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Abstract:
Multiferroics are materials combining several ferroic orders, such as ferroelectricity, ferro- (or antiferro-) mag-
netism, ferroelasticity and ferrotoroidicity. They are of interest both from a fundamental perspective, as they
have multiple (coupled) non-linear functional responses providing a veritable myriad of correlated phenom-
ena, and because of the opportunity to apply these functionalities for new device applications. One application
is, for instance, in non-volatile memory, which has led to special attention being devoted to ferroelectric and
magnetic multiferroics. The vision is to combine the low writing power of ferroelectric information with the
easy, non-volatile reading of magnetic information to give a “best of both worlds” computer memory. For this
to be realised, the two ferroic orders need to be intimately linked via the magnetoelectric effect. The magne-
toelectric coupling – the way polarization and magnetization interact – is manifested by the formation and
interactions of domains and domain walls, and so to understand how to engineer future devices one must first
understand the interactions of domains and domain walls. In this article, we provide a short introduction to
the domain formation in ferroelectrics and ferromagnets, as well as different microscopy techniques that enable
the visualization of such domains. We then review the recent research on multiferroic domains and domain
walls, including their manipulation and intriguing properties, such as enhanced conductivity and anomalous
magnetic order. Finally, we discuss future perspectives concerning the field of multiferroic domain walls and
emergent topological structures such as ferroelectric vortices and skyrmions.
Keywords: multiferroic, domains, domain walls, microscopy
DOI: 10.1515/psr-2019-0067

1 Domain structures in (multi-)ferroics

1.1 Introduction to ferroic domains and domain walls

Ferroic materials are defined by the appearance of an order parameter (e.g., elastic, electric or magnetic) at
a non-disruptive phase transition. If at least two order parameters coexist in the same phase, the material is
called a multiferroic [1]. The order parameter(s) can point in at least two symmetrically equivalent directions
(polarities) between which it can be switched by the application of an external field. When cooling through the
phase transition in zero-field, the polarities have the same energy and, as a consequence, both polarities appear
inside the ferroic material. Regions with the same polarity are called domains and the interfaces that separate
them are call domain walls. While this shows, trivially, that multiple domains form naturally in ferroics, the
details of how many domains, their size, and where they form, depend on several energy terms, as well as
the local defect structure. In the following, we will give a brief outline of how ferroic domains and domain
walls form, using a ferroelectric as an illustrative example; although, as we will see, analogous arguments can
be made for the formation of domains and domain walls in ferromagnets. For more complete and in-depth
descriptions of the physics of ferroelectric and ferromagnetic domains we refer to, for instance, the textbooks
by Tagantsev et al. [2] and by Hubert and Schäfer [3].

A proper ferroelectric is a material for which the spontaneous electric polarization plays the role of the pri-
mary symmetry breaking order parameter, which can completely describe the phase transition into the ferroic
state [4, 5]. Practically, this means energy contributions related to this order parameter are very important in
the system, particularly for the domain formation. For instance, in ferroelectrics, surfaces perpendicular to the
ferroelectric polarization have bound charges that create a strong depolarizing field (Figure 1(a)). This field is
a major driving force for domain formation: the depolarizing field can be minimized by either (i) screening the
surface charges of the ferroelectric with surface adsorbates or metallic electrodes (Figure 1(b)), or (ii) the forma-
tion of ferroelectric domains, for example, 180° domains, so that the net polarization at the surface averages to
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zero (Figure 1(c)). The number and size of the ferroelectric domains that form will depend on the details of the
boundary conditions (Figure 1(d)), such as crystal size, shape, orientation, local defect structure and, critically,
the energy costs associated with the insertion of domain walls. Thus, depending on the boundary conditions,
a thin ferroelectric film can either form a single-domain state or break into multiple nanodomains [2, 6], which
has been used to engineer ferroelectric domains [7–10]. This can easily be observed by half covering a large sin-
gle crystal with electrodes and cooling the sample through its Curie temperature: the area under the electrodes
will form larger domains than the uncovered area due to the presence of screening charges from the electrodes,
while the area in air will have a finer domain structure due to the depolarizing fields (see, e.g. Gilletta [11]).
Importantly, from these simplistic arguments, it can be seen that the formation of domains and domain walls is
a natural property of any ferroic crystal. Note that this applies in the case of zero applied electric field. Applying
an electric field will affect both the transition temperature and the domain formation, see e.g. Merz [12].

Figure 1: Domain formation in ferroelectrics. (a) Black field lines represent the electric stray field from a ferroelectric
monodomain state. The grey arrow shows the polarization direction, P. The build-up of stray electric fields induces a
field in the opposite direction, the depolarizing field, Edep, indicated by the red arrow. (b) Complete screening of the fer-
roelectric polarization by surface charges. (c) 180° domain wall leading to a smaller electric stray field that reduces the
internal depolarizing field. (d) Representative multidomain state showing the much smaller electric stray fields. Note that
the number of domains formed will depend on several energy terms including the energy cost of having a domain wall,
the size of the depolarizing field, and the presence of uncompensated surface bound charges.

In general, the size of the domains that form can be predicted by what is now known as Kittel’s scaling law
[13, 14]. Although Kittel attributed the original idea of size effects of domains to Frenkel and Doefman [15], it
was Kittel’s work on ferromagnets that provided the scaling relationship that now bears his name: the domain
width is inversely proportional to one over the square root of their thickness as detailed below. Originally, his
mathematical formalism considered only three contributions to the free energy as relevant, i.e., the surface en-
ergy of a domain wall, the magnetic field energy of the configuration, and the anisotropy of the spin orientation.
Kittel’s work on ferromagnets was then expanded to ferroelectrics by Mitsui and Furuichi in 1952 [16], showing
that the fundamental scaling remains the same. It has also now been experimentally verified in ferroelectrics
and multiferroics down to tens of nanometre sample thicknesses [17, 18]. Some corrections to Kittel’s law have
been proposed by Scott [19] due to the finite size of domain walls, being particularly pertinent in ferroelectrics,
where domain walls are usually about one order of magnitude thinner than in ferromagnets.

To illustrate Kittel’s scaling law, we consider the simple case of open boundary conditions without surface
screening in a film with 180° striped-domains as illustrated in Figure 1(d). Here, the size of domains is deter-
mined by the competition between the energy of the domains and that of domain walls. The energy density,
𝐸, of the domains depends on their width, ω, as 𝐸 = 𝑈𝜔, where U is the volume energy density. The energy
density of the domain walls depends on their number and so will be inversely proportional to ω as 𝐸 = 𝜎𝑑/𝜔,
where 𝜎 is the energy density per unit area of the wall and 𝑑 the thickness of the film. Minimizing the total
energy gives rise to a square-root dependence of the domain size with the film thickness as 𝜔 = √𝜎/𝑈 × 𝑑,
known as Kittel‘s law [14].

