before we move on
to the discussion about computations using contact homology, we show one final result
which uses only the properties of S1-equivariant symplectic homology.

Theorem 6.31. If (X,λ) is a Liouville domain, then

(1) cGH
k (X) ≤ cS

1
k (X);

(2) cGH
k (X) = cS

1
k (X) provided that X is star-shaped.

We now present another approach that can be used to compute cL, using linearized
contact homology. This has the disadvantage that at the time of writing, linearized
contact homology has not yet been defined in the generality that we need (see Section 7.1
and more specifically Assumption 7.1). Using linearized contact homology, one can define
the higher symplectic capacities g≤`k . The definition of g≤`k for any ` ∈ Z≥1 relies on the
L∞-algebra structure of the linearized contact homology chain complex, as well as an
L∞-augmentation map εk. However, to prove that cL(XΩ) ≤ δΩ, we will only need the
capacity g≤1

k , and for this the L∞-algebra structure is not necessary. The key idea is
that the capacities g≤1

k can be compared to g̃≤1
k and cGH

k .

Theorem 7.63 ([MS22, Section 3.4]). If X is a Liouville domain then

g̃≤`k (X) ≤ g≤`k (X).

Theorem 7.64. If X is a Liouville domain such that π1(X) = 0 and 2c1(TX) = 0 then

g≤1
k (X) = cGH

k (X).

These two results show that g̃≤1
k (XΩ) ≤ cGH

k (XΩ) (under Assumption 7.1). Using the
same proof as before, we conclude that cL(XΩ) = δΩ.

Theorem 7.65. Under Assumption 7.1, if XΩ is a convex or concave toric domain then

cL(XΩ) = δΩ.

7



1.4 Proof sketches
In the last section, we explained our proof of cL(XΩ) = δΩ (first in the case where XΩ
is convex and 4-dimensional, and second assuming that Assumption 7.1 holds). In this
section, we explain the proofs of the relations

cL(X) ≤ inf
k

g̃≤1
k (X)
k

,

g̃≤`k (X) ≤ g≤`k (X),
g≤1
k (X) = cGH

k (X),

which were mentioned without proof in the last section. Each of these relations will be
proved in the main text, so the proof sketches of this section act as a way of showcasing
what technical tools will be required for our purposes. In Section 6.1, we study the ques-
tion of extending the domain of a symplectic capacities from the class of nondegenerate
Liouville domains to the class of Liouville domains which are possibly degenerate. By
this discussion, it suffices to prove each theorem for nondegenerate Liouville domains
only.

Theorem 6.40. If (X,λ) is a Liouville domain then

cL(X) ≤ inf
k

g̃≤1
k (X)
k

.

Proof sketch. Let k ∈ Z≥1 and L ⊂ intX be an embedded Lagrangian torus. Denote
a := g̃≤1

k (X). We wish to show that there exists σ ∈ π2(X,L) such that 0 < ω(σ) ≤ a/k.
Choose a suitable Riemannian metric on L, given by Lemma 3.30 (which is a restatement
of [CM18, Lemma 2.2]). Now, consider the unit cotangent bundle S∗L of L. Choose
a point x inside the unit codisk bundle D∗L, a symplectic divisor D through x, and
a sequence (Jt)t∈[0,1) of almost complex structures on X̂ realizing SFT neck stretching
along S∗L.

By definition of g̃≤1
k (X) =: a, there exists a Reeb orbit γ0 together with a sequence (ut)t

of Jt-holomorphic curves ut ∈ MJt
X (γ0)〈T (k)x〉. By the SFT-compactness theorem, the

sequence (ut)t converges to a holomorphic building F = (F 1, . . . , FN), where each F ν is a
holomorphic curve. Denote by C the component of F 1 ⊂ T ∗L which carries the tangency
constraint. The choices of almost complex structures Jt can be done in such a way that
the simple curve corresponding to C is regular, i.e. it is an element of a moduli space
which is a manifold. Using the dimension formula for this moduli space, it is possible to
conclude that C must have at least k+ 1 punctures (see Theorem 4.15 and Lemmas 4.16
and 4.17). This implies that C gives rise to at least k > 0 disks D1, . . . , Dk in X with
boundary on L. The total energy of the disks is less or equal to a. Therefore, one of the
disks must have energy less or equal to a/k.

We now address a small imprecision in the proof we just described. We need to show
that ω(Di) ≤ a for some i = 1, . . . , k. However, the above proof actually shows that
ω̃(Di) ≤ a, where ω̃ is a piecewise smooth 2-form on X̂ \ L given as in Definition 4.12.
This form has the property that ω = ω̃ outside S∗L. The solution then is to neck stretch
along S∗δL for some small δ > 0. In this case, one can bound ω(Di) by ω̃(Di) times a
function of δ (see Lemma 4.14), and we can still obtain the desired bound for ω(Di).
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Theorem 7.63 ([MS22, Section 3.4]). If X is a Liouville domain then

g̃≤`k (X) ≤ g≤`k (X).

Proof sketch. Choose a point x ∈ intX and a symplectic divisor D through x. Let
J ∈ J (X,D) and consider the bar complex B(CC(X)[−1]), computed with respect to
J . Suppose that a > 0 and β ∈ H(A≤aB≤`(CC(X)[−1])) is such that εk(β) 6= 0. By
Theorem 6.34,

g̃≤`k (X) = sup
J∈J (X,D)

inf
Γ
A(Γ),

where the infimum is taken over tuples of Reeb orbits Γ = (γ1, . . . , γp) such that p ≤ `

and MJ

X(Γ)〈T (k)x〉 6= ∅. The class β is a linear combination of words of Reeb orbits
Γ such that #Γ ≤ ` and A(Γ) ≤ a. Since εk(β) 6= 0, one of the words in this linear
combination, say Γ, is such that the virtual count of MJ

X(Γ)〈T (k)x〉 is nonzero. By
assumption on the virtual perturbation scheme, MJ

X(Γ)〈T (k)x〉 is nonempty, which is
the condition in the definition of g̃≤`k (X).

Theorem 7.64. If X is a Liouville domain such that π1(X) = 0 and 2c1(TX) = 0 then

g≤1
k (X) = cGH

k (X).

Proof sketch. Choose a small ellipsoid E such that there exists a strict exact symplectic
embedding φ : E −→ X. There are associated Viterbo transfer maps (see Sections 5.4
and 5.5, where we define the Viterbo transfer map of S1-equivariant symplectic homol-
ogy)

φS
1

! : SHS1(X) −→ SHS1(E),
φ! : CH(X) −→ CH(E).

Because of the topological conditions on X, the S1-equivariant symplectic homology and
the linearized contact homology have Z-gradings given by the Conley–Zehnder index. In
this context, one can offer an alternative definition of the Gutt–Hutchings capacities via
the Viterbo transfer map, namely cGH

k (X) is the infimum over a such that the map

SH
S1,(ε,a]
n−1+2k(X) SHS1,+

n−1+2k(X) SHS1,+
n−1+2k(E)ιS

1,a φS
1

!

is nonzero (see Lemma 6.27). Bourgeois–Oancea [BO16] define an isomorphism

ΦBO : SHS1,+(X) −→ CH(X)

between positive S1-equivariant symplectic homology and linearized symplectic homol-
ogy (whenever the latter is defined). All the maps we have just described assemble into
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the following commutative diagram.

SH
S1,(ε,a]
n−1+2k(X) SHS1,+

n−1+2k(X) SHS1,+
n−1+2k(E)

CHa
n−1+2k(X) CHn−1+2k(X) CHn−1+2k(E)

CHa
n−1+2k(X) CHn−1+2k(X) Q

ιS
1,a

ΦaBO

φS
1

!

ΦBO ΦBO

ιa φ!

εEk

ιa εXk

Here, the vertical arrows between the top two rows are the Bourgeois–Oancea isomor-
phism and the maps εXk and εEk are the augmentation maps of X and E. Using this
information, we can show that cGH

k (X) ≤ g≤1
k (X):

cGH
k (X) = inf{a > 0 | φS1

! ◦ ιS
1,a 6= 0} [by the alternative definition of cGH

k ]
≤ inf{a > 0 | εXk ◦ ιa 6= 0} [since the diagram commutes]
= g≤1

k (X) [by definition of g≤1
k ].

In this computation, the inequality in the second line is an equality if εEk is an isomor-
phism. The proof of this statement is done in Section 7.7, using the techniques from Sec-
tions 7.5 and 7.6. The key ideas are the following. One can show that CHn−1+2k(E) ∼= Q
(see Lemma 7.55), and therefore it is enough to show that εEk is nonzero. Recall that
εEk is given by the virtual count of holomorphic curves in X satisfying a tangency con-
straint. We count those curves explicitly in Proposition 7.60. Notice that here we need
to justify that the virtual count of curves equals the usual signed count. This follows by
assumption on the virtual perturbation scheme and because in Section 7.7, we also show
that the moduli spaces are transversely cut out.

1.5 Outline of the thesis
We now give a chapter by chapter outline of this thesis.

In Chapter 2 we review the various types of manifolds that will show up in this thesis,
i.e. symplectic manifolds and contact manifolds. We talk about the various types of
vector fields in these manifolds (Hamiltonian vector field, Liouville vector field, Reeb
vector field) and mention the properties of their flows. We give the definition of special
types of symplectic manifolds, from less to more specific: Liouville domains, star-shaped
domains, toric domains. Finally, we explain two constructions which will be present
throughout: the symplectization of a contact manifold, and the completion of a Liouville
domain.

In Chapter 3 we give a review of the Conley–Zehnder indices. In order to list the
properties of the Conley–Zehnder index, one needs to mention the Maslov index and the
first Chern class, so we offer a review of those as well. We explain how to define the
Conley–Zehnder index of an orbit in a symplectic or contact manifold by defining an
induced path of symplectic matrices via a trivialization. Finally, we study the Conley–
Zehnder index of a Reeb orbit in a unit cotangent bundle. The Conley–Zehnder index

10



is needed for our purposes because it provides the grading of S1-equivariant symplectic
homology and of linearized contact homology.

Chapter 4 is about the analytic properties of holomorphic curves and Floer trajectories.
We define punctured Riemann surfaces as the domains for such curves, and symplectic
cobordisms as the targets for such curves. We prove the energy identity for holomorphic
curves, as well as the maximum principle. Then, we discuss the known compactness and
transversality for moduli spaces of asymptotically cylindrical holomorphic curves (these
are the moduli spaces which are considered in linearized contact homology). The second
half of this chapter is about solutions of the “parametrized Floer equation” (solutions to
this equation are the trajectories which are counted in the differential of S1-equivariant
Floer chain complex). We prove an energy inequality for Floer trajectories, as well as
three “confinement lemmas”: the maximum principle, the asymptotic behaviour lemma,
and the no escape lemma. Finally, we prove compactness and transversality for moduli
spaces of solutions of the parametrized Floer equation using the corresponding results
for moduli spaces of solutions of the Floer equation.

In Chapter 5 we define the S1-equivariant symplectic homology and establish its struc-
tural properties. First we define the S1-equivariant Floer chain complex and its homol-
ogy. The S1-equivariant symplectic homology is then defined by taking the limit with
respect to an increasing sequence of Hamiltonians of the S1-equivariant Floer homology.
We devote two sections to showing that S1-equivariant symplectic homology is a func-
tor, which amounts to defining the Viterbo transfer maps and proving their properties.
Finally, we define a δ map, which enters the definition of the Gutt–Hutchings capacities.

Chapter 6 is about symplectic capacities. The first section is about generalities about
symplectic capacities. We show how to extend a capacity of nondegenerate Liouville
domains to a capacity of (possibly degenerate) Liouville domains. The next three sections
are each devoted to defining and proving the properties of a specific capacity, namely
the Lagrangian capacity cL, the Gutt–Hutchings capacities cGH

k and the S1-equivariant
symplectic homology capacities cS1

k , and finally the McDuff–Siegel capacities g̃≤`k . In the
section about the Lagrangian capacity, we also state the conjecture that we will try to
solve in the remainder of the thesis, i.e. cL(XΩ) = δΩ for a convex or concave toric domain
XΩ. The final section is devoted to computations. We show that cL(X) ≤ infk g̃

≤1
k (X)/k.

We use this result to prove the conjecture in the case where XΩ is 4-dimensional and
convex.

Chapter 7 introduces the linearized contact homology of a nondegenerate Liouville
domain. The idea is that using the linearized contact homology, one can define the
higher symplectic capacities, which will allow us to prove cL(XΩ) = δΩ for any convex or
concave toric domain XΩ (but under the assumption that linearized contact homology
and the augmentation map are well-defined). We give a review of real linear Cauchy–
Riemann operators on complex vector bundles, with a special emphasis on criteria for
surjectivity in the case where the bundle has complex rank 1. We use this theory to prove
that moduli spaces of curves in ellipsoids are transversely cut out and in particular that
the augmentation map of an ellipsoid is an isomorphism. The final section is devoted
to computations. We show that g≤1

k (X) = cGH
k (X), and use this result to prove our

conjecture (again, under Assumption 7.1).
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Chapter 2

Symplectic and contact manifolds

2.1 Symplectic manifolds
In this section, we recall some basics about symplectic manifolds.

Definition 2.1. A symplectic manifold is a manifold X together with a 2-form ω
which is closed and nondegenerate. In this case we say that ω is a symplectic form.
An exact symplectic manifold is a manifold X together with a 1-form λ such that
ω = dλ is a symplectic form. In this case we call λ a symplectic potential for ω.

Example 2.2. Consider Cn with coordinates (x1, . . . , xn, y1, . . . , yn), where zj = xj+iyj
for every j = 1, . . . , n. We define

λ := 1
2

n∑
j=1

(xjdyj − yjdxj),

ω := dλ =
n∑
j=1

dxj ∧ dyj.

Then, (Cn, λ) is an exact symplectic manifold.

Example 2.3. Let L be a manifold and consider the cotangent bundle of L, which
is a vector bundle π : T ∗L −→ L. As a set, T ∗L = ⋃

q∈L T
∗
q L. As a vector bundle, T ∗L

is given as follows. For each coordinate chart (U, q1, . . . , qn) on L, there is a coordinate
chart (π−1(U), q1 ◦ π, . . . , qn ◦ π, p1, . . . , pn) on T ∗L, where the pi are given by

pi(u) := u
(
∂

∂qi

∣∣∣∣
π(u)

)

for u ∈ T ∗L. For simplicity, denote qi = qi ◦ π. Define a 1-form λ on T ∗L, called the
canonical symplectic potential or Liouville 1-form, as follows. For each u ∈ T ∗L,
the linear map λu : TuT ∗L −→ R is given by λu := u ◦ Dπ(u). The form ω := dλ is the
canonical symplectic form. In coordinates,

λ =
n∑
i=1

pidqi,
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ω =
n∑
i=1

dpi ∧ dqi.

Then, (T ∗L, λ) is an exact symplectic manifold.

If (X,ω) is a symplectic manifold, then using symplectic linear algebra we conclude
that X must be even dimensional, i.e. dimX = 2n for some n (see for example [dS08,
Theorem 1.1]). In particular, ωn is a volume form on X.

Definition 2.4. Let (X,ωX), (Y, ωY ) be symplectic manifolds and ϕ : X −→ Y be
an embedding. Then, ϕ is symplectic if ϕ∗ωY = ωX . A symplectomorphism is a
symplectic embedding which is a diffeomorphism. We say that ϕ is strict if ϕ(X) ⊂
intY . If (X,λX), (Y, λY ) are exact, then we say that ϕ is:

(1) symplectic if ϕ∗λY − λX is closed (this is equivalent to the previous definition);

(2) generalized Liouville if ϕ∗λY − λX is closed and (ϕ∗λY − λX)|∂X is exact;

(3) exact symplectic if ϕ∗λY − λX is exact;

(4) Liouville if ϕ∗λY − λX = 0.

Remark 2.5. In the context of Definition 2.4, if H1
dR(X) = 0 then (1)⇐⇒ (2)⇐⇒ (3).

Remark 2.6. The composition of generalized Liouville embeddings is not necessarily a
generalized Liouville embedding. This means that exact symplectic manifolds together
with generalized Liouville embeddings do not form a category.

Definition 2.7. Let (X,ω) be a symplectic manifold of dimension 2n and ι : L −→ X
be an immersed submanifold of dimension n. Then, L is Lagrangian if ι∗ω = 0. If
(X,λ) is exact, then we say that L is:

(1) Lagrangian if ι∗λ is closed (this is equivalent to the previous definition);

(2) exact Lagrangian if ι∗λ is exact.

Example 2.8. Let L be a manifold and consider its cotangent bundle, T ∗L. Then, the
zero section z : L −→ T ∗L is an exact Lagrangian. In fact, z∗λ = 0.

Lemma 2.9 (Moser’s trick). Let X be a manifold, αt be a smooth 1-parameter family of
forms on X and Yt be a complete time dependent vector field on X with flow φt. Then,

φ∗tαt − α0 =
∫ t

0
φ∗s
(
α̇s + LYsαs

)
ds =

∫ t

0
φ∗s
(
α̇s + dιYsαs + ιYsdαs

)
ds.

Proof.

φ∗tαt − α0

= φ∗tαt − φ∗0α0 [since φ0 = id]

=
∫ t

0

d
dsφ

∗
sαs ds [by the fundamental theorem of calculus]

=
∫ t

0
φ∗s
(
α̇s + LYsαs

)
ds [by definition of Lie derivative]

=
∫ t

0
φ∗s
(
α̇s + dιYsαs + ιYsdαs

)
ds [by the Cartan magic formula].
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Theorem 2.10 (Darboux). Let (X,ω) be a symplectic manifold. Then, for every p ∈ X,
there exists a coordinate neighbourhood (U, x1, . . . , xn, y1, . . . , yn) of p such that

ω =
n∑
i=1

dxi ∧ dyi.

Proof. Taking a coordinate chart on X, it is enough to assume that ω0, ω1 are symplectic
forms on a neighbourhood of 0 in Cn and to prove that there exists a local diffeomorphism
φ of Cn such that φ∗ω1 = ω0. Choosing the initial coordinate chart carefully, we may
assume in addition that ωj has a primitive λj, i.e. ωj = dλj, for j = 0, 1, and also that
ω0 and ω1 are equal at 0 ∈ C, i.e. ω0|0 = ω1|0. Let

λt := λ0 + t(λ1 − λ0),
ωt := dωt = ω0 + t(ω1 − ω0).

Since ωt|0 = ω0|0 is symplectic, possibly after passing to a smaller neighbourhood of 0
we may assume that ωt is symplectic. Let Yt be the unique time-dependent vector field
such that λ̇t + ιYtωt = 0 and denote by φt the flow of Yt. Then,

φ∗tωt − ω0 =
∫ t

0
φ∗s(ω̇s + dιYsωs + ιYsdωs)ds [by Moser’s trick (Lemma 2.9)]

=
∫ t

0
φ∗sd(λ̇s + dιYsωs)ds [since ωt = dλt]

= 0 [by definition of Yt],

which shows that φ1 is the desired local diffeomorphism.

Definition 2.11. If (X,λ) is an exact symplectic manifold, then the Liouville vector
field of (X,λ) is the unique vector field Z such that

λ = ιZω.

Lemma 2.12. The Liouville vector field satisfies

LZλ = λ.

Proof.

LZλ = dιZλ+ ιZdλ [by the Cartan magic formula]
= dιZλ+ ιZω [since ω = dλ]
= dιZιZω + λ [by definition of Liouville vector field, λ = ιZω]
= λ [since ω is antisymmetric, ιZιZω = 0].

Definition 2.13. Let H ∈ C∞(X,R) be a function on X. The Hamiltonian vector
field of H, denoted XH , is the unique vector field on X satisfying

dH = −ιXHω.
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Proposition 2.14. The Hamiltonian vector field preserves the symplectic form, i.e.

LXHω = 0.

Proof.

LXHω = dιXHω + ιXHdω [by the Cartan magic formula]
= dιXHω [since ω is closed]
= −d2H [by definition of XH ]
= 0 [since d2 = 0].

Proposition 2.15 (Liouville’s theorem). The Hamiltonian vector field preserves the
symplectic volume form, i.e.

LXH

(
ωn

n!

)
= 0.

Proof. By Proposition 2.14 and the fact that Lie derivatives obey the Leibniz rule.

Proposition 2.16 (conservation of energy). The Hamiltonian is constant along the
Hamiltonian vector field, i.e.

XH(H) = 0.

Proof.

XH(H) = dH(XH) [by definition of exterior derivative]
= −ιXHω(XH) [by definition of XH ]
= −ω(XH , XH) [by definition of interior product]
= 0 [since ω is a form].

2.2 Contact manifolds
In this section, we recall some basics about contact manifolds.

Definition 2.17. A contact manifold is a pair (M, ξ), where M is a smooth manifold
and ξ is a distribution on M of codimension 1, called the contact structure, such
that for all locally defining forms α ∈ Ω1(U) for ξ (i.e. such that ξ = kerα), dα|ξ is
nondegenerate. In this case we call α a local contact form for M . In the case where
α ∈ Ω1(M) we say that α is a global contact form forM . A strict contact manifold
is a pair (M,α) such that (M, kerα) is a contact manifold.

The following lemma characterizes the linear algebra of contact manifolds.

Lemma 2.18. Let M be an m-dimensional manifold, α ∈ Ω1(M) be nonvanishing and
ξ = kerα. Then, the following are equivalent:

(1) The form dα|ξ is nondegenerate, i.e. (M,α) is a contact manifold;

(2) The tangent bundle of M decomposes as TM = ker dα⊕ kerα;
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(3) There exists an n ∈ Z≥0 such that m = 2n+ 1 and α ∧ (dα)n is a volume form.

Proof. (1) =⇒ (2): We show that ker dα ∩ kerα = 0. For this, it suffices to assume
that v ∈ ker dα ∩ kerα and to prove that v = 0. Since dα|kerα(v) = 0 and dα|kerα is
nondegenerate we conclude that v = 0.

We show that dimTM = dim ker dα + dim kerα. Since α is nonvanishing, dim kerα =
dimTM −1. Since ker dα∩kerα = 0, this implies that dim ker dα ∈ {0, 1}. Considering
that dα|kerα is nondegenerate and that dimTM = dim kerα+1, we conclude that dα|TM
is degenerate. Therefore, dim ker dα = 1.

(2) =⇒ (3): Since TM = ker dα⊕ kerα, we conclude that the forms α|ker dα and dα|kerα
are nondegenerate. In particular, kerα is even dimensional, i.e. dim kerα = 2n for some
n, and (dα|kerα)n is a volume form on kerα. So, α ∧ (dα)n is a volume form on M .

(3) =⇒ (1): If v ∈ ξ = kerα is such that v ∈ ker dα|ξ, then ιv(α ∧ (dα)n) = 0, which
implies that v = 0.

Definition 2.19. Let (M, ξM), (N, ξN) be contact manifolds. A contactomorphism
from M to N is a diffeomorphism φ : M −→ N such that Tφ(ξM) = ξN . If (M,αM),
(N,αN) are strict contact manifolds, a strict contactomorphism from M to N is a
diffeomorphism φ : M −→ N such that φ∗αN = αM .

Remark 2.20. We will consider only strict contact manifolds and strict contactomor-
phisms, and for simplicity we will drop the word “strict” from our nomenclature.

Definition 2.21. TheReeb vector field of (M,α) is the unique vector fieldR satisfying

ιRdα = 0,
ιRα = 1.

Remark 2.22. Lemma 2.18 (2) can also be written as TM = 〈R〉 ⊕ ξ.

Lemma 2.23. The Reeb vector field preserves the contact form, i.e.

LRα = 0.

Proof.

LRα = ιRdα + dιRα [by the Cartan magic formula]
= 0 + d1 [by definition of R]
= 0.

We now consider contact manifolds which are hypersurfaces of symplectic manifolds.

Definition 2.24. Let (X,ω) be a symplectic manifold of dimension 2n, (M,α) be a
contact manifold of dimension 2n − 1 such that M ⊂ X, and denote by ι : M −→ X
the inclusion. We say that M is a hypersurface of contact type if dα = ι∗ω. In this
case, the Liouville vector field is the unique vector field Z ∈ C∞(ι∗TX) such that

ιZω = α.
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Example 2.25. Let (L, g) be a Riemannian manifold. Recall that (T ∗L, λ) is an exact
symplectic manifold. Consider the unit cotangent bundle

S∗L := {u ∈ T ∗L | ‖u‖ = 1}.

The form α := λ|S∗L is a contact form on S∗L. Therefore, (S∗L, α) ⊂ (T ∗L, λ) is a
hypersurface of contact type. More generally, we can also define the cotangent bundle
of radius r > 0 by S∗rL := {u ∈ T ∗L | ‖u‖ = r}, which is also a hypersurface of contact
type.

Lemma 2.26. We have the decompositions

ι∗TX = 〈Z〉 ⊕ 〈R〉 ⊕ ξ,
TM = 〈R〉 ⊕ ξ,
ξ⊥ = 〈Z〉 ⊕ 〈R〉.

Proof. By Lemma 2.18, we have that TM = 〈R〉 ⊕ ξ. To show that ξ⊥ = 〈Z〉 ⊕ 〈R〉, by
considering the rank of the vector bundles it suffices to show that 〈Z〉 ⊕ 〈R〉 ⊂ ξ⊥. Let
v ∈ ξp = kerαp. We wish to show that ω(Zp, v) = 0 and ω(Rp, v) = 0.

ω(Zp, v) = α(v) [by definition of Z]
= 0 [since v ∈ kerαp],

ω(Rp, v) = dα(Rp, v) [by definition of hypersurface of contact type]
= 0 [by definition of Reeb vector field].

Then, as oriented vector bundles, ι∗TX = ξ⊥ ⊕ ξ = 〈Z〉 ⊕ 〈R〉 ⊕ ξ.

Lemma 2.27. Let H : X −→ R and assume that M is the preimage of H under a
regular value c ∈ R, i.e. M = H−1(c). Then, there exists a unique vector field XM

H on
M which is ι-related to XH . In addition, XM

H = α(XM
H )R.

Proof. To prove the first statement, it suffices to show thatXH |p ∈ TpM for every p ∈M .
By conservation of energy (Proposition 2.16), we have that

XH |p ∈ ker dH(p)
= Tp(H−1(c))
= TpM.

We now show that ιXM
H

dα = 0.

ιXM
H

dα = ιXM
H
ι∗ω [by definition of hypersurface of contact type]

= ι∗ιXHω [since XM
H is ι-related to XH ]

= −ι∗dH [by definition of Hamiltonian vector field]
= −dι∗H [by naturality of d]
= 0 [since H is constant equal to c on M ].

By definition of Reeb vector field, we conclude that XM
H and R are collinear, and in

particular XM
H = α(XM

H )R.
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We now compare the dynamics from the points of view of Riemannian, symplectic and
contact geometry. Let (L, g) be a Riemannian manifold of dimension n. The manifold
L has a tangent bundle TL and a cotangent bundle T ∗L, and the map g̃ : TL −→ T ∗L
given by g̃(v) = g(v, ·) is a vector bundle isomorphism. Consider the unit cotangent
bundle ι : S∗L −→ T ∗L, which has a Reeb vector field R, and the function

H : T ∗L −→ R
u 7−→ 1

2‖u‖
2.

Definition 2.28. We define a vector field G on TL, called the geodesic field, as follows.
At v ∈ TL, Gv is given by

Gv := d
dt

∣∣∣∣
t=0
γ̇(t),

where γ : I −→ L is the unique geodesic with γ̇(0) = v and γ̇ : I −→ TL is the lift of γ.

A curve γ in L is a geodesic if and only if its lift γ̇ to TL is a flow line of G.

Theorem 2.29. The vector field G is g̃-related to XH .

Proof. See for example [Gei08, Theorem 1.5.2] or [Fv18, Theorem 2.3.1].

Theorem 2.30. The vector field R is ι-related to XH .

Proof. Notice that S∗L = H−1(2). By Lemma 2.27, it suffices to show that λ(XH)◦ι = 1.
Let (q1, . . . , qn) be coordinates on L, with induced coordinates (q1, . . . , qn, p1, . . . , pn) on
T ∗L. With respect to these coordinates, XH can be written as

XH =
n∑
i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)

=
n∑
i=1

( n∑
j=1

gijpj
∂

∂qi
−

n∑
j,k=1

∂gjk

∂qi
pjpk

∂

∂pi

)
. (2.1)

We show that 〈Dπ(u)XH |u, ·〉 = u.

〈Dπ(u)XH |u, v〉 =
n∑

i,j=1
gij(Dπ(u)XH |u)ivj

=
n∑

i,j,k=1
gijg

ikpkv
j

=
n∑

j,k=1
δkj pkv

j

=
n∑
j=1

pjv
j

=
n∑
i=1

pidqi
( n∑
j=1

vj
∂

∂qj

)
= u(v).
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We show that λ(XH) = 2H:

λ(XH)|u = u(Dπ(u)XH |u) [by definition of λ]
= 〈Dπ(u)XH |u,Dπ(u)XH |u〉 [since u = 〈Dπ(u)XH |u, ·〉]
= ‖Dπ(u)XH |u‖2 [by definition of the norm]
= ‖u‖2 [since u = 〈Dπ(u)XH |u, ·〉]
= 2H(u) [by definition of H].

By definition of H, this implies that λ(XH) ◦ ι = 1, as desired.

2.3 Liouville domains
In this section we introduce Liouville domains, which are going to be the main type of
symplectic manifold we will work with.

Definition 2.31. A Liouville domain is a pair (X,λ), where X is a compact, con-
nected smooth manifold with boundary ∂X and λ ∈ Ω1(X) is such that dλ ∈ Ω2(X) is
symplectic, λ|∂X is contact and the orientations on ∂X coming from (X, dλ) and coming
from λ|∂X are equal.

Example 2.32. Let (L, g) be a Riemannian manifold. The unit codisk bundle,

D∗L := {u ∈ T ∗L | ‖u‖ ≤ 1},

is a Liouville domain. More generally, we can define the codisk bundle of radius r > 0
by D∗rL := {u ∈ T ∗L | ‖u‖ ≤ r}, which is also a Liouville domain.

Definition 2.33. A star-shaped domain is a compact, connected 2n-dimensional
submanifold X of Cn with boundary ∂X such that (X,λ) is a Liouville domain, where
λ is the symplectic potential of Example 2.2.

Definition 2.34. The moment map is the map µ : Cn −→ Rn
≥0 given by

µ(z1, . . . , zn) := π(|z1|2, . . . , |zn|2).

Define also

ΩX := Ω(X) := µ(X) ⊂ Rn
≥0, for every X ⊂ Cn,

XΩ := X(Ω) := µ−1(Ω) ⊂ Cn, for every Ω ⊂ Rn
≥0,

δΩ := δ(Ω) := sup{a | (a, . . . , a) ∈ Ω}, for every Ω ⊂ Rn
≥0.

We call δΩ the diagonal of Ω.

Definition 2.35. A toric domain is a star-shaped domain X such that X = X(Ω(X)).
A toric domain X = XΩ is

(1) convex if Ω̂ := {(x1, . . . , xn) ∈ Rn | (|x1|, . . . , |xn|) ∈ Ω} is convex;

(2) concave if Rn
≥0 \ Ω is convex.
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Example 2.36. Here we give some examples of toric domains. See Fig. 2.1 for a picture
of the examples given below.

(1) The ellipsoid is the convex and concave toric domain given by

E(a1, . . . , an) :=
{

(z1, . . . , zn) ∈ Cn

∣∣∣∣ n∑
j=1

π|zj|2

aj
≤ 1

}

ΩE(a1, . . . , an) :=
{

(x1, . . . , xn) ∈ Rn
≥0

∣∣∣∣ n∑
j=1

xj
aj
≤ 1

}
.

Its limit shape, the ball, is B2n(a) := B(a) := E(a, . . . , a).

(2) The polydisk is the convex “toric domain with corners” given by

P (a1, . . . , an) :=
{

(z1, . . . , zn) ∈ Cn

∣∣∣∣ ∀j = 1, . . . , n : π|zj|
2

aj
≤ 1

}
ΩP (a1, . . . , an) :=

{
(x1, . . . , xn) ∈ Rn

≥0

∣∣∣∣ ∀j = 1, . . . , n : xj
aj
≤ 1

}
.

Its limit shape, the cube, is P 2n(a) := P (a) := P (a, . . . , a).

(3) The nondisjoint union of cylinders is the concave “noncompact toric domain
with corners” given by

N(a1, . . . , an) :=
{

(z1, . . . , zn) ∈ Cn

∣∣∣∣ ∃j = 1, . . . , n : π|zj|
2

aj
≤ 1

}
ΩN(a1, . . . , an) :=

{
(x1, . . . , xn) ∈ Rn

≥0

∣∣∣∣ ∃j = 1, . . . , n : xj
aj
≤ 1

}
.

Its limit shape is denoted N2n(a) := N(a) := N(a, . . . , a).

(4) The cylinder is the convex and concave “noncompact toric domain” given by

Z(a) :=
{

(z1, . . . , zn) ∈ Cn

∣∣∣∣ π|z1|2

a1
≤ 1

}
ΩZ(a) :=

{
(x1, . . . , xn) ∈ Rn

≥0

∣∣∣∣ x1

a1
≤ 1

}
.

Note that Z2n(a) := Z(a) = E(a,∞, . . . ,∞) = P (a,∞, . . . ,∞).

1

1

1

1

1

1

1

1

ΩB(1) ΩP (1) ΩZ(1) ΩN(1)

Figure 2.1: Toric domains
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2.4 Symplectization of a contact manifold
Let (M,α) be a contact (2n− 1)-dimensional manifold.

Definition 2.37. The symplectization of (M,α) is the exact symplectic manifold
(R×M, erα), where r is the coordinate on R.

Lemma 2.38. The form d(erα) is symplectic.

Proof. The form d(erα) is exact, so it is closed. We show that d(erα) is nondegenerate.

(d(erα))n

= (erdr ∧ α + erdα)n [by the Leibniz rule]

= enr
n∑
k=0

(
n

k

)
(dr ∧ α)k ∧ (dα)n−k [by the binomial theorem]

= enrdr ∧ α ∧ (dα)n−1 [since α2 = 0 and (dα)n = 0]
6= 0 [since α ∧ (dα)n−1 is a volume form on M ].

Lemma 2.39. The Liouville vector field of (R×M, erα) is Z = ∂r.

Proof. By definition of Liouville vector field, we need to show that ι∂rd(erα) = erα.

ι∂rd(erα) = ι∂r(erdr ∧ α + erdα) [by the Leibniz rule]
= er(dr(∂r)α− α(∂r)dr + ι∂rdα) [since ιZ is a derivation]
= erα [since α is a form on M ].

Example 2.40. Let (L, g) be a Riemannian manifold. Recall that (T ∗L, λ) is an exact
symplectic manifold and that (S∗L, α) is a hypersurface of contact type. Consider the
symplectization of S∗L, which is (R× S∗L, erα). Then, the map R× S∗L −→ T ∗L \ L
given by (r, u) 7−→ eru is a Liouville diffeomorphism.

Defining R(r,x) = Rx we can view the Reeb vector field of M as a vector field in R×M .
Analogously, we define a distribution ξ on R ×M by ξ(r,x) = ξx. Then, T (R ×M) =
〈Z〉 ⊕ 〈R〉 ⊕ ξ. Let H : R × M −→ R be a function which only depends on R, (i.e.
H(r, x) = H(r)). Define h := H ◦ exp−1 : R>0 −→ R and T (r) := H ′(r)/er = h′(er).

Lemma 2.41. The Hamiltonian vector field of H satisfies α(XH) = T and XH = TR.

Proof. By Lemma 2.27, XH and R are collinear. By definition of Reeb vector field, this
implies that XH = α(XH)R. It remains to show that α(XH) = T . For this, we compute

H ′dr = dH [by definition of exterior derivative]
= −ιXHd(erα) [by definition of Hamiltonian v.f.]
= −ιXH (erdr ∧ α + erdα) [Leibniz rule for exterior derivative]
= −er(dr(XH)α− α(XH)dr + ιXHdα) [interior product is a derivation].

Therefore, H ′dr = erα(XH)dr, which implies that α(XH) = H ′/ exp = T .

22



Corollary 2.42. Suppose that γ = (r, ρ) : S1 −→ R ×M is a 1-periodic orbit of XH ,
i.e. γ̇(t) = XH(γ(t)). Then:

(1) r : S1 −→ R is constant;

(2) ρ : S1 −→M is a T (r)-periodic orbit of R, i.e. ρ̇(t) = T (r)R(ρ(t)).

Proof. The function r : S1 −→ R is constant because XH is tangent to {r} ×M . Since
γ̇(t) = XH(γ(t)) and by Lemma 2.41, we conclude that ρ̇(t) = T (r)R(ρ(t)).

Lemma 2.43. Let γ = (r, ρ) : S1 −→ R ×M be a 1-periodic orbit of XH and consider
its action, given by

AH(γ) =
∫
S1
γ∗(erα)−

∫
S1
H(γ(t)) dt.

Then, AH(γ) =: AH(r) only depends on r, and we have the following formulas for AH
and A′H (as functions of r):

AH(r) = H ′(r)−H(r) = erh′(er)− h(er),
A′H(r) = H ′′(r)−H ′(r) = e2rh′′(er).

Proof. We show only that AH(γ) = H ′(r)−H(r), since the other formulas follow from
this one by elementary calculus.

AH(γ) =
∫
S1
γ∗(erα)−

∫
S1
H(γ(t)) dt [by definition of action]

=
∫
S1
erρ∗α−

∫ 1

0
H(r, ρ(t)) dt [since γ(t) = (r, ρ(t))]

= er
∫
S1
ρ∗α−

∫ 1

0
H(r) dt [since H = H(r)]

= erT (ρ)−H(r) [by Corollary 2.42]
= H ′(r)−H(r) [by definition of T ].

Definition 2.44. Let J be an almost complex structure on (R×M, erα). We say that J
is cylindrical if J(∂r) = R, if J(ξ) ⊂ ξ, and if the almost complex structure J : ξ −→ ξ
is compatible with dα and independent of r. We denote by J (M) the set of such J .

Lemma 2.45. If J is cylindrical then α ◦ J = dr.

Proof. It suffices to show that α ◦ J = dr on ∂r, R and V ∈ ξ.

α ◦ J(∂r) = α(R) = 1 = dr(∂r)
α ◦ J(R) = −α(∂r) = 0 = dr(R)
α ◦ J(V ) = α(J(V )) = 0 = dr(V ).
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2.5 Completion of a Liouville domain
Let (X,λ) be a Liouville domain and ω = dλ. Our goal in this section is to define the
completion of (X,λ), which is an exact symplectic manifold denoted by (X̂, λ̂). Recall
that (∂X, λ|∂X) is contact. Consider the symplectization (R×∂X, erλ|∂X) of (∂X, λ|∂X).
Let Z be the Liouville vector field of (X,λ), which is given by λ = ιZω. Denote the flow
of Z by

ΦZ : R≤0 × ∂X −→ X

(t, x) 7−→ φtZ(x).

Since the vector field Z is outward pointing at ∂X, the map ΦZ is well-defined. Also,
since ΦZ is given by flowing along the vector field Z, it is an embedding.

Lemma 2.46. The map ΦZ is a Liouville embedding, i.e. Φ∗Zλ = erλ|∂X .

Proof. If (t, x) ∈ R≤0 × ∂X and (u, v) ∈ T(t,x)(R≤0 × ∂X) = R⊕ Tx∂X, then

(Φ∗Zλ)(u, v)
= λ(DΦZ(t, x)(u, v)) [by definition of pullback]
= λ(DΦZ(t, x)(0, v)) + λ(DΦZ(t, x)(u, 0)) [by linearity of the derivative]
= λ(DφtZ(x)(v)) + uλ(ZφtZ(x)) [by definition of ΦZ ]
= λ(DφtZ(x)(v)) + uω(ZφtZ(x), ZφtZ(x)) [by definition of Z]
= λ(DφtZ(x)(v)) [since ω is antisymmetric]
= ((φtZ)∗λ)(v) [by definition of pullback]
= etλ(v) [by Lemmas 2.9 and 2.12].

Definition 2.47. We define an exact symplectic manifold (X̂, λ̂) called the completion
of (X,λ), as follows. As a smooth manifold, X̂ is the gluing of X and R× ∂X along the
map ΦZ : R≤0 × ∂X −→ ΦZ(R≤0 × ∂X). This gluing comes with embeddings

ιX : X −→ X̂,

ιR×∂X : R× ∂X −→ X̂.

The form λ̂ is the unique 1-form on X̂ such that

ι∗X λ̂ = λ,

ι∗R×∂X λ̂ = erλ|∂X .

The symplectic form of X̂ is given by ω̂ := dλ̂, which satisfies

ι∗X ω̂ = ω,

ι∗R×∂X ω̂ = d(erλ|∂X).

The Liouville vector field of X̂ is the unique vector field Ẑ such that ιẐω̂ = λ̂, which
satisfies

Z is ιX-related to Ẑ,
∂r is ιR×∂X-related to Ẑ.
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Example 2.48. Let (L, g) be a Riemannian manifold. Recall that T ∗L is an exact
symplectic manifold, S∗L is a hypersurface of contact type and that D∗L is a Liouville
domain. Also recall that there is a Liouville embedding ϕ : R × S∗L −→ T ∗L given by
ϕ(r, u) = eru. Then, we can define a Liouville diffeomorphism ϕ̂ : D̂∗L −→ T ∗L as the
unique map such that the following diagram commutes:

D̂∗L R× S∗L

D∗L T ∗L

ϕ̂
ϕ

Lemma 2.49. The diagram

R≤0 × ∂X R× ∂X R× X̂

X X̂ X̂

ΦZ ιR×∂X ΦẐ

ιX

commutes.

Proof. The left square commutes by definition of X̂. To prove that the right square
commutes, let (t, x) ∈ R× ∂X. We wish to show that ΦẐ(t, x) = ιR×∂X(t, x).

ιR×∂X(t, x) = ιR×∂X ◦ φt∂r(0, x) [by definition of flow of ∂r]
= φt

Ẑ
◦ ιR×∂X(0, x) [since ∂r is ιR×∂X-related to Ẑ]

= φt
Ẑ
◦ ιX(x) [by definition of completion]

= ΦẐ(t, x) [by definition of ΦẐ ].

Lemma 2.50. If (X,λX) and (Y, λY ) are Liouville domains and ϕ : X −→ Y is a
Liouville embedding of codimension 0 then ZX is ϕ-related to ZY .

Proof. For any x ∈ X and v ∈ TxX,

ωY (Dϕ(x)(ZX |x)− ZY |ϕ(x),Dϕ(x)(v))
= (ιZXϕ∗ωY − ϕ∗ιZY ωY )(v) [by the definitions of ιZX , ιZY , and ϕ∗]
= (ιZXωX − ϕ∗ιZY ωY )(v) [since ϕ is a Liouville embedding]
= (λX − ϕ∗λX)(v) [by definition of Liouville vector field]
= 0 [since ϕ is a Liouville embedding].

Since ωY is nondegenerate and ϕ is a 0-codimensional embedding, the result follows.

We will now explain how to view the construction of taking the completion of a Liouville
domain as a functor. Let (X,λX), (Y, λY ) be Liouville domains and ϕ : X −→ Y be
a Liouville embedding such that ZX is ϕ-related to ZY (by Lemma 2.50, this is true
whenever ϕ is 0-codimensional, although here we assume only that the Liouville vector
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fields are related). We wish to define an embedding ϕ : X̂ −→ Ŷ , using the following
diagram as a guide (we will show that this diagram commutes in Lemma 2.55):

R≤0 × ∂X R× ∂X R×X R× X̂

R≤0 × ∂Y R× ∂Y R× Y R× Ŷ

X X̂ X̂ X̂

Y Ŷ Ŷ Ŷ

ΦZX

ιR≤0×id∂X

ιR×∂X

id×ι∂X

id×ϕ

id×ιX

id×ϕ̂

ΦẐX

ΦZY

id×ιY

ϕ

ιX

ϕ̂ ϕ̂ ϕ̂

ιY

ιR×∂Y ΦẐY

(2.2)

Definition 2.51. We define an embedding ϕ̂ : X̂ −→ Ŷ by

ϕ̂ ◦ ιX := ιY ◦ ϕ,
ϕ̂ ◦ ιR×∂X := ΦẐY

◦ (idR×(ιY ◦ ϕ ◦ ι∂X)).

For ϕ̂ to be well-defined, we need to check that the definitions of ϕ on each region agree
on the overlap.

Lemma 2.52. The map ϕ̂ is well-defined, i.e.

ιY ◦ ϕ ◦ ΦZX = ΦẐY
◦ (idR×(ιY ◦ ϕ ◦ ι∂X)) ◦ (ιR≤0 × id∂X).

Proof. It suffices to assume that (t, x) ∈ R≤0×∂X and to prove that ιY ◦ϕ◦ΦZX (t, x) =
ΦẐY

(t, ιY (ϕ(x))).

