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We consider s-wave pairing in a double layer of two chiral metals due to interlayer Coulomb interaction
and study the Josephson effect near a domain wall, where the sign of the order parameter jumps. The
domain wall creates two evanescent modes at the exceptional zero-energy point, whose superposition is
associated with currents flowing in different directions in the two layers. Assuming a toroidal geometry, the
effective Josephson current winds around the domain walls, whose direction is determined by the phase
difference of the complex coefficients of the superimposed zero-energy modes. Thus, the zero-energy mode
is directly linked to a macroscopic current. This result can be understood as an interplay of the conventional
Josephson current perpendicular and the edge current parallel to a domain wall in a double layer of two
chiral metals. As a realization we suggest the surface of a ring-shaped topological insulator. The duality
between electron-electron and electron-hole double layers indicates that this effect should also be
observable in excitonic double layers.
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A Josephson junction is an important tool for probing
paired electron states, since it is sensitive to the phase
difference of the pairing order parameter on both sides
of the junction. The latter generates a current that flows
perpendicular to the Josephson junction. This effect has
been studied in many systems with paired states, including
conventional s-wave superconductors [1,2], as well as
unconventional and topological superconductors [3–5].
In this Letter, we will consider the internal (intralayer)

Josephson effect in a two-dimensional electronic double
layer with interlayer s-wave pairing, assuming that
both layers have a Dirac spectrum consisting of two bands
and a spectral node (see Fig. 1). Such conditions can be
realized, for instance, on the surface of a 3D topological
insulator [6,7].
The nodal spectrum influences strongly the formation of

local currents due to edge modes along the Josephson
junction. They compete with the conventional Josephson
current that tends to cross the junction perpendicularly. As a
result, we expect an anomalous Josephson effect, where the
effective Josephson current has a component that flows
parallel to the junction. The details of these competing
effects will be studied in this Letter. For this purpose, the
Josephson junction is simplified as a domain wall (i.e., it is
an infinitesimally narrow Josephson junction). Zero-energy
edge modes are created along the domain wall, causing local
currents. Finally, we impose periodic boundary conditions to
obtain a toroidal geometry with two domain walls.
Our approach is motivated by the fact that double layers

of chiral materials have rich properties due to the

combination of electronic interlayer pairing and quasipar-
ticle edge modes. The interplay of a superconducting
Josephson current and edge currents represents an intimate
connection of the Josephson effect and topology, which
does not exist in conventional superconductors. Although
the edge modes depend on the sample geometry, the
anomalous Josephson effect is robust and determined only
by topology, which is characterized by the number of edges
and domain walls. As a special example, we will consider
in this Letter the case of a torus with two domain walls,
which has no edges. Such a geometry can be realized with
two metallic layers, separated by a dielectric sheet [8] and
connected by a metallic boundary, similar to Fig. 2. The
internal Josephson current in the double layer is induced by
an external current through inductive coupling. Since the
edge currents are directly associated with the zero-energy
quasiparticle states, this gives also a direct access to these

FIG. 1. Electronic double layer with domain wall, which is
given by a sign jump of the pairing order parameter. The currents
(blue arrows) flow in the same (opposite) direction in the two
layers parallel (perpendicular) to the domain wall.
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states through the external current. In particular, it enables
us to change the direction of the current relative to the
domain wall. Thus, the sensitivity of the anomalous
Josephson effect to an external current provides a method
by which one can probe and control the internal super-
conducting properties. This opens a wide field for new
experiments on superconducting layered materials.
The theory of the electronic double layer is dual to that of

an electron-hole double layer due to a duality transforma-
tion discussed previously by us [9]. This relation connects
the electronic double layer physics with the excitonic
physics. In particular, the duality suggests that the inter-
layer Josephson effect should also exist for the electron-
electron double layer when interlayer hopping is present, as
it was studied before for electron-hole double layers
[10,11]. In that case, the Josephson currents are homo-
geneous in each layer. In the present Letter, this effect will
not appear due to the absence of interlayer hopping. On the
other hand, we expect an anomalous intralayer Josephson
effect in electron-hole layers when we implement a
Josephson junction inside the layers, as visualized in Fig. 1.
Model.—We consider an electronic double layer with

interlayer Coulomb repulsion but without interlayer tun-
neling. The layers themselves are chiral metals, described
by Dirac Hamiltonians with opposite chirality. Such a
system can be defined by the tight-binding Hamiltonian