In the original form proposed for ferromagnets, it is the competition between magnetic exchange energy
and demagnetizing field contributions that drives the domain formation: the magnetic exchange energy is mini-
mized in single-domain states while the competing demagnetizing field favours the formation of multidomain
states. Furthermore, additional factors arise from the size and shape of the magnetic domains and domain
walls, which will depend on the magnetocrystalline and magnetostrictive energies of the system. While the
magnetic exchange energy favours wide walls, so that neighbouring magnetic moments are almost parallel to
each other, magnetocrystalline anisotropy promotes narrow walls so that almost all the magnetization of the
system is aligned with the easy magnetic axis. As a result, the thickness of these magnetic domain walls de-
pends strongly on material parameters, but typical values are in the order of a few tens of nanometres and up to
hundreds of nanometres [20]. In contrast to ferromagnets, where the exchange energy is much larger than the
magnetocrystalline anisotropy, in ferroelectrics the anisotropy and dipole–dipole interactions (the equivalent
of exchange in these materials) are of the same order of magnitude [21]. As a consequence, ferroelectrics usually
develop much thinner walls than ferromagnets, with typical thicknesses in the order of a few unit cells (see,
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for instance, Refs [17, 22–26]). The smaller width of ferroelectric domain walls compared to magnetic domain
walls implies that the order parameter changes orientation much faster.

At the domain wall itself there are, conceptually, three different ways for the polar order to change, referred
to as Ising-, Bloch-, and Néel-type walls. The three domain wall types are schematically illustrated in Figure
2. In Ising-type walls (Figure 2(a)), the axis along which the order parameter points is fixed. Across the wall,
only the magnitude of the polar order changes smoothly from up to down, going through zero at the centre
of the wall. These walls are generally the thinnest of order (sub)nanometre wide. Traditionally, it was assumed
that 180° domain walls in ferroelectrics are Ising-type walls, but recent experimental and theoretical work has
revealed domain walls with more complex structures (see, e.g., Refs [27–30]). For ferroelectric Ising-type walls,
as already mentioned above, both the anisotropy and dipole–dipole interactions are usually strong, and the
energy difference between the paraelectric and ferroelectric phases is relatively small. Consequently, an abrupt
change of polarization through the wall can readily be accommodated by a reduction of the magnitude of
polarization as presented in Figure 2(a).

Figure 2: Fundamental types of ferroic domain walls. Arrows represent the orientation of the order parameter (e.g., po-
larization or magnetization). (a) Ising-type wall: the polarization/magnetization does not rotate but decreases in mag-
nitude through the wall. (b) Bloch-type wall: the polarization/magnetization does not change magnitude but rotates in
the plane of the domain wall. (c) Néel-type wall: the polarization/magnetization does not change magnitude, but rotates
perpendicular to the plane of the domain wall. ((a)–(c) are reprinted with permission from [27]. Copyright 2009 by the
American Physical Society.) (d)–(f) Charge states at ferroelectric 180° walls. (d) Neutral 180° domain wall. Positive and
negative bound charges are denoted by symbols + and –, respectively. (e) Head-to-head domain wall, where the polar
discontinuity associated with the positive domain wall bound charges attracts mobile negative charge carriers (grey). (f)
Tail-to-tail domain wall, where the polar discontinuity associated with the negative domain wall bound charges attracts
mobile positive charge carriers (purple).

In the Bloch-type wall, the order parameter does not change size but rotates within the plane of the wall (Figure
2(b)). The Néel-type wall is characterized by a rotation of the order parameter perpendicular to the domain wall
and at the wall centre the respective vector lies orthogonal to the plane of the domain wall (Figure 2(c)). Bloch-
and Néel-type walls are most common in ferromagnets, where the energy difference between paramagnetic
and ferromagnetic phases is large and, hence, the magnitude of magnetic moments does not vary significantly
[3]. These magnetic domain walls can be quite wide and extend up to hundreds of nanometres in width [20].
The three extreme cases shown in Figure 2(a) to (c) are normally combined to describe domain walls in real sys-
tems, leading to mixed-type domain wall states. As already mentioned, it is important to note that Bloch- and
Néel-type walls are not restricted to ferromagnets and, recently, there is a growing interest in non-Ising-type
domain walls in ferroelectrics and the emergence of walls of Néel- and Bloch-type has been reported for differ-
ent ferroelectric materials [31], such as BaTiO3 [32] and Pb(Zr,Ti)O3 (PZT) [33–35]. Note that the illustrations in
Figure 2 are for domain walls at which the order parameter orientation changes by 180°; the details change for
other situations, e.g., for 90° walls, but the salient points remain true.

In multiferroics, the situation becomes even more interesting as electric and magnetic domains and domain
walls coexist (see, e.g., [36–41]), giving rise to unusual magnetoelectric correlation phenomena as discussed
in Section 2 and 3 and also DOI:10.1515/PSR.2019.0014 and DOI:10.1515/PSR.2019.0016. Because of the co-
existence of different types of ferroic order in multiferroics, it becomes important to consider whether the
polarization or magnetization plays the role of the symmetry breaking order parameter and, thus, governs
the formation of domains and domain walls. In this context, one typically distinguishes between proper and
improper systems or, more precisely, between systems in which the ferroic order arises across a proper or im-
proper phase transition [4, 5, 42]. For example, as described above, a ferroelectric phase transition is referred to
as proper, if the spontaneous polarization is the primary symmetry breaking order parameter that drives the
transition. This is the case in textbook ferroelectrics, such as BaTiO3, PZT, and LiNbO3 [2, 43]. Alternatively,
electric order can arise as a secondary effect driven by the coupling to, e.g., a structural [44–47] or magnetic order
parameter [48–50]  as reviewed, e.g., in Ref [40]. The latter scenario, referred to as improper ferroelectricity (or
pseudo-proper; see, e.g., [4, 42] for details), is realized in many multiferroics, such as the hexagonal manganites
(RMnO3, with R = Sc, Y, In, Dy to Lu; reviewed in DOI:10.1515/PSR.2019.0014) and orthorhombic TbMnO3 and
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DyMnO3, with fascinating consequences for the domain walls [39, 51–53]. Here, due to the secondary nature of
the spontaneous polarization, exotic charged domain walls (Figure 2(e) and (f)) arise spontaneously – a situation
that is usually avoided due to the high electrostatic energy costs.

Assuming an Ising-type wall, a domain wall is said to be fully charged if the polarization of neighbouring
domains comes together head-to-head or tail-to-tail as shown in Figure 2(e) and Figure 2(f), respectively. The
associated discontinuity in polarization P leads to uncompensated domain wall bound charges (div P ≠ 0),
which require screening (see, e.g., [54] and references therein). As a consequence, mobile carriers redistribute,
promoting anomalous electronic transport properties at head-to-head and tail-to-tail walls, including highly
conducting and insulating states as reviewed in [54–56], as well as the formation of unusual electronic inver-
sion layers [57]. Charged domain walls thus represent a natural type of two-dimensional system with inherent
functional properties, which can be injected, moved and erased on demand [55, 58–61]. Additional functional-
ities arise at domain walls with a strong coupling between electric and magnetic degrees of freedom, enabling
magnetic-field control of the local electronic charge state as discussed in Section 3 [36, 39]. For a more com-
prehensive or more technical coverage of charged domain walls in ferroelectrics and multiferroics, we refer to
recent reviews [40, 56, 62, 63], and the specific studies highlighted in the following sections.