ιY ◦ ϕ ◦ ΦZX (t, x) = ιY ◦ ϕ ◦ φtZX (x) [by definition of ΦZX ]
= ιY ◦ φtZY ◦ ϕ(x) [since ZX is ϕ-related to ZY ]
= φt

ẐY
◦ ιY ◦ ϕ(x) [since ZY is ιY -related to ẐY ]

= ΦẐY
(t, ιY (ϕ(x))) [by definition of ΦẐY

].

Lemma 2.53. The map ϕ̂ is a Liouville embedding, i.e. ϕ̂∗λ̂Y = λ̂X .

Proof. We need to show that ϕ̂∗λ̂Y = λ̂X , which is equivalent to

ι∗Xϕ̂
∗λ̂Y = ι∗X λ̂X , (2.3)

ι∗R×∂Xϕ̂
∗λ̂Y = ι∗R×∂X λ̂X . (2.4)

We prove Equation (2.3).

ι∗Xϕ̂
∗λ̂Y = (ϕ̂ ◦ ιX)∗λ̂Y [by functoriality of pullbacks]

= (ιY ◦ ϕ)∗λ̂Y [by definition of ϕ̂]
= ϕ∗ι∗Y λ̂Y [by functoriality of pullbacks]
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= ϕ∗λY [by definition of λ̂Y ]
= λX [since ϕ is a Liouville embedding]
= ι∗X λ̂X [by definition of λ̂X ].

We prove Equation (2.4).

ι∗R×∂Xϕ̂
∗λ̂Y

= (ϕ̂ ◦ ιR×∂X)∗λ̂Y [by functoriality of pullbacks]
= (ΦẐY

◦ (idR×(ιY ◦ ϕ ◦ ι∂X)))∗λ̂Y [by definition of ϕ̂]
= (idR×(ιY ◦ ϕ ◦ ι∂X))∗Φ∗

ẐY
λ̂Y [by functoriality of pullbacks]

= (idR×(ιY ◦ ϕ ◦ ι∂X))∗erλ̂Y [by Lemmas 2.9 and 2.12]
= erι∗∂Xϕ

∗ι∗Y λ̂Y [by functoriality of pullbacks]
= erι∗∂Xϕ

∗λY [by definition of λ̂Y ]
= erι∗∂XλX [since ϕ is a Liouville embedding]
= ι∗R×∂X λ̂X [by definition of λ̂X ].

Lemma 2.54. The Liouville vector fields ẐX and ẐY are ϕ̂-related.

Proof. We need to show that

ZX is (ιY ◦ ϕ)-related to ẐY , (2.5)
∂r is (ΦẐY

◦ (idR×(ιY ◦ ϕ ◦ ι∂X)))-related to ẐY . (2.6)

Here, (2.5), follows because ZX is ϕ-related to ZY . To prove (2.6), notice that for every
(t, x) ∈ R× ∂X, we have ∂r = (1, 0) ∈ R⊕ Tx∂X and therefore

D(ΦẐY
◦ (idR×(ιY ◦ ϕ ◦ ι∂X)))(t, x)(1, 0)

= DΦẐY
(t, ϕ(x))(1, 0) [by the chain rule]

= ẐY (t, ϕ(x)) [by definition of ΦẐY
].

Lemma 2.55. Diagram (2.2) commutes.

Proof. We have already proven in Lemma 2.49 that the squares on the front and back
commute. The first square on the bottom commutes by definition of ϕ̂. The other two
squares on the bottom commute trivially. The top square commutes because ϕ̂ ◦ ιX =
ιY ◦ϕ by definition of ϕ̂. We prove that the right square commutes. For (t, x) ∈ R× X̂,

ϕ̂ ◦ ΦẐX
(t, x) = ϕ̂ ◦ φt

ẐX
(x) [by definition of ΦẐX

]
= φt

ẐY
◦ ϕ̂(x) [by Lemma 2.54]

= ΦẐY
(t, ϕ̂(x)) [by definition of ΦẐY

]
= ΦẐY

◦ (idR×ϕ̂)(x) [by definition of idR×ϕ̂].

Finally, we check that the induced maps on the completions behave nicely with respect
to compositions.
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Proposition 2.56. The operation of taking the completion is a functor.

Proof. We show that identities are preserved. Let (X,λ) be a Liouville domain. We wish
to prove that îdX = idX̂ : X̂ −→ X̂, which is equivalent to

îdX ◦ ιX = idX̂ ◦ιX , (2.7)
îdX ◦ ιR×∂X = idX̂ ◦ιR×∂X . (2.8)

We prove Equation (2.7).

îdX ◦ ιX = ιX ◦ idX [by definition of îdX ]
= ιX [since idX is the identity map]
= idX̂ ◦ιX [since idX̂ is the identity map].

We prove Equation (2.8).

îdX ◦ ιR×∂X = ΦẐ ◦ (idR×(ιX ◦ idX ◦ι∂X)) [by definition of îdX ]
= idX̂ ◦ιR×∂X [by Lemma 2.49].

Now, we prove that compositions are preserved. Let (X,λX), (Y, λY ) and (W,λW ) be
Liouville domains and f : X −→ Y and g : Y −→ W be Liouville embeddings. We wish
to prove that ĝ ◦ f = ĝ ◦ f̂ , which is equivalent to

ĝ ◦ f ◦ ιX = ĝ ◦ f̂ ◦ ιX , (2.9)
ĝ ◦ f ◦ ιR×∂X = ĝ ◦ f̂ ◦ ιR×∂X . (2.10)

We prove Equation (2.9).

ĝ ◦ f ◦ ιX = ιW ◦ g ◦ f [by definition of ĝ ◦ f ]
= ĝ ◦ ιY ◦ f [by definition of ĝ]
= ĝ ◦ f̂ ◦ ιX [by definition of f̂ ].

We prove Equation (2.10).

ĝ ◦ f ◦ ιR×∂X
= ΦẐW

◦ (idR×(ιW ◦ g ◦ f ◦ ι∂X)) [by definition of ĝ ◦ f ]
= ΦẐW

◦ (idR×(ĝ ◦ ιY ◦ f ◦ ι∂X)) [by definition of ĝ]
= ΦẐW

◦ (idR×ĝ) ◦ (idR×(ιY ◦ f ◦ ι∂X))
= ĝ ◦ ΦẐY

◦ (idR×(ιY ◦ f ◦ ι∂X)) [by diagram (2.2)]
= ĝ ◦ f̂ ◦ ιR×∂X [by definition of f̂ ].
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Chapter 3

Indices

3.1 Maslov indices
In this section, our goal is to define the Maslov index of a loop of symplectic matrices
and the Maslov index of a loop of Lagrangian subspaces. Our presentation is based
on [MS17]. We start by recalling relevant facts and notation about symplectic linear
algebra. Let V be a finite dimensional vector space. The vector spaces V ⊕ V ∗ and
V ∗ ⊕ V admit symplectic structures given by

ωV⊕V ∗((a, α), (b, β)) = β(a)− α(b),
ωV ∗⊕V ((α, a), (β, b)) = α(b)− β(a).

If V has an inner product 〈·, ·〉, then we define a symplectic structure on V ⊕ V by

ωV⊕V ((u, v), (x, y)) = 〈u, y〉 − 〈v, x〉. (3.1)

In this case, the maps

φ : V ⊕ V −→ V ⊕ V ∗ ψ : V ⊕ V −→ V ∗ ⊕ V
(x, y) 7−→ (x, 〈y, ·〉), (x, y) 7−→ (〈x, ·〉, y)

are isomorphisms of symplectic vector spaces. For each n, define the 2n× 2n matrices

J0 =
[
0 −I
I 0

]
, Ω0 =

[
0 I
−I 0

]
.

The canonical symplectic structure of R2n = Rn ⊕ Rn, denoted ω0, is defined as in
Equation (3.1) (where we use the Euclidean inner product). For u = (u, v) ∈ R2n and
x = (x, y) ∈ R2n, ω0(u,v) is given by

ω0((u, v), (x, y)) = 〈u, y〉 − 〈v, x〉
= uTΩ0v.

The symplectic group is given by

Sp(2n) := {A ∈ GL(2n,R) | ATΩ0A = Ω0}.

Denote by C(S1, Sp(2n)) the set of continuous maps from S1 to Sp(2n), i.e. the set of
loops of symplectic matrices.
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Theorem 3.1 ([MS17, Theorem 2.2.12]). There exists a unique function

µ : C(S1, Sp(2n)) −→ Z,

called the Maslov index, which satisfies the following properties:

(Homotopy) The Maslov index descends to an isomorphism µ : π1(Sp(2n)) −→ Z.

(Product) If A1, A2 ∈ C(S1, Sp(2n)) then µ(A1A2) = µ(A1) + µ(A2).

(Direct sum) If Ai ∈ C(S1, Sp(2ni)) for i = 1, 2 then µ(A1 ⊕ A2) = µ(A1) + µ(A2).

(Normalization) If A ∈ C(S1, Sp(2)) is given by

A(t) =
[
cos(2πt) − sin(2πt)
sin(2πt) cos(2πt)

]

then µ(A) = 1.

Let (V, ω) be a symplectic vector space. A subspace W of V is Lagrangian if dimW =
1/2 dimV and ω|W = 0. The Lagrangian Grassmannian of (V, ω), denoted L(V, ω),
is the set of Lagrangian subspaces of (V, ω). Denote L(n) = L(R2n, ω0).

Theorem 3.2 ([MS17, Theorem 2.3.7]). There exists a unique function

µ : C(S1,L(n)) −→ Z,

called the Maslov index, which satisfies the following properties:

(Homotopy) The Maslov index descends to an isomorphism µ : π1(L(n)) −→ Z.

(Product) If W ∈ C(S1,L(n)) and A ∈ C(S1, Sp(2n)) then µ(AW ) = µ(W ) + 2µ(A).

(Direct sum) If Wi ∈ C(S1,L(ni)) for i = 1, 2 then µ(W1 ⊕W2) = µ(W1) + µ(W2).

(Normalization) If W ∈ C(S1,L(n)) is given by W (t) = eπitR ⊂ C then µ(W ) = 1.

(Zero) A constant loop has Maslov index zero.

3.2 Conley–Zehnder index
In this section we define the Conley–Zehnder index of a path of symplectic matrices. We
define

Sp?(2n) := {A ∈ Sp(2n) | det(A− I) 6= 0},

SP(n) :=

A : [0, 1] −→ Sp(2n)

∣∣∣∣∣∣∣
A is continuous,
A(0) = I,
A(1) ∈ Sp?(2n)

 .
The following theorem characterizes the Conley–Zehnder index of a path of symplectic
matrices. Originally, this result has appeared in [SZ92] and [Sal99]. However, we will
use a restatement from [Gut12]. Recall that if S is a symmetric matrix, its signature,
denoted by signS, is the number of positive eigenvalues of S minus the number of
negative eigenvalues of S.
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Theorem 3.3 ([Gut12, Propositions 35 and 37]). There exists a unique function

µCZ : SP(n) −→ Z,

called the Conley–Zehnder index, which satisfies the following properties:

(Naturality) If B : [0, 1] −→ Sp(2n) is a continuous path, then µCZ(BAB−1) = µCZ(A);

(Homotopy) µCZ is constant on each component of SP(n);

(Zero) If A(s) has no eigenvalue on the unit circle for s > 0 then µCZ(A) = 0;

(Product) If Ai ∈ SP(ni) for i = 1, 2 then µCZ(A1 ⊕ A2) = µCZ(A1) + µCZ(A2);

(Loop) If B ∈ C(S1, Sp(2n)) and B(0) = B(1) = I then µCZ(BA) = µCZ(A) + 2µ(B).

(Signature) If S is a symmetric nondegenerate 2n×2n-matrix with operator norm ‖S‖ <
2π and A(t) = exp(J0St), then µCZ(A) = 1

2 sign(S);

(Determinant) n− µCZ(A) is even if and only if det(I − A(1)) > 0;

(Inverse) µCZ(A−1) = µCZ(AT ) = −µCZ(A).

Remark 3.4. By [Gut12, Proposition 37], the homotopy, loop and signature properties
are enough to determine the Conley–Zehnder index uniquely.

We finish this section with a result which we will use later on to compute a Conley–
Zehnder index.

Proposition 3.5 ([Gut12, Proposition 41]). Let S be a symmetric, nondegenerate 2×2-
matrix and T > 0 be such that exp(TJ0S) 6= I. Consider the path of symplectic matrices
A : [0, T ] −→ Sp(2) given by

A(t) := exp(tJ0S).

Let a1 and a2 be the eigenvalues of S and signS be its signature. Then,

µCZ(A) =


(

1
2 +

⌊√
a1a2T
2π

⌋)
signS if signS 6= 0,

0 if signS = 0.

3.3 First Chern class
Denote by Man2 the category of manifolds which are 2-dimensional, connected, compact,
oriented and with empty boundary. We will give a definition of the first Chern class of
a symplectic vector bundle E −→ Σ where Σ ∈ Man2. Our presentation is based on
[MS17]. We will start by setting up some categorical language. Define a contravariant
functor Man2 −→ Set:

E : Man2 −→ Set
Σ 7−→ E(Σ) := {symplectic vector bundles with base Σ}/ ∼

f ↓ 7−→ ↑ f ∗

Σ′ 7−→ E(Σ′) := {symplectic vector bundles with base Σ′}/ ∼,
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where ∼ is the equivalence relation coming from isomorphisms of symplectic vector
bundles. Define also the following contravariant functors Man2 −→ Set:

H2 := H2(−;Z) : Man2 −→ Set,

H∗2 := Hom(H2(−;Z),Z) : Man2 −→ Set,

Z : Man2 −→ Set
Σ 7−→ Z(Σ) := Z

f ↓ 7−→ ↑ × deg f
Σ′ 7−→ Z(Σ′) := Z.

We have a natural transformation α : H2 −→ H∗2 which is given by

αΣ : H2(Σ;Z) −→ Hom(H2(Σ;Z),Z)
[ω] 7−→ αΣ([ω]),

where αΣ([ω])([σ]) = [ω(σ)]. By the universal coefficient theorem for cohomology (see for
example [Rot09]), αΣ is surjective. Both H2(Σ;Z) and Hom(H2(Σ;Z),Z) are isomorphic
to Z, since Σ ∈Man2. Therefore, α is a natural isomorphism. We also have a natural
isomorphism ev : H∗2 −→ Z, given by

evΣ : Hom(H2(Σ;Z),Z) −→ Z
φ 7−→ φ([Σ]).

As we will see, the first Chern class is a natural transformation c1 : E −→ H2 and the
first Chern number is a natural transformation (which we denote by the same symbol)
c1 : E −→ Z. These functors and natural transformations will all fit into the following
commutative diagram:

E H2 H∗2 Z.c1

c1

α ev

Therefore, the first Chern class determines and is determined by the first Chern number.
More precisely, if E −→ Σ is a symplectic vector bundle then the first Chern number of
E equals the first Chern class of E evaluated on Σ:

c1(E) = c1(E)[Σ]. (3.2)

Definition 3.6 ([MS17, Section 2.7]). Let Σ ∈Man2 (i.e. Σ is 2-dimensional, connected,
compact, oriented, with empty boundary) and E −→ Σ be a symplectic vector bundle.
We define the first Chern number of E, c1(E) ∈ Z, as follows. Choose embedded
0-codimensional manifolds Σ1 and Σ2 of Σ such that

S := ∂Σ1 = ∂Σ2 = Σ1 ∩ Σ2
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and Σ is the gluing of Σ1 and Σ2 along S. Orient S as the boundary of Σ1. For i = 1, 2,
denote by ιi : Σi −→ Σ the inclusion and choose a symplectic trivialization

τ i : ι∗iE −→ Σi × R2n.

Define the overlap map A : S −→ Sp(2n) by A(x) = τ 1
x ◦ (τ 2

x)−1. Denote by S1, . . . , Sk
the connected components of S and parametrize each component by a loop γi : S1 −→ Si
such that γ̇i(t) is positively oriented. Finally, let

c1(E) :=
k∑
i=1

µ(A ◦ γi),

where µ is the Maslov index as in Theorem 3.1.

Theorem 3.7 ([MS17, Theorem 2.7.1]). The first Chern number is well-defined and it
is the unique natural transformation c1 : E −→ Z which satisfies the following properties:

(Classification) If E,E ′ ∈ E(Σ) then E and E ′ are isomorphic if and only if rankE =
rankE ′ and c1(E) = c1(E ′).

(Naturality) If f : Σ −→ Σ′ is a smooth map and E ∈ E(Σ) then c1(f ∗E) = deg(f)c1(E).

(Additivity) If E,E ′ ∈ E(Σ) then c1(E ⊕ E ′) = c1(E) + c1(E ′).

(Normalization) The first Chern number of TΣ is c1(TΣ) = 2− 2g.

3.4 Conley–Zehnder index of a periodic orbit
Let (X,ω) be a symplectic manifold of dimension 2n and H : S1 ×X −→ R be a time-
dependent Hamiltonian. For each t ∈ S1 we denote by Ht the map Ht = H(t, ·) : X −→
R. The Hamiltonian H has a corresponding time-dependent Hamiltonian vector field
XH which is uniquely determined by

dHt = −ιXHtω.

We denote by φtXH the time-dependent flow of XH .

Definition 3.8. A 1-periodic orbit of H is a map γ : S1 −→ X such that

γ̇(t) = XHt(γ(t))

for every t ∈ S1. If λ is a symplectic potential for (X,ω), then the action of γ is

AH(γ) :=
∫
S1
γ∗λ−

∫
S1
H(t, γ(t))dt.

Definition 3.9. Let γ be a 1-periodic orbit of H. We say that γ is nondegenerate if
the linear map

Dφ1
XH

: Tγ(0)X −→ Tγ(1)X = Tγ(0)X

does not have 1 as an eigenvalue. We say that the Hamiltonian H is nondegenerate if
every 1-periodic orbit of H is nondegenerate.
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Definition 3.10. Let γ be a 1-periodic orbit of H and τ be a symplectic trivialization of
γ∗TX. We define the Conley–Zehnder index of γ with respect to τ , denoted µτCZ(γ),
as follows. First, define a path of symplectic matrices Aγ,τ : [0, 1] −→ Sp(2n) by the
equation Aγ,τ (t) := τt ◦ DφtXH (γ(0)) ◦ τ−1

0 . In other words, Aγ,τ (t) is the unique linear
map such that the diagram

Tγ(0)X R2n

Tγ(t) R2n

DφtXH (γ(0))

τ0

Aγ,τ (t)

τt

commutes. Notice that since γ is nondegenerate, Aγ,τ ∈ SP(n). Then, define

µτCZ(γ) := µCZ(Aγ,τ ).

Let D = {z ∈ C | |z| ≤ 1} be the disk and denote by ιD,S1 : S1 −→ D the inclusion on
the boundary, i.e. ιD,S1(t) = e2πit.

Lemma 3.11. Let γ be a 1-periodic orbit of H. For i = 1, 2, let ui : D −→ X be a
filling disk for γ (i.e. γ = ui ◦ ιD,S1) and τ i be a symplectic trivialization of u∗iTX. If
c1(TX)|π2(X) = 0, then

µτ
1

CZ(γ) = µτ
2

CZ(γ).

Proof. Consider the diagram

R2n Tγ(0)X R2n

R2n Tγ(t)X R2n

Aγ,τ
1 (t) DφtXH (γ(0))

τ1
0 τ2

0

B(0)

Aγ,τ
2 (t)

τ1
t τ2

t

B(t)

(3.3)

where we have defined B(t) := τ 1
t ◦ (τ 2

t )−1. Let σ : S2 −→ X be the gluing of the disks
u1 and u2 along their common boundary γ. Then,

µτ
1

CZ(γ)− µτ2

CZ(γ)
= µCZ(Aγ,τ1)− µCZ(Aγ,τ2) [by Definition 3.10]
= µCZ(BAγ,τ2

B(0)−1)− µCZ(Aγ,τ2) [by diagram (3.3)]
= µCZ(B(0)−1BAγ,τ

2)− µCZ(Aγ,τ2) [by naturality of µCZ]
= 2µ(B(0)−1B) [by the loop property of µCZ]
= 2µ(B) [by homotopy invariance of µ]
= 2c1(σ∗TX) [by definition of the first Chern number]
= 2c1(TX)([σ]) [by Equation (3.2)]
= 0 [by assumption].
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Let (M,α) be a contact manifold of dimension 2n + 1 with Reeb vector field R. Our
goal is to repeat the discussion of the first part of this section in the context of periodic
orbits of R.

Definition 3.12. A Reeb orbit is a map γ : R/TZ −→M such that

γ̇(t) = R(γ(t))

for every t ∈ S1. In this case, we call T the period of γ. The multiplicity of γ, which
we will usually denote by m, is the degree of the map γ : R/TZ −→ im γ. The action
of γ is

A(γ) :=
∫ T

0
γ∗λ = T.

Remark 3.13. Alternatively, a T -periodic Reeb orbit can be seen as a map γ : S1 −→M
such that γ̇(t) = TR(γ(t)). We will use the two possible descriptions interchangeably.

Since LRα = 0 (by Lemma 2.23) and using Lemma 2.9, we conclude that (φtR)∗α = α.
In particular, DφtR(p)(ξp) ⊂ ξφtR(p) and

DφtR(p) : ξp −→ ξφtR(p)

is a symplectic linear map.

Definition 3.14. A Reeb orbit γ of M is nondegenerate if the linear map

Dφ1
R(γ(0)) : ξγ(0) −→ ξγ(1) = ξγ(0)

does not have 1 as an eigenvalue. We say that (M,α) is nondegenerate if every Reeb
orbit in M is nondegenerate. If (X,λ) is a Liouville domain, then (X,λ) is nondegen-
erate if (∂X, λ|∂X) is nondegenerate.

Definition 3.15. Let γ be a periodic orbit of R and τ be a symplectic trivialization of
γ∗ξ. The Conley–Zehnder index of γ is given by

µτCZ(γ) := µCZ(Aγ,τ ),

where Aγ,τ : [0, 1] −→ Sp(2n) is the path of symplectic matrices given by the equation
Aγ,τ (t) := τt ◦DφtR(γ(0)) ◦ τ−1

0 .

Lemma 3.16. Let (X,λ) be a Liouville domain and γ : S1 −→ ∂X be a Reeb orbit. For
i = 1, 2, let ui : D −→ X be a filling disk for γ (i.e. ιX,∂X ◦ γ = ui ◦ ιD,S1). Let τ i be
a symplectic trivialization of u∗iTX and denote also by τ i the induced trivialization of
(ιX,∂X ◦ γ)∗TX. Assume that

τ it (Zγ(t)) = e1 ∈ R2n,

τ it (Rγ(t)) = en+1 ∈ R2n,

for every t ∈ S1. If 2c1(TX) = 0, then

µτ
1

CZ(γ) = µτ
2

CZ(γ).
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Proof. By the assumptions on τ i, the diagram

ξγ(t) Tγ(t)X ξ⊥γ(t)

R2n−2 R2n R2

τ it τ it τ it

ιR2n−2 ιR2

(3.4)

commutes, where

ιR2n−2(x2, . . . , xn, y2, . . . , yn) = (0, x2, . . . , xn, 0, y2, . . . , yn),
ιR2(x, y) = (x, 0, . . . , 0, y, 0, . . . , 0).

Define

B2n(t) := τ 1
t ◦ (τ 2

t )−1 : R2n −→ R2n,

B2n−2(t) := τ 1
t ◦ (τ 2

t )−1 : R2n−2 −→ R2n−2,

By the assumptions on τ i, and diagram (3.4),

B2n(t) =
[
idR2 0

0 B2n−2

]
. (3.5)

Let σ : S2 −→ X be the gluing of the disks u1 and u2 along their common boundary γ.
Finally, we compute

µτ
1

CZ(γ)− µτ2

CZ(γ) = 2µ(B2n−2) [by the same computation as in Lemma 3.11]
= 2µ(B2n) [by Equation (3.5) and Theorem 3.1]
= 2c1(σ∗TX) [by definition of first Chern class]
= 0 [by assumption].

Remark 3.17. Suppose that Γ = (γ1, . . . , γp) is a tuple of (Hamiltonian or Reeb) orbits
and τ is a trivialization of the relevant symplectic vector bundle over each orbit. We will
frequently use the following notation:

A(Γ) :=
p∑
i=1
A(γi),

µτCZ(Γ) :=
p∑
i=1

µτCZ(γi).

If β = ∑m
i=1 aiΓi is a formal linear combination of tuples of orbits, then we denote

A(β) := max
i=1,...,m

A(Γi).

The action of a formal linear combination is going to be relevant only in Chapter 7,
where we will consider the action filtration on linearized contact homology.
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3.5 Periodic Reeb orbits in a unit cotangent bundle
Let (L, g) be an orientable Riemannian manifold of dimension n. Recall that L has a
cotangent bundle π : T ∗L −→ L, which is an exact symplectic manifold with symplectic
potential λ ∈ Ω1(T ∗L), symplectic form ω := dλ and Liouville vector field Z given by
ιZω = λ. We will denote by z : L −→ T ∗L the zero section. Consider the unit cotangent
bundle π : S∗L −→ L and denote by ι : S∗L −→ L the inclusion. Then, α := ι∗λ is a
contact form on S∗L, with associated contact distribution ξ = kerα ⊂ TS∗L and Reeb
vector field R ∈ X(S∗L). The Riemannian metric g defines a vector bundle isomorphism
g̃ : TL −→ T ∗L given by g̃(v) = g(v, ·).

Let ` > 0 and c : R/`Z −→ L be a curve which is parametrized by arclength. Define
γ := g̃ ◦ ċ : R/`Z −→ S∗L. Then, by Theorems 2.29 and 2.30, the curve c is a geodesic
(of length `) if and only if γ is a Reeb orbit (of period `). We will assume that this is the
case. The goal of this section is to study specific sets of trivializations and maps between
these sets (see diagram (3.14)), which can be used to define the Conley–Zehnder index
of γ (see Theorem 3.29).

Since T ∗L is a symplectic manifold, TT ∗L −→ T ∗L is a symplectic vector bundle. The
hyperplane distribution ξ is a symplectic subbundle of ι∗TT ∗L −→ S∗L. We can consider
the symplectic complement of ξ, which by Lemma 2.26 is given by

ξ⊥u = 〈Zu〉 ⊕ 〈Ru〉

for every u ∈ S∗L. Finally, T ∗L ⊕ TL −→ L is a symplectic vector bundle, with
symplectic structure given by

ωT ∗L⊕TL((u, v), (x, y)) = u(y)− x(v).

Remark 3.18. Let π : E −→ B be a vector bundle. Consider the vector bundles π∗E,
TE and π∗TB over E. There is a short exact sequence

0 π∗E TE π∗TB 0IV PH

of vector bundles over E, where

IVe := Dιe(e) : Eπ(e) −→ TeE, where ιe : Eπ(e) −→ E is the inclusion,
PH
e := Dπ (e) : TeE −→ Tπ(e)B,

for every e ∈ E. Recall that a Koszul connection on E is a map

∇ : X(B)× Γ(E) −→ Γ(E)

which is C∞-linear on X(B) and satisfies the Leibniz rule on Γ(E). A linear Ehresmann
connection on E is a vector bundle map P V : TE −→ π∗E such that P V ◦ IV = idπ∗TB
and P V ◦Tmλ = mλ◦P V for every λ ∈ R, wheremλ : E −→ E is the map which multiplies
by λ. The sets of Koszul connections on E and of linear Ehresmann connections on E
are in bijection. If ∇ is a Koszul connection on E, the corresponding linear Ehresmann
connection is given as follows. Let IH : π∗TB −→ TE be the map which is given by

IHe (u) := Ds(π(e))u− IVe (∇us)
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for every e ∈ E and u ∈ Tπ(e)B, where s in any choice of section of π : E −→ B such
that s(π(e)) = e. The map IH is independent of the choice of section s and satisfies
PH ◦ IH = idπ∗TB. Let P V : TE −→ π∗E be the map which is given by

P V
e (w) := (IVe )−1(w − IHe ◦ PH

e (w))

for every e ∈ E and w ∈ TeE. We point out that this definition is well-posed, since
w − IHe ◦ PH

e (w) ∈ kerPH
e = im IVe . As before, P V ◦ IV = idπ∗E. Finally, the maps

I := IV ⊕ IH : π∗E ⊕ π∗TB −→ TE,

P := P V × PH : TE −→ π∗E ⊕ π∗TB,

are isomorphisms and inverses of one another.

Consider the Levi-Civita connection on L, which is a Koszul connection on TL. There
is an induced Koszul connection on T ∗L given by

(∇Xβ)(Y ) := X(β(Y ))− β(∇XY ),

for every X, Y ∈ X(L) and β ∈ Γ(T ∗L) = Ω1(L). By Remark 3.18 (with B = L and
E = T ∗L), there is an induced linear Ehresmann connection on π : T ∗L −→ L which is
given by maps

I := IV ⊕ IH : π∗T ∗L⊕ π∗TL −→ TT ∗L,

P := P V × PH : TT ∗L −→ π∗T ∗L⊕ π∗TL.

Lemma 3.19. The maps I and P are isomorphisms of symplectic vector bundles. More-
over,

P (Zu) = (u, 0), for every u ∈ T ∗L, (3.6)
P (Ru) = (0, g̃−1(u)), for every u ∈ S∗L. (3.7)

Proof. Let q := π(u) and choose normal coordinates (q1, . . . , qn) on L centred at q
(this means that with respect to these coordinates, gij(q) = δij and ∂kgij(q) = 0). Let
(q1, . . . , qn, p1, . . . , pn) be the induced coordinates on T ∗L. Then, the vector spaces TuT ∗L
and T ∗q L⊕ TqL have the following symplectic bases:

TuT
∗L = span

{
∂

∂p1

∣∣∣∣
u
, · · · , ∂

∂pn

∣∣∣∣
u
,
∂

∂q1

∣∣∣∣
u
, · · · , ∂

∂qn

∣∣∣∣
u

}
, (3.8)

T ∗q L⊕ TqL = span
{

dq1|q, . . . , dqn|q
}
⊕ span

{
∂

∂q1

∣∣∣∣
q
, · · · , ∂

∂qn

∣∣∣∣
q

}
. (3.9)

By the definitions of P and I in Remark 3.18, we have

IVu (dqi|q) = ∂

∂pi

∣∣∣∣
u
,

PH
u

(
∂

∂qi

∣∣∣∣
u

)
= ∂

∂qi

∣∣∣∣
q
, (3.10)

P V
u

(
∂

∂pi

∣∣∣∣
u

)
= P V

u ◦ IVu (dqi|q) = dqi|q, (3.11)
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which implies that P is the identity matrix when written with respect to the bases (3.8)
and (3.9). Since these bases are symplectic, P is a symplectic linear map. With respect
to the coordinates (q1, . . . , qn, p1, . . . , pn), the Liouville vector field is given by

Z =
n∑
i=1

pi
∂

∂pi
. (3.12)

By Theorem 2.30 and Equation (2.1), and since the coordinates are normal, the Reeb
vector field is given by

Ru =
n∑
i=1

pi(u) ∂
∂qi

∣∣∣∣
u
. (3.13)

Equations (3.12) and (3.13) together with equations (3.10) and (3.11) imply Equations
(3.6) and (3.7).

Define

T (c∗TL) :=
{
κ

∣∣∣∣∣ κ is an isometric trivialization of c∗TL
such that κt(ċ(t)) = e1 ∈ Rn for every t ∈ R/`Z

}
,

T (γ∗ξ) := {τ | τ is a symplectic trivialization of γ∗ξ},
T ((z ◦ c)∗TT ∗L) := {σ | σ is a symplectic trivialization of (z ◦ c)∗TT ∗L}.

We will define maps τ , σ0 and σ (see Definitions 3.20 to 3.22) which fit into the following
diagram.

T (c∗TL)

T (γ∗ξ) T ((z ◦ c)∗TT ∗L)

τ
σ

σ0

(3.14)

We will check that this diagram commutes in Lemma 3.24. Consider the following
diagram of symplectic vector spaces and symplectic linear maps.

ξγ(t) ξ⊥γ(t) ⊕ ξγ(t) Tγ(t)T
∗L T ∗c(t)L⊕ Tc(t)L Tz◦c(t)T

∗L
ιξγ(t) Pγ(t) Pz◦c(t)

We now define the maps τ , σ0 and σ.

Definition 3.20. For every κ ∈ T (c∗TL), we define τ(κ) ∈ T (γ∗ξ) by

τ(κ)t := πR2n−2 ◦ κ̃t ◦ Pγ(t) ◦ ιξγ(t) ,

where κ̃t : T ∗c(t)L⊕ Tc(t)L −→ Rn ⊕ Rn and πR2n−2 : R2n −→ R2n−2 are given by

κ̃t(u, v) := (κt ◦ g̃−1
c(t)(u), κt(v)),

πR2n−2(x1, . . . , xn, y1, . . . , yn) := (x2, . . . , xn, y2, . . . , yn).

For Definition 3.20 to be well-posed, we need κ̃t to be a symplectic linear map. We check
this in Lemma 3.23 below.
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Definition 3.21. For every τ ∈ T (γ∗ξ), we define σ0(τ) ∈ T ((z ◦ c)∗TT ∗L) by

σ0(τ)t := τ̃t ◦ P−1
γ(t) ◦ Pz◦c(t),

where τ̃t : ξ⊥γ(t) ⊕ ξγ(t) −→ R2n is the symplectic linear map given by

τ̃t(Zγ(t)) = e1,

τ̃t(Rγ(t)) = en+1,

τ̃t(v) = ιR2n−2 ◦ τt(v), for every v ∈ ξγ(t),

and ιR2n−2 : R2n−2 −→ R2n is given by

ιR2n−2(x2, . . . , xn, y2, . . . , yn) = (0, x2, . . . , xn, 0, y2, . . . , yn).

Definition 3.22. For every κ ∈ T (c∗TL), we define σ(κ) ∈ T ((z ◦ c)∗TT ∗L) by

σ(κ)t := κ̃t ◦ Pz◦c(t).

Lemma 3.23. The map κ̃t from Definitions 3.20 and 3.22 is symplectic.

Proof. For (u, v), (x, y) ∈ T ∗c(t)L⊕ Tc(t)L, we have

ωRn⊕Rn
(
κ̃t(u, v), κ̃t(x, y)

)
= ωRn⊕Rn

((
κt ◦ g̃−1

c(t)(u), κt(v)
)
,
(
κt ◦ g̃−1

c(t)(x), κt(y)
))

[by definition of κ̃t]

=
〈
κt ◦ g̃−1

c(t)(u), κt(y)
〉
Rn
−
〈
κt ◦ g̃−1

c(t)(x), κt(v)
〉
Rn

[by definition of ωRn⊕Rn ]

=
〈
g̃−1
c(t)(u), y

〉
TL
−
〈
g̃−1
c(t)(x), v

〉
TL

[since κt is an isometry]
= u(y)− x(v) [by definition of g̃]
= ωT ∗L⊕TL

(
(u, v), (x, y)

)
[by definition of ωT ∗L⊕TL].

Lemma 3.24. Diagram (3.14) commutes, i.e. σ = σ0 ◦ τ .

Proof. By Definitions 3.20 to 3.22,

σ(κ)t = κ̃t ◦ Pz◦c(t),
σ0(τ(κ)) = τ̃(κ)t ◦ P

−1
γ(t) ◦ Pz◦c(t).

Therefore, it is enough to show that κ̃t ◦ Pγ(t) = τ̃(κ)t : Tγ(t)T
∗L −→ R2n. We show that

κ̃t ◦ Pγ(t)(Zγ(t)) = τ̃(κ)t(Zγ(t)).

κ̃t ◦ Pγ(t)(Zγ(t)) = κ̃t(γ(t), 0) [by Lemma 3.19]
= (κt ◦ g̃−1

c(t)(γ(t)), 0) [by definition of κ̃t]
= (κt(ċ(t)), 0) [by definition of γ]
= (e1, 0) [since κ ∈ T (c∗TL)]
= τ̃(κ)t(Zγ(t)) [by definition of τ̃(κ)t].
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We show that κ̃t ◦ Pγ(t)(Rγ(t)) = τ̃(κ)t(Rγ(t)).

κ̃t ◦ Pγ(t)(Rγ(t)) = κ̃t(0, g̃−1
c(t)(γ(t))) [by Lemma 3.19]

= (0, κt ◦ g̃−1
c(t)(γ(t))) [by definition of κ̃t]

= (0, κt(ċ(t))) [by definition of γ]
= (0, e1) [since κ ∈ T (c∗TL)]
= τ̃(κ)t(Rγ(t)) [by definition of τ̃(κ)t].

The previous computations show that

Pγ(t) ◦ κ̃t(ξ⊥γ(t)) = ker πR2n−2 ,

which in turn implies that

Pγ(t) ◦ κ̃t(ξγ(t)) = (ker πR2n−2)⊥ = im ιR2n−2 . (3.15)

Finally, we show that κ̃t ◦ Pγ(t)(v) = τ̃(κ)t(v) for every v ∈ ξγ(t).

τ̃(κ)t(v) = ιR2n−2 ◦ τ(κ)t(v) [by definition of τ̃(κ)t]
= ιR2n−2 ◦ πR2n−2 ◦ κ̃t ◦ Pγ(t) ◦ ιξγ(t)(v) [by definition of τ ]
= κ̃t ◦ Pγ(t)(v) [by Equation (3.15)].

This finishes the “construction” of diagram (3.14). Our goal is to show that µτ(κ)
CZ (γ) is

independent of the choice of κ ∈ T (c∗TL) (see Theorem 3.29). Indeed, we will actually
show that µτ(κ)

CZ (γ) = µM(c). To make sense of this statement, we start by explaining the
meaning of the Morse index of a geodesic.

Remark 3.25. Define X := W 1,2(R/`Z, L) (maps from R/`Z to L of Sobolev class
W 1,2). Then, X is a Hilbert manifold. At c ∈ X, the tangent space of X is

TcX = W 1,2(R/`Z, c∗TL),

which is a Hilbert space. We can define the Energy functional by

E : X −→ R
c 7−→ 1

2

∫
R/`Z
‖ċ(t)‖2dt.

Then, c ∈ X is a critical point of E if and only if c is smooth and a geodesic in L. We
say that c is nondegenerate if the kernel of the map

HessE(c) : TcX −→ T ∗cX

is ker HessE(c) = 〈ċ〉. If c is a critical point of E, i.e. a geodesic, then we define the
Morse index of c by

µM(c) = sup
{

dim V

∣∣∣∣∣ V is a subspace of TcX,
HessE(c)|V : V × V −→ R is negative definite

}
.

Recall that c is a geodesic if and only if γ := g̃ ◦ ċ is a Reeb orbit. In this case, c is a
nondegenerate critical point of E if and only if γ is a nondegenerate Reeb orbit.
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Definition 3.26. For σ ∈ T ((z◦c)∗TT ∗L), we define theMaslov index of c with respect
to σ, denoted µσ(c), as follows. First, let W c,σ be the loop of Lagrangian subspaces of
R2n given by

W c,σ(t) := σt ◦Dz(c(t))(Tc(t)L).
Then, define µσ(c) to be the Maslov index of W c,σ in the sense of Theorem 3.2.

Lemma 3.27. For any κ ∈ T (c∗TL),
µσ(κ)(c) = 0.

Proof. We will show that W c,σ(κ) = {0}⊕Rn. By the zero property of the Maslov index
for a path of Lagrangian subspaces, this implies the result. We start by showing that
P V
z(x) ◦Dz(x) = 0 for any x ∈ L. For any w ∈ TxL,

P V
z(x) ◦Dz(x)w

= (IVz(x))−1(Dz(x)w − IHz(x) ◦ PH
z(x)(Dz(x)w)) [by definition of P V ]

= (IVz(x))−1(Dz(x)w −Dz(x) ◦Dπ(z(x)) ◦Dz(x)w) [by definition of IH and PH ]
= 0 [since π ◦ z = idL].

We compute W c,σ(κ).
W c,σ(κ) = σ(κ)t ◦Dz(c(t))(Tc(t)L) [by definition of W c,σ(κ)]

= κ̃t ◦ Pz◦c(t) ◦Dz(c(t))(Tc(t)L) [by definition of σ(κ)]
= κ̃t(0, PH

z◦c(t) ◦Dz(c(t))(Tc(t)L)) [since P V
z(c(t)) ◦Dz(c(t)) = 0]

= (0, κt ◦ PH
z◦c(t) ◦Dz(c(t))(Tc(t)L)) [by definition of κ̃t]

= (0, κt(Tc(t)L)) [since PH
z◦c(t) = Dπ(z ◦ c(t))]

= {0} ⊕ Rn [since κt is an isomorphism].

The following theorem was originally proven in [Vit90], but we will use a restatement of
it from [CM18].

Theorem 3.28 ([CM18, Lemma 2.1]). For any τ ∈ T (γ∗ξ),
µτCZ(γ) + µσ0(τ)(c) = µM(c).

Theorem 3.29. For any κ ∈ T (c∗TL),

µ
τ(κ)
CZ (γ) = µM(c).

Proof. By Lemmas 3.24 and 3.27 and Theorem 3.28.

Finally, we state a result which will be necessary to prove Theorem 6.40.

Lemma 3.30 ([CM18, Lemma 2.2]). Let L be a compact n-dimensional manifold without
boundary. Let Riem(L) be the set of Riemannian metrics on L, equipped with the C2-
topology. If g0 ∈ Riem(L) is a Riemannian metric of nonpositive sectional curvature
and U ⊂ Riem(L) is an open neighbourhood of g0, then for all `0 > 0 there exists a
Riemannian metric g ∈ U on L such that with respect to g, any closed geodesic c in L
of length `(c) ≤ `0 is noncontractible, nondegenerate, and such that 0 ≤ µM(c) ≤ n− 1.
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Chapter 4

Holomorphic curves

4.1 Holomorphic curves
In this section we define asymptotically cylindrical holomorphic curves (see Defini-
tion 4.7). The domain of such a curve is a punctured Riemann surface (see Definition 4.1),
and the target is a symplectic cobordism (see Definition 4.2).

Definition 4.1. Let (Σ, j) be a Riemann surface. A puncture on Σ is a point z ∈ Σ.
Denote by D the closed unit disk in C and by Z± the positive or negative half-cylinders:

Z+ := R≥0 × S1,

Z− := R≤0 × S1,

with coordinates (s, t) ∈ Z± and complex structure j given by j(∂s) = ∂t. Consider the
holomorphic maps

ψ± : Z± −→ D \ {0}, ψ±(s, t) = exp(∓2π(s+ it)).

A positive or negative cylindrical end near z is a holomorphic embedding φ± : Z± −→
Σ \ {z} of the form φ± := ϕ ◦ ψ±, where ϕ : D −→ Σ is a holomorphic embedding such
that ϕ(0) = z. In this case, we say that (s, t) are cylindrical coordinates near z. A
punctured Riemann surface is a Riemann surface (Σ, j) together with sets

z = z+ ∪ z−, z± = {z±1 , . . . , z±p±} ⊂ Σ, z+ ∩ z− = ∅,

of positive and negative punctures. In this case, we denote Σ̇ := Σ\z. Whenever we talk
about cylindrical coordinates near a puncture, it is implicit that we mean the cylindrical
coordinates induced from a positive of negative cylindrical end, in accordance to whether
the puncture is positive or negative.

Definition 4.2. A symplectic cobordism is a compact symplectic manifold (X,ω)
with boundary ∂X, together with a 1-form λ defined on an open neighbourhood of ∂X,
such that dλ = ω and the restriction of λ to ∂X is a contact form. Let ∂+X (respectively
∂−X) be the subset of ∂X where the orientation defined by λ|∂X as a contact form agrees
with the boundary orientation (respectively negative boundary orientation).
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Definition 4.3. A Liouville cobordism is a symplectic cobordism (X,ω, λ) such that
λ is defined on X.

Example 4.4. A Liouville domain is a Liouville cobordism whose negative boundary is
empty.

Remark 4.5. We can define the completion of a symplectic cobordism (X,ω, λ) like in
Section 2.5, with the difference that now we attach half-symplectizations to the negative
and positive boundaries:

X̂ := R≤0 × ∂−X ∪∂−X X ∪∂+X R≥0 × ∂+X.

Definition 4.6. Let (X,ω, λ) be a symplectic cobordism and consider its completion
X̂. An almost complex structure J on X̂ is cylindrical if J is compatible with ω̂ and
J is cylindrical on R≥0 × ∂+X and R≤0 × ∂−X. Denote by J (X) the set of such J .