Hee ¼
X
r;r0

X
s¼↑;↓

X
μ;μ0

Hrr0;s;μμ0c
†
r;s;μcr0;s;μ0

þ
X
r;r0

X
μ;μ0

Vrr0c
†
r;↑;μcr;↑;μc

†
r0;↓;μ0cr0;↓;μ0 ; ð1Þ

where μ ¼ 1, 2 is the band index of the two bands in each
layer. Hrr0;↑;μμ0 (Hrr0;↓;μμ0) is the hopping matrix element

in the top (bottom) layer, and c†r;↑;μ creates an electron at
site r in the top layer in the band with index μ. An example
is the honeycomb lattice, which is bipartite and consists of
two triangular sublattices. In this case, μ ¼ 1, 2 refers to the
two triangular lattices and the coordinate r refers only
to one of the two triangular lattices. There exists a
duality transformation cr;↓;μ → d†r;↓;μ (i.e., we replace the
electrons in the bottom layer by holes). This implies a
transformation Hee → Heh, where Heh is the Hamiltonian

of an electron-hole gas [9]. The latter interacts via an
attractive Coulomb interaction, a system that has been
studied intensively in terms of excitons [10,12–21].
Mean-field approximation.—First, we briefly discuss the

BCS approach for the electron-hole double layer. For this
purpose, we introduce the BCS order parameter

Δrr0;μμ0 ¼ Vrr0hcr;↑;μdr0;↓;μ0i; ð2Þ

which describes Cooper pairing of electrons and holes by
forming excitons [10]. Then the interaction term of Heh
reads in BCS approximation

−
X
r;r0

X
μ;μ0

Vrr0c
†
r;↑;μcr;↑;μd

†
r0;↓;μ0dr0;↓;μ0

≈ −
X
r;r0

X
μ;μ0

ðd†r0;↓;μ0c†r;↑;μΔrr0;μμ0 þ H:c:Þ: ð3Þ

The attractive interaction between the electrons in the top
layer and the holes in the bottom layer causes electron-hole
interlayer pairing despite the fact that the electronic
Coulomb interaction Vrr0 is repulsive. This leads to the
formation of a BCS state because the electron-hole pairs
(excitons) can condense. The interlayer pairing has some
similarity with the resonating valence bond idea [22,23],
where in the present case the bond consists of the two layers.
With a uniform order parameter Δ, we get for the quasi-

particles the Bogoliubov–de Gennes (BdG) Hamiltonian
matrix

hHehi ≈HBdG ¼
�H↑ Δ

Δ† −H�
↓

�
; ð4Þ

where the 2 × 2 matrix structure refers to the top and
bottom layer, while H↑;↓ and Δ are 2 × 2 matrices with
respect to the band index μ. This mean-field (MF) result can
be used to transform back d†r;↓;μ → cr;↓;μ, such that we have
again electrons in both layers. It gives us the effective
quasiparticle Hamiltonian matrix

hHeei ≈HMF ¼
�H↑ Δ

Δ† H↓

�
; ð5Þ

which reads for two layers with opposite chiralities

HMF ¼
�
h1σ1 þ h2σ2 Δσ2

Δσ2 h1σ1 − h2σ2

�
: ð6Þ

Here we have assumed that the antisymmetric hopping
elements h1 and h2 are the same in both layers. σj is the
Pauli matrix with respect to the sublattice structure, and
Δ is a real scalar pairing order parameter. For this
Hamiltonian, we will discuss the effect of a domain wall.