1.2 Visualization of domains

The rapid progress that has been made in the understanding of magnetic and electric domains relies on the
recent developments in microscopy techniques with high sensitivity and unprecedented spatial resolution.
Nowadays, even atomic level resolution is readily available with transmission electron microscopy (TEM) (see,
e.g., DOI:10.1515 /PSR.2019.0068 or [64], as well as references therein). In this review, we discuss different mi-
croscopy methods that allow for studying the formation and interaction of ferroic domains in spatially resolved
measurements on nano- to microscopic length scales. In multiferroics, a specific difficulty arises for domain
imaging as one needs to distinguish contributions from at least two coexisting types of ferroic order. Many
available techniques, however, are simultaneously sensitive to both magnetism and ferroelectricity, making
the distinction between the two signals challenging. For instance, photoemission electron microscopy (PEEM)
based on X-ray linear dichroism (XLD) is sensitive to the asymmetry of the electronic charge distribution and,
hence, to contributions from both ferroelectric and antiferromagnetic domains. Another example is scanning
probe microscopy (SPM); the magnetic tip used for magnetic force magnetometry (MFM), for example, will
probe contributions from the stray field of the magnetic domains as well as the electrostatic fields from the
ferroelectric domains and surface charges (as in electrostatic force magnetometry (EFM)). In the following, we
give examples of different techniques with which magnetic and ferroelectric domains can be observed inde-
pendently as illustrated based on measurements taken on both intrinsic and artificial multiferroics (Figure 3).
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Figure 3: Imaging magnetic and ferroelectric domains in artificial and intrinsic multiferroics. (a) Polarized optical mi-
croscopy image of (a) the a1-a2 birefringent ferroelectric domains of a BaTiO3 single crystal and (b) the magnetic domains
of the uniaxial Co0.6Fe0.4 layer (15 nm) grown on top. ((a) and (b) are from [65]). (c) PFM image of a BiFeO3 film grown on
a DyScO3(110) substrate and (d) MFM image on the same sample after the growth of a Pt/Co0.9Fe0.1 bilayer on top under
a magnetic field of 20 mT. In the inset, the Fourier analysis indicates the correlation between the PFM and MFM patterns.
((c) and (d) are reprinted with permission from [66]. Copyright 2013 by the American Physical Society.) (e) Ferroelectric
domain structure of BiFeO3 imaged using the back-scattered electron (BSE) intensity with a Co0.9Fe0.1 thin-film circular
disk and Cu electrode on the side. (f) Simultaneously acquired SEMPA image of the magnetic structure. The magnetiza-
tion direction is represented by colours as indicated by the colour wheel. ((e) and (f) are reprinted with permission from
Springer Nature, taken from [67]. Copyright 2015 by Springer Nature.) (g) In-plane PFM image of the striped-domain
structure of a 30-nm-thick BiFeO3 thin film grown on DyScO3(110) and (h) NV-magnetometry image of the stray field
produced by the spin cycloid of the same film. ((g) and (h) reprinted with permission from Springer Nature, taken from
[68]. Copyright 2017 by Springer Nature.) (i) In-plane PFM image of a single ferroelectric domain written with the trail-
ing field of the SPM tip on a BiFeO3 thin film grown on a SrTiO3(001) substrate. (j) Reconstructed SHG image showing
two types of submicron antiferromagnetic domains in the ferroelectric domain showed in (i). ((i) and (j) reprinted with
permission from Springer Nature, taken from [69]. Copyright 2017 by Springer Nature.)

1.2.1 Optical microscopy

In bulk single crystals, domains may reach sizes in the micron range compatible with optical microscopy. In
this case, ferroelectric domains can be imaged with the birefringent contrast [70–72] or selective etching [73],
while magnetic domains on this length scale are observed via the magneto-optical Kerr effect. Figure 3(a),
(b) illustrates this on an artificial multiferroic system based on a thin ferromagnetic film (15 nm of Co0.6Fe0.4)
deposited on a ferroelectric single crystal (BaTiO3) [65]. The ferroelectric domains of BaTiO3 organize in the
form of stripes with 90° ferroelastic domain walls (a1-a2 domains corresponding to in-plane polarization in
Figure 3(a)). Strain coupling between the Co0.6Fe0.4 thin film and the underlying BaTiO3 single crystal induces
uniaxial magnetoelastic anisotropy with orthogonal easy axes between neighbouring domains, resulting in an
imprinted stripe pattern (Figure 3(b)).

1.2.2 Scanning probe microscopy

SPM allows nanoscale investigation of both ferroelectric domains, via piezoresponse force microscopy (PFM),
and ferromagnetic domains, via MFM. In MFM, the magnetic tip experiences an attracting or repelling force
depending on its relative magnetization orientation compared to that of the sample. This force induces a phase
lag on the oscillation of the tip that is coverted into a map so that MFM images reveal the spatial distribution
of the magnetic stray field coming from the sample.

The probe tips used for MFM are usually coated with ferromagnetic materials and their metallicity enables
their subsequent use for PFM. PFM uses the fact that all ferroelectric materials are piezoelectric. By applying
an alternating voltage between the SPM tip and the ferroelectric in contact, the ferroelectric will vibrate at the
same frequency as the voltage excitation. In the ideal case, the phase shift of the response is directly connected
to the out-of-plane polarization orientation of the ferroelectric (see, e.g., [74] for a recent review on PFM). In
the same manner, the torsion of the tip contains information on the in-plane components of the polarization.
An example is given in Figure 3, where the MFM contrast coming from a 2.5-nm-thick Co0.9Fe0.1 amorphous
layer (Figure 3(d)) is correlated to the PFM contrast from the ferroelectric domain pattern (Figure 3(c)) in the
underlying layer of BiFeO3 [66]. In this configuration, the surface bound charges of BiFeO3 are screened by the
magnetic top electrode and the MFM signal is “pure”. This correlation attests for the coupling between the
ferromagnetic domains in Co0.9Fe0.1 and the antiferromagnetic domains in BiFeO3, the latter being magneto-
electrically coupled with the ferroelectric order.
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In order to directly image the magnetic stray field coming from the antiferromagnetic domains in multifer-
roics, such as BiFeO3 (see DOI:10.1515/PSR.2019.0070 for details on BiFeO3), a scanning probe technique with
higher sensitivity than MFM is required. Recently, scanning nitrogen-vacancy (NV) magnetometry was devel-
oped in which magnetic stray fields down to a few μT can be detected [75]. In bulk [76] and lightly strained
films of the antiferromagnetic BiFeO3 [77], the magnetoelectric interaction stabilizes the formation of a spin
cycloid – originally probed by Sosnowska et al. using neutron diffraction [78] – whose propagation vector is
coupled to the polarization direction. Gross et al. were able to use NV magnetometry to visualize the magnetic
stray field emanating from this 70-nm-long spin cycloid (Figure 3 (h)) in striped domain patterns of BiFeO3 thin
films [68] (Figure 3 (g)). The in-plane compressive strain imposed by the DyScO3 substrate lifts the degeneracy
between the three possible propagation vectors for the spin cycloid for each ferroelectric domain, resulting in
the in-plane 90° rotation of the magnetic signal between alternating ferroelectric domains (Figure 3 (h)).