Definition 4.7. Let (X,ω, λ) be a symplectic cobordism, J ∈ J (X) be a cylindrical
almost complex structure on X̂ and Γ± = (γ±1 , . . . , γ±p±) be tuples of Reeb orbits in
∂±X. Let T±i denote the period of γ±i . An asymptotically cylindrical holomorphic
curve in X̂ from Γ− to Γ+ is given by a Riemann surface (Σ, j) with punctures z± =
{z±1 , . . . , z±p±} together with a J-holomorphic map u : Σ̇ −→ X̂, such that:

(1) u is positively asymptotic to γ+
i at z+

i , i.e. there exist cylindrical coordinates (s, t)
near z+

i such that u(s, t) ∈ R≥0 × ∂+X for s big enough and

lim
s→+∞

πR ◦ u(s, t) = +∞,

lim
s→+∞

π∂+X ◦ u(s, t) = γ+
i (tT+

i );

(2) u is negatively asymptotic to γ−i at z−i , i.e. there exist cylindrical coordinates (s, t)
near z−i such that u(s, t) ∈ R≤0 × ∂−X for s small enough and

lim
s→−∞

πR ◦ u(s, t) = −∞,

lim
s→−∞

π∂−X ◦ u(s, t) = γ−i (tT−i ).

We now explain some analytical properties of asymptotically cylindrical holomorphic
curves. The key results are the maximum principle (Lemma 4.10) and a lemma compar-
ing the energy of such a curve and the action of the asymptotic Reeb orbits (Lemma 4.13).
The following lemma is an auxiliary result which will allow us to prove that the energy
(see Definition 4.12) is a nonnegative number.

Lemma 4.8. Let (M,α) be a contact manifold and J be a cylindrical almost complex
structure on R×M . If u = (a, f) : Σ̇ −→ R×M is a holomorphic curve, then f ∗dα ≥ 0
and

−da ◦ j = f ∗α (4.1)
πξ ◦Df ◦ j = Jξ(f) ◦ πξ ◦Df. (4.2)
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Proof. We prove equation (4.1):

−da ◦ j = −dr ◦Du ◦ j [by definition of a]
= −dr ◦ J(u) ◦Du [u is holomorphic]
= α ◦Du [by Lemma 2.45]
= f ∗α [by definition of pullback].

Equation (4.2) follows by applying πξ : T (R×M) −→ ξ to the equation J ◦Tu = Tu◦ j.
We show that f ∗dα ≥ 0:

f ∗dα(S, j(S))
= dα(Df(S),Df ◦ j(S)) [by definition of pullback]
= dα(πξ ◦Df(S), πξ ◦Df ◦ j(S)) [TM = 〈R〉 ⊕ ξ = ker dα⊕ kerα]
= dα(πξ ◦Df(S), Jξ(f) ◦ πξ ◦Df(S)) [by Equation (4.2)]
= ‖πξ ◦Df(S)‖2

Jξ(f),dα [since J is cylindrical]
≥ 0.

Lemma 4.9. Let ωΣ̇ be a symplectic form on Σ̇ such that gΣ̇ := ωΣ̇(·, j·) is a Riemannian
metric. Denote by dvolΣ̇ the Riemannian volume element of Σ̇. Let a be a function on
Σ̇ and consider the Laplacian of a, ∆a := div(∇a). Then, ωΣ̇ = dvolΣ̇ and

∆aωΣ̇ = −d(da ◦ j).

Proof. For any unit vector S ∈ T Σ̇, if we define T := j(S) then {S, T} is an orthonormal
basis of T Σ̇ and ωΣ̇(S, T ) = 1, which implies ωΣ̇ = dvolΣ̇. We now prove the formula for
the Laplacian.

∆aωΣ̇ = div(∇a)ωΣ̇ [by definition of Laplacian]
= L∇aωΣ̇ [by definition of divergence and ωΣ̇ = dvolΣ̇]
= dι∇aωΣ̇ [by the Cartan magic formula].

It remains to show that ι∇aωΣ̇ = −da ◦ j.

ι∇aωΣ̇(S) = ωΣ̇(∇a, S) [by definition of interior product]
= −ωΣ̇(∇a, j ◦ j(S)) [by definition of almost complex structure]
= −gΣ̇(∇a, j(S)) [by definition of gΣ̇]
= −da ◦ j(S) [by definition of gradient].

Lemma 4.10 (maximum principle). Assume that Σ̇ is connected. Let (M,α) be a contact
manifold and J be a cylindrical almost complex structure on R×M . If

u = (a, f) : Σ̇ −→ R×M

is a holomorphic curve and a : Σ̇ −→ R has a local maximum then a is constant.
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Proof. Define L = −∆. The operator L is a linear elliptic partial differential operator
(as in [Eva10, p. 312]). We show that La ≤ 0. For this, choose ωΣ̇ a symplectic structure
on Σ̇ such that gΣ̇ := ωΣ̇(·, j·) is a Riemannian metric.

LaωΣ̇ = −∆aωΣ̇ [by definition of L]
= d(da ◦ j) [by Lemma 4.9]
= −df ∗α [by Lemma 4.8]
= −f ∗dα [by naturality of exterior derivative]
≤ 0 [by Lemma 4.8].

This shows that La ≤ 0. By the strong maximum principle for elliptic partial differential
operators in [Eva10, p. 349-350], if a has a local maximum then a is constant.

Lemma 4.11. Let (V, j) be a complex vector space of real dimension 2, (W,J, ω, g) be
a complex vector space with a symplectic form ω and inner product g = ω(·, J ·), and
φ : V −→ W be a linear map. For each choice of s ∈ V , define

t := js,

{σ, τ} := basis of V ∗ dual to {s, t},
ωV := σ ∧ τ,
‖φ‖2 := ‖φs‖2 + ‖φt‖2.

Then,
1
2‖φ‖

2ωV = (φ1,0)∗ω − (φ0,1)∗ω,

which is independent of the choice of s.

Proof. Recall the definitions of φ1,0 and φ0,1:

φ1,0 := 1
2(φ− J ◦ φ ◦ j),

φ0,1 := 1
2(φ+ J ◦ φ ◦ j).

These equations imply that φ1,0 is holomorphic, while φ0,1 is anti-holomorphic:

φ1,0 ◦ j = J ◦ φ1,0, φ0,1 ◦ j = −J ◦ φ0,1. (4.3)

Finally, we compute

‖φ‖2ωV (s, js)
= ‖φ(s)‖2 + ‖φ ◦ j(s)‖2 [definitions of ‖φ‖, ωV ]
= ‖φ1,0(s) + φ0,1(s)‖2 + ‖φ1,0 ◦ j(s) + φ0,1 ◦ j(s)‖2 [since φ = φ1,0 + φ0,1]
= ‖φ1,0(s) + φ0,1(s)‖2 + ‖J ◦ φ1,0(s)− J ◦ φ0,1(s)‖2 [by (4.3)]
= ‖φ1,0(s) + φ0,1(s)‖2 + ‖φ1,0(s)− φ0,1(s)‖2 [since g = ω(·, J ·)]
= 2‖φ1,0(s)‖2 + 2‖φ0,1(s)‖2 [by the parallelogram law]
= 2ω(φ1,0(s), J ◦ φ1,0(s)) + 2ω(φ0,1(s), J ◦ φ0,1(s)) [since g = ω(·, J ·)]
= 2ω(φ1,0(s), φ1,0 ◦ j(s))− 2ω(φ0,1(s), φ0,1 ◦ j(s)) [by (4.3)]
= 2(φ1,0)∗ω(s, js)− 2(φ0,1)∗ω(s, js) [by definition of pullback].
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Definition 4.12. Define a piecewise smooth 2-form ω̃ ∈ Ω2(X̂) by

ω̃ :=


dλ|∂+X on R≥0 × ∂+X,

ω on X,
dλ|∂−X on R≤0 × ∂−X.

If u is an asymptotically cylindrical holomorphic curve, its energies are given by

Eω̂(u) :=
∫

Σ̇
u∗ω̂,

Eω̃(u) :=
∫

Σ̇
u∗ω̃.

We point out that if u has positive punctures, then Eω̂(u) = +∞. Whenever we talk
about the energy of an asymptotically cylindrical holomorphic curve, we mean the Eω̃
energy, unless otherwise specified. We included Eω̂ in the definition above because we
will need to use it in Theorem 6.40 to compare the Lagrangian and the McDuff–Siegel
capacities. In Lemma 4.14, we compare Eω̂ and Eω̃.

Lemma 4.13. If (X,ω, λ) is a Liouville cobordism then

0 ≤ Eω̃(u) = A(Γ+)−A(Γ−).

Proof. Since (X,ω, λ) is a Liouville cobordism, Eω̃(u) is given by

Eω̃(u) =
∫

Σ̇
u∗ω̃

=
∫
u−1(R≤0×∂−X)

u∗dλ|∂−X +
∫
u−1(X)

u∗dλ+
∫
u−1(R≥0×∂+X)

u∗dλ|∂+X .

Here, the first and third terms are nonnegative by Lemma 4.8, while the second term is
nonnegative by Lemma 4.11. This shows that Eω̃(u) ≥ 0. Since u is asymptotic to Γ±
and by Stokes’ theorem, Eω̃(u) = A(Γ+)−A(Γ−).

Lemma 4.14. Assume that Σ has no positive punctures. Let (X,ω, λ) be a symplectic
cobordism, and J ∈ J (X) be a cylindrical almost complex structure on X̂. Assume that
the canonical symplectic embedding

(R≤0 × ∂−X, d(erλ|∂−X)) −→ (X̂, ω̂)

can be extended to a symplectic embedding

(R≤K × ∂−X, d(erλ|∂−X)) −→ (X̂, ω̂)

for some K > 0. Let u : Σ̇ −→ X̂ be a J-holomorphic curve which is negatively asymp-
totic to a tuple of Reeb orbits Γ of ∂−X. Consider the energies Eω̂(u) and Eω̃(u) of
Definition 4.12. Then,

A(Γ) ≤ 1
eK − 1Eω̃(u), (4.4)

Eω̂(u) ≤ eK

eK − 1Eω̃(u). (4.5)
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Proof. It is enough to show that

Eω̂(u)− Eω̃(u) = A(Γ), (4.6)
Eω̂(u) ≥ eKA(Γ), (4.7)

since these equations imply Equations (4.4) and (4.5). Since u has no positive punctures,
the maximum principle (Lemma 4.10) implies that u is contained in R≤0 × ∂−X ∪ X.
We prove Equation (4.6). For simplicity, denote M = ∂−X and α = λ|∂−X .

Eω̂(u)− Eω̃(u) =
∫

Σ̇
u∗(ω̂ − ω̃) [by definition of Eω̂ and Eω̃]

=
∫
u−1(R≤0×M)

u∗d((er − 1)α) [by definition of ω̂ and ω̃]

= A(Γ) [by Stokes’ theorem].

We prove Equation (4.7).

Eω̂(u) =
∫

Σ̇
u∗ω̂ [by definition of Eω̂]

≥
∫
u−1(R≤K×M)

u∗d(erα) [by definition of ω̂ and u∗ω̂ ≥ 0]

= eK
∫
u−1({K}×M)

u∗α [by Stokes’ theorem]

= eK
∫
u−1(R≤K×M)

u∗dα + eKA(Γ) [by Stokes’ theorem]

≥ eKA(Γ) [by Lemma 4.8].

4.2 Moduli spaces of Holomorphic curves
If (M,α) is a contact manifold, we denote by J (M) the set of cylindrical almost complex
structures on R×M (see Definition 2.44). If (X,ω, λ) is a symplectic cobordism, we de-
note by J (X) the set of cylindrical almost complex structures on X̂ (see Definition 4.6).
If J± ∈ J (∂±X) is a cylindrical almost complex structure on R× ∂±X, then we define
the following subsets of J (X):

J J+(X) := {J ∈ J (X) | J = J+ on R≥0 × ∂+X},
JJ− (X) := {J ∈ J (X) | J = J− on R≤0 × ∂−X},
J J+

J− (X) := {J ∈ J (X) | J = J+ on R≥0 × ∂+X and J = J− on R≤0 × ∂−X}.

Let Γ± = (γ±1 , . . . , γ±p±) be a tuple of Reeb orbits in ∂±X and J ∈ J (X) be a cylindrical
almost complex structure on X̂. Define a moduli space

MJ
X(Γ+,Γ−) :=

(Σ, u)

∣∣∣∣∣∣∣
Σ is a connected closed Riemann surface
of genus 0 with punctures z± = {z±1 , . . . , z±p±},
u : Σ̇ −→ X̂ is as in Definition 4.7

 / ∼,
where (Σ0, u0) ∼ (Σ1, u1) if and only if there exists a biholomorphism φ : Σ0 −→ Σ1
such that u1 ◦ φ = u0 and φ(z±0,i) = z±1,i for every i = 1, . . . , p±. If Γ± = (γ±1 , . . . , γ±p±)
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is a tuple of Reeb orbits on a contact manifold M and J ∈ J (M), we define a moduli
space MJ

M(Γ+,Γ−) of holomorphic curves in R ×M analogously. Since J is invariant
with respect to translations in the R direction, MJ

M(Γ+,Γ−) admits an action of R by
composition on the target by a translation.

One can try to show that the moduli space MJ
X(Γ+,Γ−) is transversely cut out by

showing that the relevant linearized Cauchy–Riemann operator is surjective at every
point of the moduli space. In this case, the moduli space is an orbifold whose dimension
is given by the Fredholm index of the linearized Cauchy–Riemann operator. However,
since the curves inMJ

X(Γ+,Γ−) are not necessarily simple, this proof will in general not
work, and we cannot say that the moduli space is an orbifold. However, the Fredholm
theory part of the proof still works, which means that we still have a dimension formula.
In this case the expected dimension given by the Fredholm theory is usually called a
virtual dimension. For the moduli space above, the virtual dimension at a point u is
given by (see [BM04, Section 4])

virdimuMJ
X(Γ+,Γ−) = (n− 3)(2− p+ − p−) + cτ1(u∗TX̂) + µτCZ(Γ+)− µτCZ(Γ−),

where τ is a unitary trivialization of the contact distribution over each Reeb orbit.

We now discuss curves satisfying a tangency constraint. Our presentation is based on
[MS22, Section 2.2] and [CM18, Section 3]. Let (X,ω, λ) be a symplectic cobordism and
x ∈ intX. A symplectic divisor through x is a germ of a 2-codimensional symplectic
submanifold D ⊂ X containing x. A cylindrical almost complex structure J ∈ J (X) is
compatible with D if J is integrable near x and D is holomorphic with respect to J .
We denote by J (X,D) the set of such almost complex structures. In this case, there are
complex coordinates (z1, . . . , zn) near x such that D is given by h(z1, . . . , zn) = 0, where
h(z1, . . . , zn) = z1. Let u : Σ −→ X be a J-holomorphic curve together with a marked
point w ∈ Σ. For k ≥ 1, we say that u has contact order k to D at x if u(w) = x and

(h ◦ u ◦ ϕ)(1)(0) = · · · = (h ◦ u ◦ ϕ)(k−1)(0) = 0,

for some local biholomorphism ϕ : (C, 0) −→ (Σ, w). We point out that the condition of
having “contact order k” as written above is equal to the condition of being “tangent of
order k− 1” as defined in [CM18, Section 3]. Following [MS22], we will use the notation
〈T (k)x〉 to denote moduli spaces of curves which have contact order k, i.e. we will denote
them byMJ

X(Γ+,Γ−)〈T (k)x〉 andMJ
M(Γ+,Γ−)〈T (k)x〉. The virtual dimension is given

by (see [MS22, Equation (2.2.1)])

virdimuMJ
X(Γ+,Γ−)〈T (k)x〉

= (n− 3)(2− p+ − p−) + cτ1(u∗TX̂) + µτCZ(Γ+)− µτCZ(Γ−)− 2n− 2k + 4.

The following theorem says that moduli spaces of simple, asymptotically cylindrical
holomorphic curves are transversely cut out.

Theorem 4.15 ([CM07, Proposition 6.9]). Let (X,ω, λ) be a symplectic cobordism, x ∈
intX and D be a symplectic divisor at x. There exists a comeagre set Jreg(X,D) ⊂
J (X,D) with the following property. If J ∈ Jreg(X,D) is a regular almost complex
structure, Γ± = (γ±1 , . . . , γ±p±) is a tuple of Reeb orbits of ∂±X and A ∈ H2(X,Γ+ ∪Γ−),
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then the moduli space MJ
X,A,s(Γ+,Γ−)〈T (k)x〉 ⊂ MJ

X(Γ+,Γ−)〈T (k)x〉 of simple curves
representing the homology class A is a manifold of dimension

dimMJ
X,A,s(Γ+,Γ−)〈T (k)x〉

= (n− 3)(2− p+ − p−) + 2cτ1(TX) · A+ µτCZ(Γ+)− µτCZ(Γ−)− 2n− 2k + 4.

We will now use this transversality result to state two lemmas from [CM18], namely
Lemmas 4.16 and 4.17, which we will use in the proof of Theorem 6.40. For the sake of
completeness, we will also give proofs of the results. We point out that in order to achieve
the conditions in the statement of the lemmas, we can use a metric as in Lemma 3.30.
Finally, notice that Lemma 4.17 generalizes Lemma 4.16 to the case where the curve is
not necessarily simple.

Lemma 4.16 ([CM18, Lemma 3.2]). Let (L, g) be an n-dimensional Riemannian mani-
fold with the property that for some `0 > 0, all closed geodesics γ of length `(γ) ≤ `0 are
noncontractible and nondegenerate and have Morse index µM(γ) ≤ n − 1. Let x ∈ T ∗L
and D be a symplectic divisor through x. For generic J every simple punctured J-
holomorphic sphere C in T ∗L which is asymptotic at the punctures to geodesics of length
≤ `0 and which has contact order k to D at x must have at least k + 1 punctures.

Proof. Let (γ1, . . . , γp) be the tuple of asymptotic Reeb orbits of C, which have corre-
sponding geodesics also denoted by (γ1, . . . , γp). By assumption, µM(γi) ≤ n−1 for every
i = 1, . . . , p. Choose a trivialization τ of C∗TT ∗L such that the induced trivialization
over the asymptotic Reeb orbits is as in Theorem 3.29. We show that p ≥ k + 1.

0 ≤ dimCMJ
X,s(Γ+,Γ−)〈T (k)x〉

= (n− 3)(2− p) + 2cτ1(TX) · [C] +
p∑
i=1

µτCZ(γi)− 2n− 2k + 4

= (n− 3)(2− p) +
p∑
i=1

µM(γi)− 2n− 2k + 4

≤ (n− 3)(2− p) +
p∑
i=1

(n− 1)− 2n− 2k + 4

= 2(p− 1− k).

Lemma 4.17 ([CM18, Corollary 3.3]). Let (L, g) be an n-dimensional Riemannian man-
ifold with the property that for some `0 > 0, all closed geodesics γ of length `(γ) ≤ `0 are
noncontractible and nondegenerate and have Morse index µM(γ) ≤ n − 1. Let x ∈ T ∗L
and D be a symplectic divisor through x. For generic J every (not necessarily sim-
ple) punctured J-holomorphic sphere C̃ in T ∗L which is asymptotic at the punctures to
geodesics of length ≤ `0 and which has contact order k̃ to D at x must have at least k̃+1
punctures.

Proof. Let z̃1, . . . , z̃p̃ be the punctures of C̃. Then C̃ is a map C̃ : S2\{z̃1, . . . , z̃p̃} −→ T ∗L
which has contact order k̃ at z̃0 to D, for some z̃0 ∈ S2 \ {z̃1, . . . , z̃p̃}. There exists a
d-fold branched cover φ : S2 −→ S2 and a simple punctured J-holomorphic sphere C
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with p punctures {z1, . . . , zp} which has contact order k at z0 = φ(z̃0) to D, such that
the following diagram commutes:

S2 \ {z̃1, . . . , z̃p̃}

S2 \ {z1, . . . , zp} T ∗L

φ C̃

C

Define b = ord(z̃0). Since the asymptotic Reeb orbits of C̃ are multiples of the asymptotic
Reeb orbits of C, we have that the Reeb orbits of C all have period less or equal to `0.
Therefore, applying Lemma 4.16 to C we conclude that p− 1 ≥ k.

We show that kb ≥ k̃. For this, choose holomorphic coordinates centred at z0 ∈ S2,
z̃0 ∈ S2, and x ∈ X such that D is given by h(z1, . . . , zn) = 0, where h(z1, . . . , zn) = z1.
Then, with respect to these coordinates

φ(z) = zb,

h ◦ C(z) =
+∞∑
j=1

ajz
j,

and therefore

h ◦ C̃(z) = h ◦ C ◦ φ(z) =
+∞∑
j=1

ajz
bj.

Since C̃ has contact order k̃ to D,

0 = (h ◦ C̃)(r)(0) =
+∞∑
j=1

aj(bj)rzbj−r
∣∣∣∣
z=0

for every r = 1, . . . , k̃ − 1. Therefore, for every j ∈ Z≥1 if there exists r = 1, . . . , k̃ − 1
such that if bj − r = 0, then aj = 0. In other words a1 = · · · = a` = 0, where

` = max{j ∈ Z≥1 | bj ≤ k̃ − 1}
= min {j ∈ Z≥1 | b(j + 1) ≥ k̃}.

So, we conclude that bk ≥ b(`+ 1) ≥ k̃.

We show that p̃ ≥ (p− 2)d+ b+ 1.

2d− 2 =
∑
z̃∈S2

(ord(z̃)− 1) [by the Riemann-Hurwitz formula]

≥
p̃∑
i=1

(ord(z̃i)− 1) + ord(z̃0)− 1 [since ord(z) ≥ 1 for every z ∈ S2]

= pd− p̃+ ord(z̃0)− 1 [since φ({z̃1, . . . , z̃p̃}) = {z1, . . . , zp}]
= pd− p̃+ b− 1 [by definition of b].
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Since φ is a d-fold covering, d ≥ b. Combining all the facts which we have proven, we
conclude that

p̃ ≥ (p− 2)d+ b+ 1 [by the last computation]
≥ (k − 1)d+ b+ 1 [since p− 1 ≥ k]
≥ kb+ 1 [since d ≥ b]
≥ k̃ + 1 [since kb ≥ k̃].

4.3 SFT compactness
In this section we present the SFT compactness theorem, which describes the com-
pactifications of the moduli spaces of the previous section. This theorem was first
proven by Bourgeois–Eliashberg–Hofer–Wysocki–Zehnder [BEH+03]. Cieliebak–Mohnke
[CM05] have given a proof of this theorem using different methods. Our presentation is
based primarily on [CM18] and [MS22].

Definition 4.18. A nodal Riemann surface is a Riemann surface (Σ, j) together with
a set n of nodes of the form n = {n+

1 , n
−
1 , . . . , n

+
k , n

−
k }.

Definition 4.19. Let (Σ, j) be a Riemann surface with a set n = {n+
1 , n

−
1 , . . . , n

+
k , n

−
k } of

nodes and (X, J) be an almost complex manifold. A nodal J-holomorphic curve is a
J-holomorphic curve u : (Σ, j) −→ (X, J) such that u(n+

i ) = u(n−i ) for every i = 1, . . . , k.

Let (X,ω, λ) be a symplectic cobordism and choose almost complex structures J± ∈
J (∂±X) and J ∈ J J+

J− (X). Let Γ± = (γ±1 , . . . , γ±p±) be a tuple of Reeb orbits in ∂±X.

Definition 4.20. For 1 ≤ L ≤ N , let α± := λ|∂±X and define

(Xν , ων , ω̃ν , Jν) :=


(R× ∂−X, d(erα−), dα−, J−) if ν = 1, . . . , L− 1,
(X̂, ω̂, ω̃, J) if ν = L,

(R× ∂+X, d(erα+), dα+, J+) if ν = L+ 1, . . . , N,

(X∗, ω∗, ω̃∗, J∗) :=
N∐
ν=1

(Xν , ων , ω̃ν , Jν).

The moduli space of holomorphic buildings, denotedMJ
X(Γ+,Γ−), is the set of tuples

F = (F 1, . . . , FN), where F ν : Σ̇ν −→ Xν is an asymptotically cylindrical nodal Jν-
holomorphic curve in Xν with sets of asymptotic Reeb orbits Γ±ν . Here, each F ν is
possibly disconnected and if Xν is a symplectization then F ν is only defined up to
translation in the R direction. We assume in addition that F satisfies the following
conditions.

(1) The sets of asymptotic Reeb orbits Γ±ν are such that

Γ+
ν = Γ−ν+1 for every ν = 1, . . . , N − 1,

Γ−1 = Γ−,
Γ+
N = Γ+.
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(2) Define the graph of F to be the graph whose vertices are the components of
F 1, . . . , FN and whose edges are determined by the asymptotic Reeb orbits. Then
the graph of F is a tree.

(3) The building F has no symplectization levels consisting entirely of trivial cylinders,
and any constant component of F has negative Euler characteristic after removing
all special points.

Definition 4.21. The energy of a holomorphic building F = (F 1, . . . , FN) is

Eω̃∗(F ) :=
N∑
ν=1

Eω̃ν (F ν),

where Eω̃ν (F ν) is given as in Definition 4.12.

The moduli spaceMJ

X(Γ+,Γ−) admits a metrizable topology (see [BO16, Appendix B]).
With this language, the SFT compactness theorem can be stated as follows.

Theorem 4.22 (SFT compactness). The moduli spaceMJ

X(Γ+,Γ−) is compact.

We now consider the case where the almost complex structure on X̂ is replaced by a
family of almost complex structures obtained via neck stretching. Let (X±, ω±, λ±)
be symplectic cobordisms with common boundary

(M,α) = (∂−X+, λ+|∂−X+) = (∂+X−, λ−|∂+X−).

Choose almost complex structures

JM ∈ J (M),
J+ ∈ JJM (X+),
J− ∈ J JM (X−),

and denote by J∂±X± ∈ J (∂±X±) the induced cylindrical almost complex structure on
R × ∂±X±. Let (X,ω, λ) := (X−, ω−, λ−) } (X+, ω+, λ+) be the gluing of X− and X+

along M . We wish to define a family of almost complex structures (Jt)t∈R≥0 ⊂ J (X).
For every t ≥ 0, let

Xt := X− ∪M [−t, 0]×M ∪M X+.

There exists a canonical diffeomorphism φt : X −→ Xt. Define an almost complex
structure Jt on Xt by

Jt :=

J± on X±,
JM on [−t, 0]×M.

Denote also by Jt the pullback of Jt toX, as well as the induced almost complex structure
on the completion X̂. Finally, consider the moduli space

M(Jt)t
X (Γ+,Γ−) :=

∐
t∈R≥0

MJt
X (Γ+,Γ−).
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Definition 4.23. For 1 ≤ L− < L+ ≤ N , let α± := λ±|∂±X± and define

(Xν , ων , ω̃ν , Jν) :=



(R× ∂−X−, d(erα−), dα−, J∂−X−) if ν = 1, . . . , L− − 1,
(X−, ω−, ω̃−, J−) if ν = L−,

(R×M, d(erα), dα, JM) if ν = L− + 1, . . . , L+ − 1,
(X+, ω+, ω̃+, J+) if ν = L+,

(R× ∂+X+, d(erα+), dα+, J∂+X+) if ν = L+ + 1, . . . , N,

(X∗, ω∗, ω̃∗, J∗) :=
N∐
ν=1

(Xν , ων , ω̃ν , Jν).

DefineM(Jt)t
X (Γ+,Γ−) to be the set of tuples F = (F 1, . . . , FN), where F ν : Σ̇ν −→ Xν is

an asymptotically cylindrical nodal Jν-holomorphic curve in Xν with sets of asymptotic
Reeb orbits Γ±ν , such that F satisfies conditions analogous to those of Definition 4.20.

Theorem 4.24 (SFT compactness). The moduli spaceM(Jt)t
X (Γ+,Γ−) is compact.

Remark 4.25. The discussion above also applies to compactifications of moduli spaces
of curves satisfying tangency constraints. The compactificationMJ

X(Γ+,Γ−)〈T (k)x〉 con-
sists of buildings F = (F 1, . . . , FN) ∈ MJ

X(Γ+,Γ−) such that exactly one component C
of F inherits the tangency constraint 〈T (k)x〉, and which satisfy the following additional
condition. Consider the graph obtained from the graph of F by collapsing adjacent
constant components to a point. Let C1, . . . , Cp be the (necessarily nonconstant) com-
ponents of F which are adjacent to C in the new graph. Then we require that there
exist k1, . . . , kp ∈ Z≥1 such that k1 + · · ·+ kp ≥ k and Ci satisfies the constraint 〈T (ki)x〉
for every i = 1, . . . , p. This definition is natural to consider by [CM07, Lemma 7.2]. We
can defineM(Jt)t

X (Γ+,Γ−)〈T (k)x〉 analogously.

Remark 4.26. We point out that in [MS22, Definition 2.2.1], the compactification of
Remark 4.25 is denoted byM

J

X(Γ+,Γ−)〈T (k)x〉, while the notationMJ

X(Γ+,Γ−)〈T (k)x〉
is used to denote the moduli space of buildings F = (F 1, . . . , FN) ∈ MJ

X(Γ+,Γ−) such
that exactly one component C of F inherits the tangency constraint 〈T (k)x〉, but which
do not necessarily satisfy the additional condition of Remark 4.25.

Lemma 4.27. Suppose that Γ− = ∅ and Γ+ = (γ) consists of a single Reeb orbit. Let F
be a holomorphic building of genus 0 in any of the following compactified moduli spaces:

MJ
X(γ), MJ

X(γ)〈T (k)x〉,
M(Jt)t

X (γ), M(Jt)t
X (γ)〈T (k)x〉.

Then F has no nodes.

Proof. Assume by contradiction that F has a node. Let Σ be the topological space
obtained by gluing the Σν along the matching punctures. Let X be the topological
space obtained by gluing the Xν along the matching ends. The space X is homeomorphic
to X̂, and therefore we can identify homology classes in X and X̂. The holomorphic
building F defines a continuous map F : Σ −→ X (for more details on the definitions
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of F : Σ −→ X, see [CM18, Section 2.6]). By the assumptions on F and since F has a
node, it is possible to decompose F along the node into two continuous maps

F 0 : Σ0 −→ X,

F 1 : Σ1 −→ X,

where F 0 is a plane and F 1 is a sphere. Since F 1 is a sphere, it defines a homology class
[F 1] ∈ H2(X̂;Z). Then,

0 = dλ̂([F 1]) [since dλ̂ = 0 ∈ H2
dR(X̂)]

> 0 [by [CM18, Lemma 2.8]],

which gives the desired contradiction.

4.4 Solutions of the parametrized Floer equation
The goal of this section is to introduce the trajectories that appear in S1-equivariant
symplectic homology (see Definition 4.32). We will write these trajectories as maps
whose domain is any punctured Riemann surface, but we point out that in Chapter 5,
where we discuss S1-equivariant symplectic homology, all trajectories have as domain
the cylinder R× S1. Let (Σ, j) be a Riemann surface with punctures

z = z+ ∪ z−, z± = {z±1 , . . . , z±p±}.

We assume that near every puncture z, there are cylindrical coordinates (s, t) as in
Definition 4.1. Let σ, τ ∈ Ω1(Σ̇) be 1-forms such that for every (positive or negative)
puncture z, if we denote by (s, t) the coordinates on the cylindrical end of Σ̇ near z, then

σ = A ds,
τ = B dt,

for some A,B > 0. Finally, we assume that there is an action

S1 × Σ̇ −→ Σ̇

of S1 on Σ̇ which preserves j, σ and τ and such that if t′ ∈ S1 and (s, t) belongs to any
cylindrical coordinate neighbourhood, then

t′ · (s, t) = (s, t+ t′).

Example 4.28. Consider the cylinder R×S1 with coordinates (s, t) and almost complex
structure given by j(∂s) = ∂t. We have the 1-forms σ := ds and τ := dt. The cylinder
is biholomorphic to the sphere S2 with the north and south poles removed. There is an
action of S1 on R×S1 given by t′ · (s, t) = (s, t+ t′). Therefore, R×S1 can be seen as a
special case of the assumptions above. In this case, we will typically denote Σ̇ = R× S1

and Σ = S2.
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Let (S, gS) be a Riemannian manifold together with an action S1×S −→ S which is free,
proper and by isometries. Define C = S/S1 and denote the projection by π : S −→ C.
Since the action is by isometries, there exists a unique Riemannian metric gC on C such
that π : S −→ C is a Riemannian submersion. Let f : C −→ R be a Morse function and
define f̃ := f ◦ π : S −→ R, which is Morse–Bott.

Example 4.29. For N ∈ Z≥1, let

S := S2N+1,

C := CPN ,

f := fN ,

where

fN([w0 : · · · : wN ]) :=
∑N
j=0 j|wj|2∑N
j=0 |wj|2

.

As we will discuss in Section 5.2, S, C and f given above are as in the previous paragraph.

Finally, let (X,λ) be a Liouville domain.

Definition 4.30. An admissible Hamiltonian is a map H : Σ̇ × S × X̂ −→ R such
that:

(1) For every puncture z, the restriction of H to the cylindrical end near z is indepen-
dent of s for s large enough. In other words, there is a map Hz : S1×S× X̂ −→ R
such that H(s, t, w, x) = Hz(t, w, x) for s large enough.

(2) For every critical point w of f̃ , there exists a neighbourhood V of w in S such that
the restriction H : Σ̇× V × X̂ −→ R is independent of V .

(3) Consider the action of S1 on Σ̇×S× X̂ given by t · (z, w, x) = (t · z, t ·w, x). Then,
the Hamiltonian H is invariant under the action of S1.

(4) For every puncture z, there exist D ∈ R, C ∈ R>0 \Spec(∂X, λ|∂X) and δ > 0 such
that on S1 × S × [δ,+∞)× ∂X, we have that Hz(t, w, r, x) = Cer +D.

(5) For every puncture z and critical point w of f̃ the Hamiltonian Hz,w : S1×X̂ −→ R
is nondegenerate.

(6) For every (z, w, x) ∈ Σ̇× S × X̂ we have

Hw,x dτ ≤ 0,
dΣ̇Hw,x ∧ τ ≤ 0,

〈∇SHz,x(w),∇f̃(w)〉σz ∧ τz ≤ 0.

Definition 4.31. An admissible almost complex structure on X̂ is a section J : Σ̇×
S × X̂ −→ End(TX̂) such that J2 = − idTX and:

(1) For every puncture z, the restriction of J to the cylindrical end near z is indepen-
dent of s for s large enough. In other words, there is a function Jz : S1×S×X̂ −→
End(TX̂) such that J(s, t, w, x) = Jz(t, w, x) for s large enough.
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(2) For every critical point w of f̃ , there exists a neighbourhood V of w in S such that
the restriction J : Σ̇× V × X̂ −→ End(TX̂) is independent of V .

(3) The almost complex structure J is S1-invariant.

(4) J is compatible, i.e. g := ω(·, J ·) : Σ̇× S × X̂ −→ T ∗X̂ ⊗ T ∗X̂ is a Riemannian
metric on X parametrized by Σ̇× S.

(5) J is cylindrical, i.e. if (z, w) ∈ Σ̇× S then Jz,w is cylindrical on R≥0 × ∂X.

Definition 4.32. Let w : Σ̇ −→ S and u : Σ̇ −→ X̂ be maps. We will denote by u
the map u := (idΣ̇, w, u) : Σ̇ −→ Σ̇ × S × X̂. We say that (w, u) is a solution of the
parametrized Floer equation if

Dw −∇f̃(w)⊗ σ = 0, (4.8)
(Du−XH(u)⊗ τ)0,1

J(u),j = 0. (4.9)

Example 4.33. Suppose that (Σ̇, j, σ, τ) = (R × S1, j, ds, dt) is the cylinder from Ex-
ample 4.28. Then, (w, u) is a solution of the parametrized Floer equation if and only if
w : R× S1 −→ S is independent of t ∈ S1, thus defining a map w : R −→ S, and

∂w

∂s
(s) = ∇f̃(w(s)),

∂u

∂s
(s, t) = −J(s, t, w(s), u(s, t))

(
∂u

∂t
(s, t)−XH(s, t, w(s), u(s, t))

)
.

Definition 4.34. Let z be a puncture and B > 0 be such that τ = B dt, where (s, t) are
the cylindrical coordinates near z. A 1-periodic orbit of H at z is a pair (w, γ) such
that w ∈ S is a critical point of f̃ and γ is a 1-periodic orbit of Hz,w : S1 × X̂ −→ R.
Denote by P(H, z) the set of such pairs. The action of (w, γ) is

AH(w, γ) := ABHz,w(γ) =
∫
S1
γ∗λ̂−B

∫
S1
Hz,w(t, γ(t))dt.

Definition 4.35. Let (w, u) be a solution of the parametrized Floer equation. We say
that (w, u) is asymptotic at z±i to (w±i , γ±i ) ∈ P(H, z±i ) if

lim
s→±∞

w(s) = w±i ,

lim
s→±∞

u(s, t) = γ±i ,

where (s, t) are the cylindrical coordinates near z±i .

Definition 4.36. The energy of (w, u) is

E(u) := 1
2

∫
Σ̇
‖Du−XH(u)⊗ τ‖2

J(u),ω̂ ωΣ.

We will now state the analytical results about solutions of the parametrized Floer equa-
tion. Some results we will state are analogous to previous results about solutions of a
pseudoholomorphic curve equation. Namely, in Lemma 4.37 we compare the energy of a
solution with the action at the asymptotes, and in Lemma 4.39 we show that solutions
satisfy a maximum principle.
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Lemma 4.37. If (w, u) is a solution of the parametrized Floer equation which is asymp-
totic at z±i to (w±i , γ±i ) ∈ P(H, z±i ), then

0 ≤ E(u) ≤
p+∑
i=1
AH(w+

i , γ
+
i )−

p−∑
i=1
AH(w−i , γ−i ).

Proof. We show that 1/2‖Du−XH(u)⊗ τ‖2
J(u),j ωΣ̇ = u∗ω̂ − u∗dX̂H(u) ∧ τ .

1
2‖Du−XH(u)⊗ τ‖2

J(u),ω̂ ωΣ̇(S, T )
= (Du−XH(u)⊗ τ)∗ω̂(S, T )
= ω̂(Du(S)−XH(u)τ(S),Du(T )−XH(u)τ(T ))
= ω̂(Du(S),Du(T ))− ω̂(Du(S), XH(u))τ(T )− ω̂(XH(u),Du(T ))τ(S)
= u∗ω̂(S, T ) + u∗ιXH(u)ω̂ ∧ τ(S, T )
= u∗ω̂(S, T )− u∗dX̂H(u) ∧ τ(S, T ),

Where in the first equality we used Lemma 4.11 and the fact that Du − XH(u) ⊗ τ is
holomorphic, and in the last equality we used the definition of Hamiltonian vector field.
We show that u∗ω̂ − u∗dX̂H(u) ∧ τ ≤ u∗ω̂ − d(u∗H ∧ τ).

d(u∗H ∧ τ) = u∗H ∧ dτ + u∗dH ∧ τ
= u∗H ∧ dτ + dΣ̇H(u) ∧ τ + w∗dSH(u) ∧ τ + u∗dX̂H(u) ∧ τ
= u∗H ∧ dτ + dΣ̇H(u) ∧ τ + 〈∇SH(u),∇f̃(w)〉σ ∧ τ + u∗dX̂H(u) ∧ τ
≤ u∗dX̂H(u) ∧ τ

Here, in the third equality we used Equation (4.8) and in the last line of the computation
we used the fact that H is admissible. Combining these results,

0 ≤ E(u)
≤
∫

Σ̇
u∗dλ̂−

∫
Σ̇

d(u∗H ∧ τ)

=
p+∑
i=1
AH(w+

i , γ
+
i )−

p−∑
i=1
AH(w−i , γ−i ),

where in the last line we used Stokes’ theorem.

Lemma 4.38. Suppose that (M,α) is a contact manifold, H : Σ̇× S ×R×M −→ R is
a Hamiltonian which is independent of M and J : Σ̇× S × R×M −→ End(T (R×M))
is a cylindrical almost complex structure. If

u = (idΣ̇, w, u) = (idΣ̇, w, (a, f)) : Σ̇ −→ Σ̇× S × R×M

is a solution of the parametrized Floer equation, then f ∗dα ≥ 0 and

−da ◦ j = f ∗α− α(XH(u))τ (4.10)
πξ ◦Df ◦ j = Jξ(u) ◦ πξ ◦Df. (4.11)
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Proof. We prove equation (4.10):

−da ◦ j = −dr ◦Du ◦ j [by definition of a]
= −dr ◦ (Du−XH(u)⊗ τ) ◦ j [H is independent of M ]
= −dr ◦ J(u) ◦ (Du−XH(u)⊗ τ) [Du−XH(u)⊗ τ is holomorphic]
= α ◦ (Du−XH(u)⊗ τ) [by Lemma 2.45]
= f ∗α− α(XH(u))τ [by definition of pullback].

Equation (4.11) follows by applying πξ : T (R×M) −→ ξ to (Du−XH(u)⊗ τ)0,1
J(u),j = 0.

The proof of f ∗dα ≥ 0 is equal to the one presented in Lemma 4.8.

The following is an adaptation to solutions of the parametrized Floer equation of the
maximum principle from Lemma 4.10. Other authors have proven similar results about
solutions of a Floer equation satisfying a maximum principle, namely Viterbo [Vit99,
Lemma 1.8], Oancea [Oan04, Lemma 1.5], Seidel [Sei08, Section 3] and Ritter [Rit13,
Lemma D.1].

Lemma 4.39 (maximum principle). Under the assumptions of Lemma 4.38, define

h : Σ̇× S × R −→ R, h(z, w, ρ) = H(z, w, ln(ρ)),
ρ : Σ̇ −→ R, ρ = exp ◦a.

If

∂ρh(z, w, ρ) dτ ≤ 0, (4.12)
dΣ̇(∂ρh(z, w, ρ)) ∧ τ ≤ 0, (4.13)

〈∇S∂ρh(z, w, ρ),∇f̃(w)〉σ ∧ τ ≤ 0, (4.14)

and a : Σ̇ −→ R has a local maximum then a is constant.

Proof. Choose a symplectic structure ωΣ̇ on Σ̇ such that gΣ̇ := ωΣ̇(·, j·) is a Riemannian
metric. Define L : C∞(Σ̇,R) −→ C∞(Σ̇,R) by

Lν = −∆ν − ρ ∂2
ρh(z, w, ρ)dν ∧ τ

ωΣ̇
,

for every ν ∈ C∞(Σ̇,R). The map L is a linear elliptic partial differential operator (as in
[Eva10, p. 312]). We wish to show that Lρ ≤ 0. For this, we start by computing ∆ρωΣ̇.

−∆ρωΣ̇ = d(dρ ◦ j) [by Lemma 4.9]
= −d(u∗(erα)− ρα(XH(u)) τ) [by Lemma 4.38]
= −u∗d(erα) + d(ρ ∂ρh(z, w, ρ) τ) [by Lemma 2.41]
= −u∗d(erα) + ∂ρh(z, w, ρ) dρ ∧ τ [by the Leibniz rule]

+ ρ d(∂ρh(z, w, ρ)) ∧ τ
+ ρ ∂ρh(z, w, ρ) dτ.
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By Equation (4.12), the last term on the right is nonnegative. We show that the sum of
the first two terms on the right is nonnegative.

−u∗d(erα) + ∂ρh(z, w, ρ) dρ ∧ τ
= −u∗d(erα) + u∗dR×MH(u) ∧ τ [by definition of h]

= −1
2‖Du−XH(u)⊗ τ‖2

J(u),d(erα) ωΣ̇ [by the computation in Lemma 4.37]
≤ 0.

Finally, we show that ρ d(∂ρh(z, w, ρ)) ∧ τ ≤ ρ ∂2
ρh(z, w, ρ) dρ ∧ τ :

ρ d(∂ρh(z, w, ρ)) ∧ τ
= ρ dΣ̇∂ρh(z, w, ρ) ∧ τ + ρ 〈∇S∂ρh(z, w, ρ),∇f̃(w)〉σ ∧ τ + ρ ∂2

ρh(z, w, ρ) dρ ∧ τ
≤ ρ ∂2

ρh(z, w, ρ) dρ ∧ τ,

where in the last line we used Equations (4.13) and (4.14). This shows that Lρ ≤ 0. By
the strong maximum principle in [Eva10, p. 349-350], if ρ has a local maximum then ρ
is constant. Since ρ = exp ◦a, the same is true for a.

The next lemma is an adaptation to our setup of an argument by Bourgeois–Oancea
which first appeared in [BO09, p. 654-655]. The same argument was also used by
Cieliebak–Oancea [CO18, Lemma 2.3] in a different setup.

Lemma 4.40 (asymptotic behaviour). Consider the half-cylinder Z± of Definition 4.1,
with 1-forms σ := ds and τ := dt. Assume the same conditions as in Lemma 4.38,
but with Σ̇ replaced by Z±. Suppose that u is asymptotic at ±∞ to a 1-periodic orbit
(z±, γ±) of H±∞ of the form γ±(t) = (r±, ρ±(t)), where z± is a critical point of f̃ ,
r± ∈ R and ρ± : S1 −→ M is a periodic Reeb orbit in M . Define h : Z± × S × R −→ R
by h(s, t, z, r) = H(s, t, z, ln(r)) (recall that H is independent of M). If

±∂2
rh(s, t, z±, er±) < 0 (4.15)

〈∇S∂rh(s, t, z±, er±),∇f̃(z±)〉 < 0 (4.16)
∂s∂rh(s, t, z±, er±) ≤ 0, (4.17)

then either there exists (s0, t0) ∈ Z± such that a(s0, t0) > r± or u is of the form u(s, t) =
(s, t, w(s), r±, ρ±(t)).