FIG. 2. After gluing the double layer of Fig. 1 to form a torus,
the current I ¼ ðjx þ jsx; jy þ jsyÞ winds along the two domain
walls around the torus.
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In Fourier representation, h1;2 andΔ can depend on the 2D
wave vector k ¼ ðkx; kyÞ. This Hamiltonian belongs to the
symmetry class DIII according to Ref. [24], and it has two
degenerate bands with first Chern numbers �1. Its gapped
quasiparticle dispersion reads Ek¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21þh22þΔ2

p
. The

latter agrees with the dispersion of the Hamiltonian with
identical layers [9]

H0
MF ¼

�
h1σ1 þ h2σ2 Δσ3

Δσ3 h1σ1 þ h2σ2

�
: ð7Þ

Thus, the difference in terms of chirality can only be seen in
the eigenfunctions, but not in their spectra. It should be noted
that in this case the pairing takes place between the same
subbands, whereas in the case with opposite chirality the
pairing occurs between different subbands.
The dispersionEk ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h22 þ Δ2

p
can vanish when

h1 and/or h2 are imaginary. This is the case for evanescent
modes. The phenomenon is known from conventional
Josephson junctions, where evanescent modes exist inside
the gap.
Zero-energy modes at a domain wall.—An inhomo-

geneous order parameter Δ breaks translational invari-
ance and divides the layers in different regions. For a
Josephson junction [1], we typically choose a region
around x ¼ 0, where the order parameter vanishes. For
our purpose, we can consider the simple case [23,25] that
sgnðΔÞ jumps at the domain wall along the y direction at
x ¼ 0, as visualized in Fig. 1. Such a discontinuous phase
change suppresses the Andreev states except for the
zero-energy modes. It should be kept in mind here that
the domain wall is created by a potential, and the
corresponding change of the order parameter should be
obtained via the BCS-like equation. In practice, this
requires some tedious calculations and we simply focus
here on the domain wall in terms of ΔðxÞ, following the
recipe proposed in Ref. [25]. Next, we analyze the effect
of the domain wall. The system is translational invariant
in the y direction, such that we can use Fourier compo-
nents with respect to ky. The domain wall breaks the
translational invariance in the x direction. Considering
only the low-energy MF Hamiltonian, we can write
h1 ∼ i∂x, h2 ∼ ky, and

HMF ¼
�
i∂xσ1 þ h2σ2 ΔðxÞσ2

ΔðxÞσ2 i∂xσ1 − h2σ2

�
: ð8Þ

For the zero-energy mode, we can make the ansatz
Ψk2ðxÞ ¼ ψk2e

−bx, where b depends on the sign of x.
Then we get the eigenmode equation

�−ibσ1 þ h2σ2 ΔðxÞσ2
ΔðxÞσ2 −ibσ1 − h2σ2

�
Ψk2ðxÞ ¼ 0: ð9Þ

Solving this equation for x < 0 and for x > 0 and
using the matching condition at x ¼ 0, the evanescent
solutions require b ¼ sgnðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h22 þ Δ2

p
and h2 ¼ 0, such

that b ¼ sgnðxÞjΔj and the zero-energy modes read

Ψ1 ¼
1

N

0
BBB@

1

0

1

0

1
CCCAe−jΔjjxj; Ψ2 ¼

1

N

0
BBB@

0

1

0

−1

1
CCCAe−jΔjjxj; ð10Þ

with the normalization N ¼ ffiffiffiffiffiffiffiffiffiffiffi
2=jΔjp

. Ψ1 has the same
wave function on the top and the bottom layer, whereas
Ψ2 has an opposite sign on the two layers.
For a more general phase change expð−iθ=2Þ →

expðiθ=2Þ at x ¼ 0, the matching condition reads

b− ¼ bþe−iθ ¼ bþðcos θ − i sin θÞ; ð11Þ

where bþ (b−) refers to the right (left) side with respect to
the domain wall. To get exponentially decaying functions
expð−b�xÞ on both sides of the domain wall, the sign of
Reðb−Þ [ReðbþÞ] must be negative (positive). This requires
cos θ < 0 due to Eq. (11); i.e., for π=2 < θ < 3π=2. The
decay length of the bound state is −1=jΔj cos θ in units of
the lattice spacing. For cos θ ≥ 0 there is no bound state at
the domain wall.
Symmetries and degenerate zero-energy modes.—The