1.2.3 Scanning electron microscopy

In a scanning electron microscope with polarization analysis (SEMPA), the low energy secondary electrons are
spin-polarized and give information on the magnetization orientation of the ferromagnetic structure, while the
high energy elastically back-scattered electrons (BSE) are sensitive to the crystal structure and lattice distortions
to reveal the polarization orientation of the ferroelectric structure. Combining SEMPA and BSE, Zhou et al. were
able to simultaneously image the local in-plane vector magnetization of the Co0.9Fe0.1 layer (Figure 3(f)) grown
over the striped-domain ferroelectric structure of BiFeO3 (Figure 3(e)) [67]. The comparison of the SEMPA and
BSE images shows the close correlation between the magnetic structure of the Co0.9Fe0.1 film and the striped
ferroelectric domain structure of the underlying BiFeO3 layer. Within a stripe, which is about 250 nm wide, the
magnetization is aligned parallel or anti-parallel to the in-plane surface projection of the electric polarization.

1.2.4 Photoemission electron microscopy

A possible way to discriminate ferroelectric and magnetic domain contrasts is to take advantage of the poten-
tially different Curie and Néel temperatures of the multiferroic. This approach was used by Zhao et al. [79] to
distinguish the antiferromagnetic contribution and the ferroelectric one in photoemission electron microscopy
(PEEM) images of BiFeO3 thin films. A careful comparison of the PEEM contrast under and above the Néel
temperature of BiFeO3 (TN = 640 K) allows for separating the “pure” ferroelectric contrast from the multifer-
roic one with a resolution down to ≈20 nm. A smart combination of XMLD- (X-ray magnetic linear dichroism)
and XMCD- (X-ray magnetic circular dichroism) PEEM imaging (mapping spin and orbital magnetic moments)
is a very powerful tool.

1.2.5 Second harmonic generation

Second harmonic generation (SHG), that is, the frequency doubling of light in a material, is a powerful tech-
nique to sense complex magnetic and electric structures [41, 80, 81]. It is well suited to probe insulators with
a spatial resolution in the submicron range limited by the wavelength of the light. In bulk multiferroics, SHG
domain imaging was pioneered by Fiebig [41]. More recently, Chauleau et al. used SHG to probe antiferro-
magnetic domains across a ferroelectric single-domain of a BiFeO3 thin film (Figure 3(i)) [69]. They performed
the experiments in transmission while varying the incident polarization of the light and analyzed the full an-
gular dependence of each pixel. The 110-nm-thick BiFeO3 thin film was epitaxially grown on SrTiO3(001) at
a compressive strain that destroys the cycloidal spin structure and stabilizes a slightly-canted antiferromag-
netic state arising from the Dzyaloshinskii–Moriya interaction [77]. In this G-type antiferromagnetic system,
the Fe3+ spins are aligned along three possible antiferromagnetic vectors of the (111) plane, perpendicular to
the ferroelectric polarization. As depicted in Figure 3 (j), only two types of submicron antiferromagnetic do-
mains were observed in this single BiFeO3 ferroelectric domain, suggesting that the magnetoelastic energy lifts
the degeneracy between the three types of antiferromagnetic domains.
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1.2.6 Combined imaging experiments

While the application of just one experimental method that can image both electric and magnetic domains
is clearly intriguing, the majority of studies on multiferroics still make use of two or more complementary
techniques to image the coexisting domains and domain walls and cover all relevant length scales. The latter
is nicely reflected by the research studies on multiferroics involving PFM. PFM by itself provides access to
the distribution of ferroelectric domains. The combination of PFM with PEEM and X-ray resonant magnetic
scattering led to the discovery of coupled ferroelectric and ferromagnetic domains in BiFeO3 thin films [79] and
interfacial multiferroicity in Fe/BaTiO3 and Co/BaTiO3 heterostructures [82]. PFM in combination with NV
magnetometry disclosed the coupling between ferroelectric and antiferromagnetic domain in BiFeO3 [68] (see
also Section 3). In addition, PFM has been combined with many other methods such as TEM, optical microscopy,
as well as SHG in order to understand and disentangle the formation of electric and magnetic domains in
different multiferroic materials. For a more extended review on PFM, see [74].

2 Domain walls in multiferroics

The recent discovery of functional electronic and magnetic properties at multiferroic domain walls triggered
world-wide attention and initiated a shift in the research focus away from domains and towards domain walls.
The domain wall research is driven by the idea to develop a new generation of agile interfaces/2D systems
that remain spatially mobile after a material has been synthesized and implemented into a device structure
[55]. Going beyond just conducting domain walls, as observed in ferroelastic and ferroelectric materials, mul-
tiferroics offer additional degrees of freedom that arise from the magnetic order and the unusual couplings
between their electric, magnetic and structural properties as discussed in the following.

2.1 Domain wall types

Across domain walls in multiferroics, one or more order parameters change from one direction to another and
this can occur in many different ways depending on the type of involved ferroic orders, the direction of the
order parameters in the adjacent domains (e.g., parallel or perpendicular to the wall), and the geometry and
dimensions of the sample [83, 84]. The range of structures that arises within a domain wall in the presence
of just one order parameter has already been addressed in Section 1 (see Figure 2). In order to classify the
complex domain walls that occur in multiferroics with coexisting electric and magnetic order [24, 62, 85], a first
distinction can be made based on the interaction of the respective domain walls as shown in Figure 4(a) and
Figure 4(b) [40].
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Figure 4: Domain walls in multiferroics. (a) In type I multiferroics magnetic and electric order emerge independently
and so do not need to coincide. This gives domain walls which are either magnetic (blue) or electric (red) in nature. If the
domains happen to coincide, then a multiferroic (orange) wall is formed, which points to a coupling that is not required
by symmetry. (b) In type II multiferroics the magnetic order induces the electric order. Thus, ferroelectricity emerges at
the magnetic phase transition. Due to this interdependence of order parameters, all ferroelectric domain walls are also
magnetic domain walls and therefore multiferroic walls. ((a)–(b) are reprinted with permission from Springer Nature,
taken from [40]. Copyright 2016 by Springer Nature.) (c) Landau–Lifshitz–Gilbert simulation showing the complex evo-
lution of spins (top), the spin chirality (middle), and electric polarization (bottom) across a multiferroic domain wall in
Mn0.95Co0.05WO4. (Reprinted with permission from Springer Nature, taken from [36]. Copyright 2015 by Springer Na-
ture.)