Proof. It suffices to assume that a(s, t) ≤ r± for all (s, t) ∈ Z± and to prove that
a(s, t) = r± and f(s, t) = ρ±(t) for all (s, t) ∈ Z±. After replacing Z± by a smaller
half-cylinder we may assume the following analogues of (4.15) and (4.16):

±∂2
rh(s, t, w(s), ea(s,t)) ≤ 0, (4.18)

〈∇S∂rh(s, t, w(s), er±),∇f̃(w(s))〉 ≤ 0. (4.19)

Define the average of a, which we denote by a : R±0 −→ R, by

a(s) :=
∫ 1

0
a(s, t)dt.
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Then,

±∂sa(s)

= ±
∫ 1

0
∂sa(s, t)dt [by definition of a]

= ±
∫ 1

0
f ∗sα∓

∫ 1

0
α(XH(u(s, t)))dt [by Lemma 4.38]

= ±
∫ 1

0
ρ∗±α∓

∫ ±∞
s

∫ 1

0
f ∗dα∓

∫ 1

0
α(XH(u(s, t)))dt [by Stokes’ theorem]

≤ ±
∫ 1

0
ρ∗±α∓

∫ 1

0
α(XH(u(s, t)))dt [since f ∗dα ≥ 0]

= ±
∫ 1

0
∂rh(±∞, t, z±, er±)dt∓

∫ 1

0
∂rh(s, t, w(s), ea(s,t))dt [by Lemma 2.41]

≤ ±
∫ 1

0
∂rh(±∞, t, z±, er±)dt∓

∫ 1

0
∂rh(s, t, w(s), er±)dt [by Equation (4.18)]

≤ ±
∫ 1

0
∂rh(±∞, t, z±, er±)dt∓

∫ 1

0
∂rh(s, t, z±, er±)dt [by Equation (4.19)]

≤ 0 [by Equation (4.17)].

Since ±∂sa(s) ≤ 0 and a(±∞) = r±, we have that a(s) ≥ r± for all s. By assump-
tion, a(s, t) ≤ r±, and therefore a(s, t) = r± for all (s, t) ∈ Z±. This implies that
every inequality in the previous computation is an equality, and in particular f ∗dα = 0.
Therefore, f is independent of s and f(s, t) = ρ±(t) for all (s, t) ∈ Z±.

The following lemma is an adaptation of a result originally proven by Abouzaid–Seidel
[AS10, Lemma 7.2]. Other authors have proven variations of this result, namely Ritter
[Rit13, Lemma D.3], Gutt [Gut14, Theorem 3.1.6] and Cieliebak–Oancea [CO18, Lemma
2.2].

Lemma 4.41 (no escape). Let V ⊂ (X,λ) be a Liouville domain such that ι : V −→
(X,λ) is a strict Liouville embedding, H : Σ̇ × S × X̂ −→ R be an admissible Hamil-
tonian, J : Σ̇ × S × X̂ −→ End(TX̂) be a compatible almost complex structure and
u = (idΣ̇, w, u) : Σ̇ −→ Σ̇× S × X̂ be a solution of the parametrized Floer equation such
that all the asymptotic 1-periodic orbits of u are inside V . Assume that there exists ε > 0
such that:

(1) The restriction of H to Σ̇× S × (−ε, ε)× ∂V is independent of ∂V .

(2) The restriction of J to Σ̇× S × (−ε, ε)× ∂V is cylindrical.

(3) If AH : Σ̇×S×(−ε, ε) −→ R is given by AH(z, w, r) := λ(XH)(z, w, r)−H(z, w, r),
then for every (z, w, r) ∈ Σ̇× S × (−ε, ε),

AH(z, w, r) dτ ≤ 0,
dΣ̇AH(z, w, r) ∧ τ ≤ 0,

〈∇SAH(z, w, r),∇f̃(w)〉σ ∧ τ ≤ 0.

Then, im u ⊂ V .
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Proof. Assume by contradiction that im u is not contained in V . After changing V to
V̂ \ {(r, x) ∈ R × ∂V | r > r0}, for some r0 ∈ (−ε, ε), we may assume without loss
of generality that im u is not contained in V and that u is transverse to ∂V . Then,
ΣV := u−1(X̂ \ intV ) is a compact surface with boundary. We show that E(u|ΣV ) = 0.

0 ≤ 1
2

∫
ΣV
‖Du−XH(u)⊗ τ‖2

J(u),dλ ωΣV [by positivity of norms]

≤
∫

ΣV
d(u∗λ−H(u) τ) [by the computation in Lemma 4.37]

=
∫
∂ΣV

u∗λ−H(u) τ [by Stokes’ theorem]

≤
∫
∂ΣV

u∗λ− λ(XH(u)) τ [(a), proven below]

=
∫
∂ΣV

λ ◦ (Du−XH(u)⊗ τ) [by definition of pullback]

= −
∫
∂ΣV

λ ◦ J(u) ◦ (Du−XH(u)⊗ τ) ◦ j [Du−XH(u)⊗ τ is holomorphic]

= −
∫
∂ΣV

d exp ◦(Du−XH(u)⊗ τ) ◦ j [J is cylindrical near u(∂ΣV ) ⊂ ∂V ]

= −
∫
∂ΣV

d exp ◦Du ◦ j [H is independent of ∂V ]

≤ 0 [(b), proven below].

The proof of (a) is the computation∫
∂ΣV

(λ(XH(u))−H(u)) τ

=
∫
∂ΣV
AH(z, w, r0) τ [by definition of AH and u(∂ΣV ) ⊂ ∂V ]

=
∫

ΣV
dΣV (AH(z, w, r0) τ) [by Stokes’ theorem]

≤ 0 [by the assumptions on AH ].

Statement (b) is true because if ξ is a vector tangent to ∂ΣV giving the boundary
orientation, then j(ξ) points into ΣV , therefore Du ◦ j(ξ) points out of V . Then, we
conclude that E(u|ΣV ) = 0 and that Du = XH(u)⊗τ , and since XH(u) is tangent to ∂V
it follows that im u ⊂ ∂V . This contradicts the fact that u is not contained in V .

4.5 Compactness for solutions of the parametrized
Floer equation

In this section, we assume that (Σ̇, j, σ, τ) = (R × S1, j, ds, dt) is the cylinder from
Example 4.28. Suppose that H : Σ̇ × S × X̂ −→ R is an admissible Hamiltonian as in
Definition 4.30. In this case, there exist Hamiltonians H± : S1× S × X̂ −→ R such that
H(s, t, w, x) = H±(t, w, x) for ±s ≥ s0. Assume also that J : Σ̇×S× X̂ −→ End(TX̂) is
an admissible almost complex structure as in Definition 4.31, which has associated limit
almost complex structures J± : S1×S×X̂ −→ End(TX̂). Note that since Σ̇ = R×S1, we
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can also view H± and J± as maps whose domain is Σ̇. For N ∈ Z≥1 and L, ν = 1, . . . , N ,
define

HL,ν :=


H+ if ν > L,

H if ν = L,

H− if ν < L,

JL,ν :=


J+ if ν > L,

J if ν = L,

J− if ν < L.

Finally, let (Hm)m be a sequence of admissible Hamiltonians converging to H, (Jm)m
be a sequence of admissible almost complex structures converging to J , and for every
m ∈ Z≥1 let (wm, um) be a solution of the parametrized Floer equation with respect to
Hm, Jm with asymptotes (z±m, γ±m).

Definition 4.42. Let (z±, γ±) be Hamiltonian 1-periodic orbits ofH±. A broken Floer
trajectory from (z−, γ−) to (z+, γ+) is given by:

(1) Numbers N ∈ Z≥1 and L = 1, . . . , N ;

(2) Hamiltonian 1-periodic orbits (z−, γ−) = (z1, γ1), . . . , (zL, γL) of H− and Hamilto-
nian 1-periodic orbits (zL+1, γL+1), . . . , (zN+1, γN+1) = (z+, γ+) of H+;

(3) For every ν = 1, . . . , N , a Floer trajectory (wν , uν) with respect to HL,ν , JL,ν with
negative asymptote (zν , γν) and positive asymptote (zν+1, γν+1).

Definition 4.43. We say that (wm, um)m converges to (wν , uν)ν if there exist numbers
s1
m ≤ · · · ≤ sNm such that

lim
m→+∞

sLm ∈ R,

lim
m→+∞

(sν+1
m − sνm) = +∞,

lim
m→+∞

wm(·+ sνm) = wνm,

lim
m→+∞

um(·+ sνm, ·) = uνm.

Theorem 4.44. There exists a subsequence (whose index we still denote by m) and a
broken Floer trajectory (wν , uν)ν such that (wm, um)m converges to (wν , uν)ν.

Proof. Since f : C −→ R is Morse and Hz,w : S1 × X̂ −→ R is nondegenerate for every
puncture z and critical point w of f̃ , we conclude that we can pass to a subsequence
such that (z±m, γ±m) converges to (z±, γ±). By compactness in Morse theory, there exists a
further subsequence and a broken Morse trajectory (wν)ν=1,...,N , where wν : R −→ S is a
Morse trajectory from zν to zν+1, z1 = z− and zN+1 = z+, such that (wm)m converges in
the sense of Morse theory to (wν)ν . More precisely, this means that there exist numbers
s1
m ≤ · · · ≤ sNm and L ≤ N such that

lim
m→+∞

sLm ∈ R,

lim
m→+∞

(sν+1
m − sνm) = +∞,

lim
m→+∞

wm(·+ sνm) = wν .
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Possibly after reparametrizing the wν , we may assume that sLm = 0 for every m. Now,
for ν = 1, . . . , N , define

uνm : R× S1 −→ X̂, uνm(s, t) = um(s+ sνm, t),
Hν
m : R× S1 × X̂ −→ R, Hν

m(s, t, x) = Hm(s+ sνm, t, wm(s+ sνm), x),
Hν : R× S1 × X̂ −→ R, Hν(s, t, x) = HL,ν(s, t, wν(s), x),
Jνm : R× S1 × X̂ −→ End(TX̂), Jνm(s, t, x) = Jm(s+ sνm, t, wm(s+ sνm), x),
Jν : R× S1 × X̂ −→ End(TX̂), Jν(s, t, x) = JL,ν(s, t, wν(s), x).

Then, uνm is a solution of the equation

∂uνm
∂s

= −Jνm(s, t, uνm)
(
∂uνm
∂t
−XHν

m
(s, t, uνm)

)
,

and

lim
m→+∞

Hν
m = Hν ,

lim
m→+∞

Jνm = Jν .

By compactness in Floer theory, there exists a further subsequence such that for every
ν = 1, . . . , N there exists a broken Floer trajectory (uν,µ)µ=1,...,Mν from γν,µ to γν,µ+1

with respect to (Hν , Jν), such that

γ1,1 = γ−,

γN,MN = γ+,

and (uνm)m converges to (uν,µ)µ. More precisely, this means that there exist Lν =
1, . . . , Nν and numbers sν,1m ≤ · · · ≤ sν,Mν

m such that

lim
m→+∞

sν,Lνm ∈ R,

lim
m→+∞

(sν,µ+1
m − sν,µm ) = +∞,

lim
m→+∞

uνm(·+ sν,µm , ·) = uν,µ.

Consider the list (wν , uν,µ)ν,µ ordered according to the dictionary order of the indices ν, µ.
In this list, if two elements (wν , uν,µ), (wν′ , uν′,µ′) are equal then they must be adjacent.
The list obtained from (wν , uν,µ)ν,µ by removing duplicate elements is the desired broken
Floer trajectory.

4.6 Transversality for solutions of the parametrized
Floer equation

In this section, let (Σ̇, j, σ, τ) = (R×S1, j, ds, dt) be the cylinder from Example 4.28 and
(X,λ) be a nondegenerate Liouville domain. Let H : S1 × S × X̂ −→ R be a function
such that the pullback H : R × S1 × S × X̂ −→ R is as in Definition 4.30. Define J
to be the set of almost complex structures J : S1 × S × X̂ −→ End(TX̂) such that the
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pullback J : R × S1 × S × X̂ −→ End(TX̂) is as in Definition 4.31. The set J admits
the structure of a smooth Fréchet manifold, and therefore the tangent space TJJ at J
is a Fréchet space. Let (z±, γ±) be 1-periodic orbits of H, i.e. z± ∈ S is a critical point
of f̃ and γ± is a 1-periodic orbit of Hz± : S1 × X̂ −→ R.

If w : R −→ S and u : R× S1 −→ X̂ are maps, we will denote by u the map

u : R× S1 −→ S1 × S × X̂, u(s, t) := (t, w(s), u(s, t)).

The pair (w, u) is a solution of the parametrized Floer equation if

∂sw −∇f̃(w) = 0,
(Du−XH(u)⊗ τ)0,1

J(u),j = 0.

Define [z±, γ±] to be the equivalence class

[z±, γ±] := {t · (z±, γ±) | t ∈ S1}
= {(t · z±, γ±(·+ t)) | t ∈ S1},

and denote by M̂(X,H, J, [z+, γ+], [z−, γ−]) the moduli space of solutions (w, u) ∈
C∞(R, S)× C∞(R× S1, X̂) of the parametrized Floer equation such that

lim
s→±∞

(w(s), u(s, ·)) ∈ [z±, γ±].

Denote byM the moduli space of gradient flow lines w : R −→ S of f̃ such that

lim
s→±∞

w(s) ∈ [z±].

By the assumptions on (S, gS, f̃) explained in Section 4.4 and [AB95, Section 3.2], the
spaceM is a smooth finite dimensional manifold. Moreover,

dimM = µM(z+) + µM(z−) + 1. (4.20)

Let ε = (ε`)`∈Z≥0 be a sequence of positive numbers ε` such that lim`→+∞ ε` = 0. Define
a function

‖ · ‖ε : TJrefJ −→ [0,+∞]

Y 7−→
+∞∑
`=0

ε`‖Y ‖C`(S1×S×X),

where ‖ · ‖C`(S1×S×X) is the C`-norm which is determined by some finite covering of
TX −→ S1 × S ×X by coordinate charts and local trivializations. Define

T εJref
J := {Y ∈ TJrefJ | ‖Y ‖ε < +∞}.

By [Flo88, Lemma 5.1], (T εJref
J , ‖ · ‖ε) is a Banach space consisting of smooth sections

and containing sections with support in arbitrarily small sets. For every Y ∈ T εJref
J ,

define

expJref
(Y ) := JY :=

(
1 + 1

2JrefY
)
Jref

(
1 + 1

2JrefY
)−1

.
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There exists a neighbourhood O ⊂ T εJref
J of 0 such that expJref

: O −→ J is injective.
Define J ε := expJref

(O), which is automatically a Banach manifold with one global
parametrization expJref

: O −→ J ε. The tangent space of J ε at Jref is given by

TJrefJ ε = T εJref
J .

Notice that the definition of J ε involved making several choices, namely the sequence ε,
the choices necessary to define the C`-norm, and a reference almost complex structure
Jref .

Definition 4.45. For w ∈M, let Fw be the Banach manifold of maps u : R×S1 −→ X̂
of the form

u(s, t) = expu0(s,t) ξ(s, t),

where

u0 ∈ C∞(R× S1, X̂) is such that lim
s→±∞

(w(s), u0(s, ·)) ∈ [z±, γ±],

ξ ∈ W 1,p(R× S1, u∗0TX̂).

Definition 4.46. For J ∈ J ε, we define a bundle πJ : EJ −→ B as follows. The base,
fibre and total space are given by

B := {(w, u) | w ∈M, u ∈ Fw},
EJ(w,u) := Lp(Hom0,1

J(u),j(T Σ̇, u∗TX̂)),
EJ := {(w, u, ξ) | (w, u) ∈ B, ξ ∈ EJ(w,u)}.

The projection is given by πJ(w, u, ξ) := (w, u). The Cauchy–Riemann operator is
the section ∂J : B −→ EJ given by

∂J(w, u) := (Du−XH(u)⊗ τ)0,1
J(u),j ∈ E

J
(w,u).

With this definition, (∂J)−1(0) = M̂(X,H, J, [z+, γ+], [z−, γ−]).

Definition 4.47. Define the universal bundle, π : E −→ B × J ε, and the universal
Cauchy–Riemann operator, ∂ : B × J ε −→ E , by

E := {(w, u, J, ξ) | (w, u) ∈ B, J ∈ J ε, ξ ∈ EJ(w,u)},
π : E −→ B × J ε, π(w, u, J, ξ) := (w, u, J),
∂ : B × J ε −→ E , ∂(w, u, J) := ∂J(w, u).

For (w, u, J) such that ∂(w, u, J) = 0, choose a splitting T(w,u)B = TwM⊕ TuFw. The
sections ∂J and ∂ have corresponding linearized operators, which we denote by

D(w,u,J) : TwM⊕ TuFw −→ EJ(w,u),

L(w,u,J) : TwM⊕ TuFw ⊕ TJJ ε −→ EJ(w,u),
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respectively. We can write these operators with respect to the decompositions above as
block matrices

D(w,u,J) =
[
DM(w,u,J) DF(w,u,J)

]
, (4.21)

L(w,u,J) =
[
DM(w,u,J) DF(w,u,J) J(w,u,J)

]
. (4.22)

Let τ be a trivialization of u∗TX̂ and denote also by τ the induced trivializations of
(γ±)∗TX̂. We can consider the Conley–Zehnder indices µτCZ(γ±) of γ± computed with
respect to τ . We denote µτ (z±, γ±) := µM(z±) + µτCZ(γ±).

Theorem 4.48. The operators DF(w,u,J) and D(w,u,J) are Fredholm and

ind DF(w,u,J) = µτCZ(γ+)− µτCZ(γ−), (4.23)
ind D(w,u,J) = µτ (z+, γ+)− µτ (z−, γ−) + 1. (4.24)

Proof. The operator DF(w,u,J) is the linearized operator in Floer theory, which is Fredholm
and has index given by Equation (4.23). Therefore,

0⊕DF(w,u,J) : TwM⊕ TuFw −→ EJ(w,u)

is Fredholm and

ind(0⊕DF(w,u,J)) = dimTwM+ ind DF(w,u,J). (4.25)

Since DM(w,u,J) ⊕ 0: TwM⊕ TwFw −→ EJ(w,u) is compact, the operator

D(w,u,J) = DM(w,u,J) ⊕DF(w,u,J) = DM(w,u,J) ⊕ 0 + 0⊕DF(w,u,J)

is Fredholm and

ind D(w,u,J) = ind(DM(w,u,J) ⊕DF(w,u,J)) [by Equation (4.21)]
= ind(0⊕DF(w,u,J)) [since DM(w,u,J) is compact]
= dimTwM+ ind DF(w,u,J) [by Equation (4.25)]
= µτ (z+, γ+)− µτ (z−, γ−) + 1 [by Equations (4.20) and (4.23)].

Theorem 4.49. The operator L(w,u,J) is surjective.

Proof. It suffices to prove that

LF(w,u,J) := DF(w,u,J) ⊕ J(w,u,J) : TuFw ⊕ TJJ ε −→ EJ(w,u)

is surjective. Since DF(w,u,J) is Fredholm (by Theorem 4.48), its image is closed and has
finite codimension. This implies that im LF(w,u,J) is also of finite codimension and closed.
So, it suffices to show that im LF(w,u,J) is dense, which is equivalent to showing that the
annihilator Ann im LF(w,u,J) is zero. Let η ∈ Ann im LF(w,u,J), i.e.

η ∈ Lq(Hom0,1
J(u),j(T Σ̇, u∗TX̂))
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is such that

0 = 〈η,DF(w,u,J)(ξ)〉L2 for all ξ ∈ TuFw, (4.26)
0 = 〈η,J(w,u,J)(Y )〉L2 for all Y ∈ TJJ ε. (4.27)

By Equation (4.26), η satisfies the Cauchy–Riemann type equation (DF(w,u,J))∗η = 0, and
therefore η is smooth (by elliptic regularity) and satisfies unique continuation.

We prove that η = 0 in the case where w is constant. In this case, w(s) =: w0 for every
s, we can view γ± as 1-periodic orbits of Hw0 (after a reparametrization) and u is a
solution of the Floer equation:

∂u

∂s
(s, t) + Jw0(t, u(s, t))

(
∂u

∂t
(s, t)−XHw0

(t, u(s, t))
)

= 0.

Let R(u) be the set of regular points of u, i.e. points z = (s, t) such that

∂u

∂s
(s, t) 6= 0, u(s, t) 6= γ±(t), u(s, t) /∈ u(R− {s}, t). (4.28)

By [FHS95, Theorem 4.3], R(u) is open. By unique continuation, it is enough to show
that η vanishes in R(u). Let z0 = (s0, t0) ∈ R(u) and assume by contradiction that
η(z0) 6= 0. By [MS12, Lemma 3.2.2], there exists Y ∈ TJJ such that

〈η(z0), Y (u(z0)) ◦ (Du(z0)−XH(u(z0))⊗ τz0) ◦ jz0〉 > 0. (4.29)

Choose a neighbourhood V = VR × VS1 of z0 = (s0, t0) in Σ̇ = R× S1 such that

〈η, Y (u) ◦ (Du−XH(u)⊗ τ) ◦ j〉|V > 0. (4.30)

Since z0 is as in (4.28), there exists a neighbourhood UX̂ of u(z0) in X̂ such that

u(s, t) ∈ UX̂ =⇒ s ∈ VR.

Choose a slice A ⊂ S1 × S which contains (t0, w0) and which is transverse to the action
of S1 on S1 × S. Define US1×S = S1 · A. For A chosen small enough,

(t, w0) ∈ US1×S =⇒ t ∈ VS1 .

Then, defining U := US1×S × UX̂ we have that u−1(U) ⊂ V . Choose an S1-invariant
function β : S1 × S × X̂ −→ [0, 1] such that

supp β ⊂ U, β(u(z0)) = 1, βY ∈ TJJ ε. (4.31)

Here, we can achieve that βY is of class Cε by [Wen16, Theorem B.6]. Since u−1(U) ⊂ V
and supp β ⊂ U , we have that supp(β ◦ u) ⊂ V . Then,

0 = 〈η,J(w,u,J)(βY )〉L2 [by Equation (4.27)]
= 〈η, β(u) J(w,u,J)(Y )〉L2 [since J(w,u,J) is C∞-linear]
= 〈η, β(u) J(w,u,J)(Y )〉L2(V ) [since supp(β ◦ u) ⊂ V ]
> 0 [by Equation (4.30)],
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which is the desired contradiction.

We prove that η = 0 in the case where w is not constant. Let z0 = (t0, s0) ∈ R × S1

and assume by contradiction that η(z0) 6= 0. Choose Y as in (4.29) and V as in (4.30).
Choose a slice A ⊂ S1×S which contains (t0, w(0)) and which is transverse to the action
of S1 on S1×S. Define US1×S = S1 ·A. Since w is orthogonal to the infinitesimal action
on S, for A chosen small enough we have

(t, w(s)) ∈ US1×S =⇒ (s, t) ∈ V.

Defining U = US1×S × X̂, we have that u−1(U) ⊂ V . Choosing β as in (4.31), we obtain
a contradiction in the same way as in the previous case.

Remark 4.50. We recall some terminology related to the Baire category theorem (we
use the terminology from [RF10, Section 10.2]). Let X be a complete metric space and
E ⊂ X. Then, E is meagre or of the first category if E is a countable union of
nowhere dense subsets of X. We say that E is nonmeagre or of the second category
if E is not meagre. We say that E is comeagre or residual if X \E is meagre. Hence,
a countable intersection of comeagre sets is comeagre. With this terminology, the Baire
category theorem (see [RF10, Section 10.2]) says that if E is comeagre then E is dense.
The Sard–Smale theorem (see [Sma65, Theorem 1.3]) says that if f : M −→ N is a
Fredholm map between separable connected Banach manifolds of class Cq, for some
q > max{0, ind f}, then the set of regular values of f is comeagre.

Theorem 4.51. There exists a dense subset Jreg ⊂ J with the following property. Let
J ∈ Jreg be an almost complex structure, [z±, γ±] be equivalence classes of 1-periodic
orbits of H, and (w, u) ∈ M̂(X,H, J, [z+, γ+], [z−, γ−]). Then, near (w, u) the space
M̂(X,H, J, [z+, γ+], [z−, γ−]) is a manifold of dimension

dim(w,u) M̂(X,H, J, [z+, γ+], [z−, γ−]) = µτ (z+, γ+)− µτ (z−, γ−) + 1.

Proof. Recall that the space J ε is defined with respect to a reference almost complex
structure Jref . We will now emphasize this fact using the notation J ε(Jref). As a
first step, we show that for every [z±, γ±] and every reference almost complex struc-
ture Jref there exists a comeagre set J ε

reg(Jref , [z±, γ±]) ⊂ J ε(Jref) such that every
J ∈ J ε

reg(Jref , [z±, γ±]) has the property in the statement of the theorem. For short-
ness, for every J let M̂(J, [z±, γ±]) := M̂(X,H, J, [z+, γ+], [z−, γ−]). By Theorem 4.49
and the implicit function theorem [MS12, Theorem A.3.3], the universal moduli space

M̂([z±, γ±]) := {(w, u, J) | J ∈ J ε(Jref), (w, u) ∈ M̂(J, [z±, γ±])}

is a smooth Banach manifold. Consider the smooth map

π : M̂([z±, γ±]) −→ J ε(Jref), π(w, u, J) = J.

By [MS12, Lemma A.3.6],

ker Dπ(w, u, J) ∼= ker D(w,u,J), (4.32)
coker Dπ(w, u, J) ∼= coker D(w,u,J). (4.33)
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Therefore, Dπ(w, u, J) is Fredholm and has the same index as D(w,u,J). By the Sard–
Smale theorem, the set J ε

reg(Jref , [z±, γ±]) ⊂ J ε(Jref) of regular values of π is comeagre.
By Equation (4.33), J ∈ J ε(Jref) is a regular value of π if and only if D(w,u,J) is surjective
for every (w, u) ∈ (∂J)−1(0). Therefore, by the implicit function theorem, for every
J ∈ J ε

reg(Jref , [z±, γ±]) the set M̂(J, [z±, γ±]) = (∂J)−1(0) ⊂ B is a manifold of dimension

dim(w,u) M̂(J, [z±, γ±])
= dim ker D(w,u,J) [by the implicit function theorem]
= ind D(w,u,J) [since D(w,u,J) is surjective]
= µτ (z+, γ+)− µτ (z−, γ−) + 1 [by Theorem 4.48].

As a second step, we show that we can switch the order of the quantifiers in the first step,
i.e. that for every reference almost complex structure Jref there exists a comeagre set
J ε

reg(Jref) ⊂ J ε(Jref) such that for every J ∈ J ε
reg(Jref) and every [z±, γ±], the property

in the statement of the theorem statement holds. For this, define

J ε
reg(Jref) :=

⋂
[z±,γ±]

J ε
reg(Jref , [z±, γ±]).

Since H is nondegenerate, in the above expression we are taking an intersection over a
finite set of data, and hence J ε

reg(Jref) is comeagre. This finishes the proof of the second
step. By the Baire category theorem, J ε

reg(Jref) ⊂ J ε(Jref) is dense. Finally, define

Jreg :=
⋃

Jref∈J
J ε

reg(Jref).

Then Jreg is the desired set of almost complex structures.
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Chapter 5

S1-equivariant Floer homology

5.1 Categorical setup
In this section, we define categories that will allow us to express the constructions of this
chapter as functors. We will define a category of complexes (see Definitions 5.3 and 5.4)
and a category of modules (see Definition 5.5). Associated to these, there is a Homology
functor between the two categories (Definition 5.7).

Remark 5.1. Recall that a preorder on a set S is a binary relation ≤ which is reflexive
and transitive. A preordered set (S,≤) can be seen as a category S by declaring that
objects of S are elements of the set S and that there exists a unique morphism from a to
b if and only if a ≤ b, for a, b ∈ S. Throughout this thesis, we will view R as a category
in this sense.

Definition 5.2. Let C be a category. A filtered object in C is a functor V : R −→ C.
A morphism of filtered objects from V to W is a natural transformation φ : V −→ W .
We denote by Hom(R,C) the category of filtered objects in C. In this case, we will use
the following notation. If a ∈ R, we denote by V a the corresponding object of C. If C
is abelian and a ≤ b ∈ R, we denote V (a,b] := V b/V a := coker(ιb,a : V a −→ V b).

Definition 5.3. Denote by ModQ the category of Q-modules. We define a category
Comp as follows. An object of Comp is a triple (C, ∂, U), where C ∈ Hom(R, ModQ )
is a filtered Q-module and ∂, U : C −→ C are natural transformations such that

∂ ◦ ∂ = 0,
∂ ◦ U = U ◦ ∂.

A morphism in Comp from (C, ∂C , UC) to (D, ∂D, UD) is a natural transformation
φ : C −→ D for which there exists a natural transformation T : C −→ D such that

∂D ◦ φ− φ ◦ ∂C = 0,
UD ◦ φ− φ ◦ UC = ∂D ◦ T + T ◦ ∂C .
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Definition 5.4. Let φ, ψ : (C, ∂C , UC) −→ (D, ∂D, UD) be morphisms in Comp. A
chain homotopy from φ to ψ is a natural transformation T : C −→ D such that

ψ − φ = ∂D ◦ T + T ◦ ∂C .

The notion of chain homotopy defines an equivalence relation ∼ on each set of morphisms
in Comp. We denote the quotient category (see for example [Rot88, Theorem 0.4]) by

hComp := Comp/ ∼ .

As we will see in Section 5.3, the S1-equivariant Floer chain complex of X (with respect
to a Hamiltonian H and almost complex structure J) is an object

FCS1(X,H, J) ∈ hComp.

Definition 5.5. We define a category Mod as follows. An object of Mod is a pair
(C,U), where C ∈ Hom(R, ModQ ) is a filtered Q-module and U : C −→ C is a natural
transformation. A morphism in Mod from (C,UC) to (D,UD) is a natural transforma-
tion φ : C −→ D such that φ ◦ UC = UD ◦ φ.

In Section 5.3, we will show that the S1-equivariant Floer homology of X (with respect
to a Hamiltonian H and almost complex structure J) and the S1-equivariant symplectic
homology of X are objects of Mod:

FHS1(X,H, J) ∈Mod,
SHS1(X) ∈Mod.

Lemma 5.6. The category Mod is abelian, complete and cocomplete.

Proof. Recall the definition of (co)complete: a category I is small if the class of mor-
phisms of I is a set. A category is (co)complete if for any I small and for any functor
F : I −→ Mod, the (co)limit of F exists. By [Rie16, Theorem 3.4.12], it suffices to
show that Mod has products, coequalizers, coproducts and coequalizers. First, no-
tice that ModQ is abelian, complete and cocomplete. Therefore, the same is true for
Hom(R, ModQ ). Let f : C −→ D be a morphism in Mod. Then f has a kernel and a
cokernel in Hom(R, ModQ ). We need to show that the kernel and the cokernel are ob-
jects of Mod, i.e. that they come equipped with a U map. The U maps for ker f, coker f
are the unique maps (coming from the universal property of the (co)kernel) such that
diagram

ker f C D coker f

ker f C D coker f

∃!Uker f UC

f

UD ∃!Ucoker f

f

commutes. Let Ci, for i ∈ I, be a family of objects in Mod. Then, the product ∏i∈I Ci
and the coproduct ⊕i∈I Ci exist in Hom(R, ModQ ). Again, we need to show that the
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product and coproduct come equipped with a U map. The U maps for the product and
coproduct are the maps

U∏
i∈I Ci

=
∏
i∈I
UCi :

∏
i∈I
Ci −→

∏
i∈I
Ci,

U⊕
i∈I Ci

=
⊕
i∈I

UCi :
⊕
i∈I

Ci −→
⊕
i∈I

Ci,

coming from the respective universal properties.

Definition 5.7. Let (C, ∂, U) ∈ hComp. The homology of (C, ∂, U) is the object of
Mod given by H(C, ∂, U) := (H(C, ∂), H(U)), where H(C, ∂) = ker ∂/ im ∂ and H(U)
is the unique map such that the diagram

im ∂ ker ∂ ker ∂/ im ∂ H(C, ∂)

im ∂ ker ∂ ker ∂/ im ∂ H(C, ∂)

U U ∃! H(U)

commutes. If φ : (C, ∂C , UC) −→ (D, ∂D, UD) is a morphism in hComp, we define the
induced morphism on homology, H(φ) : H(C, ∂C) −→ H(D, ∂D), to be the unique map
such that the diagram

im ∂C ker ∂C ker ∂C/ im ∂C H(C, ∂C)

im ∂D ker ∂D ker ∂D/ im ∂D H(D, ∂D)

φ φ ∃! H(φ)

commutes. With these definitions, homology is a functor H : hComp −→Mod.

5.2 Action functional
Our goal in this section is to establish the definitions that we will need to later de-
fine the S1-equivariant Floer Chain complex. We define suitable families of admissible
Hamiltonians (Definition 5.8) and almost complex structures (Definition 5.9). The key
points of this section are Definition 5.11, where we define the set of generators of the
S1-equivariant Floer chain complex, and Definition 5.13, where we define the trajecto-
ries that are counted in the differential of the S1-equivariant Floer chain complex. We
also define the action of a generator (Definition 5.14), which will induce a filtration on
the S1-equivariant Floer chain complex. We will assume that (X,λ) is a nondegenerate
Liouville domain with completion (X̂, λ̂). Let ε := 1

2 Spec(∂X, λ|∂X).

We start by recalling some basic facts about S2N+1 and CPN . For each N ∈ Z≥1 we
denote

S2N+1 := {(z0, . . . , zN) ∈ CN+1 | |z0|2 + · · ·+ |zN |2 = 1}.

There is an action S1 × S2N+1 −→ S2N+1 given by (t, z) 7−→ e2πitz. This action is free
and proper, so we can consider the quotient manifold S2N+1/S1. The Riemannian metric
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of CN+1 = R2(N+1) pulls back to a Riemannian metric on S2N+1. The action of S1 on
S2N+1 is by isometries, so there exists a unique Riemannian metric on S2N+1/S1 such
that the projection S2N+1 −→ S2N+1/S1 is a Riemannian submersion. The set C \ {0}
is a group with respect to multiplication, and it acts on CN+1 \ {0} by multiplication.
This action is free and proper, so we can form the quotient

CPN := (CN+1 \ {0})/(C \ {0}).

By the universal property of the quotient, there exists a unique map S2N+1/S1 −→ CPN

such that the following diagram commutes:

S2N+1 CN+1 \ {0}

S2N+1/S1 CPN
∃!

The map S2N+1/S1 −→ CPN is a diffeomorphism. Define the Fubini–Study metric on
CPN to be the unique Riemannian metric on CPN such that S2N+1/S1 −→ CPN is an
isometry.

We will now consider a special family of functions on S2N+1 and CPN . Define a function

fN : CPN −→ R

[w] 7−→
∑N
j=0 j|wj|2∑N
j=0 |wj|2

.

Define f̃N to be the pullback of fN to S2N+1. Let e0, . . . , eN be the canonical basis of
CN+1 (as a vector space over C). Then,

CritPt f̃N = {e2πitej | t ∈ S1, j = 0, . . . , N},
CritPt fN = {[e0], . . . , [eN ]}.

The function fN is Morse, while f̃N is Morse–Bott. The Morse indices are given by

µM([ej], fN) = 2j, for all j = 0, . . . , N,
µM(z, f̃N) = µM([z], fN), for all z ∈ CritPt fN .

We will use the notation µM(z) := µM(z, f̃N) = µM([z], fN).

We now study the relation between f̃N− and f̃N+ for N− ≥ N+. For every k such that
0 ≤ k ≤ N− −N+, define maps

ĩN
−,N+

k : S2N++1 −→ S2N−+1

(z0, . . . , zN+) 7−→ (0, . . . , 0︸ ︷︷ ︸
k

, z0, . . . , zN+ , 0, . . . , 0).
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Let Ik : R −→ R be given by Ik(x) = x+ k. Then, the following diagram commutes:

S2N++1 R

S2N−+1 R

CPN+ R

CPN− R

ĩN
−,N+

k

f̃N+

Ikf̃N−

∃!iN
−,N+

k

fN+

Ik

fN−

The vector fields ∇f̃N+ and ∇f̃N− are ĩN
−,N+

k -related, and analogously the vector fields
∇fN+ and ∇fN− are iN

−,N+

k -related. For t ∈ R, denote by φt
f̃N−

the time-t gradient flow
of f̃N− and analogously for φtfN+ . Then, the following diagram commutes:

S2N++1 S2N++1

S2N−+1 S2N−+1

CPN+ CPN+

CPN− CPN−

ĩN
−,N+

k

φt
f̃N

ĩN
−,N+

k

φt
f̃
N−

iN
−,N+

k

φtf
N+

iN
−,N+

k

φtf
N−

Definition 5.8. A parametrized Hamiltonian H : S1×S2N+1× X̂ −→ R is admissible
if it satisfies the conditions in Items (1) to (5). We denote the set of such H by H(X,N).

(1) There exist D ∈ R, C ∈ R>0 \ Spec(∂X, λ|∂X) and δ > 0 such that:

(I) on S1 × S2N+1 ×X, we have that −ε < H < 0, H is S1-independent and H
is C2-small (so that there are no nonconstant 1-periodic orbits);

(II) on S1 × S2N+1 × [0, δ]× ∂X, we have that −ε < H < ε and H is C2-close to
(t, z, r, x) 7−→ h(er), where h : [1, eδ] −→ R is increasing and strictly convex;

(S) on S1 × S2N+1 × [δ,+∞)× ∂X, we have that H(t, z, r, x) = Cer +D.

(2) Consider the action of S1 on S1×S2N+1×X̂ given by t′ ·(t, z, x) = (t′+t, e2πit′z, x).
Then H is invariant under this action, i.e. H(t′ + t, e2πit′z, x) = H(t, z, x).

(3) If z is a critical point of f̃N then Hz is nondegenerate.

(4) For every (t, z, x) ∈ S1 × S2N+1 × X̂ we have 〈∇S2N+1H(t, z, x),∇f̃N(z)〉 ≤ 0.

(5) There exists E ≥ 0 such that (̃iN,N−1
0 )∗H = (̃iN,N−1

1 )∗H + E.

Definition 5.9. A parametrized almost complex structure J : S1 × S2N+1 × X̂ −→
End(TX̂) is admissible if it satisfies the conditions in Items (1) to (4). We denote the
set of such J by J (X,N).
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(1) J is S1-invariant, i.e. J(t′+ t, e2πit′z, x) = J(t, z, x) for every t′ ∈ S1 and (t, z, x) ∈
S1 × S2N+1 × X̂.

(2) J is ω̂-compatible.

(3) The restriction of J to S1 × S2N+1 × R≥0 × ∂X is cylindrical.

(4) (̃iN,N−1
0 )∗J = (̃iN,N−1

1 )∗J .

Definition 5.10. Denote by IX the set of tuples

(H, J) ∈
∐

N∈Z≥1

H(X,N)× J (X,N)

which are regular, where “regular” means that the moduli spaces of Definition 5.13 are
transversely cut out. Define a preorder ≤ on IX by

(H+, J+) ≤ (H−, J−) :⇐⇒ N+ ≤ N− and H+ ≤ (iN
−,N+

0 )∗H−.

Definition 5.11. Let N ∈ Z≥1 and H ∈ H(X,N). Define

P̂(H) :=
{

(z, γ)
∣∣∣∣∣ z ∈ S2N+1 is a critical point of f̃N ,
γ ∈ C∞(S1, X̂) is a 1-periodic orbit of Hz

}
.

There is an action of S1 on P̂(H) given by t · (z, γ) := (e2πit′z, γ(· − t)). Define the
quotient

P(H) := P̂(H)/S1.

Remark 5.12. If (z, γ) ∈ P̂(H), then either im γ is in region I and γ is constant or
im γ is in region II and γ is nonconstant. In the slope region, i.e. region S, there are no
1-periodic orbits of H because C is not in Spec(∂X, λ|∂X) and by Corollary 2.42.

Definition 5.13. Let N ∈ Z≥1, H ∈ H(X,N) and J ∈ J (X,N). A pair (w, u),
where w : R −→ S2N+1 and u : R× S1 −→ X̂ is a solution of the parametrized Floer
equation if 

ẇ(s) = ∇f̃N(w(s))
∂u

∂s
(s, t) = −J tw(s)(u(s, t))

(
∂u

∂t
(s, t)−XHt

w(s)
(u(s, t))

)
.

For [z+, γ+], [z−, γ−] ∈ P(H), define M̂(H, J, [z+, γ+], [z−, γ−]) to be the moduli space
of solutions (w, u) of the parametrized Floer equation such that (w(s), u(s, ·)) converges
as s→ ±∞ to an element in the equivalence class [z±, γ±]. We define the following two
group actions.

R acts on M̂(H, J, [z+, γ+], [z−, γ−]) by s · (w, u) := (w(· − s), u(· − s, ·)),
S1 acts on M̂(H, J, [z+, γ+], [z−, γ−]) by t · (w, u) := (e2πitw, u(·, · − t)).

The actions of R and S1 on M̂(H, J, [z+, γ+], [z−, γ−]) commute, so they define an action
of R× S1 on M̂(H, J, [z+, γ+], [z−, γ−]). Finally, let

M(H, J, [z+, γ+], [z−, γ−]) := M̂(H, J, [z+, γ+], [z−, γ−])/R× S1.
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Definition 5.14. For (z, γ) ∈ P̂(H), the action of (z, γ), denoted AH(z, γ), is given by

AH(z, γ) := AHz(γ) =
∫
S1
γ∗λ̂−

∫
S1
H(t, z, γ(t))dt.

The action functional is a map AH : P̂(H) −→ R. Since H is S1-invariant, AH is S1-
invariant as well, and therefore there is a corresponding map AH whose domain is P(H).

Lemma 5.15. The actions of 1-periodic orbits of H are ordered according to

0 < AH(I) < ε < AH(II).

Proof. Consider Fig. 5.1. By Lemma 2.43 and Definition 5.8, we have thatAH is constant
equal to −H in regions I and S and AH is strictly increasing in region II. We remark
that strictly speaking, the Hamiltonian plotted in the picture is not H but instead
a Hamiltonian which is C2-close to H. However, it suffices to prove the statement
for the Hamiltonian which approximates H. From this discussion, we conclude that
0 < AH(I) < ε. We show that AH(II) > ε.

AH(II) = erT (r)−H(r) [by Lemma 2.43]
≥ 2εer −H(r) [2ε = min Spec(∂X, λ|∂X) and T (r) ∈ Spec(∂X, λ|∂X)]
> ε(2er − 1) [H(r) < ε]
> ε [r > 0].

R

0

R

+ε

−ε

δ

H

AH

I II S

X R≥0 × ∂X

Figure 5.1: Action of a 1-periodic orbit of H

Remark 5.16. Denote by CritPtAH ⊂ S2N+1 ×C∞(S1, X̂) the set of critical points of
the action functional. Then, P̂(H) = CritPtAH , as is usual for various Floer theories.
However, if (w, u) is a path in S2N+1×C∞(S1, X̂), it is not true that (w, u) is a gradient
flow line of AH if and only if (w, u) is a solution of the parametrized Floer equations.
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5.3 S1-equivariant Floer homology
Let (X,λ) be a nondegenerate Liouville domain. In this section, we define the S1-
equivariant Floer chain complex of (X,λ) and other related invariants, namely the
S1-equivariant Floer homology, the positive S1-equivariant Floer homology, the S1-
equivariant symplectic homology and the positive S1-equivariant symplectic homology.
The presentation we will give will be based on [GH18]. Other references discussing S1-
equivariant symplectic homology are [Gut14, Gut17, BO13, BO10, BO16, Sei08]. The
S1-equivariant Floer complex of X depends on the additional data of (H, J) ∈ IX .
More precisely, it can be encoded in a functor FCS1

X : IX −→ hComp. We start by
defining this functor on objects. For each I = (H, J) ∈ IX , we need to say what is
FCS1

X (H, J) := FCS1(X,H, J) ∈ hComp.

Definition 5.17. We define FCS1(X,H, J) to be the free Q-module generated by the
elements of P(H). Define FCS1,a(X,H, J) to be the subspace generated by the elements
[z, γ] of P(H) such that AH(z, γ) ≤ a. These modules come equipped with inclusion
maps

ιa : FCS1,a(X,H, J) −→ FCS1(X,H, J), for a ∈ R,
ιb,a : FCS1,a(X,H, J) −→ FCS1,b(X,H, J), for a ≤ b.