characteristic polynomial of the MF Hamiltonian has four
degenerate zero solutions for h2¼0 and bðxÞ ¼ sgnðxÞjΔj.
We consider the block-diagonal matrices Sj ¼ diagðσj; σjÞ
and Tj ¼ diagðσj;−σjÞ for j ¼ 1, 2, 3. First, for h2 ¼ 0

the MF Hamiltonian is invariant under the transformation
HMF → T1HMFT1, which creates a new zero mode Ψ2

from Ψ1 as Ψ2 ¼ T1Ψ1. Moreover, T2 as a sublattice
transformation is also a particle-hole transformation, since
T2HMFT2 ¼ −HMF and, therefore, T2ΨE ¼ Ψ−E. Thus, T1

and T2 create fromΨ1 three more zero modes. In particular,
the fact that the transformation matrices obey the following
rules

S2j ¼ T2
j ¼ 1; T1T2 ¼ S1S2 ¼ iS3 ð12Þ

and S3Ψ1¼Ψ1, T2Ψ1 ¼ iΨ2, and T2T1Ψ1¼S2S1Ψ1¼ iΨ1

reflects that the zero-energy is an exceptional point with a
two-dimensional eigenspace [26]. In the context of line
defects in the BdG Hamiltonian, the appearance of excep-
tional points has been discussed recently [27]. It should
be noted that the zero eigenmodes of HMF in Eq. (10) are
real. But any superposition of the two zero modes Φ ¼
a1Ψ1 þ a2Ψ2 with complex coefficients aj ¼ jajjeiφj and
normalization ja1j2 þ ja2j2 ¼ 1 is also a zero mode. Thus,
the zero eigenmodes are complex, in general, but can also
be chosen as real. Since both zero eigenmodes decay
exponentially with jxj, we must employ an additional
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condition that creates a unique solution for the physical
system. The y direction does not select valid solutions
because we need h2 ¼ 0 for the matching condition; i.e.,
the solution must be constant in that direction, which
can only be satisfied by periodic boundary conditions. A
possible solution is to impose a condition on the physical
properties, for instance, by fixing the current density. This
will be discussed subsequently.
Currents.—The current densities induced by the zero

modes are expressed separately for the top and for the
bottom layer, where we have the wave functions

Φ↑ ¼
�
a1
a2

�
e−jΔjjxj

N
; Φ↓ ¼

�
a1
−a2

�
e−jΔjjxj

N
: ð13Þ

Using the quasiparticle continuity equation [28], we get for
the top layer

∂tΦ↑ ·Φ↑ þ ∂xjx↑ ¼ iΔðxÞΦ↑ · σ2Φ↓ ð14Þ

and for the bottom layer

∂tΦ↓ ·Φ↓ þ ∂xjx↓ ¼ iΔðxÞΦ↓ · σ2Φ↑; ð15Þ

where the scalar product contains an implicit complex
conjugation: Φ↑ ·Φ↑ ≡ jΦ↑1j2 þ jΦ↑2j2. The current den-
sities are related to the current operator ðe=iℏÞ½HMF; rμ�,
projected onto the top or bottom layer, respectively,

jx↑ ¼ −jx↓ ¼ jΔjja1a2j cosðφ2 − φ1Þe−2jΔjjxj: ð16Þ

The terms on the right-hand side of Eqs. (14) and (15)
represent the source and drain provided by the pairing
condensate [28], which can be identified with the super-
currents jsxσ through the relation

∂xjsx↑ ¼ −iΔðxÞΦ↓ · σ2Φ↑ ð17Þ

and accordingly for jsx↓. An x integration of this equation
from the domain wall to some position x then provides

jsx↑;↓ðxÞ ∼�jΔjja1a2j cosðφ2 − φ1Þð1 − e−2jΔjjxjÞ: ð18Þ

Since the wave function is constant with respect to the y
component, the corresponding current densities

jy↑ ¼ jy↓ ¼ jΔjja1a2j sinðφ2 − φ1Þe−2jΔjjxj ð19Þ

do not appear in the continuity equations. The properties
jy↑ ¼ jy↓ (jx↑ ¼ −jx↓) reflect the fact that the currents in
the two layers are (anti)correlated (cf. Fig. 1). This effect
should be experimentally observable, since the interlayer
current-current correlation is associated with the drag
effect [9,29].