In multiferroics where electric and magnetic orders occur independently (type I), electric and magnetic do-
main walls can coincide, but they do not necessarily have to couple due to the different microscopic origin
of the polarization (P) and magnetization (M) (Figure 4(a)). This is different in systems where the magnetic
order induces the spontaneous polarization (see also DOI:10.1515/PSR.2019.0016), or vice versa, so that both
orders occur together (type II, Figure 4(b)). In the latter case, every ferroelectric domain wall is also a magnetic
domain wall [37, 86], representing a two-dimensional system with multiferroic properties different from the
surrounding bulk.

A second, more advanced distinction is related to the conservation (or not) of the amplitude of the order
parameter(s) across the wall. As introduced in Section 1, we usually consider three fundamental types of ferroic
domain walls, namely, Ising-, Néel-, and Bloch-type walls (Figure 2). For Ising-type walls, upon crossing the wall
the order parameter decreases, becomes zero at the centre and then increases again with the opposite polarity.
For example, this is the situation for the ferroelectric walls in the type I multiferroics BiFeO3 [87] and ErMnO3
[22], where the polarization (and the associated structural distortion) is smaller at the core of the wall than in
the domains [88]. In contrast, at the coexisting (anti-)ferromagnetic domain walls, the amplitude of magnetic
moments is usually conserved (non-Ising-type) and the order parameter rotates through the wall, potentially
forming Bloch-, Néel-, and mixed Néel-Bloch-type walls (Figure 2), or even more complex vortex-like wall states
[89].

Particularly complex domain wall structures arise in type II multiferroics, where both the electric and mag-
netic order parameter may develop Bloch- and Néel-type like features. In Mn0.95Co0.05WO4, for instance, two
antiferromagnetic domain states of opposite chirality occur in the multiferroic state [36]. Across the domain
walls, this change in chirality is realized via a continuous 180° rotation of the material’s easy-plane, forming
a Bloch-type-like domain wall with respect to the spin-chirality vector C = Si × Sj as illustrated in Figure 4(c).
Interestingly, as Mn0.95Co0.05WO4 is an improper ferroelectric (Section 1) with a magnetically induced polariza-
tion (P ~ eij × (Si × Sj) [49]), the electric order follows the rotation across the wall, which leads to Néel-type-like
ferroelectric walls. Analogous to standard ferroelectric domain walls, such magnetically induced ferroelectric
walls can carry a finite domain wall bound charge, which enables magnetic control of electronic domain wall
states as we discuss in more detail in Section 3.

In summary, pronounced couplings between the electric and magnetic order parameters can occur in mul-
tiferroics, giving rise to a huge richness of domain wall structures and properties. Although the electric dipole
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and magnetic spin configurations at the atomic scale are rarely available – so that the exact wall types often
remain unknown – it is clear that multiferroic domain walls can show unexpected and fascinating physical
properties beyond the bulk properties. Today, we are only at the verge of discovering these exciting properties.
Novel findings and insight into the nano-physics of domain walls are to be expected in the near future, enabled
by the continuous and ongoing progress in advanced microscopy techniques. Some of the recent key results in
the field are reviewed in the following.

2.2 Conduction in domain walls

A little history – The emergence of conducting domain walls was postulated first in the 1960s and 70s based
on macroscopic measurements in classic ferroelectrics like TGS (triglycine sulfate), PbTiO3, BaTiO3, LiNbO3,
and SbSl [90–94]. Due to experimental limitations of the time, however, it was not possible to measure individ-
ual walls directly. Aristov et al. were among the first to spatially resolve domain walls with anomalous elec-
tronic properties in ferroelectric BaTiO3 [95] and, later, also in LiNbO3 [96] using scanning electron microscopy
[97]. The first direct evidence of conducting domain walls was in pioneering experiments on BiFeO3 by Sei-
del et al. [87]. Since then, conductance measurements using conductive atomic force microscopy (cAFM) have
been performed on a diverse range of prototypical (proper) ferroelectrics, including PbZr0.2Ti0.8O3 [98–100],
LiNbO3 [101–103], and BaTiO3 [104], as well as improper ferroelectrics, such as hexagonal RMnO3 [105–109],
Cu3B7O13Cl [110], and (Ca,Sr)3Ti2O7 [111], demonstrating that domain wall conductivity is a quite general
phenomenon. Although conducting domain walls have already been analyzed and discussed more than half
a century ago, only the recent in-depth studies have revealed their full technological potential and triggered
world-wide interest. During the last decade, domain-wall-based multi-configurational devices, atomic-scale
electronic components and memory technology have been proposed [58, 112, 113]. Another idea is to use do-
main walls in order to achieve reconfigurable doping: While semiconductor technology enables the precise
control of charged dopants during the fabrication process, their location remains fixed. Reconfigurable chan-
nels of charge carriers are, in principle, achievable using polarization charges as quasi-dopants [114]. Then,
doping may be achieved in ferroelectrics within the domain walls. For more insight into the physics and prop-
erties of ferroelectric domain walls, we refer to, e.g., the recent review articles by Catalan et al. [55], Meier [54],
Jiang et al. [113], and Bednyakov et al. [56].

The first direct observation of conductivity at a domain wall was also the first in a multiferroic: Seidel et al.
observed room-temperature conduction at 180° and 109° domain walls in multiferroic BiFeO3 thin films (Fig-
ure 5(a), (b)), while no conduction could be detected at 71° domain walls [87]. This seminal paper triggered a
plethora of experimental and theoretical works on conductive domain walls partly fuelled by the controversy
regarding the origin of these effects. The initial interpretation from Seidel et al., supported by density func-
tional theory (DFT), suggested that electrostatic potential steps at the domain walls were responsible for the
enhanced conduction, as well as a reduced bandgap induced by structural transitions in the wall. In addition,
DFT calculations showed that these effects were minimized for 71° domain walls in agreement with exper-
iments. However, following reports concluded that the conduction through these neutral walls was mostly
related to extrinsic contributions [83, 115]. Farokhipoor & Noheda found that 71° domain walls were also con-
ducting in BiFeO3 thin films (Figure 5(d), (e)) [115]. Through a temperature analysis of the conduction, they
demonstrated that it is governed by thermally activated transport from defects (oxygen vacancies) at low volt-
age (Figure 5(f)) and Schottky emission at higher voltage, just as for the domains. The different conduction
for domains and domain walls is explained by an increased density of oxygen vacancies at the walls, giving
rise to in-gap states and lower electron hopping energy. In the same vein, Seidel et al. reported that the oxy-
gen pressure during the cool-down process after the growth of La-doped BiFeO3 had a large influence on the
109° domain wall conduction, with a current increase by two orders of magnitude under low oxygen pressure
(Figure 5(c)) [83].
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Figure 5: Conduction at charge-neutral domain walls in multiferroic BiFeO3 thin films. (a) 109°, 180° and 71° domain
walls in a (110)-oriented BiFeO3 thin film observed by PFM and the corresponding (b) cAFM map showing enhanced
conduction for 180° and 109° domain walls. ((a)–(b) reprinted with permission from Springer Nature, taken from [87].
Copyright 2009 by Springer Nature.) (c) Influence of the oxygen pressure after growth on the conduction of 109° domain
walls in La-doped BiFeO3 thin films. ((c) is reprinted with permission from [83]. Copyright 2010 by the American Physical
Society.) (d) PFM amplitude of a (001)-oriented BiFeO3 film with a majority of 71° domain walls and (e) corresponding
cAFM image showing enhanced conduction at the domain walls. (f) Arrhenius plot of the current vs. temperature show-
ing a thermally activated behaviour of the conduction through 71° domain walls. ((d)–(f) are reprinted with permission
from [115]. Copyright 2011 by the American Physical Society.)