For [z±, γ±] ∈ P(H), consider the moduli space M(H, J, [z+, γ+], [z−, γ−]). Near a
point (w, u) ∈M(H, J, [z+, γ+], [z−, γ−]), this space is a manifold (see Theorem 4.51) of
dimension

dim(w,u)M(H, J, [z+, γ+], [z−, γ−]) = µτ
+(z+, γ+)− µτ−(z−, γ−)− 1, (5.1)

where

µτ
±(z±, γ±) := µM(z±) + µτ

±

CZ(γ±)

and τ± are symplectic trivializations of (γ±)∗TX̂ which extend to a symplectic trivial-
ization τ of u∗TX̂. With τ± chosen like this, even though each individual term on the
right-hand side of Equation (5.1) depends on τ±, the right-hand side is independent of
the choice of τ . Throughout this chapter, if M is a moduli space of solutions of the
parametrized Floer equation, we will denote by #M the signed count of points (w, u)
inM such that dim(w,u)M = 0.

Definition 5.18. We define ∂ : FCS1(X,H, J) −→ FCS1(X,H, J) by

∂([z+, γ+]) :=
∑

[z−,γ−]∈P(H)
#M(H, J, [z+, γ+], [z−, γ−]) · [z−, γ−],

for each [z+, γ+] ∈ P(H).

By Lemma 4.37, the differential respects the action filtration, i.e. the differential ∂ maps
FCS1,a(X,H, J) to itself. By [BO16, Proposition 2.2], ∂ ◦ ∂ = 0.
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Definition 5.19. We define a map U : FCS1(X,H, J) −→ FCS1(X,H, J) as follows.
First, recall that a critical point z of f̃N is of the form z = e2πitej, for t ∈ S1 and
j = 0, . . . , N . If j ≥ 1, let S(e2πitej) := e2πitej−1. Finally, define

U([z, γ]) :=

[S(z), γ] if µM(z) ≥ 2,
0 if µM(z) = 0,

for [z, γ] ∈ P(H).

The definition of U is well-posed because by Definition 5.8 (5), the Hamiltonians Hej

and Hej−1 differ by a constant. Therefore, if γ is a 1-periodic orbit of Hej then it is also
a 1-periodic orbit of Hej−1 . By [GH18, Section 6.3], U is a chain map, i.e. U ◦ ∂ = ∂ ◦U .

Lemma 5.20. The map U : FCS1(X,H, J) −→ FCS1(X,H, J) respects the filtration.

Proof. Let [z, γ] ∈ P(H) be such that µM(z) ≥ 2 and AH(z, γ) ≤ a. We wish to
show that AH(S(z), γ) ≤ AH(z, γ) ≤ a. Assumption (5) of Definition 5.8 implies that
HS(z) = Hz + E, where E ≥ 0. Then,

AH(S(z), γ) =
∫
S1
γ∗λ̂−

∫ 1

0
H(t, S(z), γ(t))dt [by definition of AH ]

=
∫
S1
γ∗λ̂−

∫ 1

0
H(t, z, γ(t))dt− E [since HS(z) = Hz + E]

= AH(z, γ)− E [by definition of AH ]
≤ AH(z, γ) [since E ≥ 0]
≤ a [by assumption on [z, γ]].

We will now define the continuation maps. For (H+, J+) ≤ (H−, J−) ∈ IX , we want to
define a morphism φ−,+ : FCS1(X,H+, J+) −→ FCS1(X,H−, J−). Consider the map

ĩN
−,N+

k : P̂((̃iN
−,N+

k )∗H−) −→ P̂(H−)
(z, γ) 7−→ (̃iN

−,N+

k (z), γ).

This map fits into the commutative diagram

P̂((̃iN
−,N+

k )∗H−) CritPt(f̃N+)

P̂(H−) CritPt(f̃N−)

P((̃iN
−,N+

k )∗H−) CritPt(fN+)

P(H−) CritPt(fN−)

ĩN
−,N+

k ĩN
−,N+

k

∃!iN
−,N+

k iN
−,N+

k

Definition 5.21. An admissible homotopy of parametrized Hamiltonians from H− to
H+ is a map H : R× S1× S2N++1× X̂ −→ R which satisfies the conditions in Items (1)
to (3), where Hs(t, z, x) = H(s, t, z, x). We denote the set of such H by H(H+, H−).
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(1) For every s ∈ R, we have that Hs satisfies all the assumptions in Definition 5.8,
with the exceptions that Cs may be in Spec(∂X, λ|∂X), and it is not necessarily
true that z ∈ CritPt f̃N implies that Hs,z is nondegenerate.

(2) There exists s0 > 0 such that if ±s > s0 then Hs = (̃iN
±,N+

0 )∗H±.

(3) For every (s, t, z, x) ∈ R× S1 × S2N++1 × X̂ we have that ∂sH(s, t, x, z) ≤ 0.

Definition 5.22. An admissible homotopy of parametrized almost complex structures
from J− to J+ is a map J : R × S1 × S2N++1 × X̂ −→ End(TX̂) which satisfies the
conditions in Items (1) and (2), where Js(t, z, x) = J(s, t, z, x). We denote the set of
such J by J (J+, J−).

(1) For every s ∈ R, we have that Js satisfies all the assumptions in Definition 5.9.

(2) There exists s0 > 0 such that if ±s > s0 then Js = (̃iN
±,N+

0 )∗J±.

Definition 5.23. Let [z±, γ±] ∈ P((̃iN
±,N+

0 )∗H±) and (H, J) be a homotopy from
(H−, J−) to (H+, J+). A pair (w, u), where w : R −→ S2N++1 and u : R × S1 −→ X̂ is
a solution of the parametrized Floer equation (with respect to (H, J)) if

ẇ(s) = ∇f̃N(w(s))
∂u

∂s
(s, t) = −J ts,w(s)(u(s, t))

(
∂u

∂t
(s, t)−XHt

s,w(s)
(u(s, t))

)
.

Define M̂(H, J, [z+, γ+], [z−, γ−]) to be the moduli space of solutions (w, u) of the para-
metrized Floer equation such that (w(s), u(s, ·)) converges as s→ ±∞ to an element in
the equivalence class [z±, γ±]. Define an action of S1 on M̂(H, J, [z+, γ+], [z−, γ−]) by

t · (w, u) = (e2πitw, u(·, · − t)).

Finally, letM(H, J, [z+, γ+], [z−, γ−]) := M̂(H, J, [z+, γ+], [z−, γ−])/S1.

Definition 5.24. The continuation map is the map

φ−,+ : FCS1(X,H+, J+) −→ FCS1(X,H−, J−)

given as follows. Choose a regular homotopy (H, J) from (H−, J−) to (H+, J+). Then,
for every [z+, γ+] ∈ P(H+),

φ−,+([z+, γ+]) :=
∑

[z−,γ−]∈P((̃iN
−,N+

0 )∗H−)

#M(H, J, [z+, γ+], [z−, γ−]) · [̃iN
−,N+

0 (z−), γ−].

Lemma 5.25. The map φ−,+ respects the action filtrations.

Proof. Assume that [z±, γ±] ∈ P((̃iN
±,N+

0 )∗H±) is such that AH+(z+, γ+) ≤ a and
M(H, J, [z+, γ+], [z−, γ−]) is nonempty. We wish to show thatAH− (̃iN

−,N+

0 (z−), γ−) ≤ a.
The proof is the following computation.

AH− (̃iN
−,N+

0 (z−), γ−)
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=
∫
S1
γ∗λ̂−

∫ 1

0
H−(t, ĩN

−,N+

0 (z−), γ−(t))dt [definition of action functional]

=
∫
S1
γ∗λ̂−

∫ 1

0
((̃iN

−,N+

0 )∗H−)(t, z−, γ−(t))dt [definition of ĩN
−,N+

0 ]

= A(̃iN
−,N+

0 )∗H−(z−, γ−) [definition of action functional]
≤ AH+(z+, γ+) [by Lemma 4.37]
≤ a [by assumption].

By [BO16, Section 2.4], the U maps and the continuation maps commute. Moreover, by
the usual arguments in Floer theory, we have (see also [GH18, Section 5.3]):

(1) The continuation map φ−,+ is a chain map, i.e. φ−,+ ◦ ∂+ = ∂− ◦ φ−,+.

(2) The continuation map φ−,+ is independent (up to chain homotopy, i.e. as a mor-
phism in hComp) on the choice of regular homotopy (H, J).

(3) The continuation maps are functorial, i.e. if (H0, J0) ≤ (H1, J1) ≤ (H2, J2) ∈ IX
then φ2,1 ◦ φ1,0 = φ2,0.

Remark 5.26. By the determinant property of Theorem 3.3, the parity of the Conley–
Zehnder index of a Hamiltonian 1-periodic orbit is independent of the choice of trivial-
ization. Therefore, FCS1(X,H, J) has a Z2-grading given by

deg([z, γ]) := µ([z, γ]) := µM(z) + µCZ(γ). (5.2)

If π1(X) = 0 and c1(TX)|π2(X) = 0, then by Lemma 3.11 we have well-defined Conley–
Zehnder indices in Z. Therefore, Equation (5.2) defines a Z-grading on FCS1(X,H, J).
With respect to this grading,

deg(∂) = −1,
deg(U) = −2,

deg(φ−,+) = 0.

Definition 5.27. If (X,λ) is a nondegenerate Liouville domain, the S1-equivariant
Floer chain complex of X is the functor

FCS1

X : IX −→ hComp
(H+, J+) 7−→ (FCS1(X,H+, J+), ∂+, U+)

↓ 7−→ ↓ φ−,+

(H−, J−) 7−→ (FCS1(X,H−, J−), ∂−, U−),

The S1-equivariant Floer homology of X is the functor FHS1
X = H ◦ FCS1

X . The
positive S1-equivariant Floer homology of X is the functor FHS1,+

X given by

FHS1,+
X (H, J) := FHS1,(ε,+∞)(X,H, J)

= FHS1(X,H, J)/FHS1,ε(X,H, J).
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Definition 5.28. For (X,λ) is a nondegenerate Liouville domain, the S1-equivariant
symplectic homology of X is the object in Mod given by SHS1(X,λ) := colimFHS1

X .
The positive S1-equivariant symplectic homology of X is given by

SHS1,+(X,λ) := colimFHS1,+
X

= SHS1,(ε,+∞)(X,λ)
= SHS1(X,λ)/SHS1,ε(X,λ).

5.4 Viterbo transfer map of a Liouville embedding
Our goal is to prove that SHS1 is a contravariant functor from a suitable category of
Liouville domains onto Mod. More specifically, suppose that (V, λV ) and (W,λW ) are
nondegenerate Liouville domains and ϕ : (V, λV ) −→ (W,λW ) is a 0-codimensional strict
generalized Liouville embedding. We will define a Viterbo transfer map

ϕ! : SHS1(W,λW ) −→ SHS1(V, λV ),
ϕ! : SHS1,+(W,λW ) −→ SHS1,+(V, λV ),

which is a morphism in Mod. We will start by definition the Viterbo transfer map in the
case where ϕ is a Liouville embedding instead of just a generalized Liouville embedding.
Consider the completions V̂ and Ŵ of V and W respectively, as well as the induced map
ϕ̂ : V̂ −→ Ŵ . Choose R so small that ϕ̂(V ∪ ([0, R]× ∂V )) ⊂ W . We define

εV := 1
2 min Spec(∂V, λV ),

εW := 1
2 min Spec(∂W, λW ),

ε := min{εV , εW}.

Definition 5.29. A stair parametrized Hamiltonian is a map H : S1×S2N+1×Ŵ −→ R
such that H satisfies the conditions in Items (2) to (5) from Definition 5.8 as well as the
conditions in the Items below. We denote the set of such H by H(W,V,N).

(I) On S1 × S2N+1 × V , we have that ϕ̂∗H has values in (0, ε), is S1-independent and
is C2-close to a constant.

(II) On S1×S2N+1× [0, δV ]× ∂V , we have that −ε < ϕ̂∗H < ε and ϕ̂∗H is C2-close to
(t, z, r, x) 7−→ hII(er), where hII : [1, eδV ] −→ R is increasing and strictly convex.

(SV ) On S1× S2N+1× [δV , R− δV ]× ∂V , we have that ϕ̂∗H(t, z, r, x) = CV e
r +DV , for

DV ∈ R and CV ∈ R>0 \ Spec(∂V, λV |∂V ) ∪ Spec(∂W, λW |∂W ).

(III) On S1 × S2N+1 × [R − δV , R] × ∂V , we have that ϕ̂∗H is C2-close to the func-
tion (t, z, r, x) 7−→ hIII(er), where hIII : [eR−δV , eR] −→ R is increasing and strictly
concave.

(IV) On S1×S2N+1×W \ ϕ̂(V ∪ [0, R]× ∂V ), the function H is C2-close to a constant.

(V) On S1×S2N+1× [0, δW ]×∂W , we have that H is C2-close to (t, z, r, x) 7−→ hV(er),
where h : [1, eδW ] −→ R is increasing and strictly convex.
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(SW ) On S1 × S2N+1 × [δW ,+∞) × ∂W , we have that H(t, z, r, x) = CW e
r + DW , for

DW ∈ R and CW ∈ R>0 \ Spec(∂V, λV |∂V ) ∪ Spec(∂W, λW |∂W ) such that CW <
e−δW (CV eR−δV +DV ).

Remark 5.30. If (z, γ) ∈ P̂(H), then either γ is nonconstant and im γ is in region II,
III or V, or γ is constant and im γ is in region I or IV. There are no 1-periodic orbits in
the slope regions SV and SW .

Lemma 5.31. The actions of 1-periodic orbits of H are ordered according to

AH(IV) < AH(V) < 0 < AH(I) < ε < AH(II).

Proof. Consider Fig. 5.2. By Lemma 2.43 and Definition 5.29, we have that AH is
constant in regions I, SV , IV and SW , AH is strictly increasing in regions II and V,
and AH is strictly decreasing in region III. From this reasoning, we conclude that
AH(IV) < AH(V) and 0 < AH(I) < ε. By the same argument as in the proof of
Lemma 5.15, we conclude that ε < AH(II). We show that AH(V) < 0.

AH(V)
= erWT (rW )−H(rW ) [by Lemma 2.43]
< erWCW −H(rW ) [T (δW ) = CW and T ′ = exp ·h′′V ◦ exp > 0]
< erWCW − (CV eR−δV +DV ) [H(rW ) > H(R− δV ) = CV e

R−δV +DV ]
< eδWCW − (CV eR−δV +DV ) [since rW < δW ]
< 0 [since CW < e−δW (CV eR−δV +DV )].

H

AH

+ε

−ε

δV R− δV R δW

R

0

R

0

R
I II SV III IV V SW

V [0, R]× ∂V W \ ϕ̂(V ∪ [0, R]× ∂V ) R≥0 × ∂W

Figure 5.2: Action of a 1-periodic orbit of H
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Definition 5.32. A stair parametrized almost complex structure is a map J : S1 ×
S2N+1×Ŵ −→ End(TŴ ) satisfying the conditions in Items (1) to (4) below. We denote
the set of such J by J (W,V,N).

(1) J is S1-invariant.

(2) J is ω̂-compatible.

(3) J is cylindrical on S1 × S2N+1 × [0, δ]× ∂V and on S1 × S2N+1 × R≥0 × ∂W .

(4) (ι̃N,N−1
0 )∗J = (ι̃N,N−1

1 )∗J .

Definition 5.33. Define sets

IW,V :=
{

(H, J)
∣∣∣∣∣ H ∈ H(W,V,N) and J ∈ J (W,V,N) for some N,

(H, J) is regular

}
,

KW,V :=

(H, J,H, J)

∣∣∣∣∣∣∣
H ∈ H(W,N), J ∈ J (W,N),
H ∈ H(W,V,N) and J ∈ J (W,V,N) for some N,
H ≤ H, and (H, J) and (H, J) are regular

 .
Define preorders on IW,V and KW,V by

(H+
, J

+) ≤ (H−, J−) :⇐⇒
{
N+ ≤ N−,

H
+ ≤ (̃iN

−,N+

0 )∗H−,

(H+, J+, H
+
, J

+) ≤ (H−, J−, H−, J−) :⇐⇒


N+ ≤ N−,

H+ ≤ (̃iN
−,N+

0 )∗H−,
H

+ ≤ (̃iN
−,N+

0 )∗H−.

Definition 5.34. Define a function πHW,V,N : H(W,V,N) −→ H(V,N) by πHW,V,N(H) =
HV , where

HV (t, z, x) :=

H(t, z, ϕ̂(x)) if x ∈ V ∪ ([0, R]× ∂V ),
CV e

r +DV if x = (r, y) ∈ [R,+∞)× ∂V.

Define a function πJW,V,N : J (W,V,N) −→ J (V,N) by πJW,V,N(J) = JV , where

JV (t, z, x) :=

Dϕ̂−1(ϕ̂(x)) ◦ J(t, z, ϕ̂(x)) ◦Dϕ̂(x) if x ∈ V ∪ ([0, R]× ∂V ),
Dϕ̂−1(ϕ̂(0, y)) ◦ J(t, z, ϕ̂(0, y)) ◦Dϕ̂(0, y) if x = (r, y) ∈ [0,+∞)× ∂V.

Definition 5.35. Define the functors

πW : KW,V −→ IW , given by πW (H, J,H, J) := (H, J),
πW,V : KW,V −→ IW,V , given by πW (H, J,H, J) := (H, J),
πH×JW,V : IW,V −→ IV , given by πH×JW,V (H, J) := (πHW,V,N(H), πJW,V,N(J)) = (HV , JV ),

for (H, J) ∈ H(W,V,N)× J (W,V,N). Let πV := πH×JW,V ◦ πW,V : KW,V −→ IV .
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Definition 5.36. Let H+ ∈ H(W,N+) be an admissible parametrized Hamiltonian and
H− ∈ H(W,V,N−) be a stair parametrized Hamiltonian. Assume that N+ ≤ N− and
(̃iN

−,N+

0 )H+ ≤ H−. An admissible homotopy of parametrized Hamiltonians from H−

to H+ is a map H : R×S1×S2N++1×Ŵ −→ R which satisfies the conditions in Items (1)
to (3) for some s0 > 0, where Hs(t, z, x) = H(s, t, z, x). We denote the set of such H by
H(H+, H−).

(1) For every s ∈ (−s0, s0), we have that Hs satisfies all the conditions in Defini-
tion 5.29 with the exceptions that CW,s and CV,s are possibly in Spec(∂W, λW |∂W )∪
Spec(∂V, λV |∂V ) and Hs,z is not necessarily nondegenerate for z ∈ CritPt f̃N+ .

(2) For every s, if ±s ≥ s0 then Hs = (̃iN
±,N+

0 )∗H±.

(3) For every (s, t, z, x) ∈ R× S1 × S2N++1 × Ŵ we have ∂sH(s, t, x, z) ≤ 0.

Remark 5.37. In Definition 5.36, the parameters of Hs depend on s. In particular,
the “constant” value that Hs takes in regions I and IV is dependent on s. However, the
parameter R does not depend on s.

Definition 5.38. Let J+ ∈ J (W,N+) be an admissible parametrized almost complex
structure and J− ∈ J (W,V,N−) be a stair parametrized almost complex structure. An
admissible homotopy of parametrized almost complex structures from J− to J+ is a
map J : R× S1× S2N++1× Ŵ −→ End(TŴ ) which satisfies the conditions in Items (1)
and (2) for some s0 > 0, where Js(t, z, x) = J(s, t, z, x). We denote the set of such J by
J (J+, J−).

(1) For every s ∈ (−s0, s0), we have that Js satisfies all the conditions in Defini-
tion 5.32.

(2) For every s, if ±s ≥ s0 then Js = (̃iN
±,N+

0 )∗J±.

Remark 5.39. Let (H, J,H, J) ∈ KW,V and consider πW (K) = (H, J) ∈ IW and
πW,V (K) = (H, J) ∈ IW,V . In Section 5.3 we defined FCS1(W,H, J), the Floer chain
complex of W with respect to the auxiliary data (H, J), for every (H, J) ∈ IW . Despite
the fact that (H, J) is not an element of IW , the Floer Chain complex FCS1(W,H, J) of
W with respect to the auxiliary data (H, J) is well-defined. More precisely, it is possible
to replicate the results of Section 5.3 but with the category IW,V instead of IW . Then,
we can define a functor

FCI−V
W : IW,V −→ hComp

(H, J) 7−→ FCI−V
W (H, J) := FCS1(W,H, J).

For every (H+, J+, H−, J−) ∈ KW,V , we have that H+ ≤ H−, and therefore we can
define a continuation map φ−,+ : FCS1(W,H+, J+) −→ FCS1(W,H−, J−) which is given
by counting solutions of the Floer equation with respect to H ∈ H(H+, H−) and J ∈
J (J+, J−). These continuation maps assemble into a natural transformation

φ : FCS1

W ◦ πW −→ FCI−V
W ◦ πW,V .

Definition 5.40. We define a functor FCIII,IV,V
W : IW,V −→ hComp as follows. If

(H, J) ∈ IW,V , then the module FCIII,IV,V
W (H, J) := FCIII,IV,V(W,H, J) is the submodule
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of FCI−V(W,H, J) which is generated by (equivalence classes of) 1-periodic orbits [z, γ]
of H such that im γ is in region III, IV or V. The maps

∂ : FCIII,IV,V(W,H, J) −→ FCIII,IV,V(W,H, J),
U : FCIII,IV,V(W,H, J) −→ FCIII,IV,V(W,H, J),

φ−,+ : FCIII,IV,V(W,H+
, J

+) −→ FCIII,IV,V(W,H−, J−).

are the restrictions (see Lemma 5.41) of the maps

∂ : FCI−V(W,H, J) −→ FCI−V(W,H, J),
U : FCI−V(W,H, J) −→ FCI−V(W,H, J),

φ−,+ : FCI−V(W,H+
, J

+) −→ FCI−V(W,H−, J−),

This completes the definition of FCIII,IV,V
W . Since FCIII,IV,V(W,H, J) is a subcomplex of

FCI−V(W,H, J), we have an inclusion natural transformation ι : FCIII,IV,V
W −→ FCI−V

W .

Lemma 5.41. In Definition 5.40, the maps ∂, U and φ−,+ restrict to maps on FCIII,IV,V
W .

Proof. To show that U restricts to a map on FCIII,IV,V
W , we simply note that by definition

U affects only z and not γ.

We show that ∂ restricts to a map on FCIII,IV,V
W . For this, let [z±, γ±] ∈ P(H) be such

that im γ+ is in region III, IV or V and assume that there exists a Floer trajectory from
[z+, γ+] to [z−, γ−] with respect to (H, J). We need to show that im γ− is in region III,
IV or V. Assume by contradiction that im γ− is in region I or II. In the case where
im γ+ is in region IV or V, the computation

0 < AH(z−, γ−) [by Lemma 5.31]
≤ AH(z+, γ+) [by Lemma 4.37]
< 0 [by Lemma 5.31]

gives a contradiction. It remains to derive a contradiction in the case where im γ+ is
in region III. By Corollary 2.42, γ+ is (approximately) of the form γ+(t) = (r+, ρ+(t))
for some Reeb orbit ρ+ in (∂V, λV |∂V ). The “no escape” lemma (Lemma 4.41) implies
that the Floer trajectory is inside ϕ̂(V ∪ [0, r+]×∂V ), while the “asymptotic behaviour”
lemma (Lemma 4.40) implies that the Floer trajectory must leave ϕ̂(V ∪ [0, r+]× ∂V ).
This completes the proof that ∂ restricts to a map on FCIII,IV,V

W .

To show that φ−,+ restricts to a map on FCIII,IV,V
W , we would use a proof analogous to

that of ∂. The key difference is that now the Floer trajectory would be defined with
respect to homotopies of Hamiltonians and almost complex structures. This does not
affect the proof because Lemmas 4.37, 4.40 and 4.41 also apply to homotopies.

Definition 5.42. Define a functor FCI,II
W : IW,V −→ hComp as follows. For (H, J) ∈

IW,V , the module FCI,II
W (H, J) := FCI,II(W,H, J) is given by the quotient

FCI,II(W,H, J) := FCI−V(W,H, J)/FCIII,IV,V(W,H, J).
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For (H+
, J

+) ≤ (H−, J−) ∈ IW,V , the continuation map φ−,+ : FCI,II(W,H+
, J

+) −→
FCI,II(W,H−, J−) is the unique map such that the diagram

FCIII,IV,V(W,H+
, J

+) FCI−V(W,H+
, J

+) FCI,II(W,H+
, J

+)

FCIII,IV,V(W,H−, J−) FCI−V(W,H−, J−) FCI,II(W,H−, J−)

ι+

φ−,+ φ−,+

π+

∃!φ−,+

ι− π−

commutes. There is a projection natural transformation π : FCI−V
W −→ FCI,II

W .

Definition 5.43. We define a natural transformation η : FCS1
V ◦ πH×JW,V −→ FCI,II

W as
follows. For (H, J) ∈ IW,V , the map ηH,J : FCS1(V,HV , JV ) −→ FCI,II(W,H, J) is
given by ηH,J([z, γ]) := [z, ϕ̂ ◦ γ].

Lemma 5.44. Definition 5.43 is well posed, i.e.:

(1) ηH,J is well-defined and it is a morphism of filtered modules.

(2) ηH,J commutes with the U map.

(3) ηH,J is a chain map.

(4) The maps ηH,J assemble into a natural transformation.

Proof. (1): Since ϕ̂ is a Liouville embedding, if [z, γ] ∈ P(HV ) then [z, ϕ̂ ◦ γ] ∈ P(H)
and AH(z, ϕ̂ ◦ γ) = AHV

(z, γ).

(2): We need to show that UW ◦ ηH,J([z, γ]) = ηH,J ◦ UV ([z, γ]), for [z, γ] ∈ P(HV ). If
µM(z) = 0, then both sides of the equation are 0. If µM(z) > 0, then

UW ◦ ηH,J([z, γ]) = UW ([z, ϕ̂ ◦ γ]) [by definition of η]
= [S(z), ϕ̂ ◦ γ] [by definition of U ]
= ηH,J [S(z), γ] [by definition of η]
= ηH,J ◦ UV ([z, γ]) [by definition of U ].

(3): We need to show that ηH,J ◦ ∂V ([z+, γ+]) = ∂W ◦ ηH,J([z+, γ+]), for every [z+, γ+] ∈
P(HV ). By the “no escape” lemma (Lemma 4.41), if [z−, γ−] ∈ P(HV ) then the map

M(HV , JV , [z+, γ+], [z−, γ−]) −→M(H, J, [z+, ϕ̂ ◦ γ+], [z−, ϕ̂ ◦ γ−])
[w, u] 7−→ [w, ϕ̂ ◦ u]

is an orientation preserving diffeomorphism. Then, we compute

ηH,J ◦ ∂V ([z+, γ+])
=

∑
[z−,γ−]∈P(HV )

#M(HV , JV , [z+, γ+], [z−, γ−]) · ηH,J([z−, γ−])

=
∑

[z−,γ−]∈P(HV )

#M(HV , JV , [z+, γ+], [z−, γ−]) · [z−, ϕ̂ ◦ γ−]
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=
∑

[z−,γ−]∈P(HV )

#M(H, J, [z+, ϕ̂ ◦ γ+], [z−, ϕ̂ ◦ γ−]) · [z−, ϕ̂ ◦ γ−]

=
∑

[z−,γ−W ]∈PI,II(H)

#M(H, J, [z−, γ−W ], [z+, γ+
W ]) · [z−, γ−W ]

=
∑

[z−,γ−W ]∈P(H)

#M(H, J, [z−, γ−W ], [z+, γ+
W ]) · [z−, γ−W ]

= ∂W ([z+, ϕ̂ ◦ γ+])
= ∂W ◦ ηH,J([z+, γ+]).

In this computation, in the third equality we used the orientation preserving diffeomor-
phism defined above, in the fourth equality we performed the variable change [z−, γ−W ] :=
[z−, ϕ̂ ◦ γ−] ∈ P I,II(H) and in the fifth equality we used the fact that if [z−, γ−W ] ∈
P III,IV,V(H) then [z−, γ−W ] = 0 as an element of FCI,II(W,H, J).

(4): This proof is analogous to that of (3).

Proposition 5.45. The map η : FCS1
V ◦ πH×JW,V −→ FCI,II

W is a natural isomorphism.

Proof. It suffices to show that ηH,J : FCS1(V,HV , JV ) −→ FCI,II(W,H, J) admits an
inverse as a map of Q-modules. Define νH,J : FCI−V(W,H, J) −→ FCS1(V,HV , JV ) by

νH,J([z, γ]) =

[z, ϕ̂−1 ◦ γ] if [z, γ] ∈ P I,II(H),
0 if [z, γ] ∈ P III,IV,V(H).

Then, by the universal property of the quotient of Q-modules, νH,J descends to a map
νH,J : FCI,II(W,H, J) −→ FCS1(V,HV , JV ), which is the inverse of ηH,J .

Definition 5.46. The Viterbo transfer map, ϕ! : SHS1(W,λW ) −→ SHS1(V, λV ), is
given as follows. Consider the following diagram in the category of functors from KW,V

to hComp:

FCIII,IV,V
W ◦ πW,V FCI−V

W ◦ πW,V FCI,II
W ◦ πW,V

FCS1
W ◦ πW FCS1

V ◦ πV

ι◦πW,V π◦πW,V

φ

∃!ϕ

η◦πW,V (5.3)

Passing to homology, we get a natural transformation Hϕ : FHS1
W ◦ πW −→ FHS1

V ◦ πV .
Then, ϕ! is the unique map such that the following diagram commutes:

FHS1
W ◦ πW colimFHS1

W ◦ πW SHS1(W,λW )

FHS1
V ◦ πV colimFHS1

V ◦ πV SHS1(V, λV )

Hϕ ∃!ϕ!=colimHϕ ∃!ϕ! (5.4)
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We define the Viterbo transfer map on positive S1-equivariant symplectic homology
by declaring it to be the unique map such that the following diagram commutes:

SHS1,ε(W,λW ) SHS1(W,λW ) SHS1,+(W,λW )

SHS1,ε(W,λW ) SHS1(W,λW ) SHS1,+(W,λW )

ϕε! ϕ! ∃!ϕ+
!

Remark 5.47. We have the following observations about Definition 5.46.

(1) In diagram (5.4), we view colimFHS1
W ◦ πW and colimFHS1

V ◦ πV as constant
functors, and we view ϕ! : colimFHS1

W ◦ πW −→ colimFHS1
V ◦ πV as a constant

natural transformation, which is just a map. Existence and uniqueness of ϕ comes
from the universal property of colimits.

(2) Since πW (KW,V ) is a cofinal subset of IW , we have SHS1(W,λW ) = colimFHS1
W =

colimFHS1
W ◦ πW , and analogously for V .

(3) We are also using the fact that

SHS1,+(W,λW ) = SHS1(W,λW )/SHS1,εW (W,λW )
= SHS1(W,λW )/SHS1,ε(W,λW ).

This is true because SHS1 is obtained as a direct limit of Floer homologies for
increasing Hamiltonians, and for (H, J) ∈ IW with H big enough we have that H
restricted to the interior of W takes values in (−ε, 0) ⊂ (−εW , 0) (and analogously
for V ).

Let Liouvndg be the category whose objects are nondegenerate Liouville domains and
whose morphisms are 0-codimensional Liouville embeddings which are either strict or
diffeomorphisms.

Theorem 5.48 ([Gut14, Theorem 3.1.16]). The following are contravariant functors:

SHS1 : Liouvndg −→Mod SHS1,+ : Liouvndg −→Mod
(V, λV ) 7−→ SHS1(V, λV ) (V, λV ) 7−→ SHS1,+(V, λV )

ϕ ↓ 7−→ ↑ ϕ! ϕ ↓ 7−→ ↑ ϕ+
!

(W,λW ) 7−→ SHS1(W,λW ), (W,λW ) 7−→ SHS1,+(W,λW ).

5.5 Viterbo transfer map of a generalized Liouville
embedding

We now define the Viterbo transfer map in the case where ϕ : (V, λV ) −→ (W,λW ) is a
generalized Liouville embedding, i.e. ϕ∗dλW = dλV and (ϕ∗λW − λV )|∂V is exact.

Lemma 5.49 ([GH18, Lemma 7.5]). If φ : (V, λV ) −→ (W,λW ) is a 0-codimensional
strict generalized Liouville embedding, then there exists a 1-form λ′W on W such that
dλ′W = dλW , λ′W = λW near ∂W and φ∗λ′W = λV .
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Lemma 5.50. Let (X,λX) and (Y, λY ) be nondegenerate Liouville domains and assume
that φ : (X,λX) −→ (Y, λY ) is a 0-codimensional strict Liouville embedding. Suppose
that λ′X ∈ Ω1(X) and λ′Y ∈ Ω1(Y ) are 1-forms such that

dλ′X = dλX , λ′X = λX near ∂X,
dλ′Y = dλY , λ′Y = λY near ∂Y,
φ∗λ′Y = λ′X .

Then,

SHS1(X,λX) = SHS1(X,λ′X),
SHS1,+(X,λX) = SHS1,+(X,λ′X),

and the diagrams

SHS1(Y, λY ) SHS1(Y, λ′Y )

SHS1(X,λX) SHS1(X,λ′X)

φ! φ′!

SHS1,+(Y, λY ) SHS1,+(Y, λ′Y )

SHS1,+(X,λX) SHS1,+(X,λ′X)

φ+
! φ′+!

(5.5)

commute.

Proof. We note that the following concepts only depend on dλX and on λX near ∂X: the
set of admissible Hamiltonians and admissible almost complex structures, the Hamilto-
nian vector field, action, the module which underlies the Floer complex (by all the
previous statements), the Floer equation and the notion of Floer trajectories (also by
the previous statements), the U map, the differential and the continuation maps. All
the statements follow immediately from the definitions given in Section 5.3, except the
fact that the action actually only depends on dλX and on λX |∂X . To prove this, it is
enough to show that ∫

S1
γ∗(λ̂X − λ̂′X) = 0. (5.6)

Since λ̂X − λ̂′X is closed, it defines a cohomology class [λ̂X − λ̂′X ] ∈ H1
dR(X̂). The orbit

γ also defines a homology class [γ] := γ∗[S1] ∈ H1(X̂;Z). Equation (5.6) can be restated
as

[λ̂X − λ̂′X ]([γ]) = 0. (5.7)

If γ is contractible, then Equation (5.7) holds. If γ is noncontractible, γ must have an
associated Reeb orbit ρ ∈ C∞(S1, ∂X). Denote by ι : ∂X −→ X̂ the inclusion.

[λ̂X − λ̂′X ]([γ]) = [λ̂X − λ̂′X ](ι∗[ρ]) [since γ and ι ◦ ρ are homotopic]
= (ι∗[λ̂X − λ̂′X ])([ρ]) [by definition of pullback]
= 0 [since λ′X = λX near ∂X].

Since the functors and natural transformations in diagram (5.3) only depend on dλX , dλY
and on λX , λY near the boundaries, the diagrams (5.5) commute.
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Definition 5.51 ([GH18, Definition 7.6]). If ϕ : (V, λV ) −→ (W,λW ) is a strict gener-
alized Liouville embedding of codimension 0, then the Viterbo transfer map of ϕ is
defined as follows. Choose λ′W ∈ Ω1(W ) as in Lemma 5.49. Denote by ϕ′ : (V, λV ) −→
(W,λ′W ) the Liouville embedding which as a map of sets coincides with ϕ. Then, define

ϕ! : SHS1(W,λW ) = SHS1(W,λ′W )
ϕ′!−→ SHS1(V, λV ),

ϕ+
! : SHS1,+(W,λW ) = SHS1,+(W,λ′W )

ϕ′!−→ SHS1,+(V, λV ),

where the equality was explained in Lemma 5.50 and the arrows are the Viterbo transfer
maps of a Liouville embedding as in Definition 5.46.

Lemma 5.52. In Definition 5.51, ϕ! and ϕ+
! are independent of the choice of λ′W .

Proof. Let λ′W and λ′′W be 1-forms as in Lemma 5.49, and denote the corresponding
Liouville embeddings by ϕ′ : (W,λ′W ) −→ (V, λV ) and ϕ′′ : (W,λ′′W ) −→ (V, λV ) (note
that as set theoretic maps, ϕ′ = ϕ′′ = ϕ). Then, by Lemma 5.50, the following diagram
commutes:

SHS1(W,λW ) SHS1(W,λ′W ) SHS1(V, λV )

SHS1(W,λW ) SHS1(W,λ′′W ) SHS1(V, λV )

ϕ′!

ϕ′′!

In this diagram, the top arrow is the Viterbo transfer map defined with respect to λ′W
and the bottom arrow is the Viterbo transfer map defined with respect to λ′′W .

Let Liouvgle
ndg be the “category” whose objects are nondegenerate Liouville domains and

whose morphisms are 0-codimensional generalized Liouville embeddings which are either
strict or diffeomorphisms. Strictly speaking, since composition of generalized Liouville
embeddings is not in general a generalized Liouville embedding, this is not a category.
However, Liouvgle

ndg does fit into the notion of categroid (see Definition 6.1), which is
an object like a category with only partially defined compositions. One can then talk
about functors between categroids.

Theorem 5.53. The assignments

SHS1 : Liouvgle
ndg −→Mod SHS1,+ : Liouvgle

ndg −→Mod
(V, λV ) 7−→ SHS1(V, λV ) (V, λV ) 7−→ SHS1,+(V, λV )

ϕ ↓ 7−→ ↑ ϕ! ϕ ↓ 7−→ ↑ ϕ+
!

(W,λW ) 7−→ SHS1(W,λW ), (W,λW ) 7−→ SHS1,+(W,λW )

are contravariant functors.

Proof. We prove the result only for SHS1 , since the proof for SHS1,+ is analogous.
It suffices to assume that ϕ : (V, λV ) −→ (W,λW ) and ψ : (W,λW ) −→ (Z, λZ) are
composable strict, generalized Liouville embeddings of codimension 0 and to prove that
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(ψ ◦ ϕ)! = ϕ! ◦ ψ!. Here, “composable” means that the composition ψ ◦ ϕ is also a
generalized Liouville embedding. We start by choosing

λ′W ∈ Ω1(W ) such that dλ′W = dλW , λ′W = λW near ∂W, and ϕ∗λ′W = λV ,

λ′Z ∈ Ω1(Z) such that dλ′Z = dλZ , λ′Z = λZ near ∂Z, and ψ∗λ′Z = λW ,

λ′′Z ∈ Ω1(Z) such that dλ′′Z = dλ′Z , λ′′Z = λ′Z near ∂Z, and ψ∗λ′′Z = λ′W .

Therefore, we have Liouville embeddings

ϕ′ : (V, λV ) −→ (W,λ′W ),
ψ′ : (W,λW ) −→ (Z, λ′Z),
ψ′′ : (W,λ′W ) −→ (Z, λ′′Z).

We can define the Viterbo transfer maps

ϕ! : SHS1(W,λW ) = SHS1(W,λ′W )
ϕ′!−→ SHS1(V, λV ),

ψ! : SHS1(Z, λZ) = SHS1(Z, λ′Z)
ψ′!−→ SHS1(W,λW ),

(ϕ ◦ ψ)! : SHS1(Z, λZ) = SHS1(Z, λ′′Z) (ψ′′◦ϕ′)!−−−−−→ SHS1(V, λV ).

Consider the following commutative diagram:

SHS1(Z, λZ) SHS1(Z, λ′Z) SHS1(Z, λ′′Z)

SHS1(W,λW ) SHS1(W,λ′W )

SHS1(V, λV )

ψ!

(ψ◦ϕ)!

ψ′! ψ′′!

(ψ′′◦ϕ′)!

ϕ!
ϕ′!

Here, the two small triangles and the outside arrows commute by definition of the Viterbo
transfer map of a generalized Liouville embedding, the square commutes by Lemma 5.50,
and (ψ′′ ◦ ϕ′)! = ϕ′! ◦ ψ′′! by Theorem 5.48. Therefore, (ψ ◦ ϕ)! = ϕ! ◦ ψ!.

5.6 δ map
Let (X,λ) be a nondegenerate Liouville domain. Our goal in this section is to define
a map δ : SHS1,+(X) −→ H•(BS1;Q) ⊗ H•(X, ∂X;Q). As we will see, δ = α ◦ δ0,
where δ0 : SHS1,+(X) −→ SHS1,ε(X) is the continuation map associated to a long ex-
act sequence in homology (see Definition 5.59) and α : SHS1,ε(X) −→ H•(BS1;Q) ⊗
H•(X, ∂X;Q) is an isomorphism which we define in several steps (see Lemmas 5.55
to 5.58). For every (H, J) ∈ IX , define

H ′ := He0 : S1 × X̂ −→ R,
J ′ := Je0 : S1 × X̂ −→ End(TX̂),

where e0 ∈ S2N+1 ⊂ CN+1 is the first vector in the canonical basis of CN+1. We start by
giving an alternative definition of the S1-equivariant Floer chain complex.
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Definition 5.54 ([GH18, Remark 5.15]). We define a chain complex FCS1(X,H, J)alt as
follows. Let u be a formal variable of degree 2 and consider Q{1, . . . , uN}, the Q-module
of polynomials in u of degree less or equal to 2N . As a Q-module,

FCS1(X,H, J)alt := Q{1, . . . , uN} ⊗ FC(X,H ′, J ′),

where FC(X,H ′, J ′) is the Floer chain complex (not S1-equivariant) of X with respect
to (H ′, J ′), with Q coefficients. We will now define a differential ∂alt on FCS1(X,H, J)alt.
For every j = 0, . . . , N , define a map ϕj : FC(X,H ′, J ′) −→ FC(X,H ′, J ′) by

ϕj(γ+) :=
∑

γ−∈P(H′)
#M(H, J, [ej, γ+], [e0, γ

−]) · γ−,

for every γ+ ∈ P(H ′). Note that ϕ0 : FC(X,H ′, J ′) −→ FC(X,H ′, J ′) is the usual
differential of the Floer chain complex. Finally, we define

∂alt : Q{1, . . . , uN} ⊗ FC(X,H ′, J ′) −→ Q{1, . . . , uN} ⊗ FC(X,H ′, J ′)

uk ⊗ γ 7−→
k∑
j=0

uk−j ⊗ ϕj(γ).

Lemma 5.55 ([BO16, Section 2.3]). The map

FCS1(X,H, J) −→ FCS1(X,H, J)alt

[ej, γ] 7−→ uj ⊗ γ

is an isomorphism of chain complexes.

Recall that in X, the Hamiltonian H is assumed to be C2-small and S1-independent.
Therefore, if γ : S1 −→ X̂ is a 1-periodic orbit of H ′ and im γ ⊂ X, then γ is constant
with value x ∈ X, where x is a critical point of H ′. We will now assume that the
Hamiltonian H is chosen such that if x± are critical points of H ′, then

H ′(x+) ≤ H ′(x−) =⇒ µM(x+, H ′) ≥ µM(x−, H ′). (5.8)

We will denote by (MC(X,H ′), ∂M) the Morse complex of X with respect to H ′, defined
with the following conventions. As a vector space, MC(X,H ′) is the vector space over
Q generated by the critical points of H ′. If x± are critical points of H ′, the coefficient
〈∂M(x+), x−〉 is the count of gradient flow lines of H ′ from x− to x+. Finally, the degree
of a critical point x is the Morse index of x.

Lemma 5.56. There is a canonical isomorphism of chain complexes

(FCS1,ε(X,H, J), ∂alt) = (Q{1, . . . , uN} ⊗MC(X,H ′), id⊗∂M).

Proof. By Remark 5.12 and Lemmas 5.15 and 5.55, there is a canonical isomorphism of
Q-modules

FCS1,ε(X,H, J) = Q{1, . . . , uN} ⊗MC(X,H ′).
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We show that this isomorphism is a chain map. We claim that if j ≥ 1 and x+, x−

are critical points of H ′, then dim(w,u)M(H, J, [ej, x+], [e0, x
−]) ≥ 1. To see this, we

compute

dim(w,u)M(H, J, [ej, x+], [e0, x
−]) = µ(ej, x+)− µ(e0, x

−)− 1
= µM(ej)− µM(e0) + µM(x+, H ′)− µM(x−, H ′)− 1
= 2j + µM(x+, H ′)− µM(x−, H ′)− 1
≥ 2j − 1
≥ 1,

where in the fourth line we used Lemma 4.37 and Equation (5.8). Therefore, if j ≥ 1
and x+ is a critical point of H ′ then ϕj(x+) = 0. This implies that

∂alt(uk ⊗ x+) = uk ⊗ ϕ0(x+),

where ϕ0(x+) = ∂M(x+) is the Morse theory differential applied to x+.

Lemma 5.57. There is a canonical isomorphism

FHS1,ε(X,H, J) = Q{1, . . . , uN} ⊗H•(X, ∂X;Q).

Proof.

FHS1,ε(X,H, J) = H(Q{1, . . . , uN} ⊗MC(X,H ′))
= Q{1, . . . , uN} ⊗MH•(X,H ′)
= Q{1, . . . , uN} ⊗H•(X, ∂X;Q),

where in the first equality we used Lemma 5.56, in the second equality we used the
definition of the differential of Q{1, . . . , uN} ⊗MC(X,H ′), and in the third equality we
used the isomorphism between Morse homology and singular homology.