A nonvanishing current requires that both zero modes
contribute (i.e., a1, a2 ≠ 0). This implies that according to
Eq. (13) the eigenvectors Φ↑ and Φ↓ are linearly indepen-
dent. The currents of the two layers in the y direction are
not balanced in contrast to the currents in the x direction;
i.e., they do not cancel each other in the two layers. Thus,
there is a net current along the y direction in the double
layer (cf. Fig. 1). Since the layers are charge separated,
there is no charge current between them. Therefore, the
currents must be conserved in each layer.
The picture in Fig. 1 is incomplete though because the

edges of the layers have not been included. But since the
wave functions decay exponentially away from the domain
wall and the order parameter is the same in both layers, we
have effectively periodic boundary conditions in x and y
directions, resulting in the toroidal geometry of Fig. 2.
After preparing the wave function Φ ¼ ðΦ↑;Φ↓Þ we

create a current density ðjx;↑;jy;↑Þ in the top and ð−jx;↑;
jy;↑Þ in the bottom layer. By changing the wave function Φ
through the coefficients aj these current densities also
change according to the above relations. This change can
be achieved experimentally with an external current source
that couples inductively to the double layer. By choosing
the direction of the current (i.e., the angle φ2 − φ1), we
excite the corresponding wave function Φ.
Discussion.—The existence of edge modes, a conse-

quence of the chiral metallic layers, affects the Josephson
currents near the domain wall. A measure of the interplay
between the conventional Josephson current and the edge
current is the direction of the quasiparticle current with
respect to the domain walls in Fig. 2. Such edge modes
appear on all edges including the sample boundaries. In
Fig. 1, the latter have not been depicted because an infinite
2D sample was assumed. On the other hand, it is well
known that a consistent description of edge modes requires
a compact manifold [23]. Figure 2 presents a compact
version of the double layer as a single layer on a torus (i.e.,
for periodic boundary conditions), which has two domain
walls. Such a geometry can be realized as the surface of a
ring-shaped topological insulator.
The existence of two degenerate zero modes requires an

additional physical constraint to lift the degeneracy and to
obtain a unique solution. In our case, this was achieved by
considering the current in the sample. Depending on that
current, we get a specific linear combination of the two zero
modes. From a physical perspective this means that we
induce a current density in the system by coupling it to an
external current, which excites the corresponding quasi-
particle state. The exponential decay of quasiparticle modes
and their corresponding currents away from the domain
walls on the scale 1=jΔj implies the existence of a super-
current due to charge conservation [28]. In other words, the
quasiparticle currents near the domain wall are part of a
stationary current inside the entire torus, winding around
the domain walls (cf. Fig. 2). This current, which is
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proportional to jΔj, could be measured through inductance,
e.g., by using a coil. Very accurate measurements of the
current can be performed with a superconducting quantum
interference device [30]. A more direct probe of the zero
modes would be possible with an electronic Mach-Zehnder
interferometer [31,32].
Our calculation was performed for the special example of

a jump of the order parameter phase �Δ. Similar calcu-
lations can be done for other shapes of Δ¼jΔjeiαðxÞ,
provided that the order parameter phase represents a kink
with a global phase change from one boundary to the
other in the x direction. Although the anomalous
Josephson effect will not be changed qualitatively, the
decay of the wave functions and of the current densities
is increased to −1=jΔj cos θ for a phase change θ. Moreover,
a broader Josephson junction might have different modes
(cf. discussion in Ref. [33]).
In conclusion, we found an anomalous Josephson

current caused by the superposition of two zero-energy
modes in the vicinity of the domain wall. The direction of
this current is determined by the coefficients of the super-
position. Conversely, an external current in a specific
direction can induce a certain superposition of the zero
modes on the surface of a ring-shaped topological insulator.
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