Somewhat easier and more straightforward to understand are electrostatics-driven contributions to the do-
main wall conductivity. At domain walls where the polarization meets either fully or partially in head-to-head
or tail-to-tail configuration (see Figure 2(e), (f)), positive or negative domain wall bound charges exist, respec-
tively, creating diverging electrostatic potentials. The compensation of the bound charge can be achieved by
the redistribution of mobile charge carriers as we addressed in Section 1. Though charged domain walls are
not favoured in proper ferroelectrics, they naturally arise in various multiferroic materials. This abundance is
due to the fact that multiferroics are often improper ferroelectrics (see Section 1 and 2), where the formation of
domains is governed by, e.g., a structural or magnetic order parameter and not the electric polarization [40].
Multiferroic hexagonal manganites, RMnO3, exhibit an intriguing ferroelectric domain pattern [106, 116] and
are an interesting example for the natural emergence of both neutral [106, 117] and charged domain walls [57,
105, 118–121]: Here, a trimerizing lattice distortion leads to stable 180° charged domain walls with anomalous
electronic transport properties (Figure 6(a), (b)) [105, 119]. The extraordinary stability of these charged domain
walls is reflected by recent electrostatic force microscopy measurements [122], which showed that partially un-
screened walls arise at low temperature, representing a rare example of a stable, electrically uncompensated
oxide interface (Figure 6(c)).

Meier et al. observed that in ErMnO3, the conduction of the domain walls is a continuous function of the wall
orientation (Figure 6(a)) [105]. Enhanced conductance was found at tail-to-tail walls while head-to-head walls
showed a lower conduction than the domains (Figure 6(b)). This can be explained by the p-type semiconducting
nature of ErMnO3; here, mobile holes are available to screen the negative bound charges at tail-to-tail walls. The
electrostatic potential at the walls shifts the Fermi level into the broad valence band where the effective mass is
low, leading to an enhanced conduction at the walls [105]. In order to control and optimize the electronic domain
wall properties in hexagonal manganites, effects related to off-stoichiometry [118, 123–128] and aliovalent cation
substitution on the A- and B-site were studied systematically [129, 130]. Interestingly, recent studies suggest
that the emergence of anomalous conductance is not restricted to isolated head-to-head and tail-to-tail walls in
RMnO3: Wherever the walls intersect in the characteristic cloverleaf-like arrangement [106, 116], ferroelectric
vortex cores with emergent U(1) symmetry form [131–133]. These vortex cores are quasi-1D objects and exhibit
quite unusual bound-charge distributions and electrostatics (Figure 6(d)), which – similar to the charged walls
– is likely to change the electronic transport properties locally [22].
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Figure 6: Charged domain walls in hexagonal manganites. (a) PFM image in the yz-plane of an ErMnO3 single crystal.
The inset shows a cAFM map recorded in the same region. The bright and dark lines show that domain walls have en-
hanced and reduced conduction relative to the domains, respectively. (b) Local current-voltage characteristics obtained
at the locations shown in the inset. Tail-to-tail walls (red) show an enhanced conduction while head-to-head walls (pur-
ple and green) are less conducting than the domains (black). (reprinted with permission from Springer Nature, taken
from [105]. Copyright 2012 by Springer Nature.) (c) EFM image of Er0.99Ca0.01MnO3 taken at 4.2 K, showing the different
fields (imaged as high/low attraction) arising from partially uncompensated charges at domain walls. (Reprinted with
permission from [122]. Copyright 2019 American Chemical Society.) (d) Density plot of the bound-charge distribution
emerging from the centre of a vortex core in the hexagonal manganites; the arrows indicate the direction of ferroelectric
polarization. ((d) is taken from [22] and reused with permission from ACS. All further permissions must be directed to
ACS.)

The results highlighted here, however, represent only a fraction of the research devoted to the domain and
domain wall physics in hexagonal manganites. Due to the stability and abundance of charged domain walls,
the material has become an important model system for the theoretical and experimental study of the complex
nano-physics of functional domain walls and different application opportunities as nanoscale digital switches
and half-wave rectifiers have been proposed [57, 108].

The majority of envisioned domain wall applications in nanoelectronics, such as domain-wall-based memo-
ries and multi-configurational devices, however, require highly mobile domain walls that can readily be injected
and deleted at will. The intentional creation of charged domain walls was first demonstrated in 2013 in ferroelec-
tric BaTiO3 single crystals [104]. The stabilization of 90° charged domain walls was realized by cooling down
the single crystal under a strong electric field from above the Curie temperature. Then, the authors compared
the conduction of individual head-to-head and tail-to-tail domain walls with the domains by contacting them
with 200-micron-wide metallic electrodes (Figure 7(a)). While the conduction at tail-to-tail walls was compara-
ble to that of domains, a conduction 104 to 106 times higher than in the domains was observed at head-to-head
domain walls (Figure 7(b)) with a metallic character (Figure 7(c)). However, this frustrated poling process is
not technology transferrable for the realization of reconfigurable devices based on ferroelectric and multiferroic
thin films. In 2015, Crassous et al. succeeded in creating charged walls, using the trailing field of the SPM probe
tip (similar to Balke et al. [134]) to design charged ferroelastic domain walls in a multiferroic thin film, this
time using La-doped BiFeO3 grown on DyScO3(110) orthorhombic substrates (Figure 7(d)) [114]. CAFM maps
of the artificial domains revealed a remarkable enhancement of the conductivity at head-to-head domain walls
only (Figure 7(e)) with unprecedently high currents (two orders of magnitude higher than previous reports
with neutral walls). Moreover, temperature-dependent measurements indicated a metallic behaviour for these
charged walls as opposed to the thermally activated behaviour at neutral 71° domain walls (Figure 7(f)). On
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the other hand, ferroelectric tail-to-tail walls do not show a significant conduction as this configuration cannot
be compensated by mobile holes, which gives rise to a roughening of the wall as well. In addition, the authors
demonstrated the reconfigurability of the writing process as well as the nanoscale manipulation of conductive
head-to-head walls.