Lemma 5.58. There is a canonical isomorphism

α : SHS1,ε(X) −→ H•(BS1;Q)⊗H•(X, ∂X;Q).

Proof.

SHS1,ε(X) = lim−→
N,H,J

FHS1,ε(X,H, J)

= lim−→
N,H,J

Q{1, . . . , uN} ⊗H•(X, ∂X;Q)

= Q[u]⊗H•(X, ∂X;Q)
= H•(BS1;Q)⊗H•(X, ∂X;Q),

where in the first equality we used the definition of S1-equivariant symplectic homology
and in the second equality we used Lemma 5.57.
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Definition 5.59. We define a map δ : SHS1,+(X) −→ H•(BS1;Q) ⊗ H•(X, ∂X;Q) as
follows. For every (H, J) ∈ IX , consider the short exact sequence of complexes

0 FCS1,ε(X,H, J) FCS1(X,H, J) FCS1,+(X,H, J) 0

There is an associated long exact sequence in homology

· · · FHS1(X,H, J) FHS1,+(X,H, J) FHS1,ε(X,H, J) · · ·δH,J

Passing to the colimit, we obtain a sequence

· · · SHS1(X) SHS1,+(X) SHS1,ε(X) · · ·δ0

Finally, define δ := α ◦ δ0 : SHS1,+(X) −→ H•(BS1;Q)⊗H•(X, ∂X;Q), where α is the
isomorphism from Lemma 5.58.

Let ϕ : (X,λX) −→ (Y, λY ) be a 0-codimensional strict generalized Liouville embedding.
Define ρ : H•(Y, ∂Y ;Q) −→ H•(X, ∂X;Q) to be the unique map such that the diagram

H•(X, ∂X;Q) H•(ϕ(X), ϕ(∂X);Q)

H•(Y, ∂Y ;Q) H•(Y, Y \ ϕ(intX);Q)

ϕ∗

∃!ρ

commutes, where ϕ∗ is an isomorphism by functoriality of homology and the vertical
arrow on the right is an isomorphism by excision. The map ρ is such that ρ([Y ]) = [X].

Proposition 5.60 ([GH18, Proposition 3.3]). The diagram

SHS1,+(Y ) H•(BS1;Q)⊗H•(Y, ∂Y ;Q)

SHS1,+(X) H•(BS1;Q)⊗H•(X, ∂X;Q)

δY

ϕ! id⊗ρ

δX

commutes.
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Chapter 6

Symplectic capacities

6.1 Symplectic capacities
In this section we define the notion of symplectic capacity (Definition 6.3). A capacity
is a function c which assigns to every symplectic manifold X (in a restricted subclass) a
number c(X) ∈ [0,+∞], and which is functorial with respect to symplectic embeddings
(in a restricted subclass). In the remaining sections of this chapter, we will define
various capacities, namely the Lagrangian capacity (Definition 6.17), the Gutt–Hutchings
capacities (Definition 6.25) and the McDuff–Siegel capacities (Definition 6.33). In this
section we also deal with two small technicalities:

(1) Most of the capacities we will deal with in this thesis are functorial with respect
to generalized Liouville embeddings, which do not form a category. However, they
form an object which is like a category but has only partially defined composition
of morphisms. We will use the nomenclature of [AK14] and call such an object a
categroid (Definition 6.1).

(2) As we will see, some capacities we will consider are defined on the class of nonde-
generate Liouville domains. In the last part of this section, we will see how such a
capacity can be extended uniquely to a capacity of Liouville domains.

Definition 6.1 ([AK14, Definition 22]). A categroid C consists of a family of objects
Obj(C) and for any pair of objects A,B ∈ C a set HomC(A,B) such that the following
holds.

(1) For any three objects A, B, C there is a subset CompC(A,B,C) ⊂ HomC(B,C)×
HomC(A,B) of composable morphisms and an associated composition map

◦ : CompC(A,B,C) −→ HomC(A,C)

such that composition of composable morphisms is associative.

(2) For any object A there exists an identity morphism idA ∈ HomC(A,A) which is
composable with any morphism f ∈ HomC(A,B) or g ∈ HomC(B,A) and satisfies

f ◦ idA = f,

idA ◦g = g.
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In this context, one has obvious definitions of subcategroids and also of functors between
categroids. Denote by Symp the category of symplectic manifolds, where morphisms
are 0-codimensional symplectic embeddings.

Definition 6.2. A symplectic categroid is a subcategroid C of Symp such that
(X,ω) ∈ C implies (X,αω) ∈ C for all α > 0.

Definition 6.3. Let C be a symplectic categroid. A symplectic capacity is a functor
c : C −→ [0,+∞] satisfying

(Monotonicity) If (X,ωX) −→ (Y, ωY ) is a morphism in C then c(X,ωX) ≤ c(Y, ωY );

(Conformality) If α > 0 then c(X,αω) = α c(X,ω).

Notice that the monotonicity property is just a restatement of the fact that c is a functor.

Definition 6.4. Let c : C −→ [0,+∞] be a symplectic capacity with the property that
B2n(1), Z2n(1) ∈ C for every n. We say that c is nontrivial or normalized if it satisfies

(Nontriviality) 0 < c(B2n(1)) ≤ c(Z2n(1)) < +∞;

(Normalization) 0 < c(B2n(1)) = 1 = c(Z2n(1)) < +∞.

Example 6.5. Let (X,ω) be a 2n-dimensional symplectic manifold. Recall that the
symplectic volume of X is given by

vol(X) :=
∫
X

ωn

n! .

The volume capacity of X is given by

cvol(X) :=
(vol(X)

vol(B)

)1/n
,

where B := B2n(1) := {z ∈ Cn | π|z|2 ≤ 1}.

Example 6.6. Let (Y,Ω) be a symplectic manifold. We define the embedding capac-
ities, denoted by c(Y,Ω) and c(Y,Ω), by

c(Y,Ω)(X,ω) := sup{a > 0 | there exists a symplectic embedding (Y, aΩ) −→ (X,ω)},
c(Y,Ω)(X,ω) := inf {a > 0 | there exists a symplectic embedding (X,ω) −→ (Y, aΩ)},

for any symplectic manifold (X,ω). Let ω0 denote the canonical symplectic structure of
Cn. In the case where (Y,Ω) = (B2n(1), ω0) or (Y,Ω) = (P 2n(1), ω0), we denote

cB(X,ω) := c(B2n(1),ω)(X,ω) = sup{a | ∃ symplectic embedding B2n(a) −→ X},
cP (X,ω) := c(P 2n(1),ω)(X,ω) = sup{a | ∃ symplectic embedding P 2n(a) −→ X}.

Embedding capacities tend to be hard to compute, since they are defined as a restatement
of a hard embedding problem. For example, a restatement of Gromov’s nonsqueezing
theorem [Gro85] is that cB is a normalized symplectic capacity. The capacity cB is also
called Gromov width.
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Definition 6.7 ([GH18, Section 4.2]). If (X,λ) is a Liouville domain and f : ∂X −→ R
is a smooth function, we define a new Liouville domain (Xf , λf ) as follows. Consider the
completion X̂, which has as subsets X ⊂ X̂ and R× ∂X ⊂ X̂. Then,

Xf := X̂ \ {(ρ, y) ∈ R× ∂X | ρ > f(y)}

and λf is the restriction of λ̂ to Xf . Define F±X to be the set of f± : ∂X −→ R± such
that (Xf± , λf±) is nondegenerate.

Definition 6.8. A Liouville categroid is a subcategroid L of Symp such that

(1) Every object of L is a Liouville domain.

(2) If X ∈ L and f+ ∈ F+
X then Xf+ ∈ L and the inclusion X −→ Xf+ is a morphism

in L which is composable with any other morphisms Y −→ X or Xf+ −→ Z in L.

(3) If X ∈ L and f− ∈ F−X then Xf− ∈ L and the inclusion Xf− −→ X is a morphism
in L which is composable with any other morphisms Y −→ Xf− or X −→ Z in L.

Example 6.9. Let Liouvgle be the categroid whose objects are Liouville domains and
whose morphisms are 0-codimensional generalized Liouville embeddings. Then Liouvgle

is a Liouville categroid.

Lemma 6.10. Let L be a Liouville categroid. Let Lndg be the full subcategroid of
L of nondegenerate Liouville domains (i.e., if X, Y ∈ Lndg then HomLndg(X, Y ) =
HomL(X, Y )). If c : Lndg −→ [0,+∞] is a symplectic capacity, then there exists a unique
symplectic capacity c : L −→ [0,+∞] such that the following diagram commutes:

Lndg

L [0,+∞]

c

c

(6.1)

Proof. This proof is based on [GH18, Section 4.2]. We claim that if ε > 0 and (X,λ) is
a nondegenerate Liouville domain in Lndg, then (Xε, λε) is nondegenerate and

c(Xε, λε) = eεc(X,λ). (6.2)

To see this, notice that the time ε flow of the Liouville vector field Z of X̂ restricts
to a Liouville embedding φ : (X, eελ) −→ (Xε, λε) and also to a contactomorphism
φ : (∂X, eελ|∂X) −→ (∂Xε, ∂λε|∂Xε). This shows that (Xε, λε) is nondegenerate. In
particular, (Xε, λε) ∈ Lndg. Finally,

c(Xε, λε) = c(X, eελ) [by functoriality of c]
= eεc(X,λ) [by conformality].

This finishes the proof of Equation (6.2). Define functions c± : L −→ [0,+∞] by

c+(X) := inf
f+∈F+

X

c(Xf+),

c−(X) := sup
f−∈F−X

c(Xf−).
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We claim that if (X,λ) ∈ L is a Liouville domain then

c−(X) = c+(X). (6.3)

Monotonicity of c implies c−(X) ≤ c+(X). To show the reverse inequality, it is enough
to show that c+(X) ≤ eεc−(X) for every ε > 0. For this, choose f− ∈ F−X such that
im f− ⊂ (−ε, 0) and define f+ = f− + ε. By the previous discussion, (Xf+ , λf+) is
nondegenerate and f+ ∈ F+

X . Then,

c+(X) = inf
g+∈F+

X

c(Xg+) [by definition of c+]

≤ c(Xf+) [since f+ ∈ F+
X ]

= eεc(Xf−) [by Equation (6.2)]
≤ eε sup

g−∈F−X

c(Xg−) [since f− ∈ F−X ]

= eεc−(X) [by definition of c−],

which finishes the proof of Equation (6.3). Moreover, if (X,λ) ∈ Lndg is nondegenerate,
then c−(X) ≤ c(X) ≤ c+(X) = c−(X), which implies

c−(X) = c(X) = c+(X).

We now show that c± are symplectic capacities. The conformality property is immediate.
To prove monotonicity, let X −→ Y be a morphism in L.

c−(X) = sup
f−∈F−X

c(Xf−) [by definition of c−]

≤ inf
g+∈F+

Y

c(Yg+) [since Xf− ⊂ X −→ Y ⊂ Yg+ and by monotonicity of c]

= c+(Y ) [by definition of c+].

The result follows from Equation (6.3). To prove existence, simply notice that by the
above discussion, the function c := c− = c+ : L −→ [0,+∞] has all the desired properties.

To prove uniqueness, let c be any function as in the statement of the lemma. We wish
to show that c := c− = c+. We start by showing that c−(X) ≤ c(X).

c−(X) = sup
f−∈F−X

c(Xf−) [by definition of c−]

= sup
f−∈F−X

c(Xf−) [by assumption on c]

≤ sup
f−∈F−X

c(X) [by monotonicity of c]

= c(X).

Analogously, we can show that c+(X) ≥ c(X), which concludes the proof.

Lemma 6.11. For i = 0, 1, let ci : Lndg → [0,+∞] be symplectic capacities with exten-
sions ci : L → [0,+∞] as in Lemma 6.10. If c0(Y ) ≤ c1(Y ) for every nondegenerate
Liouville domain Y ∈ Lndg then c0(X) ≤ c1(X) for every Liouville domain X ∈ L.

100



Proof.

c0(X) = sup
f−∈F−X

c0(Xf−) [by the definition of c0 in Lemma 6.10]

≤ sup
f−∈F−X

c1(Xf−) [by assumption on c0 and c1]

= c1(X) [by the definition of c1 in Lemma 6.10].

By the exposition above, if c is a capacity of nondegenerate Liouville domains then it
can be extended to a capacity of Liouville domains. In particular, c(X) is defined for
any star-shaped domain X. However, it will be useful to us to compute capacities of the
cube P (r) and of the nondisjoint union of cylinders N(r). These spaces are not quite
star-shaped domains, because they have corners and N(r) is noncompact. So we will
consider a further extension of the capacity c. Let Star be the category of star-shaped
domains, where there is a unique morphism X −→ Y if and only if X ⊂ Y . Denote
by Starncp the category of “star-shaped domains” which are possibly noncompact or
possibly have corners, with the same notion of morphisms.

Lemma 6.12. Let c : Star −→ [0,+∞] be a symplectic capacity. Define a symplectic
capacity c : Starncp −→ [0,+∞] by

c(X) = sup
Y⊂X

c(Y ),

where the supremum is taken over star-shaped domains Y ⊂ X which are compact and
have smooth boundary. Then, the diagram

Star

Starncp [0,+∞]

c

c

commutes. Moreover, c is the smallest capacity making this diagram commute.

Proof. It is immediate that c is a symplectic capacity. We show that the diagram com-
mutes. If X is a compact star-shaped domain with smooth boundary, then

c(X) ≤ sup
Y⊂X

c(Y ) [since X is compact and has smooth boundary]

≤ c(X) [by monotonicity].

If c̃ : Starncp −→ [0,+∞] is another capacity making the diagram commute, then

c(X) = sup
Y⊂X

c(Y ) [by definition of c]

= sup
Y⊂X

c̃(Y ) [since c̃ makes the diagram commute]

≤ c̃(X) [by monotonicity of c̃].

Remark 6.13. We will always assume that every capacity of nondegenerate Liouville
domains that we define is extended as in Lemmas 6.10 and 6.12 to possibly degener-
ate Liouville domains and to “star-shaped domains” which are possibly noncompact or
possibly have corners.
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6.2 Lagrangian capacity
Here, we define the Lagrangian capacity (Definition 6.17) and state its properties (Propo-
sition 6.18). One of the main goals of this thesis is to study whether the Lagrangian
capacity can be computed in some cases, for example for toric domains. In the end of
the section, we state some easy inequalities concerning the Lagrangian capacity (Lem-
mas 6.19 and 6.20), known computations (Propositions 6.21 and 6.22) and finally the
main conjecture of this thesis (Conjecture 6.24), which is inspired by all the previous
results. The Lagrangian capacity is defined in terms of the minimal area of Lagrangian
submanifolds, which we now define.

Definition 6.14. Let (X,ω) be a symplectic manifold. If L is a Lagrangian submanifold
of X, then we define the minimal symplectic area of L, denoted Amin(L), by

Amin(L) := inf{ω(σ) | σ ∈ π2(X,L), ω(σ) > 0}.

Lemma 6.15. Let ι : (X,ω) −→ (X ′, ω′) be a symplectic embedding, L ⊂ X be an
embedded Lagrangian submanifold and L′ = ι(L). In this case,

(1) Amin(L) ≥ Amin(L′);

(2) Amin(L) = Amin(L′), provided that π2(X ′, ι(X)) = 0.

Proof. (1): By definition of minimal area and since the diagram

π2(X,L)

π2(X ′, L′) R

ι∗ ω

ω′

(6.4)

commutes.

(2): Considering the long exact sequence of the triple (X ′, ι(X), L′),

· · · π2(ι(X), L′) π2(X ′, L′) π2(X ′, ι(X)) = 0

we conclude that ι∗ : π2(X,L) −→ π2(X ′, L′) is surjective. Again, the result follows by
the definition of minimal area and diagram (6.4).

Lemma 6.16. Let (X,λ) be an exact symplectic manifold and L ⊂ X be a Lagrangian
submanifold. If π1(X) = 0, then

Amin(L) = inf {λ(ρ) | ρ ∈ π1(L), λ(ρ) > 0} .

Proof. The diagram

π2(L) π2(X) π2(X,L) π1(L) π1(X)

R R R R R

0 ω ω

∂

λ

0

λ

commutes, where ∂([σ]) = [σ|S1 ], and the top row is exact.
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Definition 6.17 ([CM18, Section 1.2]). Let (X,ω) be a symplectic manifold. We define
the Lagrangian capacity of (X,ω), denoted cL(X,ω), by

cL(X,ω) := sup{Amin(L) | L ⊂ X is an embedded Lagrangian torus}.

Proposition 6.18 ([CM18, Section 1.2]). The Lagrangian capacity cL satisfies:

(Monotonicity) If (X,ω) −→ (X ′, ω′) is a symplectic embedding with π2(X ′, ι(X)) = 0,
then cL(X,ω) ≤ cL(X ′, ω′).

(Conformality) If α 6= 0, then cL(X,αω) = |α| cL(X,ω).

Proof. We prove monotonicity.

cL(X,ω) = sup
L⊂X

Amin(L) [by definition of cL]

≤ sup
L′⊂X′

Amin(L′) [by Lemma 6.15]

= cL(X ′, ω′) [by definition of cL].

We prove conformality. Note that a submanifold L ⊂ X is Lagrangian with respect to
ω if and only if it is Lagrangian with respect to αω.

cL(X,αω) = sup
L⊂(X,αω)

Amin(L, αω) [by definition of cL]

= sup
L⊂(X,ω)

|α|Amin(L, ω) [by definition of minimal area]

= |α| cL(X,ω) [by definition of cL].

Lemma 6.19. If X is a star-shaped domain, then cL(X) ≥ cP (X).

Proof. Let ι : P (a) −→ X be a symplectic embedding, for some a > 0. We want to show
that cL(X) ≥ a. Define T = {z ∈ Cn | |z1|2 = a/π, . . . , |zn|2 = a/π} ⊂ ∂P (a) and
L = ι(T ). Then,

cL(X) ≥ Amin(L) [by definition of cL]
= Amin(T ) [by Lemma 6.15]
= a [by Lemma 6.16].

Recall that if XΩ is a toric domain, its diagonal is given by δΩ := sup{a | (a, . . . , a) ∈ Ω}
(see Definition 2.34).

Lemma 6.20. If XΩ is a convex or concave toric domain, then cP (XΩ) ≥ δΩ.

Proof. Since XΩ is a convex or concave toric domain, we have that P (δΩ) ⊂ XΩ. The
result follows by definition of cP .

Actually, Gutt–Hutchings show that cP (XΩ) = δΩ for any convex or concave toric domain
XΩ ([GH18, Theorem 1.18]). However, for our purposes we will only need the inequality
in Lemma 6.20. We now consider the results by Cieliebak–Mohnke for the Lagrangian
capacity of the ball and the cylinder.

103



Proposition 6.21 ([CM18, Corollary 1.3]). The Lagrangian capacity of the ball is

cL(B2n(1)) = 1
n
.

Proposition 6.22 ([CM18, p. 215-216]). The Lagrangian capacity of the cylinder is

cL(Z2n(1)) = 1.

By Lemmas 6.19 and 6.20, if XΩ is a convex or concave toric domain then cL(XΩ) ≥ δΩ.
But as we have seen in Propositions 6.21 and 6.22, if XΩ is the ball or the cylinder then
cL(XΩ) = δΩ. This motivates Conjecture 6.23 below for the Lagrangian capacity of an
ellipsoid, and more generally Conjecture 6.24 below for the Lagrangian capacity of any
convex or concave toric domain.

Conjecture 6.23 ([CM18, Conjecture 1.5]). The Lagrangian capacity of the ellipsoid is

cL(E(a1, . . . , an)) =
( 1
a1

+ · · ·+ 1
an

)−1
.

Conjecture 6.24. If XΩ is a convex or concave toric domain then

cL(XΩ) = δΩ.

In Theorems 6.41 and 7.65 we present our results concerning Conjecture 6.24.

6.3 Gutt–Hutchings capacities
In this section we will define the Gutt–Hutchings capacities (Definition 6.25) and the
S1-equivariant symplectic homology capacities (Definition 6.29), and list their proper-
ties (Theorems 6.26 and 6.30 respectively). We will also compare the two capacities
(Theorem 6.31). The definition of these capacities relies on S1-equivariant symplectic
homology. In the commutative diagram below, we display the modules and maps which
will play a role in this section, for a nondegenerate Liouville domain X.

SHS1,(ε,a](X) SHS1,ε(X) SHS1,a(X)

SHS1,+(X) H•(BS1;Q)⊗H•(X, ∂X;Q)

δa0

ιa α

ιa,ε

δ0

δ

(6.5)

Here, ιa and ιa,ε are the maps induced by the action filtration, δ0 and δ are the maps from
Definition 5.59 and α is the isomorphism from Lemma 5.58. We point out that every
vertex in the above diagram has a U map and every map in the diagram commutes with
this U map. Specifically, all the S1-equivariant symplectic homologies have the U map
given as in Definition 5.19 and H•(BS1;Q)⊗H•(X, ∂X;Q) ∼= Q[u]⊗H•(X, ∂X;Q) has
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the map U := u−1 ⊗ id. We will also make use of a version of diagram (6.5) in the case
where X is star-shaped, namely diagram (6.6) below. In this case, the modules in the
diagram admit gradings and every map is considered to be a map in a specific degree.
By [GH18, Proposition 3.1], δ and δ0 are isomorphisms.

SH
S1,(ε,a]
n−1+2k(X) SHS1,ε

n−2+2k(X) SHS1,a
n−2+2k(X)

SHS1,+
n−1+2k(X) H2k−2(BS1;Q)⊗H2n(X, ∂X;Q)

δa0

ιa α

ιa,ε

δ0

δ

(6.6)

Definition 6.25 ([GH18, Definition 4.1]). If k ∈ Z≥1 and (X,λ) is a nondegenerate
Liouville domain, the Gutt–Hutchings capacities of X, denoted cGH

k (X), are defined
as follows. Consider the map

δ ◦ Uk−1 ◦ ιa : SHS1,(ε,a](X) −→ H•(BS1;Q)⊗H•(X, ∂X;Q)

from diagram (6.5). Then, we define

cGH
k (X) := inf{a > 0 | [pt]⊗ [X] ∈ im(δ ◦ Uk−1 ◦ ιa)}.

Theorem 6.26 ([GH18, Theorem 1.24]). The functions cGH
k of Liouville domains satisfy

the following axioms, for all equidimensional Liouville domains (X,λX) and (Y, λY ):

(Monotonicity) If X −→ Y is a generalized Liouville embedding then cGH
k (X) ≤ cGH

k (Y ).

(Conformality) If α > 0 then cGH
k (X,αλX) = α cGH

k (X,λX).

(Nondecreasing) cGH
1 (X) ≤ cGH

2 (X) ≤ · · · ≤ +∞.

(Reeb orbits) If cGH
k (X) < +∞, then cGH

k (X) = A(γ) for some Reeb orbit γ which is
contractible in X.

The following lemma provides an alternative definition of cGH
k , in the spirit of [FHW94].

Lemma 6.27. Let (X,λ) be a nondegenerate Liouville domain such that π1(X) = 0 and
c1(TX)|π2(X) = 0. Let E ⊂ Cn be a nondegenerate star-shaped domain and suppose that
φ : E −→ X is a symplectic embedding. Consider the map

SH
S1,(ε,a]
n−1+2k(X) SHS1,+

n−1+2k(X) SHS1,+
n−1+2k(E)ιa φ!

Then, cGH
k (X) = inf{a > 0 | φ! ◦ ιa is nonzero}.

Proof. For every a ∈ R consider the following commutative diagram:

SH
S1,(ε,a]
n−1+2k(X) SHS1,+

n−1+2k(X) SHS1,+
n+1 (X) H0(BS1)⊗H2n(X, ∂X)

SH
S1,(ε,a]
n−1+2k(E) SHS1,+

n−1+2k(E) SHS1,+
n+1 (E) H0(BS1)⊗H2n(E, ∂E)

ιaX

φa!

Uk−1
X

φ!

δX

φ! id⊗ρ

ιaE Uk−1
E

δE
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By [GH18, Proposition 3.1] and since E is star-shaped, the maps UE and δE are iso-
morphisms. Since ρ([X]) = [E], the map ρ is an isomorphism. By definition, cGH

k is the
infimum over a such that the top arrow is surjective. This condition is equivalent to
φ! ◦ ιaX being nonzero.

The following computation will be useful to us in the proofs of Theorems 6.41 and 7.65.

Lemma 6.28 ([GH18, Lemma 1.19]). cGH
k (N2n(δ)) = δ (k + n− 1).

We now consider other capacities which can be defined using S1-equivariant symplectic
homology.

Definition 6.29 ([Iri21, Section 2.5]). If k ∈ Z≥1 and (X,λ) is a nondegenerate Liouville
domain, the S1-equivariant symplectic homology capacities of X, denoted cS1

k (X),
are defined as follows. Consider the map

ιa,ε ◦ α−1 : H•(BS1;Q)⊗H•(X, ∂X;Q) −→ SHS1,a(X)
from diagram (6.5). Then, we define

cS
1

k (X) := inf{a > 0 | ιa,ε ◦ α−1([CP k−1]⊗ [X]) = 0}.

Theorem 6.30. The functions cS1
k of Liouville domains satisfy the following axioms,

for all Liouville domains (X,λX) and (Y, λY ) of the same dimension:

(Monotonicity) If X −→ Y is a generalized Liouville embedding then cS1
k (X) ≤ cS

1
k (Y ).

(Conformality) If µ > 0 then cS1
k (X,µλX) = µ cS

1
k (X,λX).

(Nondecreasing) cS1
1 (X) ≤ cS

1
2 (X) ≤ · · · ≤ +∞.

Proof. We prove monotonicity. Consider the following commutative diagram:

H•(BS1;Q)⊗H•(Y, ∂Y ;Q) SHS1,ε(Y ) SHS1,a(Y )

H•(BS1;Q)⊗H•(X, ∂X;Q) SHS1,ε(X) SHS1,a(X)

id⊗ρ

αY ιa,εY

φε! φa!

αX ιa,εX

(6.7)

If ιa,εY ◦ α−1
Y ([CP k−1]⊗ [Y ]) = 0, then

ιa,εX ◦ α−1
X ([CP k−1]⊗ [X])

= ιa,εX ◦ α−1
X ◦ (id⊗ρ)([CP k−1]⊗ [Y ]) [since ρ([Y ]) = [X]]

= φ! ◦ ιa,εY ◦ α−1
Y ([CP k−1]⊗ [Y ]) [by diagram (6.7)]

= 0 [by assumption].

To prove conformality, choose ε > 0 such that ε, µε < min Spec(∂X, λ|∂X). Since the
diagram

H•(BS1;Q)⊗H•(X, ∂X;Q) SHS1,ε(X,λ) SHS1,a(X,λ)

H•(BS1;Q)⊗H•(X, ∂X;Q) SHS1,µε(X,µλ) SHS1,µa(X,µλ)

αλ ιa,ε
λ

αµλ ιµa,µε
µλ
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commutes (by [GH18, Proposition 3.1]), the result follows.

To prove the nondecreasing property, note that if ιa,ε ◦ α−1([CP k]⊗ [X]) = 0, then

ιa,ε ◦ α−1([CP k−1]⊗ [X])
= ιa,ε ◦ α−1 ◦ U([CP k]⊗ [X]) [since U([CP k]⊗ [X]) = [CP k−1]⊗ [X]]
= Ua ◦ ιa,ε ◦ α−1([CP k]⊗ [X]) [since ιa,ε and α commute with U ]
= 0 [by assumption].

Theorem 6.31. If (X,λ) is a Liouville domain, then

(1) cGH
k (X) ≤ cS

1
k (X);

(2) cGH
k (X) = cS

1
k (X) provided that X is star-shaped.

Proof. By Lemma 6.11, we may assume that X is nondegenerate. Since

ιa,ε ◦ α−1([CP k−1]⊗ [X]) = 0
⇐⇒ α−1([CP k−1]⊗ [X]) ∈ ker ιa,ε [by definition of kernel]
⇐⇒ α−1([CP k−1]⊗ [X]) ∈ im δa0 [since the top row of (6.5) is exact]
⇐⇒ [CP k−1]⊗ [X] ∈ im(α ◦ δa0) [by definition of image]
⇐⇒ [CP k−1]⊗ [X] ∈ im(δ ◦ ιa) [since diagram (6.5) commutes]
=⇒ [pt]⊗ [X] ∈ im(Uk−1 ◦ δ ◦ ιa) [since Uk−1([CP k−1]⊗ [X]) = [pt]⊗ [X]]
⇐⇒ [pt]⊗ [X] ∈ im(δ ◦ Uk−1 ◦ ιa) [since δ and U commute],

we have that cGH
k (X) ≤ cS

1
k (X). If X is a star-shaped domain, we can view the maps of

the computation above as being the maps in diagram (6.6), i.e. they are defined in a spe-
cific degree. In this case, Uk−1 : H2k−2(BS1)⊗H2n(X, ∂X) −→ H0(BS1)⊗H2n(X, ∂X)
is an isomorphism, and therefore the implication in the previous computation is actually
an equivalence.

Remark 6.32. The capacities cGH
k and cS1

k are defined in terms of a certain homology
class being in the kernel or in the image of a map with domain or target the S1-equivariant
symplectic homology. Other authors have constructed capacities in an analogous manner,
for example Viterbo [Vit92, Definition 2.1] and [Vit99, Section 5.3], Schwarz [Sch00,
Definition 2.6] and Ginzburg–Shon [GS18, Section 3.1].

6.4 McDuff–Siegel capacities
We now define the McDuff–Siegel capacities. These will assist us in our goal of proving
Conjecture 6.24 (at least in particular cases) because they can be compared with the
Lagrangian capacity (Theorem 6.40) and with the Gutt–Hutchings capacities (Proposi-
tion 6.37).

Definition 6.33 ([MS22, Definition 3.3.1]). Let (X,λ) be a nondegenerate Liouville
domain. For `, k ∈ Z≥1, we define the McDuff–Siegel capacities of X, denoted
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g̃≤`k (X), as follows. Choose x ∈ intX and D a symplectic divisor at x. Then,

g̃≤`k (X) := sup
J∈J (X,D)

inf
Γ1,...,Γp

p∑
i=1
A(Γi),

where the infimum is over tuples of Reeb orbits Γ1, . . . ,Γp such that there exist integers
k1, . . . , kp ≥ 1 with

p∑
i=1

#Γi ≤ `,
p∑
i=1

ki ≥ k,
p∏
i=1
MJ

X(Γi)〈T (ki)x〉 6= ∅. (6.8)

The following theorem shows that the definition of g̃≤`k we give in Definition 6.33 and
the one given in [MS22, Definition 3.3.1] are equal.

Theorem 6.34 ([MS22, Remark 3.1.2]). If (X,λ) is a nondegenerate Liouville domain,
`, k ∈ Z≥1, x ∈ intX and D is a symplectic divisor through x, then

g̃≤`k (X) = sup
J∈J (X,D)

inf
Γ
A(Γ),

where the infimum is taken over tuples of Reeb orbits Γ = (γ1, . . . , γp) such that p ≤ `

andMJ
X(Γ)〈T (k)x〉 6= ∅.

Proof. (≥): Let Γ1, . . . ,Γp and k1, . . . , kp be as in (6.8). We wish to show that there
exists a tuple of Reeb orbits Γ such that

#Γ ≤ `, A(Γ) ≤
p∑
i=1
A(Γi), MJ

X(Γ)〈T (k)x〉 6= ∅.

By Remark 4.25, the tuple Γ = Γ1 ∪ · · · ∪ Γp is as desired.

(≤): Let Γ+ be a tuple of Reeb orbits such that #Γ+ ≤ ` andMJ

X(Γ+)〈T (k)x〉 6= ∅. We
wish to show that there exist tuples of Reeb orbits Γ−1 , . . . ,Γ−p and numbers k1, . . . , kp
satisfying (6.8) and

p∑
i=1
A(Γi) ≤ A(Γ).

Choose F = (F 1, . . . , FN) ∈ MJ

X(Γ+)〈T (k)x〉 and let C be the component of F which
inherits the constraint 〈T (k)x〉.

We prove the result in the case where C is nonconstant. In this case, C ∈MJ
X(Γ−)〈T (k)x〉

for some tuple of Reeb orbits Γ−. By Lemma 4.13, A(Γ−) ≤ A(Γ+). We show that
#Γ− ≤ #Γ+ ≤ `. Let n be the set of nodal points of C. Since the graph of F is a
tree, for every γ ∈ Γ+ there exists a unique f(γ) ∈ Γ− ∪ n such that the subtree of
F emanating from C at f(γ) is positively asymptotic to γ. By the maximum principle
(Lemma 4.10), f : Γ+ −→ Γ− ∪ n is surjective, and therefore #Γ− ≤ #Γ+ ≤ `.
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We prove the result in the case where C is constant. Let C1, . . . , Cp be the nonconstant
components near C as in Remark 4.25. There exist tuples of Reeb orbits Γ−1 , . . . ,Γ−p and
k1, . . . , kp ∈ Z≥1 such that

p∑
i=1
A(Γ−i ) ≤ A(Γ+),

p∑
i=1

ki ≥ k, Ci ∈MJ
X(Γ−i )〈T (ki)x〉 6= ∅.

By a reasoning similar to the previous case, ∑p
i=1 #Γ−i ≤ #Γ+ ≤ `.

Remark 6.35. If (X,λ) is a nondegenerate Liouville domain, k ∈ Z≥1, x ∈ intX and
D is a symplectic divisor through x, then

g̃≤1
k (X) = sup

J∈J (X,D)
inf
γ
A(γ),

where the infimum is over Reeb orbits γ such thatMJ
X(γ)〈T (k)x〉 6= ∅.

Theorem 6.36 ([MS22, Theorem 3.3.2]). The functions g̃≤`k are independent of the
choices of x and D and satisfy the following properties, for all nondegenerate Liouville
domains (X,λX) and (Y, λY ) of the same dimension:

(Monotonicity) If X −→ Y is a generalized Liouville embedding then g̃≤`k (X) ≤ g̃≤`k (Y ).

(Conformality) If α > 0 then g̃≤`k (X,αλX) = α g̃≤`k (X,λX).

(Nondecreasing) g̃≤`1 (X) ≤ g̃≤`2 (X) ≤ · · · ≤ +∞.

We now state a result comparing the McDuff–Siegel capacities and the Gutt–Hutchings
capacities. We will later apply this result to show that cL(XΩ) = δΩ for every 4-
dimensional convex toric domain XΩ (Theorem 6.41).

Proposition 6.37 ([MS22, Proposition 5.6.1]). If XΩ is a 4-dimensional convex toric
domain then

g̃≤1
k (XΩ) = cGH

k (XΩ).

Finally, we state two stabilization results which we will use in Section 7.7.

Lemma 6.38 ([MS22, Lemma 3.6.2]). Let (X,λ) be a Liouville domain. For any c, ε ∈
R>0, there is a subdomain with smooth boundary X̃ ⊂ X ×B2(c) such that:

(1) The Liouville vector field ZX̃ = ZX + ZB2(c) is outwardly transverse along ∂X̃.

(2) X × {0} ⊂ X̃ and the Reeb vector field of ∂X̃ is tangent to ∂X × {0}.

(3) Any Reeb orbit of the contact form (λ+ λ0)|∂X̃ (where λ0 = 1/2(xdy − ydx)) with
action less than c − ε is entirely contained in ∂X × {0} and has normal Conley–
Zehnder index equal to 1.

Lemma 6.39 ([MS22, Lemma 3.6.3]). Let X be a Liouville domain, and let X̃ be a
smoothing of X ×B2(c) as in Lemma 6.38.
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(1) Let J ∈ J (X̃) be a cylindrical almost complex structure on the completion of
X̃ for which X̂ × {0} is J-holomorphic. Let C be an asymptotically cylindrical
J-holomorphic curve in X̂, all of whose asymptotic Reeb orbits are nondegenerate
and lie in ∂X×{0} with normal Conley–Zehnder index 1. Then C is either disjoint
from the slice X̂ × {0} or entirely contained in it.

(2) Let J ∈ J (∂X̃) be a cylindrical almost complex structure on the symplectization
of ∂X̃ for which R × ∂X × {0} is J-holomorphic. Let C be an asymptotically
cylindrical J-holomorphic curve in R × ∂X̃, all of whose asymptotic Reeb orbits
are nondegenerate and lie in ∂X×{0} with normal Conley–Zehnder index 1. Then
C is either disjoint from the slice R×∂X×{0} or entirely contained in it. Moreover,
only the latter is possible if C has at least one negative puncture.

6.5 Computations not requiring contact homology
We now state and prove one of our main theorems, which is going to be a key step in
proving that cL(XΩ) = δΩ. The proof uses techniques similar to those used in the proof
of [CM18, Theorem 1.1].

Theorem 6.40. If (X,λ) is a Liouville domain then

cL(X) ≤ inf
k

g̃≤1
k (X)
k

.

Proof. By Lemma 6.11, we may assume that X is nondegenerate. Let k ∈ Z≥1 and
L ⊂ intX be an embedded Lagrangian torus. We wish to show that for every ε > 0
there exists σ ∈ π2(X,L) such that 0 < ω(σ) ≤ g̃≤1

k (X)/k + ε. Define

a := g̃≤1
k (X),

K1 := ln(2),
K2 := ln(1 + a/εk),
K := max{K1, K2},
δ := e−K ,

`0 := a/δ.

By Lemma 3.30 and the Lagrangian neighbourhood theorem, there exists a Riemannian
metric g on L and a symplectic embedding φ : D∗L −→ X such that φ(D∗L) ⊂ intX,
φ|L = idL and such that if γ is a closed geodesic in L with length `(γ) ≤ `0 then γ is
noncontractible, nondegenerate and satisfies 0 ≤ µM(γ) ≤ n− 1.

Let D∗δL be the codisk bundle of radius δ. Notice that δ has been chosen in such a way
that the symplectic embedding φ : D∗L −→ X can be seen as an embedding like that of
Lemma 4.14. We will now use the notation of Section 4.3. Define symplectic cobordisms

(X+, ω+) := (X \ φ(D∗δL), ω),
(X−, ω−) := (D∗δL, dλT ∗L),
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which have the common contact boundary

(M,α) := (S∗δL, λT ∗L).

Here, it is implicit that we are considering the restriction of the form λT ∗L on T ∗L to
D∗δL or S∗δL. Then, (X,ω) = (X−, ω−) } (X+, ω+). Recall that there are piecewise
smooth 2-forms ω̃ ∈ Ω2(X̂) and ω̃± ∈ Ω2(X̂±) which are given as in Definition 4.12.
Choose x ∈ intφ(D∗δL) and let D ⊂ φ(D∗δL) be a symplectic divisor through x. Choose
also generic almost complex structures

JM ∈ J (M),
J+ ∈ JJM (X+),
J− ∈ J JM (X−, D),

and denote by J∂X ∈ J (∂X) the “restriction” of J+ to R × ∂X. Let (Jt)t ⊂ J (X,D)
be the corresponding neck stretching family of almost complex structures. Since a =
g̃≤1
k (X) and by Remark 6.35, for every t there exists a Reeb orbit γt in ∂X = ∂+X+

and a Jt-holomorphic curve ut ∈ MJt
X (γt)〈T (k)x〉 such that A(γt) ≤ a. Since ∂X has

nondegenerate Reeb orbits, there are only finitely many Reeb orbits in ∂X with action
less than a. Therefore, possibly after passing to a subsequence, we may assume that
γt =: γ0 is independent of t.

The curves ut satisfy the energy bound Eω̃(ut) ≤ a. By the SFT compactness theorem,
the sequence (ut)t converges to a holomorphic building

F = (F 1, . . . , FL0−1, FL0 , FL0+1, . . . , FN) ∈M(Jt)t
X (γ0)〈T (k)x〉,

where

(Xν , ων , ω̃ν , Jν) :=


(T ∗L, dλT ∗L, ω̃−, J−) if ν = 1,
(R×M, d(erα), dα, JM) if ν = 2, . . . , L0 − 1,
(X̂ \ L, ω̂, ω̃+, J+) if ν = L0,

(R× ∂X, d(erλ|∂X), dλ|∂X , J∂X) if ν = L0 + 1, . . . , N,

(X∗, ω∗, ω̃∗, J∗) :=
N∐
ν=1

(Xν , ων , ω̃ν , Jν),

and F ν is a Jν-holomorphic curve in Xν with asymptotic Reeb orbits Γ±ν (see Fig. 6.1).
The holomorphic building F satisfies the energy bound

Eω̃∗(F ) :=
N∑
ν=1

Eω̃ν (F ν) ≤ a. (6.9)

Moreover, by Lemma 4.27, F has no nodes. Let C be the component of F in X− which
carries the tangency constraint 〈T (k)x〉. Then, C is positively asymptotic to Reeb orbits
(γ1, . . . , γp) of M . For µ = 1, . . . , p, let Cµ be the subtree emanating from C at γµ.
For exactly one µ = 1, . . . , p, the top level of the subtree Cµ is positively asymptotic to
γ0, and we may assume without loss of generality that this is true for µ = 1. By the
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F 3 ⊂ X3 = X+ = X̂ \ L

F 2 ⊂ X2 = R×M

F 1 ⊂ X1 = X− = T ∗L

γ0

γ1 γ2 γ3

x

D

D2 D3

Figure 6.1: The holomorphic building F = (F 1, . . . , FN) in the case L0 = N = p = 3

maximum principle, Cµ has a component in XL0 = X̂ \ L for every µ = 2, . . . , p. Also
by the maximum principle, there do not exist components of Cµ in XL0 = X̂ \ L which
intersect R≥0×∂X or components of Cµ in the top symplectization layersXL0+1, . . . , XN ,
for every µ = 2, . . . , p.

We claim that if γ is a Reeb orbit in M which is an asymptote of F ν for some ν =
2, . . . , L0 − 1, then A(γ) ≤ a. To see this, notice that

a ≥ Eω̃∗(F ) [by Equation (6.9)]
≥ Eω̃N (FN) [by monotonicity of E]
≥ (eK − 1)A(Γ−N) [by Lemma 4.14]
≥ A(Γ−N) [since K ≥ K1]
≥ A(Γ−ν ) [by Lemma 4.13]

for every ν = 2, . . . , L0 − 1. Every such γ has a corresponding geodesic in L (which by
abuse of notation we denote also by γ) such that `(γ) = A(γ)/δ ≤ a/δ = `0. Hence, by
our choice of Riemannian metric, the geodesic γ is noncontractible, nondegenerate and
such that µM(γ) ≤ n− 1. Therefore, the Reeb orbit γ is noncontractible, nondegenerate
and such that µCZ(γ) ≤ n− 1.

We claim that if D is a component of Cµ for some µ = 2, . . . , p and D is a plane, then D
is in XL0 = X̂ \L. Assume by contradiction otherwise. Notice that since D is a plane, D
is asymptotic to a unique Reeb orbit γ in M = S∗δL with corresponding noncontractible
geodesic γ in L. We will derive a contradiction by defining a filling disk for γ. If D is in
a symplectization layer R × S∗δL, then the map π ◦ D, where π : R × S∗δL −→ L is the
projection, is a filling disk for the geodesic γ. If D is in the bottom level, i.e. X1 = T ∗L,
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then the map π ◦ D, where π : T ∗L −→ L is the projection, is also a filling disk. This
proves the claim.

So, summarizing our previous results, we know that for every µ = 2, . . . , p there is a
holomorphic plane Dµ in XL0 \ (R≥0 × ∂X) = X \ L. For each plane Dµ there is a
corresponding disk in X with boundary on L, which we denote also by Dµ. It is enough
to show that Eω(Dµ0) ≤ a/k+ ε for some µ0 = 2, . . . , p. By Lemma 4.17, p ≥ k+ 1 ≥ 2.
By definition of average, there exists µ0 = 2, . . . , p such that

Eω(Dµ0) ≤ 1
p− 1

p∑
µ=2

Eω(Dµ) [by definition of average]

= Eω(D2 ∪ · · · ∪Dp)
p− 1 [since energy is additive]

≤ eK

eK − 1
Eω̃(D2 ∪ · · · ∪Dp)

p− 1 [by Lemma 4.14]

≤ eK

eK − 1
a

p− 1 [by Equation (6.9)]

≤ eK

eK − 1
a

k
[since p ≥ k + 1]

≤ a

k
+ ε [since K ≥ K2].

Theorem 6.41. If XΩ is a 4-dimensional convex toric domain then

cL(XΩ) = δΩ.

Proof. For every k ∈ Z≥1,

δΩ ≤ cP (XΩ) [by Lemma 6.20]
≤ cL(XΩ) [by Lemma 6.19]

≤ g̃≤1
k (XΩ)
k

[by Theorem 6.40]

= cGH
k (XΩ)
k

[by Proposition 6.37]

≤ cGH
k (N(δΩ))

k
[XΩ is convex, hence XΩ ⊂ N(δΩ)]

= δΩ(k + 1)
k

[by Lemma 6.28].

The result follows by taking the infimum over k.

The proof of Theorem 6.41 suggests the following conjecture. Notice that Conjecture 6.42
implies Conjecture 6.24.