Figure 7: Conduction at created charged domain walls in ferroelectrics and multiferroics. (a) Sketch of the (110) BaTiO3
crystal where the surface is covered with 200 μm diameter electrodes. The domain walls are irregularly distributed with
periods from 100 to 300 μm. (b) Current-voltage characteristics of the tail-to-tail and head-to-head walls, as well as the do-
mains. (c) Temperature dependence of the current through the head-to-head domain walls indicating a metallic behavior.
((a)–(c) are reprinted with permission from Springer Nature, taken from [104]. Copyright 2013 by Springer Nature.) (d)
PFM amplitude of the domain pattern with alternating head-to-head and tail-to-tail domain walls defined by the trail-
ing field of the SPM tip in La-doped BiFeO3 thin films. (e) CAFM maps on the same domain pattern show an enhanced
conduction at the head-to-head domain walls. The scale bars in (d) and (e) are 1 μm. (f) Temperature dependence of the
current through the head-to-head walls compared to that of native 71° domain walls. ((d)–(f) are reprinted with permis-
sion from Springer Nature, taken from [114]. Copyright 2015 by Springer Nature.)

2.3 Magnetism at domain walls

In BiFeO3, the coupling between ferroelectric and antiferromagnetic domain walls has been extensively in-
vestigated [135–137]. In BiFeO3 thin films grown under high compressive strain, the rhombohedral-like phase
and the tetragonal-like phase coexist in the form of nanoscale structures. Using XMCD-PEEM, Zhang et al. ob-
served an enhancement of magnetism at the nanoscale boundaries of these mixed-phase thin films [138]. The
magnetotransport properties of these walls have also been investigated [139].

Domain wall magnetism and its correlation to the ferroelectric order was first investigated in hexagonal
manganites. These materials order antiferromagnetically below a Néel temperature, TN ≈ 100 K, whereas ferro-
electricity arises at much higher temperature, TC ≈ 1000 K (see, e.g., DOI: 10.1515 /PSR.2019.0014 for a review).
Using SHG imaging at 6 K, Fiebig et al. were able to discriminate antiferromagnetic domains from ferroelectric
domains in a YMnO3 single crystal [41]. They found that ferroelectric domain walls always coincide with anti-
ferromagnetic domain walls, while antiferromagnetic domain walls can also exist independently (Figure 8(a)).
Although the resolution of the applied SHG experiment (≳ 1 μm) did not allow to resolve the domain walls
directly, this was the first experimental evidence of multiferroic domain walls. While no magnetoelectric cou-
pling exists in the bulk, the coupling of the two ferroic orders suggests a possible magnetoelectric coupling at
domain walls. In 2012, Geng et al. studied the magnetic properties of multiferroic domain walls in an ErMnO3
single crystal using low-temperature MFM [140]. They first used PFM to image the ferroelectric domain struc-
ture at room temperature (Figure 8(b)) and the MFM data showed that each multiferroic domain wall carried a
net magnetization (Figure 8(c)–(d)), which they attributed to the presence of uncompensated Er3+ spins at the
domain walls [140, 141].
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Figure 8: Electric and magnetic domains in multiferroics. (a) Coexistence of ferroelectric and antiferromagnetic domains
in hexagonal YMnO3 visualized by SHG. Bright and dark areas correspond to regions with different orientations of the
order parameter (P on the left image – ferroelectric (FE), L on the right image – antiferromagnetic (AFM)). The sketch on
the right shows that some of the domain walls are both antiferromagnetic and ferroelectric. ((a) is reprinted with permis-
sion from Springer Nature, taken from [41]. Copyright 2002 by Springer Nature.) (b) PFM image of hexagonal ErMnO3
showing up- and down-polarized ferroelectric domains. (c) MFM image at low temperature at the same location as in
(b) showing an induced magnetic moment at ferroelectric domain walls. (d) Sketch from image in (c), emphasizing the
magnetic moments at domain walls of the 16x16 μm2 image. ((b)–(d) reprinted (adapted) with permission from [140].
Copyright 2012 American Chemical Society.) (e) Multiferroic domain walls in the spin-spiral system MnWO4 visualized
by SHG. (f) Illustration showing the 3D distribution of the multiferroic domains in (e). ((e)–(f) reprinted with permission
from [37]. Copyright 2009 by the American Physical Society.)

Multiferroic domains and domain walls with explicitly strong coupling between the electric and magnetic order
were discovered in the spin-spiral multiferroic MnWO4 (type II) [37, 86]. In MnWO4, hybrid ferroelectric/an-
tiferromagnetic domains arise below 15 K (Figure 8(e), (f)) driven by an elliptical spin spiral that breaks the
inversion symmetry and, thereby, induces improper ferroelectricity [142]. Because of the magnetic origin of
the ferroelectric order, and in strong contrast to the hexagonal manganites, electric and magnetic domain walls
always coexist in MnWO4. The inner structure of these walls remains to be measured, but theory predicts that
they are antiferromagnetic in nature, similar to the case illustrated in Figure 4(c) [36].

Recently, Farokhipoor et al. reported enhanced magnetism at domain walls in epitaxial thin films of the
orthorhombic spin-spiral multiferroic TbMnO3 grown on SrTiO3 [143]. They found out that the macroscopic
magnetic signal of the samples is correlated to the density of domain walls of TbMnO3 with different thick-
nesses. While the results are supported by DFT calculations, direct evidence of magnetism at domain walls re-
mains to be demonstrated with microscopy techniques. Another idea is the emergence of dynamical magnetic
fields at moving ferroelectric walls proposed by Juraschek et al. [144], which extends magnetism in domain
walls into the realm of dynamical multiferroicity, foreshadowing exciting perspectives for future experimental
work on multiferroic domain walls.
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3 Manipulating domains and domain walls

3.1 Electric control of antiferromagnetic domains

BiFeO3 has been involved in a number of scientific breakthroughs, such as the observation of conducting fer-
roelectric domain walls [87] and room-temperature electric field control of magnetism [145]. It is thus not sur-
prising that research efforts on multiferroic domains and domain walls have been highly concentrated on this
material during the last fifteen years, especially in thin films (DOI:10.1515 /PSR.2019.0070). A primary goal of
magnetoelectric multiferroics was to control magnetic domains via the low power electric-field switching of
ferroelectric domains in view of possible applications in spintronics. BiFeO3 being an antiferromagnetic fer-
roelectric, concepts based on the electric control of exchange bias of an adjacent ferromagnet were proposed
[146].

In 2014, Heron et al. investigated the kinetics of the polarization switching process in 100-nm-thick BiFeO3
thin films grown on DyScO3(110) substrates [147]. Using time-dependent PFM, they found out that the out-of-
plane electric field was giving rise to a 180° reversal of polarization in a two-step switching process combining
71° and 109° switching (Figure 9(a)). Ab initio calculations supported these observations with a direct 180°
switching having a too high energy barrier compared to the two-step process. In addition, it was predicted
that the two-step switching enables an in-plane switching of the canted moment by 180° through the reversal
of the rotation of the oxygen octahedra (Figure 9(b)). This was experimentally confirmed by visualizing the
influence of the ferroelectric switching onto the magnetization of a Co0.9Fe0.1 ferromagnet deposited on the
film of BiFeO3. Using XMCD-PEEM, the authors observed that, after the application of a 6 V voltage pulse to
switch the ferroelectric polarization, the net magnetization of the ferromagnet was reversed (Figure 9(c)).