Conjecture 6.42. If X is a Liouville domain, π1(X) = 0 and c1(TX)|π2(X) = 0, then

cL(X,λ) ≤ inf
k

cGH
k (X,λ)

k
.
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Proof attempt. By Lemma 6.11, we may assume that X is nondegenerate. Let k ∈ Z≥1
and L ⊂ intX be an embedded Lagrangian torus. Let also a > cGH

k (X). We wish to
show that for every ε > 0 there exists σ ∈ π2(X,L) such that 0 < ω(σ) ≤ a/k+ ε. Start
by replicating word by word the proof of Theorem 6.40 until the point where we choose
x ∈ φ(D∗δL). Instead of choosing x, choose a nondegenerate star-shaped domain E ⊂ Cn

and an exact symplectic embedding ϕ : E −→ X such that ϕ(E) ⊂ intφ(D∗δL). Since
a > cGH

k (X) and by Lemma 6.27, the map

SH
S1,(ε,a]
n−1+2k(X) SHS1,+

n−1+2k(X) SHS1,+
n−1+2k(E)ιa ϕ! (6.10)

is nonzero. Choose Hamiltonians

H+ : S1 × S2N+1 × X̂ −→ R, H+ ∈ H(X,N), (see Definition 5.8),
H− : S1 × S2N+1 × X̂ −→ R, H− ∈ H(X,E,N), (see Definition 5.29),

H : R× S1 × S2N+1 × X̂ −→ R, H ∈ H(H+, H−), (see Definition 5.36).

Choose also an almost complex structure

J : S1 × S2N+1 × X̂ −→ End(TX̂), J ∈ J (X,E,N), (see Definition 5.32).

The almost complex structure J defines a neck stretching family of almost complex
structures

Jm : S1 × S2N+1 × X̂ −→ End(TX̂), Jm ∈ J (X,E,N),

for m ∈ Z≥1. Since the map (6.10) is nonzero and by definition of the Viterbo transfer
map, if N,H±, H are chosen big enough (in the sense of the partial orders defined
in Sections 5.3 and 5.4) then for every m there exist (z±m, γ±m) ∈ P̂(H±) and a Floer
trajectory (wm, um) with respect to H, Jm from (z−m, γ−m) to (z+

m, γ
+
m), such that

(1) im γ+
m is near ∂X and AH+(z+

m, γ
+
m) ≤ a;

(2) im γ−m is near ∂E and µ(z−m, γ−m) ≥ n− 1 + 2k.

By Lemma 4.37, we have the energy bound E(wm, um) ≤ a. Possibly after passing to a
subsequence, we may assume that (z±m, γ±m) converges to (z±0 , γ±0 ) ∈ P̂(H±).

Now we come to the first challenge of the proof. We would like to use an adaptation of the
SFT compactness theorem to take the limit of the sequence (wm, um)m. We will assume
that such a theorem can be proven, and that we get a resulting limit F = (F 1, . . . , FN)
as in the proof of Theorem 6.40, but where each F ν = (wν , uν) : Σ̇ν −→ S2N+1×Xν is a
solution of the parametrized Floer equation (Definition 4.32). Let C be the component
of F in X− which is negatively asymptotic to (z−0 , γ−0 ).

Notice that near X \φ(D∗δL), the Hamiltonian H is independent of X̂. Therefore, in the
intermediate symplectization levels (i.e. for ν = 2, . . . , L − 1) the map uν : Σ̇ν −→ Xν

is Jνwν -holomorphic, where Jνwν : Σ̇ν × Xν −→ End(TXν) is a domain dependent al-
most complex structure obtained from composing an almost complex structure Jν : Σ̇ν×
S2N+1 ×Xν −→ End(TXν) with wν . Hence, as in the proof of Theorem 6.40, the com-
ponent C has p positive punctures asymptotic to Reeb orbits (γ1, . . . , γp) and for every
µ = 2, . . . , p there is a disk Dµ in X with boundary on L.
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At this point, we need to show that p ≥ k + 1, which brings us to the main difficulty in
the proof. In the proof of Theorem 6.40, we chose a generic almost complex structure
so that C would be regular. Then, the index formula for C implied that p ≥ k + 1 (see
Theorem 4.15 and Lemmas 4.16 and 4.17). In line with this reasoning, we wish to show
that p ≥ k + 1 using the following computation:

0 ≤ ind(C)

= (n− 3)(1− p) +
p∑

µ=1
µCZ(γµ)− µ(z−0 , γ−0 )

≤ (n− 3)(1− p) +
p∑

µ=1
(n− 1)− (n− 1 + 2k)

= 2(p− k − 1),

where in the first line we would need to use a transversality theorem which applies to
C, and in the second line we would need to use a Fredholm theory theorem which gives
us the desired index formula for C. We point out a few difficulties that arise with this
approach.

(1) Because of the domain dependence of the almost complex structures and Hamil-
tonians, it is not clear how to choose the initial almost complex structure J : S1 ×
S2N+1×X̂ −→ End(TX̂) in such a way that the resulting almost complex structure
J1 : Σ̇1 × S2N+1 ×X1 −→ End(TX1) is regular.

(2) We are working under the assumption that the analogue of the SFT compactness
theorem which applies to solutions of the parametrized Floer equation produces
a building F whose symplectization levels are asymptotic to Reeb orbits. More
specifically, this means that the gradient flow line in S2N+1 corresponding to C is
not asymptotic at the punctures to critical points of f̃N . Therefore, in this case
the linearized operator corresponding to the gradient flow line equation on S2N+1

will not be Fredholm.

(3) However, the assumption in the previous item could be wrong. Another reasonable
possibility is that the analogue of the SFT compactness theorem which applies to
solutions of the parametrized Floer equation produces a building F whose bottom
component is positively asymptotic to pairs (zµ, γµ), where zµ ∈ S2N+1 is a critical
point of f̃N and γµ is a Reeb orbit. In this case, one would expect that the relevant
operator is Fredholm. However, the Morse index of the critical points zµ would
appear in the index formula, and the previous computation would no longer imply
that p ≥ k + 1.

Finally, we point out that if p ≥ k+ 1, then by the same computation as in the proof of
Theorem 6.40, we have the desired energy bound

Eω(Dµ0) ≤ a

k
+ ε

for some µ0 = 2, . . . , p. This finishes the proof attempt.
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Chapter 7

Contact homology

7.1 Assumptions on virtual perturbation scheme
In this chapter, we wish to use techniques from contact homology to prove Conjec-
ture 6.24. Consider the proof of Theorem 6.41: to prove the inequality cL(XΩ) ≤ δΩ,
we needed to use the fact that g̃≤1

k (XΩ) ≤ cGH
k (XΩ) (which is true if XΩ is convex and

4-dimensional). Our approach here will be to consider the capacities g≤`k from [Sie20],
which satisfy g̃≤1

k (X) ≤ g≤1
k (X) = cGH

k (X). As we will see, g≤`k (X) is defined using the
linearized contact homology of X, where X is any nondegenerate Liouville domain.

Very briefly, the linearized contact homology chain complex, denoted CC(X), is gen-
erated by the good Reeb orbits of ∂X, and therefore maps whose domain is CC(X)
should count holomorphic curves which are asymptotic to Reeb orbits. The “naive”
way to define such counts of holomorphic curves would be to show that they are the
elements of a moduli space which is a compact, 0-dimensional orbifold. However, there
is the possibility that a curve is multiply covered. This means that in general it is no
longer possible to show that the moduli spaces are transversely cut out, and therefore
we do not have access to counts of moduli spaces of holomorphic curves (or at least
not in the usual sense of the notion of signed count). In the case where the Liouville
domain is 4-dimensional, there exists the possibility of using automatic transversality
techniques to show that the moduli spaces are regular. This is the approach taken by
Wendl [Wen10]. Nelson [Nel15], Hutchings–Nelson [HN16] and Bao–Honda [BH18] use
automatic transversality to define cylindrical contact homology.

In order to define contact homology in more general contexts, one needs to replace
the notion of count by a suitable notion of virtual count, which is obtained through a
virtual perturbation scheme. This was done by Pardon [Par16, Par19] to define contact
homology in greater generality. The theory of polyfolds by Hofer–Wysocki–Zehnder
[HWZ21] can also be used to define virtual moduli counts. Alternative approaches using
Kuranishi structures have been given by Ishikawa [Ish18] and Bao–Honda [BH21].

Unfortunately, linearized contact homology is not yet defined in the generality we need.

(1) In order to prove Conjecture 6.24, we only need the capacities g≤`k for ` = 1. These
are defined using the linearized contact homology (as a chain complex) and an
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augmentation map which counts curves satisfying a tangency constraint. As far
as we know, the current work on defining virtual moduli counts does not yet deal
with moduli spaces of curves satisfying tangency constraints.

(2) In addition to Conjecture 6.24, in this chapter we will also prove some properties
of the capacities g≤`k for ` > 1. The definition of these capacities for ` > 1 requires
the structure of an L∞-algebra on the linearized contact homology as well as an
L∞-augmentation map counting curves which satisfy a tangency constraint.

So, during this chapter, we will work under assumption that it is possible to define
a virtual perturbation scheme which makes the invariants and maps described above
well-defined (this is expected to be the case).

Assumption 7.1. We assume the existence of a virtual perturbation scheme which to
every compactified moduli spaceM of asymptotically cylindrical holomorphic curves (in
a symplectization or in a Liouville cobordism, possibly satisfying a tangency constraint)
assigns a virtual count #virM. We will assume in addition that the virtual perturbation
scheme has the following properties.

(1) If #virM 6= 0 then virdimM = 0;

(2) If M is transversely cut out then #virM = #M. In particular, if M is empty
then #virM = 0;

(3) The virtual count of the boundary of a moduli space (defined as a sum of virtual
counts of the moduli spaces that constitute the codimension one boundary strata)
is zero. In particular, the expected algebraic identities (∂2 = 0 for differentials,
ε ◦ ∂ = 0 for augmentations) hold, as well as independence of auxiliary choices of
almost complex structure and symplectic divisor.

7.2 L∞-algebras
In this section, we give a brief review of the algebraic definitions which will play a role.
Our main reference is [Sie20, Section 2]. The key definitions are that of L∞-algebra
(Definition 7.5) and its associated bar complex (Definition 7.6). We start by defining
the suspension of a graded vector space. The purpose of this definition is to define L∞-
algebras in such a way that the L∞-relations do not have extra signs (these extra signs
are “absorbed” by the degree shift in the suspension).

Definition 7.2. Let V = ⊕
k∈Z V

k be a graded vector space over a fieldK. The suspen-
sion of V is the graded vector space V [+1] = ⊕

k∈Z(V [+1])k given by (V [+1])k = V k+1.
Define s : V −→ V [+1] to be the linear map of degree −1 given by s(v) = v.

Remark 7.3. We use the Koszul sign convention, i.e. if f, g : V −→ V are linear maps
and x, y ∈ V then (f ⊗ g)(x⊗ y) = (−1)deg(x) deg(g)f(x)⊗ g(y).

Definition 7.4. Let k ∈ Z≥1 and denote by Sym(k) the symmetric group on k elements.
Let V be a vector field over a field K. We define an action of Sym(k) on ⊗k

j=1 V as
follows. For σ ∈ Sym(k) and v1, . . . , vk ∈ V , let

sign(σ, v1, . . . , vk) := (−1)sum{deg(vi) deg(vj) | 1≤i<j≤k,σ(i)>σ(j)},
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σ · (v1 ⊗ · · · ⊗ vk) := sign(σ, v1, . . . , vk) vσ(1) ⊗ · · · ⊗ vσ(k).

Define ⊙k
j=1 V := ⊗k

j=1 V/ Sym(k) and denote by v1 � · · · � vk the equivalence class of
v1 ⊗ · · · ⊗ vk.

We come to the main definition of this section, which encodes the algebraic structure of
linearized contact homology (see Definition 7.12).

Definition 7.5. An L∞-algebra is a graded vector space V = ⊕
k∈Z V

k together with
a family ` = (`k)k∈Z≥1 of maps `k : ⊙k

j=1 V [+1] −→ V [+1] of degree 1, satisfying the
L∞-relations, i.e.

0 =
n∑
k=1

∑
σ∈Sh(k,n−k)

sign(σ, sv1, . . . , svn)

`n−k+1(`k(svσ(1) � · · · � svσ(k))� svσ(k+1) � · · · � svσ(n))

for every v1, . . . , vn ∈ V . Here, Sh(k, n− k) ⊂ Sym(n) is the subgroup of permutations
σ such that σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(n).

The definition of L∞-algebra can be expressed more compactly via the notion of bar
complex. Indeed, the family of maps (`k)k∈Z≥1 satisfies the L∞-relations if and only if
the map ˆ̀ defined below is a differential, i.e. ˆ̀◦ ˆ̀= 0.

Definition 7.6. Let (V, `) be an L∞-algebra. The bar complex of (V, `) is the vector
space BV = ⊕+∞

k=1
⊙k
j=1 V [+1] together with the degree 1 differential ˆ̀: BV −→ BV

given by

ˆ̀(v1 � · · · � vn)

=
n∑
k=1

∑
σ∈Sh(k,n−k)

sign(σ, v1, . . . , vn) `k(vσ(1) � · · · � vσ(k))� vσ(k+1) � · · · � vσ(n).

Definition 7.7. Let (V, `) be an L∞-algebra. A filtration on V is a family (F≤aV )a∈R
of subspaces F≤aV ⊂ V , satisfying the following properties:

(1) if a ≤ b then F≤aV ⊂ F≤bV ;

(2) ⋃a∈RF≤aV = V ;

(3) `k(F≤a1V [+1]� · · · � F≤akV [+1]) ⊂ F≤a1+···+akV [+1].

Definition 7.8. Let (V, `) be an L∞-algebra together with a filtration (F≤aV )a∈R. The
induced filtration on the bar complex is the family of complexes (F≤aBV, ˆ̀)a∈R, where

F≤aBV :=
+∞⊕
k=1

⋃
a1+···+ak≤a

k⊙
j=1
F≤ajV [+1]

and ˆ̀: F≤aBV −→ F≤aBV is the restriction of ˆ̀: BV −→ BV .

The linearized contact homology will have a filtration induced by the action of the Reeb
orbits (see Definition 7.14). Also, the bar complex of any L∞-algebra has a filtration by
word length, which is defined below.
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Definition 7.9. Let (V, `) be an L∞-algebra and consider its bar complex (BV, ˆ̀). The
word length filtration of (BV, ˆ̀) is the family of complexes (B≤mV, ˆ̀)m∈Z≥1 , where
B≤mV := ⊕m

k=1
⊙k
j=1 V [+1] and ˆ̀: B≤mV −→ B≤mV is the restriction of ˆ̀: BV −→ BV .

7.3 Contact homology
In this section, we define the linearized contact homology of a nondegenerate Liouville
domain X. This is the homology of a chain complex CC(X), which is described in
Definition 7.11. This complex has additional structure, namely it is also an L∞-algebra
(Definition 7.12) and it admits a filtration by action (Definition 7.14). We also define an
augmentation map (Definition 7.16), which is necessary to define the capacities g≤`k .

Definition 7.10. Let (M,α) be a contact manifold and γ be a Reeb orbit in M . We
say that γ is bad if µCZ(γ) − µCZ(γ0) is odd, where γ0 is the simple Reeb orbit that
corresponds to γ. We say that γ is good if it is not bad.

Since the parity of the Conley–Zehnder index of a Reeb orbit is independent of the choice
of trivialization, the definition above is well posed.

Definition 7.11. If (X,λ) is a nondegenerate Liouville domain, the linearized contact
homology chain complex of X, denoted CC(X), is a chain complex given as follows.
First, let CC(X) be the vector space over Q generated by the set of good Reeb orbits of
(∂X, λ|∂X). The differential of CC(X), denoted ∂, is given as follows. Choose J ∈ J (X).
If γ is a good Reeb orbit of ∂X, we define

∂γ =
∑
η

〈∂γ, η〉 η,

where 〈∂γ, η〉 is the virtual count (with combinatorial weights) of holomorphic curves in
R×∂X with one positive asymptote γ, one negative asymptote η, and k ≥ 0 extra nega-
tive asymptotes α1, . . . , αk (called anchors), each weighted by the count of holomorphic
planes in X̂ asymptotic to αj (see Fig. 7.1).

By assumption on the virtual perturbation scheme, ∂ ◦∂ = 0 and CC(X) is independent
(up to chain homotopy equivalence) of the choice of almost complex structure J . In
general, CC(X) is not Z-graded but only Z2-graded (see Remark 7.13). We wish to
define a structure of L∞-algebra on CC(X)[−1]. Notice that the definition of L∞-
structure on a vector space (Definition 7.5) also makes sense when the vector space is
only Z2-graded.

Definition 7.12. We define a structure of L∞-algebra on CC(X)[−1], given by maps
`k : ⊙k CC(X) −→ CC(X), as follows. Choose an almost complex structure J ∈ J (X).
If Γ = (γ1, . . . , γk) is a tuple of good Reeb orbits, we define

`k(γ1 � · · · � γk) =
∑
η

〈`k(γ1 � · · · � γk), η〉 η,

where 〈`k(γ1 � · · · � γk), η〉 is the virtual count of holomorphic curves in R × ∂X with
positive asymptotes γ1, . . . , γk, one negative asymptote η, and a number of extra neg-
ative asymptotes with anchors in X̂, such that exactly one of the components in the
symplectization level is nontrivial (see Fig. 7.2).
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R× ∂X

X̂

γ

η α1 α2

Figure 7.1: A holomorphic curve with anchors contributing to the coefficient 〈∂γ, η〉

R× ∂X

X̂

γ1 γ2 γ3 γ4

γ3 γ4η α1 α2
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Figure 7.2: A holomorphic building contributing to the coefficient 〈`4(γ1 � · · · � γ4), η〉
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By the assumptions on the virtual perturbation scheme, the maps `k satisfy the L∞-
relations and CC(X) is independent (as an L∞-algebra, up to L∞-homotopy equivalence)
of the choice of J . We point out that the first L∞-operation is equal to the differential
of linearized contact homology, i.e. `1 = ∂.

Remark 7.13. In general, the Conley–Zehnder index of a Reeb orbit is well-defined as
an element in Z2. Therefore, the complex CC(X) has a Z2-grading given by deg(γ) :=
n− 3− µCZ(γ), and with respect to this definition of degree every L∞-operation `k has
degree 1. If π1(X) = 0 and 2c1(TX) = 0, then by Lemma 3.16 we have well-defined
Conley–Zehnder indices in Z, which means that CC(X) is Z-graded. For some purposes,
it will be enough to consider only the chain complex structure on CC(X) and not the
L∞-algebra structure (namely, when we consider only the capacity g≤1

k instead of the
higher capacities g≤`k ). In this case, to make comparisons with S1-equivariant symplectic
homology simpler, we define the grading instead by deg(γ) := µCZ(γ), which implies that
∂ has degree −1.

Definition 7.14. For every a ∈ R, we denote by A≤aCC(X)[−1] the submodule of
CC(X)[−1] generated by the good Reeb orbits γ with action A(γ) ≤ a. We call this
filtration the action filtration of CC[−1].

In the next lemma, we check that this filtration is compatible with the L∞-structure.

Lemma 7.15. `k(A≤a1CC(X)� · · · � A≤akCC(X)) ⊂ A≤a1+···+akCC(X).

Proof. Let γ+
1 , . . . , γ

+
k , η be good Reeb orbits such that

A(γ+
i ) ≤ ai,

〈`k(γ+
1 � · · · � γ+

k ), η〉 6= 0.

We wish to show that A(η) ≤ a1 + · · · + ak. Since 〈`k(γ+
1 � · · · � γ+

k ), η〉 6= 0 and by
assumption on the virtual perturbation scheme, there exists a tuple of Reeb orbits Γ−
and a (nontrivial) punctured J-holomorphic sphere in R×∂X with asymptotes Γ±, such
that η ∈ Γ− and Γ+ ⊂ (γ+

1 , . . . , γ
+
k ). Then,

A(η) ≤ A(Γ−) [since η ∈ Γ−]
≤ A(Γ+) [by Lemma 4.13]
≤ A(γ+

1 , . . . , γ
+
k ) [since Γ+ ⊂ (γ+

1 , . . . , γ
+
k )]

≤ a1 + · · ·+ ak. [by definition of action of a tuple].

Definition 7.16. Consider the bar complex (B(CC(X)[−1]), ˆ̀). For each k ∈ Z≥1,
we define an augmentation εk : B(CC(X)[−1]) −→ Q as follows. Choose x ∈ intX,
a symplectic divisor D at x, and an almost complex structure J ∈ J (X,D). Then,
for every tuple of good Reeb orbits Γ = (γ1, . . . , γp) define εk(γ1 � · · · � γp) to be the
virtual count of J-holomorphic planes in X̂ which are positively asymptotic to Γ and
have contact order k to D at x (see Fig. 7.3).

By assumption on the virtual perturbation scheme, εk is an augmentation, i.e. εk ◦ ˆ̀= 0.
In addition, εk is independent (up to chain homotopy) of the choices of x,D, J .
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X̂

γ1 γ2

x

D

Figure 7.3: A holomorphic curve contributing to the count εk(γ1 � γ2)

7.4 Higher symplectic capacities
Here we define the symplectic capacities g≤`k from [Sie20]. We will prove the usual proper-
ties of symplectic capacities (see Theorem 7.19), namely monotonicity and conformality.
In addition, we prove that the value of the capacities g≤`k can be represented by the
action of a tuple of Reeb orbits. In Remark 7.20 we show how this property could in
principle be combined with results from [GH18] to compare the capacities g≤1

k (XΩ) and
cGH
k (XΩ) when XΩ is a convex or concave toric domain.

Definition 7.17 ([Sie20, Section 6.1]). Let k, ` ∈ Z≥1 and (X,λ) be a nondegenerate
Liouville domain. The higher symplectic capacities of X are given by

g≤`k (X) := inf{a > 0 | εk : H(A≤aB≤`(CC(X)[−1])) −→ Q is nonzero}.

The capacities g≤`k will be useful to us because they have similarities with the McDuff–
Siegel capacities g̃≤`k , but also with the Gutt–Hutchings capacities cGH

k (for ` = 1). More
specifically:

(1) Both g≤`k and g̃≤`k are related to the energy of holomorphic curves in X which are
asymptotic to a word of p ≤ ` Reeb orbits and satisfy a tangency constraint. In
Theorem 7.63, we will actually show that g̃≤`k (X) ≤ g≤`k (X). The capacities g≤`k
can be thought of as the SFT counterparts of g̃≤`k , or alternatively the capacities
g̃≤`k can be thought of as the counterparts of g≤`k whose definition does not require
the holomorphic curves to be regular.

(2) Both g≤1
k and cGH

k are defined in terms of a map in homology being nonzero. In
the case of g≤1

k , we consider the linearized contact homology, and in the case of
cGH
k the invariant in question is S1-equivariant symplectic homology. Taking into
consideration the Bourgeois–Oancea isomorphism (see [BO16]) between linearized
contact homology and positive S1-equivariant symplectic homology, one can think
of g≤1

k and cGH
k as restatements of one another under this isomorphism. This is the

idea behind the proof of Theorem 7.64, where we show that g≤1
k (X) = cGH

k (X).

Remark 7.18. In the case where X is only an exact symplectic manifold instead of
a Liouville domain, the proof of Lemma 7.15 does not work. In this case, we do not
have access to an action filtration on CC(X). However, it is possible to define linearized
contact homology with coefficients in a Novikov ring Λ≥0, in which case a coefficient in
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Λ≥0 encodes the energy of a holomorphic curve. This is the approach taken in [Sie20]
to define the capacities g≤`k . It is not obvious that the definition of g≤`k we give and the
one in [Sie20] are equivalent. However, Definition 7.17 seems to be the natural analogue
when we have access to an action filtration, and in addition the definition we provide
will be enough for our purposes.

Theorem 7.19. The functions g≤`k satisfy the following properties, for all nondegenerate
Liouville domains (X,λX) and (Y, λY ) of the same dimension:

(Monotonicity) If X −→ Y is an exact symplectic embedding then g≤`k (X) ≤ g≤`k (Y ).

(Conformality) If µ > 0 then g≤`k (X,µλX) = µ g≤`k (X,λX).

(Reeb orbits) If π1(X) = 0, 2c1(TX) = 0 and g≤`k (X) < +∞, then there exists a tuple
Γ = (γ1, . . . , γp) of Reeb orbits such that

(1) g≤`k (X) = A(Γ);

(2) µCZ(Γ) = p(n− 3) + 2(k + 1);

(3) 1 ≤ p ≤ `.

Proof. We prove monotonicity. If (X,λX) −→ (Y, λY ) is an exact symplectic em-
bedding, then it is possible to define a Viterbo transfer map H(B(CC(Y )[−1])) −→
H(B(CC(X)[−1])). This map respects the action filtration as well as the augmentation
maps, i.e. the diagram

H(A≤aB≤`(CC(Y )[−1])) H(B(CC(Y )[−1])) Q

H(A≤aB≤`(CC(X)[−1])) H(B(CC(X)[−1])) Q

εYk

εXk

commutes. The result then follows by definition of g̃≤`k .

We prove conformality. If γ is a Reeb orbit of (∂X, λ|∂X) of action Aλ(γ) then γ is a
Reeb orbit of (∂X, µλ|∂X) of action Aµλ(γ) = µAλ(γ). Therefore, there is a diagram

H(A≤aB≤`(CC(X,λ)[−1])) H(B(CC(X,λ)[−1])) Q

H(A≤µaB≤`(CC(X,µλ)[−1])) H(B(CC(X,µλ)[−1])) Q

ελk

εµλ
k

Again, the result follows by definition of g≤`k .

We prove the Reeb orbits property. Choose a point x ∈ intX, a symplectic divisor D
through x and an almost complex structure J ∈ J (X,D). Consider the bar complex
B≤`(CC(X)[−1]), computed with respect to J . By assumption and definition of g≤`k ,

+∞ > g≤`k (X)
= inf{a > 0 | εk : H(A≤aB≤`(CC(X)[−1])) −→ Q is nonzero}
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= inf{a > 0 | there exists β ∈ H(A≤aB≤`(CC(X)[−1])) such that εk(β) 6= 0}
= inf{A(β) | β ∈ H(B≤`(CC(X)[−1])) such that εk(β) 6= 0},

where A(β) is given as in Remark 3.17. Since the action spectrum of (∂X, λ|∂X) is a
discrete subset of R, we conclude that in the above expression the infimum is a minimum.
More precisely, there exists β ∈ H(B≤`(CC(X)[−1])) such that εk(β) 6= 0 and g≤`k (X) =
A(β). The element β can be written as a finite linear combination of words of Reeb
orbits Γ = (γ1, . . . , γp), where every word has length p ≤ ` and Conley–Zehnder index
equal to p(n−3)+2(k+1). Here, the statement about the Conley–Zehnder index follows
from the computation

0 = virdimMJ

X(Γ)〈T (k)x〉
= (n− 3)(2− p) + µCZ(Γ)− 2n− 2k + 4
= µCZ(Γ)− p(n− 3)− 2(k + 1).

One of the words in this linear combination is such that A(Γ) = A(β) = g≤`k (X).

Remark 7.20. In [GH18, Theorem 1.6] (respectively [GH18, Theorem 1.14]) Gutt–
Hutchings give formulas for cGH

k of a convex (respectively concave) toric domain. How-
ever, the given proofs only depend on specific properties of the Gutt–Hutchings capacity
and not on the definition of the capacity itself. These properties are monotonicity, con-
formality, a Reeb orbits property similar to the one of Theorem 7.19, and finally that the
capacity be finite on star-shaped domains. If we showed that g≤1

k is finite on star-shaped
domains, we would conclude that g≤1

k = cGH
k on convex or concave toric domains, because

in this case both capacities would be given by the formulas in the previously mentioned
theorems. Showing that g≤1

k is finite boils down to showing that the augmentation map
is nonzero, which we will do in Section 7.7. However, in Theorem 7.64 we will use this
information in combination with the Bourgeois–Oancea isomorphism to conclude that
g≤1
k (X) = cGH

k (X) for any nondegenerate Liouville domain X. Therefore, the proof sug-
gested above will not be necessary, although it is a proof of g≤1

k (X) = cGH
k (X) alternative

to that of Theorem 7.64 when X is a convex or concave toric domain.

7.5 Cauchy–Riemann operators on bundles
In order to show that g≤1

k (X) = cGH
k (X), we will need to show that the augmentation

map of a small ellipsoid in X is nonzero (see the proof of Theorem 7.64). Recall that
the augmentation map counts holomorphic curves satisfying a tangency constraint. In
Section 7.7, we will explicitly compute how many such holomorphic curves there are.
However, a count obtained by explicit methods will not necessarily agree with the virtual
count that appears in the definition of the augmentation map. By assumption on the
virtual perturbation scheme, it does agree if the relevant moduli space is transversely
cut out.

Therefore, in this section and the next we will describe the framework that allows us
to show that this moduli space is transversely cut out. This section deals with the
theory of real linear Cauchy–Riemann operators on line bundles, and our main reference
is [Wen10]. The outline is as follows. First, we review the basic definitions about real
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linear Cauchy–Riemann operators (Definition 7.24). By the Riemann-Roch theorem
(Theorem 7.30), these operators are Fredholm and their index can be computed from
a number of topological quantities associated to them. We will make special use of
a criterion by Wendl (Proposition 7.31) which guarantees that a real linear Cauchy–
Riemann operator defined on a complex line bundle is surjective. For our purposes, we
will also need an adaptation of this result to the case where the operator is accompanied
by an evaluation map, which we state in Lemma 7.34. We now state the assumptions
for the rest of this section.

Let (Σ, j) be a compact Riemann surface without boundary, of genus g, with sets of
positive and negative punctures z± = {z±1 , . . . , z±p±}. Denote z = z+ ∪ z− and Σ̇ = Σ \ z.
Choose cylindrical coordinates (s, t) near each puncture z ∈ z and denote Uz ⊂ Σ̇ the
domain of the coordinates (s, t).

Definition 7.21. An asymptotically Hermitian vector bundle over Σ̇ is given by
a complex vector bundle (E, J) −→ Σ̇ and for each z ∈ z a Hermitian vector bundle
(Ez, Jz, ωz) −→ S1 together with a complex vector bundle isomorphism Φz : π∗zEz −→
ι∗zE, where ιz : Uz −→ Σ̇ is the inclusion and πz : Uz −→ S1 is given by πz(w) = t(w):

Ez π∗zEz ι∗zE E

S1 Uz Uz Σ̇

Φz

πz ιz

From now until the end of this section, we will assume that E is an asymptotically
Hermitian vector bundle over Σ̇ of complex rank n.

Definition 7.22. An asymptotic trivialization of an asymptotically Hermitian vector
bundle E is a family τ = (τz)z∈z of unitary trivializations τz of (Ez, Jz, ωz). By Defi-
nition 7.21, every such τz defines a complex trivialization of ι∗zE. If τ is an asymptotic
trivialization, we will typically denote each τz also by τ .

Definition 7.23. Let E be an asymptotically Hermitian vector bundle over Σ̇, together
with an asymptotic trivialization τ . If η is a section of E and z is a puncture, denote by
ηz : Z± −→ R2n the map η written with respect to the trivialization τ and cylindrical
coordinates near z. The Sobolev space of sections of E is

W k,p(E) := {η ∈ W k,p
loc (E) | ηz ∈ W k,p(Z±,R2n) for every z ∈ z±}.

If δ > 0, the weighted Sobolev space of sections of E is

W k,p,δ(E) := {η ∈ W k,p
loc (E) | e±δsηz ∈ W k,p(Z±,R2n) for every z ∈ z±}.

Definition 7.24. A real linear Cauchy–Riemann operator is a map

D : W 1,p(Σ̇, E) −→ Lp(Σ̇,Hom0,1(T Σ̇, E))

such that D is linear as a map of vector spaces over R and D satisfies the Leibniz rule,
i.e. if v ∈ W 1,p(Σ̇, E) and f ∈ C∞(Σ̇,R) then D(fv) = fDv + v ⊗ ∂f .

126



We now consider the asymptotic operators of D. Their relevance comes from the fact that
the Fredholm index of D is determined by the asymptotic operators at the punctures.

Definition 7.25. An asymptotic operator at z ∈ z is a bounded linear operator
A : H1(Ez) −→ L2(Ez) such that when written with respect to a unitary trivialization
of Ez, A takes the form

H1(S1,R2n) −→ L2(S1,R2n)
η 7−→ −J0η̇ − Sη,

where S : S1 −→ End(R2n) is a loop of symmetric 2n × 2n matrices. We say that A is
nondegenerate if its spectrum does not contain 0.

Definition 7.26. Let D be a real linear Cauchy–Riemann operator and A be an asymp-
totic operator at z ∈ z. We say that D is asymptotic to A at z if the expressions for
D and A with respect to an asymptotic trivialization near z are of the form

(Dξ)(s, t) = ∂sξ(s, t) + J0∂tξ(s, t) + S(s, t)ξ(s, t)
(Aη)(t) = −J0∂tη(t)− S(t)η(t),

where S(s, t) converges to S(t) uniformly as s→ ±∞.

Remark 7.27. Suppose that E splits as a direct sum of complex vector bundles E =
E1 ⊕ E2. In this case, there are canonical inclusions

W 1,p(Σ̇, Ei) ⊂ W 1,p(Σ̇, E),
Lp(Σ̇,Hom0,1(T Σ̇, Ei)) ⊂ Lp(Σ̇,Hom0,1(T Σ̇, E))

for i = 1, 2, and we have the following decompositions:

W 1,p(Σ̇, E) = W 1,p(Σ̇, E1)⊕W 1,p(Σ̇, E2),
Lp(Σ̇,Hom0,1(T Σ̇, E)) = Lp(Σ̇,Hom0,1(T Σ̇, E1))⊕ Lp(Σ̇,Hom0,1(T Σ̇, E2))

We can write D with respect to these decompositions as a block matrix:

D =
[
D11 D12
D21 D22

]
.

By [Wen16, Exercise 7.8], the diagonal terms D11 and D22 are real linear Cauchy–
Riemann operators, while the off diagonal terms D12 and D21 are tensorial.

Let D be a real linear Cauchy–Riemann operator and for every puncture z ∈ z let
Az be a nondegenerate asymptotic operator at z. By the Riemann-Roch theorem with
punctures (Theorem 7.30), D is a Fredholm operator. We now explain how to compute
the Fredholm index of D. Choose an asymptotic trivialization τ as in Definition 7.22.
First, recall that the Euler characteristic of Σ̇ is given by χ(Σ̇) = 2− 2g−#z, where
g is the genus of Σ.

Definition 7.28 ([Wen16, Definition 5.1]). Let S be a compact oriented surface with
boundary and (E, J) be a complex vector bundle over S. Let τ be a complex trivialization
of E|∂S. The relative first Chern number of E with respect to τ , denoted cτ1(E) ∈ Z,
is defined by the following properties.
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(1) If E has complex rank 1, then cτ1(E) is the signed count of zeros of a generic smooth
section η : S −→ E such that τ ◦ η|∂S : ∂S −→ C is constant.

(2) If E1 and E2 are complex vector bundles over S with trivializations τ1 and τ2 over
∂S, then cτ1⊕τ2

1 (E1 ⊕ E2) = cτ1(E1) + cτ1(E2).

The definition of relative first Chern number extends to the class of asymptotically
Hermitian vector bundles over punctured surfaces.

Definition 7.29. The Conley–Zehnder index of an asymptotic operator Az is given
as follows. Let (Azη)(t) = −J0∂tη(t)− S(t)η(t) be the expression of Az with respect to
τ . Let Ψ: [0, 1] −→ Sp(2n) be the unique path of symplectic matrices such that

Ψ(0) = idR2n ,

Ψ̇(t) = J0S(t)Ψ(t).

Since Az is nondegenerate, Ψ is an element of SP(n). Finally, define µτCZ(Az) := µCZ(Ψ).

Theorem 7.30 (Riemann-Roch, [Wen16, Theorem 5.4]). The operator D is Fredholm
and its (real) Fredholm index is given by

ind D = nχ(Σ̇) + 2cτ1(E) +
∑
z∈z+

µτCZ(Az)−
∑
z∈z−

µτCZ(Az).

For the rest of this section, we restrict ourselves to the case where n = rankCE = 1.
We retain the assumption that D is a real linear Cauchy–Riemann operator and Az is
a nondegenerate asymptotic operator for every puncture z ∈ z. Our goal is to state a
criterion that guarantees surjectivity of D. This criterion depends on other topological
quantities which we now define.

For every λ in the spectrum of Az, let wτ (λ) be the winding number of any nontrivial
section in the λ-eigenspace of Az (computed with respect to the trivialization τ). Define
the winding numbers

ατ−(Az) := max{wτ (λ) | λ < 0 is in the spectrum of Az},
ατ+(Az) := min {wτ (λ) | λ > 0 is in the spectrum of Az}.

The parity (the reason for this name is Equation (7.1) below) and associated sets of
even and odd punctures are given by

p(Az) := ατ+(Az)− ατ−(Az) ∈ {0, 1},
z0 := {z ∈ z | p(Az) = 0},
z1 := {z ∈ z | p(Az) = 1}.

Finally, the adjusted first Chern number is given by

c1(E,Az) = cτ1(E) +
∑
z∈z+

ατ−(Az)−
∑
z∈z−

ατ−(Az).

These quantities satisfy the following equations.

µτCZ(Az) = 2ατ−(Az) + p(Az) = 2ατ+(Az)− p(Az), (7.1)
2c1(E,Az) = ind D− 2− 2g + #z0. (7.2)
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Proposition 7.31 ([Wen10, Proposition 2.2]).

(1) If ind D ≤ 0 and c1(E,Az) < 0 then D is injective.

(2) If ind D ≥ 0 and c1(E,Az) < ind D then D is surjective.

We will apply the proposition above to moduli spaces of punctured spheres which have
no even punctures. The following lemma is just a restatement of the previous proposition
in this simpler case.

Lemma 7.32. Assume that g = 0 and #z0 = 0. Then,

(1) If ind D ≤ 0 then D is injective.

(2) If ind D ≥ 0 then D is surjective.

Proof. By Proposition 7.31 and Equation (7.2).

We now wish to deal with the case where D is taken together with an evaluation map
(see Lemma 7.34 below). The tools we need to prove this result are explained in the
following remark.

Remark 7.33. Suppose that ker D 6= {0}. If ξ ∈ ker D \ {0}, it is possible to show
that ξ has only a finite number of zeros, all of positive order, i.e. if w is a zero of
ξ then ord(ξ;w) > 0. For every z ∈ z, there is an asymptotic winding number
windτz(ξ) ∈ Z, which has the properties

z ∈ z+ =⇒ windτz(ξ) ≤ ατ−(Az),
z ∈ z− =⇒ windτz(ξ) ≥ ατ+(Az).

Define the asymptotic vanishing of ξ, denoted Z∞(ξ), and the count of zeros, de-
noted Z(ξ), by

Z∞(ξ) :=
∑
z∈z+

(
ατ−(Az)− windτz(ξ)

)
+
∑
z∈z−

(
windτz(ξ)− ατ+(Az)

)
∈ Z≥0,

Z(ξ) :=
∑

w∈ξ−1(0)
ord(ξ;w) ∈ Z≥0.

In this case, we have the formula (see [Wen10, Equation 2.7])

c1(E,Az) = Z(ξ) + Z∞(ξ). (7.3)

Lemma 7.34. Let w ∈ Σ̇ be a point and E : W 1,p(Σ̇, E) −→ Ew be the evaluation
map at w, i.e. E(ξ) = ξw. Assume that g = 0 and #z0 = 0. If ind D = 2 then
D⊕ E : W 1,p(Σ̇, E) −→ Lp(Σ̇,Hom0,1(T Σ̇, E))⊕ Ew is surjective.

Proof. It is enough to show that the maps

D : W 1,p(Σ̇, E) −→ Lp(Σ̇,Hom0,1(T Σ̇, E)),
E|ker D : ker D −→ Ew
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are surjective. By Lemma 7.32, D is surjective. Since dim ker D = ind D = 2 and
dimREw = 2, the map E|ker D is surjective if and only if it is injective. So, we show
that ker(E|ker D) = ker E ∩ ker D = {0}. For this, let ξ ∈ ker E ∩ ker D and assume by
contradiction that ξ 6= 0. Consider the quantities defined in Remark 7.33. We compute

0 = ind D− 2 [by assumption]
= 2c1(E,Az) [by Equation (7.2)]
= 2Z(ξ) + 2Z∞(ξ) [by Equation (7.3)]
≥ 0 [by definition of Z and Z∞],

which implies that Z(ξ) = 0. This gives the desired contradiction, because

0 = Z(ξ) [by the previous computation]
=

∑
z∈ξ−1(0)

ord(ξ; z) [by definition of Z]

≥ ord(ξ;w) [since ξw = E(ξ) = 0]
> 0 [by Remark 7.33].

7.6 Cauchy–Riemann operators as sections
In this section, we phrase the notion of a map u : Σ̇ −→ X̂ being holomorphic in terms
of u being in the zero set of a section ∂ : T × B −→ E (see Definitions 7.40 and 7.41).
The goal of this point of view is that we can then think of moduli spaces of holomorphic
curves in X̂ as the zero set of the section ∂. To see if such a moduli space is regular near
(j, u), one needs to consider the linearization L(j,u) of ∂ at (j, u) (see Definition 7.42), and
prove that it is surjective. We will see that a suitable restriction of L(j,u) is a real linear
Cauchy–Riemann operator (Lemma 7.45), and therefore we can use the theory from
the last section to show that L(j,u) is surjective in some particular cases (Lemmas 7.46
and 7.49).

Definition 7.35. Let (Σ, j) be a Riemann surface and z ∈ Σ be a puncture. An
asymptotic marker at z is a half-line v ∈ (TzΣ \ {0})/R>0.

Definition 7.36. Let (X,ω, λ) be a symplectic cobordism, J ∈ J (X) be a cylindrical
almost complex structure on X̂, and Γ± = (γ±1 , . . . , γ±p±) be tuples of Reeb orbits on
∂±X. LetM$,J

X (Γ+,Γ−) be the moduli space of (equivalence classes of) tuples

(Σ, j, z,v, u), z = z+ ∪ z−, v = v+ ∪ v−

where (Σ, j, z, u) is as in Definition 4.7 and v± = {v±1 , . . . , v±p±} is a set of asymptotic
markers on z± = {z±1 , . . . , z±p±} such that

lim
t→0+

u(c(t)) = (±∞, γ±i (0))

for every i = 1, . . . , p± and every path c in Σ with c(t) = z±i and ċ(0) = v±i . Two such
tuples (Σ0, j0, z0,v0, u0) and (Σ1, j1, z1,v1, u1) are equivalent if there exists a biholomor-
phism φ : Σ0 −→ Σ1 such that

u1 ◦ φ = u0,
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φ(z±0,i) = z±1,i,

Dφ(z±0,i)v±0,i = v±1,i.

Remark 7.37. Consider the sphere S2, without any specified almost complex struc-
ture. Let z± = {z±1 , . . . , z±p±} ⊂ S2 be sets of punctures and v± = {v±1 , . . . , v±p±} be
corresponding sets of asymptotic markers. Then,

M$,J
X (Γ+,Γ−) ∼=

{
(j, u)

∣∣∣∣∣ j is an almost complex structure on S2,

u : (Ṡ2, j) −→ (X̂, J) is as in Definition 4.7

}
/ ∼,

where two tuples (j0, u0) and (j1, u1) are equivalent if there exists a biholomorphism
φ : (S2, j0) −→ (S2, j1) such that

u1 ◦ φ = u0,

φ(z±i ) = z±i ,

Dφ(z±i )v±i = v±i .

Remark 7.38. There is a surjective map π$ : M$,J
X (Γ+,Γ−) −→ MJ

X(Γ+,Γ−) given
by forgetting the asymptotic markers. By [Wen16, Proposition 11.1], for every u ∈
MJ

X(Γ+,Γ−) the preimage (π$)−1(u) contains exactly∏
γ∈Γ+∪Γ−m(γ)
|Aut(u)|

elements, where m(γ) is the multiplicity of the Reeb orbit γ and Aut(u) is the automor-
phism group of u = (Σ, j, z, u), i.e. an element of Aut(u) is a biholomorphism φ : Σ −→ Σ
such that u ◦ φ = u and φ(z±i ) = z±i for every i.

We will work with the following assumptions. Let Σ = S2, (without any specified almost
complex structure). Let z = {z1, . . . , zp} ⊂ Σ be a set of punctures and v = {v1, . . . , vp}
be a corresponding set of asymptotic markers. Assume also that we have a set j =
{j1, . . . , jp}, where ji is an almost complex structure defined on a neighbourhood of zi
for every i = 1, . . . , p. For every i, there are cylindrical coordinates (s, t) on Σ̇ near zi
as in Definition 4.1, with the additional property that vi agrees with the direction t = 0.
We will also assume that T ⊂ J (Σ) is a Teichmüller slice as in [Wen10, Section 3.1],
where J (Σ) denotes the set of almost complex structures on Σ = S2. Finally, let (X,λ)
be a nondegenerate Liouville domain of dimension 2n and J ∈ J (X) be an admissible
almost complex structure on X̂.

Definition 7.39. Let γ be an unparametrized simple Reeb orbit of ∂X. An admissible
parametrization near γ is a diffeomorphism φ : S1 ×D2n−2 −→ O, where O ⊂ ∂X is
an open neighbourhood of γ and

D2n−2 := {(z1, . . . , zn−1) ∈ Cn−1 | |z1| < 1, . . . , |zn−1| < 1}

is the polydisk, such that t 7−→ φ(t, 0) is a parametrization of γ. In this case, we denote
by (ϑ, ζ) = φ−1 : O −→ S1 ×D2n−2 the coordinates near γ.
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Let Γ = (γ1, . . . , γp) be a tuple of (unparametrized) Reeb orbits in ∂X. Denote by mi

the multiplicity of γi and by Ti the period of the simple Reeb orbit underlying γi (so,
the period of γi is miTi). For every i = 1, . . . , p, choose once and for all an admissible
parametrization φi : S1 ×D2n−2 −→ Oi near the simple Reeb orbit underlying γi.

Definition 7.40. We define a vector bundle π : E −→ T ×B as follows. Let B be the set
of maps u : Σ̇ −→ X̂ of classW k,p

loc satisfying the following property for every puncture zi.
Write u with respect to the cylindrical coordinates (s, t) defined from (zi, vi). First, we
require that u(s, t) ∈ R≥0×Oi for s big enough. Write u with respect to the coordinates
(ϑ, ζ) near γ on the target and cylindrical coordinates (s, t) on the domain:

u(s, t) = (πR ◦ u(s, t), π∂X ◦ u(s, t))
= (πR ◦ u(s, t), ϑ(s, t), ζ(s, t)).

Finally, we require that there exists a ∈ R such that the map

(s, t) 7−→ (πR ◦ u(s, t), ϑ(s, t), ζ(s, t))− (miTis+ a,miTit, 0)

is of class W k,p,δ. The fibre, total space, projection and zero section are defined by

E(j,u) := W k−1,p,δ(Hom0,1((T Σ̇, j), (u∗TX̂, J))), for every (j, u) ∈ T × B,
E :=

∐
(j,u)∈T ×B

E(j,u) = {(j, u, ξ) | (j, u) ∈ T × B, ξ ∈ E(j,u)},

π(j, u, η) := (j, u),
z(j, u) := (j, u, 0).

Definition 7.41. The Cauchy–Riemann operators are the sections

∂j : B −→ E , ∂j(u) := 1
2(Tu+ J ◦ Tu ◦ j) ∈ E(j,u),

∂ : T × B −→ E , ∂(j, u) := ∂j(u).

Definition 7.42. Let (j, u) ∈ T × B be such that ∂(j, u) = 0. Define the vertical
projection

P(j,u) : T(j,u,0)E −→ E(j,u), P(j,u)(η) := η −D(z ◦ π)(j, u, 0)η.

The linearized Cauchy–Riemann operators are the linear maps

D(j,u) := P(j,u) ◦D(∂j)(u) : TuB −→ E(j,u),

L(j,u) := P(j,u) ◦D(∂)(j, u) : TjT ⊕ TuB −→ E(j,u).

Define also the restriction

F(j,u) := L(j,u)|TjT : TjT −→ E(j,u).

Remark 7.43. Choose a smooth function β : R −→ [0, 1] such that β(s) = 0 if s < 0,
β(s) = 1 if s > 1 and 0 ≤ β′(s) ≤ 2. Consider the Liouville vector field ẐX ∈ X(X̂) and
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the Reeb vector field R∂X ∈ X(∂X). For every puncture z, let (s, t) be the cylindrical
coordinates near z and define sections

ẐX
z ∈ Γ(u∗TX̂), ẐX

z (s, t) = β(s)ẐX(u(s, t)),
R∂X
z ∈ Γ(u∗TX̂), R∂X

z (s, t) = β(s)R∂X(u(s, t)).

Denote V = ⊕p
i=1 span{ẐX

zi
, R∂X

zi
}. Then, the tangent space of B is given by

TuB = V ⊕W k,p,δ(Σ̇, u∗TX̂).

Definition 7.44. Let (j, u) ∈ T ×B be such that ∂(j, u) = 0 and consider the linearized
Cauchy–Riemann operator D(j,u). Choose a smooth function f : Σ̇ −→ R such that
f(s, t) = δs on every cylindrical end of Σ̇. Define the restriction of D(j,u), denoted
Dδ, and the conjugation of D(j,u), denoted D0, to be the unique maps such that the
diagram

TuB W k,p,δ(u∗TX̂) W k,p(u∗TX̂)

E(j,u) W k−1,p,δ(Hom0,1(T Σ̇, u∗TX̂)) W k−1,p(Hom0,1(T Σ̇, u∗TX̂))

D(j,u) Dδ

ξ 7→ef ξ

D0

η 7→efη

commutes.

Lemma 7.45. The maps Dδ and D0 are real linear Cauchy–Riemann operators.

Proof. By [MS12, Proposition 3.1.1], the map Dδ is given by the equation

Dδξ = 1
2(∇ξ + J(u)∇ξ ◦ j)− 1

2J(u)(∇ξJ)(u)∂(u),

where ∇ is the Levi-Civita connection on X̂ associated to the Riemannian metric deter-
mined by J and dλ̂. Since ∇ : X(Σ)× Γ(u∗TX̂) −→ Γ(u∗TX̂) satisfies the Leibniz rule
with respect to the Γ(u∗TX̂) argument, Dδ is a real linear Cauchy–Riemann operator.
We show that D0 satisfies the Leibniz rule.

D0(gξ) = efDδ(e−fgξ) [by definition of Dδ]
= gefDδ(e−fξ) + ξ ⊗ ∂g [Dδ obeys the Leibniz rule]
= gD0(ξ) + ξ ⊗ ∂g [by definition of Dδ].

Lemma 7.46. If n = 1 then L(j,u) is surjective.

Proof. Let τ1 be a global complex trivialization of u∗TX̂ extending to an asymptotic uni-
tary trivialization near the punctures. Let τ2 be the unitary trivialization of u∗TX̂ near
the punctures which is induced from the decomposition T(r,x)(R× ∂X) = 〈∂r〉 ⊕ 〈R∂X

x 〉.
It is shown in the proof of [Wen16, Lemma 7.10] that the operator D0 is asymptotic at zi
to −J∂t+δ, which is nondegenerate and has Conley–Zehnder index µτ2

CZ(−J∂t+δ) = −1.
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Therefore, every zi is an odd puncture and #z0 = 0. We show that cτ2
1 (u∗TX̂) = ∑p

i=1mi,
where mi is the multiplicity of the asymptotic Reeb orbit γi:

cτ2
1 (u∗TX̂) = cτ1

1 (u∗TX̂) +
p∑
i=1

deg(τ1|Ezi ◦ (τ2|Ezi )
−1) [by [Wen16, Exercise 5.3]]

=
p∑
i=1

deg(τ1|Ezi ◦ (τ2|Ezi )
−1) [by Definition 7.28]

=
p∑
i=1

mi,

where in the last equality we have used the fact that if (s, t) are the cylindrical coordinates
near zi, then for s large enough the map t 7−→ τ1|u(s,t) ◦ (τ2|u(s,t))−1 winds around the
origin mi times. We show that ind D0 ≥ 2.

ind D0 = nχ(Σ̇) + 2cτ2
1 (u∗TX̂) +

p∑
i=1

µτ2
CZ(−J∂t + δ) [by Theorem 7.30]

= 2 + 2
p∑
i=1

(mi − 1) [since n = 1 and g = 0]

≥ 2 [since mi ≥ 1 for every i].

By Lemma 7.32, this implies that D0 is surjective. By Definition 7.44, the operator
D(j,u) is also surjective. Therefore, L(j,u) = F(j,u) + D(j,u) is also surjective.

From now until the end of this section, let (X,λX) be a Liouville domain of dimension
2n and (Y, λY ) be a Liouville domain of dimension 2n+ 2 such that

(1) X ⊂ Y and ∂X ⊂ ∂Y ;

(2) the inclusion ι : X −→ Y is a Liouville embedding;

(3) if x ∈ X then ZX
x = ZY

x ;

(4) if x ∈ ∂X then R∂X
x = R∂Y

x .

In this case, we have an inclusion of completions X̂ ⊂ Ŷ as sets. By assumption, ZX is ι-
related to ZY , which implies that there is a map ι̂ : X̂ −→ Ŷ on the level of completions.
Since in this case X̂ ⊂ Ŷ and by Definition 2.51, ι̂ is the inclusion. Assume that
JX ∈ J (X) and JY ∈ J (Y ) are almost complex structures on X̂ and Ŷ respectively,
such that ι̂ : X̂ −→ Ŷ is holomorphic. As before, let Γ = (γ1, . . . , γp) be a tuple of
unparametrized Reeb orbits in ∂X. Notice that each γi can also be seen as a Reeb
orbit in ∂Y . For every i = 1, . . . , p, choose once and for all admissible parametrizations
φXi : S1 ×D2n−2 −→ OX

i and φYi : S1 ×D2n −→ OY
i near γi with the property that the

diagram

S1 ×D2n−2 OX
i ∂X

S1 ×D2n OY
i ∂Y

φXi

∃! ι∂Y,∂X

φYi
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commutes. We will consider the bundle of Definition 7.40 as well as the Cauchy–Riemann
operator and its linearization for both X and Y . We will use the notation

πX : EX −→ T × BX, ∂X : T × BX −→ EX, LX
(j,u) : TjT ⊕ TuBX −→ E(j,u)X,

πY : EY −→ T × BY, ∂Y : T × BY −→ EY, LY
(j,w) : TjT ⊕ TwBY −→ E(j,w)Y

to distinguish the bundles and maps for X and Y . Define maps

Bι : BX −→ BY, Bι(u) := ι̂ ◦ u,
Eι : EX −→ EY, Eι(j, u, η) := (j, ι̂ ◦ u, T ι̂ ◦ η).

Then, the diagrams

EX T × BX T × BX EX

EY T × BY T × BY EY

T × BX EX (zX)∗TEX EX

T × BY EY (zY )∗TEY EY

πX

Eι idT ×Bι idT ×Bι

zX

Eι

πY zY

∂X

idT ×Bι Eι

PX

TEι Eι

∂Y PY

commute. By the chain rule, the diagram

TuBX T(j,u,0)EX E(j,u)X

Tι̂◦uBY T(j,ι̂◦u,0)EY E(j,ι̂◦u)Y

DX
(j,u)

D∂Xj (u)

D(Bι)(u)

PX(j,u)

D(Eι)(∂Xj (u)) E(j,u)ι

DY
(j,ι̂◦u)

D∂Yj (ι̂◦u) PY(j,ι̂◦u)

(7.4)

is also commutative whenever ∂X(j, u) = 0.

Remark 7.47. Consider the formula for the tangent space of BX from Remark 7.43.
By the assumptions on the Liouville domains X and Y , we have that V X = V Y . Also,
the diagrams

TuBX TuBY W k,p,δ(u∗(TX̂)⊥)

W k,p,δ(u∗TX̂) W k,p,δ(u∗T Ŷ ) W k,p,δ(u∗(TX̂)⊥)

W k,p(u∗TX̂) W k,p(u∗T Ŷ ) W k,p(u∗(TX̂)⊥)
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E(j,u)X E(j,u)Y Ωk−1,p,δ
j (u∗(TX̂)⊥)

Ωk−1,p
j (u∗TX̂) Ωk−1,p

j (u∗T Ŷ ) Ωk−1,p
j (u∗(TX̂)⊥)

commute, where for shortness we are using the notation

Ωk,p
j (E) = W k,p(Hom0,1((T Σ̇, j), (E, J)))

for any complex vector bundle (E, J) −→ Σ̇. In both diagrams, the middle term of
every row is the direct sum of the left and right terms. In addition, the vertical maps
in the middle of both diagrams are block diagonal when written with respect to these
decompositions.

Definition 7.48. Let z0 ∈ Σ̇. Define the evaluation map

evX : BX −→ X̂

u 7−→ u(z0)

as well as its derivative EX
u := D(evX)(u) : TuBX −→ Tu(z0)X̂.

In the following lemma, we show that if a holomorphic curve u in X is regular (in X)
then the corresponding holomorphic curve ι̂ ◦ u in Y is also regular. See also [MS22,
Proposition A.1] for a similar result.

Lemma 7.49. Let u ∈ BX be holomorphic and denote ι̂ ◦ u ∈ BY simply by u. Assume
that the normal Conley–Zehnder index of every asymptotic Reeb orbit γi is 1.

(1) If LX
(j,u) is surjective then so is LY

(j,u).

(2) If LX
(j,u) ⊕ EX

u is surjective then so is LY
(j,u) ⊕ EY

u .

Proof. Consider the decomposition TxŶ = TxX̂ ⊕ (TxX̂)⊥ for x ∈ X̂. Let τ be a global
complex trivialization of u∗T Ŷ , extending to an asymptotic unitary trivialization near
the punctures, and such that τ restricts to a trivialization of u∗TX̂ and u∗(TX̂)⊥. By
Remark 7.47, there are splittings

TuBY = TuBX ⊕ T⊥u BX,
E(j,u)Y = E(j,u)X ⊕ E⊥(j,u)X.

We can write the maps

LY
(j,u) : TjT ⊕ TuBX ⊕ T⊥u BX −→ E(j,u)X ⊕ E⊥(j,u)X,

DY
(j,u) : TuBX ⊕ T⊥u BX −→ E(j,u)X ⊕ E⊥(j,u)X,

LX
(j,u) : TjT ⊕ TuBX −→ E(j,u)X,

FY
(j,u) : TjT −→ E(j,u)X ⊕ E⊥(j,u)X,

EY
u : TuBX ⊕ T⊥u BX −→ TxX̂ ⊕ (TxX̂)⊥
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as block matrices

LY
(j,u) =

[
FX

(j,u) DX
(j,u) DTN

(j,u)
0 0 DNN

(j,u)

]
, (7.5)

DY
(j,u) =

[
DX

(j,u) DTN
(j,u)

0 DNN
(j,u)

]
, (7.6)

LX
(j,u) =

[
FX

(j,u) DX
(j,u)

]
, (7.7)

FY
(j,u) =

[
FX

(j,u)
0

]
, (7.8)

EY
u =

[
EX
u 0

0 ENN
u

]
, (7.9)

where (7.9) follows by definition of the evaluation map, (7.8) is true since FY
(j,u) is given

by the formula FY
(j,u)(y) = 1

2(J ◦ Tu ◦ y), (7.6) follows because diagram (7.4) commutes,
and (7.7) and (7.5) then follow by Definition 7.42. Let DNN

δ be the restriction and DNN
0

be the conjugation of DNN
(j,u) (as in Definition 7.44). Denote by BNN

γi
the asymptotic

operator of DNN
δ at zi. Then the asymptotic operator of DNN

0 at zi is BNN
γi

+ δ, which
by assumption has Conley–Zehnder index equal to 1. We show that ind DNN

0 = 2.

ind DNN
0 = χ(Σ̇) + 2cτ1(u∗TX̂) +

p∑
i=1

µτCZ(BNN
γi

+ δ) [by Theorem 7.30]

= 2 [since µτCZ(BNN
γi

+ δ) = 1].

We prove (1).

ind DNN
0 = 2 =⇒ DNN

0 is surjective [by Lemma 7.32]
=⇒ DNN

δ is surjective [DNN
0 and DNN

δ are conjugated]
=⇒ DNN

(j,u) is surjective [DY
δ is a restriction of DY

(j,u)]
=⇒ LY

(j,u) is surjective [LX
(j,u) is surjective by assumption].

We prove (2).

ind DNN
0 = 2

=⇒ DNN
0 ⊕ ENN

u is surjective [by Lemma 7.34]
=⇒ DNN

δ ⊕ ENN
u is surjective [DNN

0 ⊕ ENN
u and DNN

δ ⊕ ENN
u are conjugated]

=⇒ DNN
(j,u) ⊕ ENN

u is surjective [DY
δ ⊕ EY

u is a restriction of DY
(j,u) ⊕ EY

u ]
=⇒ LY

(j,u) ⊕ EY
u is surjective [LX

(j,u) ⊕ EX
u is surjective by assumption].

7.7 Moduli spaces of curves in ellipsoids
We now use the techniques explained in the past two sections to compute the aug-
mentation map of an ellipsoid (Theorem 7.62). The proof of this theorem consists in
an explicit count of curves in the ellipsoid satisfying a tangency constraint (Proposi-
tion 7.60) together with the fact that the moduli space of such curves is transversely
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cut out (Propositions 7.57 to 7.59). Therefore, the explicit count agrees with the virtual
count. We now state the assumptions for this section.

Let a1 < · · · < an ∈ R>0 be rationally linearly independent and consider the ellipsoid
E(a1, . . . , an) ⊂ Cn. By [GH18, Section 2.1], ∂E(a1, . . . , an) has exactly n simple Reeb
orbits γ1, . . . , γn, which satisfy

γj(t) =
√
aj
π
e

2πit
aj ej, (7.10)

A(γmj ) = maj, (7.11)

µCZ(γmj ) = n− 1 + 2
n∑
i=1

⌊
maj
ai

⌋
, (7.12)

where γj : R/ajZ −→ ∂E(a1, . . . , an) and ej is the jth vector of the canonical basis
of Cn as a vector space over C. For simplicity, for every ` = 1, . . . , n denote E` =
E(a1, . . . , a`) ⊂ C`. Notice that γ1 is a Reeb orbit of ∂E1, . . . , ∂En. Define maps

ι` : C` −→ C`+1, ι`(z1, . . . , z`) := (z1, . . . , z`, 0)
h` : C` −→ C, h`(z1, . . . , z`) := z1.

The maps ι` : E` −→ E`+1 are Liouville embeddings satisfying the assumptions in Sec-
tion 7.6. Define also

x` := 0 ∈ C`,

D` := {(z1, . . . , z`) ∈ C` | z1 = 0} = h−1
` (0).

Choose an admissible almost complex structure J` ∈ J (E`, D`) on Ê` such that J` is the
canonical almost complex structure of C` near 0. We assume that the almost complex
structures are chosen in such a way that ι̂` : Ê` −→ Ê`+1 is holomorphic and also such
that there exists a biholomorphism ϕ : Ê1 −→ C such that ϕ(z) = z for z near 0 ∈ C
(see Lemma 7.50 below). Let m ∈ Z≥1 and assume that ma1 < a2 < · · · < an.

Consider the sphere S2, without any specified almost complex structure, with a puncture
z1 ∈ S2 and an asymptotic marker v1 ∈ (Tz1S

2 \ {0})/R>0, and also a marked point
z0 ∈ Ṡ2 = S2 \ {z1}. For k ∈ Z≥0, denote

M`,(k)
p :=M$,J`

E`
(γm1 )〈T (k)x`〉p

:=

(j, u)

∣∣∣∣∣∣∣
j is an almost complex structure on S2,

u : (Ṡ2, j) −→ (Ê`, J`) is as in Definition 4.7,
u(z0) = x` and u has contact order k to D` at x`

 .
Here, the subscript p means that the moduli space consists of parametrized curves, i.e.
we are not quotienting by biholomorphisms. Denote the moduli spaces of regular curves
and of unparametrized curves by

M`,(k)
p,reg :=M$,J`

E`
(γm1 )〈T (k)x`〉p,reg,

M`,(k) :=M$,J`
E`

(γm1 )〈T (k)x`〉 :=M`,(k)
p / ∼ .

Here,M`,(0) :=M$,J`
E`

(γm1 )〈T (0)x`〉 :=M$,J`
E`

(γm1 ) and analogously forM`,(0)
p,reg andM`,(0)

p .
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Lemma 7.50. For any a > 0, there exists an almost complex structure J on B̂(a) and
a biholomorphism ϕ : B̂(a) −→ C such that

(1) J is cylindrical on R≥0 × ∂B(a);

(2) J is the canonical almost complex structure of C near 0 ∈ B(a) ⊂ C;

(3) ϕ(z) = z for z near 0 ∈ B(a) ⊂ C.

Proof. Choose ρ0 < 0 and let g : R −→ R>0 be a function such that g(ρ) = a/4π for
ρ ≤ ρ0 and g(ρ) = 1 for ρ ≥ 0. For (ρ, w) ∈ R× ∂B(a), define

f(ρ) := exp
(
ρ0

2 + 2π
a

∫ ρ

ρ0
g(σ)dσ

)
,

J(ρ,w)(∂ρ) := g(ρ)R∂B(a)
w ,

ϕ(ρ, w) := f(ρ)w.

Property (1) follows from the fact that g(ρ) = 1 for ρ ≥ 0. Consider the Liouville vector
field of C, which is denoted by Z and given by Z(w) = w/2. Let Φ: R × ∂B(a) −→ C
be the map given by Φ(ρ, w) = φρZ(w) = exp(ρ/2)w. By definition of completion,
Φ|B(a)\{0} : B(a) \ {0} −→ C is the inclusion. To prove property (3), it suffices to show
that ϕ(ρ, w) = Φ(ρ, w) for every (ρ, w) ∈ R≤ρ0 × ∂B(a). For this, simply note that

f(ρ) = exp
(
ρ0

2 + 2π
a

∫ ρ

ρ0
g(σ)dσ

)
[by definition of f ]

= exp
(
ρ0

2 + 2π
a

(ρ− ρ0) a4π

)
[ρ ≤ ρ0 implies g(ρ) = a/4π]

= exp
(
ρ

2

)
.

Therefore, ϕ(z) = z for z near 0 ∈ B(a) ⊂ C, and in particular ϕ can be extended
smoothly to a map ϕ : B̂(a) −→ C. We show that ϕ is holomorphic.

j ◦Dϕ(ρ, w)(∂ρ) = j
(
∂

∂ρ

(
f(ρ)|w|

) ∂
∂r

∣∣∣∣
ϕ(ρ,w)

)
[by definition of ϕ]

= 2π
a
g(ρ) j

(
f(ρ)|w| ∂

∂r

∣∣∣∣
ϕ(ρ,w)

)
[by definition of f ]

= 2π
a
g(ρ) j

(
|ϕ(ρ, w)| ∂

∂r

∣∣∣∣
ϕ(ρ,w)

)
[by definition of ϕ]

= 2π
a
g(ρ) ∂

∂θ

∣∣∣∣
ϕ(ρ,w)

[by definition of j]

= g(ρ) Dϕ(ρ, w)(R∂B(a)
w ) [by [GH18, Equation (2.2)]]

= Dϕ(ρ, w) ◦ J(∂ρ) [by definition of J ],

Where (r, θ) are the polar coordinates of C. Since ϕ is holomorphic and ϕ is the identity
near the origin, we conclude that J is the canonical almost complex structure of C near
the origin. In particular, J can be extended smoothly to an almost complex structure
on B̂(a), which proves (2). Finally, we show that ϕ is a diffeomorphism. For this, it
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suffices to show that Φ−1 ◦ϕ : R× ∂B(a) −→ R× ∂B(a) is a diffeomorphism. This map
is given by Φ−1 ◦ ϕ(ρ, w) = (2 ln(f(ρ)), w). Since

d
dρ(2 ln(f(ρ))) = 2f

′(ρ)
f(ρ) = 4π

a
g(ρ) > 0,

ϕ is a diffeomorphism.

Lemma 7.51. Let inv : C −→ C be the map given by inv(z) = 1/z and consider the
vector V := D inv(0)∂x ∈ T∞C. For every j ∈ T there exists a unique biholomorphism
ψj : (C, j0) −→ (S2, j) such that

ψj(0) = z0, ψj(∞) = z1, Dψj(∞)V = v1

‖v1‖
,

where ‖·‖ is the norm coming from the canonical Riemannian metric on S2 as the sphere
of radius 1 in R3.

Proof. By the uniformization theorem [dB16, Theorem XII.0.1], there exists a biholo-
morphism φ : (S2, j) −→ (C, j0). Since there exists a unique Möbius transformation
ψ0 : (C, j0) −→ (C, j0) such that

ψ0(0) = φ(z0), ψ0(∞) = φ(z1), Dψ0(∞)V = Dφ(z1) v1

‖v1‖
,

the result follows.

We will denote also by ψj the restriction ψj : (C, j0) −→ (S2, j).

Lemma 7.52. If (j, u) ∈M1,(0) then ϕ ◦ u ◦ ψj : C −→ C is a polynomial of degree m.

Proof. Since u is positively asymptotic to γm1 , the map ϕ ◦ u ◦ ψj goes to ∞ as z goes
to ∞. Therefore, ϕ ◦ u ◦ ψj is a polynomial. Again using the fact that u is positively
asymptotic to γm1 , we conclude that for r big enough the path θ 7−→ ϕ ◦ u ◦ ψj(reiθ)
winds around the origin m times. This implies that the degree of ϕ ◦ u ◦ ψj is m.

Lemma 7.53. For every ` = 1, . . . , n−1, view γm1 as a Reeb orbit of ∂E` ⊂ ∂E`+1. The
normal Conley–Zehnder index of γm1 is 1.

Proof. By [GH18, Equation (2.2)], the Reeb vector field of ∂E`+1 is given by

R∂E`+1 = 2π
`+1∑
j=1

1
aj

∂

∂θj
,

where θj denotes the angular polar coordinate of the jth summand of C`+1. Therefore,
the flow of R∂E`+1 is given by

φtR : ∂E`+1 −→ ∂E`+1

(z1, . . . , z`+1) 7−→
(
e

2πi
a1 z1, . . . , e

2πi
a`+1 z`+1

)
.
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The diagram

ξ∂E`γm1 (0) ξ
∂E`+1
γm1 (0)

(
ξ
∂E`+1
γm1 (0)

)⊥
C

ξ∂E`γm1 (t) ξ
∂E`+1
γm1 (t)

(
ξ
∂E`+1
γm1 (t)

)⊥
C

DφtR(γm1 (0)) DφtR(γm1 (0)) DφtR(γm1 (0)) × exp
(

2πit
a`+1

)

commutes. Define a path Aγm1 : [0,ma1] −→ Sp(2) by Aγm1 (t) = exp(tJ0S), where

S = 2π
a`+1

[
1 0
0 1

]
.

The only eigenvalue of S is 2π/a`+1, which has multiplicity 2. Therefore, the signature
of S is signS = 2. These facts allow us to compute µ⊥CZ(γm1 ) using Proposition 3.5:

µ⊥CZ(γm1 ) = µCZ(Aγm1 ) [by definition of µ⊥CZ]

=
(1

2 +
⌊√ 2π

a`+1

2π
a`+1

ma1

2π

⌋)
signS [by Proposition 3.5]

= 1
2 signS [since ma1 < a2 < · · · < an]

= 1 [by the discussion above].

Lemma 7.54. If ` = 1, . . . , n then γm1 is the unique Reeb orbit of ∂E` such that
µCZ(γm1 ) = `− 1 + 2m.

Proof. First, notice that

µCZ(γm1 ) = `− 1 + 2
∑̀
j=1

⌊
ma1

aj

⌋
[by equation (7.12)]

= `− 1 + 2m [since ma1 < a2 < · · · < an].

Conversely, let γ = γki be a Reeb orbit of ∂E` with µCZ(γ) = ` − 1 + 2m. By equation
(7.12), this implies that

m =
∑̀
j=1

⌊
kai
aj

⌋
. (7.13)

We show that i = 1. Assume by contradiction otherwise. Then

m =
∑

1≤j≤`

⌊
kai
aj

⌋
[by equation (7.13)]

≥
∑

1≤j≤i

⌊
kai
aj

⌋
[since every term in the sum is ≥ 0]

=
⌊
kai
a1

⌋
+

∑
1<j<i

⌊
kai
aj

⌋
+ k [since by assumption, i > 1]

≥ (m+ i− 1)k [ma1 < a2 < · · · < ai]
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> mk [since by assumption, i > 1],

which is a contradiction, and therefore i = 1. We show that k = m, using the fact that
m ≥ bkai/a1c = k.

m =
∑

1≤j≤`

⌊
ka1

aj

⌋
[by equation (7.13) and since i = 1]

= k +
∑

2≤j≤`

⌊
ka1

aj

⌋
= k [since k ≤ m and ka1 ≤ ma1 < a1 < · · · < an].

Lemma 7.55. The module CHn−1+2m(En) is the free Q-module generated by γm1 .

Proof. By equation (7.12), every Reeb orbit of ∂En is good. We claim that the differential
∂ : CC(En) −→ CC(En) is zero. Assume by contradiction that there exists a Reeb
orbit γ such that ∂γ 6= 0. By definition of ∂, this implies that there exist Reeb orbits
η, α1, . . . , αp such that

0 6= #virMJn
∂En(γ; η, α1, . . . , αp),

0 6= #virMJn
En(αj), for j = 1, . . . , p.

By assumption on the virtual perturbation scheme,

0 = virdimMJn
En(αj) = n− 3 + µCZ(αj) for every j = 1, . . . , p,

0 = virdimMJn
∂En(γ; η, α1, . . . , αp)

= (n− 3)(2− (2 + p)) + µCZ(γ)− µCZ(η)−
p∑
j=1

µCZ(αj)− 1

= µCZ(γ)− µCZ(η)− 1
∈ 1 + 2Z,

where in the last line we used equation (7.12). This gives the desired contradiction, and
we conclude that ∂ : CC(En) −→ CC(En) is zero. Therefore, CH(En) = CC(En) is the
free Q-module generated by the Reeb orbits of ∂En. By Lemma 7.54, γm1 is the unique
Reeb orbit of ∂En with µCZ(γm1 ) = n− 1 + 2m, from which the result follows.

Lemma 7.56. If ` = 1, . . . , n and k ∈ Z≥1 thenM`,(k)
p =M1,(k)

p andM`,(k) =M1,(k).

Proof. It suffices to show thatM`,(k)
p =M`+1,(k)

p for every ` = 1, . . . , n−1. The inclusion
M`,(k)

p ⊂ M`+1,(k)
p follows from the fact that the inclusion Ê` ↪→ Ê`+1 is holomorphic

and the assumptions on the symplectic divisors. To prove that M`+1,(k)
p ⊂ M`,(k)

p , it
suffices to assume that (j, u) ∈M`+1,(k)

p and to show that the image of u is contained in
Ê` ⊂ Ê`+1. Since u has contact order k to D`+1 at x`+1 = ι`(x`), we conclude that u is
not disjoint from Ê`. By Lemma 6.39, u is contained in Ê`.
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We now prove that the moduli spacesM`,(k) are regular. The proof strategy is as follows.

(1) Proposition 7.57 deals with the moduli spacesM1,(0). We show that the linearized
Cauchy–Riemann operator is surjective using Lemma 7.46.

(2) Proposition 7.58 deals with the moduli spaces M`,(1). Here, we need to consider
the linearized Cauchy–Riemann operator together with an evaluation map. We
show inductively that this map is surjective using Lemma 7.49.

(3) Finally, Proposition 7.59 deals with the moduli spaces M`,(k). We now need to
consider the jet evaluation map. We prove inductively that this map is surjective
by writing it explicitly.

Proposition 7.57. The moduli spacesM1,(0)
p andM1,(0) are transversely cut out.

Proof. It is enough to show that M1,(0)
p is transversely cut out, since this implies that

M1,(0) is transversely cut out as well. Recall that M1,(0)
p can be written as the zero

set of the Cauchy–Riemann operator ∂1 : T × BE1 −→ EE1. It suffices to assume that
(j, u) ∈ (∂1)−1(0) and to prove that the linearization

L1
(j,u) : TjT ⊕ TuBE1 −→ E(j,u)E1

is surjective. This follows from Lemma 7.46.

Proposition 7.58. If ` = 1, . . . , n thenM`,(1)
p andM`,(1) are transversely cut out.

Proof. We will use the notation of Section 7.6 with X = E` and Y = E`+1. We will
show by induction on ` that M`,(1)

p is transversely cut out. This implies that M`,(1) is
transversely cut out as well.

We prove the base case. By Proposition 7.57,M1,(0)
p is a smooth manifold. Consider the

evaluation map

ev1 : M1,(0)
p −→ Ê1

(j, u) 7−→ u(z0).

Notice thatM1,(1)
p = (ev1)−1(x1). We wish to show that the linearized evaluation map

E1
(j,u) = D(ev1)(j, u) : T(j,u)M1,(0)

p −→ Tu(z0)Ê1 is surjective whenever u(z0) = ev1(j, u) =
x1. There are commutative diagrams

M1,(0)
p M C T(j,u)M1,(0)

p TfM Cm+1

Ê1 C C Tx1Ê1 C C

Φ

ev1 evM

P

evC

DΦ(j,u)

E1
(j,u) EM

DP(a)

EC

ϕ Dϕ(x1)

where

M := {f : C −→ C | f is a polynomial of degree m},
C := {(a0, . . . , am) ∈ Cm+1 | am 6= 0},
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Φ(j, u) := ϕ ◦ u ◦ ψj,
evM(f) := f(0),

evC(a0, . . . , am) := a0,

P(a0, . . . , am)(z) := a0 + a1z + · · ·+ amz
m,

and the diagram on the right is obtained by linearizing the one on the left. The map Φ
is well-defined by Lemma 7.52. Since EC(a0, . . . , am) = a0 is surjective, E1

u is surjective
as well. This finishes the proof of the base case.

We prove the induction step, i.e. that ifM`,(1)
p is transversely cut out then so isM`+1,(1)

p .
We prove that M`,(1)

p,reg ⊂ M`+1,(1)
p,reg . For this, assume that (j, u) ∈ M`,(1)

p is such that
L`

(j,u) ⊕ E`
u : TjT ⊕ TuBE` −→ E(j,u)E` ⊕ Tx`Ê` is surjective. By Lemma 7.49,

L`+1
(j,u) ⊕ E`+1

u : TjT ⊕ TuBE`+1 −→ E(j,u)E`+1 ⊕ Tx`+1Ê`+1

is also surjective, which means that (j, u) ∈ M`+1,(1)
p,reg . This concludes the proof of

M`,(1)
p,reg ⊂M`+1,(1)

p,reg . Finally, we show thatM`+1,(1)
p,reg =M`+1,(1)

p .

M`+1,(1)
p,reg ⊂M`+1,(1)

p [since regular curves form a subset]
=M`,(1)

p [by Lemma 7.56]
=M`,(1)

p,reg [by the induction hypothesis]
⊂M`+1,(1)

p,reg [proven above].

Proposition 7.59. If ` = 1, . . . , n and k = 1, . . . ,m then M`,(k)
p and M`,(k) are trans-

versely cut out.

Proof. By Proposition 7.58, M`,(1)
p is a smooth manifold. Consider the jet evaluation

map

j`,(k) : M`,(1)
p −→ Ck−1

(j, u) 7−→ ((h` ◦ u ◦ ψj)(1)(0), . . . , (h` ◦ u ◦ ψj)(k−1)(0)).

The moduli spaceM`,(k)
p is given byM`,(k)

p = (j`,(k))−1(0). We will prove by induction
on ` thatM`,(k)

p is transversely cut out. This shows thatM`,(k) is transversely cut out
as well. Define J`,(k)

(j,u) := D(j`,(k))(j, u) : T(j,u)M`,(1)
p −→ Ck−1.

We prove the base case, i.e. that M1,(k)
p is transversely cut out. For this, it suffices

to assume that (j, u) ∈ M1,(1)
p is such that j1,(k)(j, u) = 0 and to prove that J1,(k)

(j,u) is
surjective. There are commutative diagrams

M1,(1)
p M C T(j,u)M1,(1)

p TfM Cm

Ck−1 Ck−1 Ck−1 Ck−1 Ck−1 Ck−1

Φ

j1,(k) j
(k)
M

P

j
(k)
C

DΦ(j,u)

J1,(k)
(j,u) J(k)

M

DP(a)

J(k)
C

where

M := {f : C −→ C | f is a polynomial of degree m with f(0) = 0},
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C := {(a1, . . . , am) ∈ Cm | am 6= 0},
Φ(j, u) := ϕ ◦ u ◦ ψj,
j

(k)
M (f) := (f (1)(0), . . . , f (k−1)(0)),

j
(k)
C (a1, . . . , am) := (a1, . . . , (k − 1)!ak−1),

P(a1, . . . , am)(z) := a1z + · · ·+ amz
m,

and the diagram on the right is obtained by linearizing the one on the left. The map Φ is
well-defined by Lemma 7.52. Since J(k)

C (a1, . . . , am) = (a1, . . . , (k− 1)!ak−1) is surjective,
J1,(k)
u is surjective as well. This finishes the proof of the base case.

We prove the induction step, i.e. that ifM`,(k)
p is transversely cut out then so isM`+1,(k)

p .
We show that M`,(k)

p,reg ⊂ M`+1,(k)
p,reg . For this, it suffices to assume that (j, u) ∈ M`,(k)

p is
such that J`,(k)

(j,u) is surjective, and to prove that J`+1,(k)
(j,u) is surjective as well. This follows

because the diagrams

M`,(1)
p T(j,u)M`,(1)

p

M`+1,(1)
p Ck−1 T(j,u)M`+1,(1)

p Ck−1

j`,(k) J`,(k)
u

j`+1,(k) J`+1,(k)
u

commute. Finally, we show thatM`+1,(k)
p,reg =M`+1,(k)

p .

M`+1,(k)
p,reg ⊂M`+1,(k)

p [since regular curves form a subset]
=M`,(k)

p [by Lemma 7.56]
=M`,(k)

p,reg [by the induction hypothesis]
⊂M`+1,(k)

p,reg [proven above].

Proposition 7.60. If ` = 1, . . . , n then #virM`,(m) = #M`,(m) = 1.

Proof. By assumption on the perturbation scheme and Proposition 7.59, #virM`,(m) =
#M`,(m). Again by Proposition 7.59, the moduli space M`,(m) is transversely cut out
and

dimM`,(m) = (n− 3)(2− 1) + µCZ(γm1 )− 2`− 2m+ 4 = 0,

where in the second equality we have used Lemma 7.54. This implies that M`,(m) is
compact, and in particular #M`,(m) = #M`,(m). By Lemma 7.56, #M`,(m) = #M1,(m).
It remains to show that #M1,(m) = 1. For this, notice thatM1,(m) is the set of equiv-
alence classes of pairs (j, u), where j is an almost complex structure on Σ = S2 and
u : (Σ̇, j) −→ (Ê1, J1) is a holomorphic map such that

(1) u(z0) = x1 and u has contact order m to D1 at x1;

(2) if (s, t) are the cylindrical coordinates on Σ̇ near z1 such that v1 agrees with the
direction t = 0, then

lim
s→+∞

πR ◦ u(s, t) = +∞,
lim

s→+∞
π∂E1 ◦ u(s, t) = γ1(a1mt).
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Here, two pairs (j0, u0) and (j1, u1) are equivalent if there exists a biholomorphism
φ : (Σ, j0) −→ (Σ, j1) such that

φ(z0) = z0, φ(z1) = z1, Dφ(z1)v1 = v1.

We claim that any two pairs (j0, u0) and (j1, u1) are equivalent. By Lemma 7.52, the
maps ϕ ◦ u0 ◦ ψj0 and ϕ ◦ u1 ◦ ψj1 are polynomials of degree m:

ϕ ◦ u0 ◦ ψj0(z) = a0 + · · ·+ amz
m,

ϕ ◦ u1 ◦ ψj1(z) = b0 + · · ·+ bmz
m.

Since u0 and u1 have contact order m to D1 at x1, for every ν = 0, . . . ,m− 1 we have

0 = (ϕ ◦ u0 ◦ ψj0)(ν)(0) = ν!aν ,
0 = (ϕ ◦ u1 ◦ ψj1)(ν)(0) = ν!bν .

Since u0 and u1 have the same asymptotic behaviour, arg(am) = arg(bm). Hence, there
exists λ ∈ R>0 such that λmbm = am. Then,

u1 ◦ ψj1(λz) = u0 ◦ ψj0(z).

Therefore, (j0, u0) and (j1, u1) are equivalent and #M1,(m) = 1.

Remark 7.61. In [CM18, Proposition 3.4], Cieliebak and Mohnke show that the signed
count of the moduli space of holomorphic curves in CP n in the homology class [CP 1]
which satisfy a tangency condition 〈T (n)x〉 equals (n− 1)!. It is unclear how this count
relates to the one of Proposition 7.60.

Finally, we will use the results of this section to compute the augmentation map of the
ellipsoid En.

Theorem 7.62. The augmentation map εm : CHn−1+2m(En) −→ Q is an isomorphism.

Proof. By Proposition 7.60, Remark 7.38 and definition of the augmentation map, we
have εm(γm1 ) 6= 0. By Lemma 7.55, εm is an isomorphism.

7.8 Computations using contact homology
Finally, we use the tools developed in this chapter to prove Conjecture 6.24 (see Theo-
rem 7.65). The proof we give is the same as that of Theorem 6.41, with the update that
we will use the capacity g≤1

k to prove that

g̃≤1
k (X) ≤ g≤1

k (X) = cGH
k (X)

for any nondegenerate Liouville domain X. Notice that in Theorem 6.41, g̃≤1
k (X) ≤

cGH
k (X) held because by assumption X was a 4-dimensional convex toric domain. We
start by showing that g̃≤`k (X) ≤ g≤`k (X). This result has already been proven in [MS22,
Section 3.4], but we include a proof for the sake of completeness.
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Theorem 7.63 ([MS22, Section 3.4]). If X is a Liouville domain then

g̃≤`k (X) ≤ g≤`k (X).

Proof. By Lemma 6.11, we may assume that X is nondegenerate. Choose a point x ∈
intX and a symplectic divisor D through x. Let J ∈ J (X,D) be an almost complex
structure on X̂ and consider the bar complex B(CC(X)[−1]), computed with respect to
J . Suppose that a > 0 is such that the augmentation map

εk : H(A≤aB≤`(CC(X)[−1])) −→ Q

is nonzero. By Theorem 6.34, it is enough to show that there exists a word of Reeb
orbits Γ = (γ1, . . . , γp) such that

p ≤ `, A(Γ) ≤ a, MJ
X(Γ)〈T (k)x〉 6= ∅.

Choose a homology class β ∈ H(A≤aB≤`(CC(X)[−1])) such that εk(β) 6= 0. The element
β can be written as a finite linear combination of Reeb orbits Γ = (γ1, . . . , γp), where
every word has length p ≤ ` and action A(Γ) ≤ a. One of the words in this linear
combination, say Γ = (γ1, . . . , γp), is such that #virMJ

X(Γ)〈T (k)x〉 6= 0. By assumption
on the virtual perturbation scheme,MJ

X(Γ)〈T (k)x〉 is nonempty.

Theorem 7.64. If X is a Liouville domain such that π1(X) = 0 and 2c1(TX) = 0 then

g≤1
k (X) = cGH

k (X).

Proof. By Lemma 6.11, we may assume that X is nondegenerate. Let E = E(a1, . . . , an)
be an ellipsoid as in Section 7.7 such that there exists a strict exact symplectic embedding
φ : E −→ X. In [BO16], Bourgeois–Oancea define an isomorphism between linearized
contact homology and positive S1-equivariant contact homology, which we will denote
by ΦBO. This isomorphism commutes with the Viterbo transfer maps and respects the
action filtration. In addition, the Viterbo transfer maps in linearized contact homology
commute with the augmentation maps of Definition 7.16. Therefore, there is a commu-
tative diagram

SH
S1,(ε,a]
n−1+2k(X) SHS1,+

n−1+2k(X) SHS1,+
n−1+2k(E)

CHa
n−1+2k(X) CHn−1+2k(X) CHn−1+2k(E)

CHa
n−1+2k(X) CHn−1+2k(X) Q

ιS
1,a

ΦaBO

φS
1

!

ΦBO ΦBO

ιa φ!

εEk

ιa εXk

Here, the map εEk is nonzero, or equivalently an isomorphism, by Theorem 7.62. Then,

cGH
k (X) = inf{a > 0 | φS1

! ◦ ιS
1,a 6= 0} [by Lemma 6.27]

= inf{a > 0 | εXk ◦ ιa 6= 0} [since the diagram commutes]
= g≤1

k (X) [by Definition 7.17].
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Theorem 7.65. Under Assumption 7.1, if XΩ is a convex or concave toric domain then

cL(XΩ) = δΩ.

Proof. Since XΩ is concave or convex, we have XΩ ⊂ N(δΩ). For every k ∈ Z≥1,

δΩ ≤ cP (XΩ) [by Lemma 6.20]
≤ cL(XΩ) [by Lemma 6.19]

≤ g̃≤1
k (XΩ)
k

[by Theorem 6.40]

≤ g≤1
k (XΩ)
k

[by Theorem 7.63]

= cGH
k (XΩ)
k

[by Theorem 7.64]

≤ cGH
k (N(δΩ))

k
[since XΩ ⊂ N(δΩ)]

= δΩ(k + n− 1)
k

[by Lemma 6.28].

The result follows by taking the infimum over k.
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