Figure 9: Deterministic switching of magnetization with an electric field. (a) Polarization vector images determined
from PFM measurements before (initial) and after applying an out-of-plane field (final) to the 100-nm-thick BiFeO3 grown
on SrRuO3/DyScO3(110). The image on the right (number of switching events per pixel) shows that in average a two-step
switching is favored. Scale bars are 500 nm. (b) Schematic of the two-step 180° switching of polarization (P) with a 71°
and a subsequent 109° switching. The antiferromagnetic vector (L) and canted moment (MC) are also represented. Con-
sequently, the two-step switching is accompanied by a 180° rotation of the canted moment of BiFeO3. (c) XMCD-PEEM
images of the in-plane moment of a Co0.9Fe0.1 layer deposited on BiFeO3 with components viewed perpendicular (vertical
KX-ray, where KX-ray defines the in-plane component of the incident X-ray beam) and parallel to the stripe domains (hori-
zontal KX-ray). The directions of the magnetization in each domain are highlighted with blue and red arrows, which cor-
respond to the local moment direction being perpendicular or parallel to KX-ray. The net Co0.9Fe0.1 magnetization (green
arrows) reverses after the voltage is applied. Scale bars are 2 μm. (Figure is reprinted with permission from Springer Na-
ture, all panels taken from [147]. Copyright 2014 by Springer Nature.)

However, these experiments consider that BiFeO3 is in a canted G-type antiferromagnetic phase [148] in con-
tradiction with the measurements of a spin cycloid in low-strained BiFeO3 films grown on substrates such as
DyScO3(110) using Mossbauer and Raman spectroscopies [83]. Using NV magnetometry, Gross et al. recently
confirmed that this state was favoured by imaging in real-space the stray field coming from the spin-cycloid
of BiFeO3, with an imprint of the ferroelectric stripe-domains onto the magnetic texture (Figure 3( h)) [68]. In
addition, by defining single ferroelectric domains using the trailing field of the SPM tip, they observed a single
spin cycloid within the plane of the film (Figure 10(a)). The spin cycloid period is about 70 nm and quantitative
NV magnetometry indicates that both the magnetoelectric and the Dzyaloshinskii–Moriya interactions play a
role, resulting in a wiggling cycloid (Figure 10(b)). Hence, thanks to the magnetoelectric exchange coupling
in BiFeO3, the propagation vector of the spin cycloid can be controlled deterministically, envisioning potential
applications in the field of magnonics [149] or antiferromagnetic spintronics [150]. In general, the exchange cou-
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pling between a strong ferromagnet and a non-collinear antiferromagnetic multiferroic is an intriguing topic
that is worth being investigated more thoroughly both theoretically and experimentally.

Figure 10: Manipulation of the antiferromagnetic order in BiFeO3 thin films. (a) Micron square single domain in
BiFeO3 grown on DyScO3(110) read by in-plane PFM and corresponding NV magnetometry image in the center of this
square showing the periodic magnetic signal of a spin cycloid. On the right, another micron square single domain with
the corresponding magnetic image showing that the propagation vector of the spin cycloid can be rotated by 90° via the
magnetoelectric coupling. (b) Sketch of the wiggling cycloid in BiFeO3 with two corresponding canted moments, meff and
mDM, corresponding to magnetoelectric and Dzyaloshinskii–Moriya interactions, respectively. ((a)–(b) are reprinted with
permission from Springer Nature, taken from [68]. Copyright 2017 by Springer Nature.) (c) In-plane PFM of a BiFeO3 thin
film grown on SrTiO3(001) in which three domains were defined in a 10 × 10 μm2 square. On the right, corresponding
SHG images and manipulation with temperature (570 K), electric field (2 to 10 V) and optical THz. ((c) is reprinted with
permission from Springer Nature, taken from [69]. Copyright 2017 by Springer Nature.)

For large epitaxial strain on BiFeO3, the spin cycloid order is destabilized and a canted G-type antiferromag-
netic order emerges [77]. Using SHG, Chauleau et al. observed that two types of submicron antiferromagnetic
domains coexist within a single 10 × 10 μm2 ferroelectric domain of BiFeO3 grown on SrTiO3(001) (Figure 3( j)).
In addition, they were able to manipulate these antiferromagnetic domains with multiple stimuli (Figure 10(c)).
First, manipulating the ferroelectric domains gave rise to a new pattern of antiferromagnetic domains. This is be-
cause, due to the magnetoelectric coupling, switching the polarization variants toggles the direction of magnetic
anisotropy, which can induce a rotation of the antiferromagnetic vector. Then, they heated the BiFeO3 sample
close to the Néel temperature, which led to a reinitialization of the antiferromagnetic domains. They showed
that sub-coercive electric fields were also manipulating these antiferromagnetic domains without changing the
ferroelectric domain pattern. Finally, 100-fs laser pulses were used to generate a terahertz electrical pulse in the
sample. A profound modification of the antiferromagnetic domain pattern resulted, as this matches the range
of the antiferromagnetic resonance in BiFeO3. Thus, one can envisage controlling the antiferromagnetic order
in a contactless manner using ultrafast light pulses for an all-optical information technology approach.

Another system which is less established than BiFeO3, but which shows significant potential for electric
field control of magnetism, is lead zirconium titanate (PZT)-lead iron tantalate (PFT) [151–154]. Using lamellae
prepared out of PZT-PFT ceramics, it has been demonstrated that the ferroelectric order switches under applied
magnetic fields at room temperature. An intriguing interplay of electric and magnetic degrees of freedom in
PZT-PFT was observed in spatially resolved and integrated measurements, and large coupling constants have
been reported [155–158]. The latter is likely to be due to the low structural energy costs of switching between
ferroelectric states, evidenced by the relaxor-like domain pattern sometimes observed in thin TEM samples
[155] and the small variation in lattice parameters [159]. To evaluate the full potential of PZT-PFT, however,
additional comprehensive investigations at the level of domains and domain walls is desirable.

3.2 Magnetic control of domain wall charge states in improper ferroelectrics

Spin-driven multiferroics develop domains and domain walls with inseparably entangled electric and mag-
netic degrees of freedom as introduced in Sections 1 and 2 (see DOI:10.1515/PSR.2019.0016 for an extended
discussion on spin-driven multiferroics). The strong magnetoelectric coupling represents a unique feature of
this material class, offering interesting opportunities for the manipulation of domain walls and their electronic
properties. The outstanding potential is reflected by proof-of-concept work on iron garnet, where the electri-
cal polarity of domain walls was switched with a magnetic field [160]. In more recent work, a magnetic field
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was applied to the spin-driven multiferroic Mn0.95Co0.05WO4 to continuously rotate the magnetic easy-plane by
90° and with it the orientation of the ferroelectric polarization (Figure 11(a)) [36]. Leo et al. exploited this phe-
nomenon to gain control of the domain wall charge state. They used SHG to image the ferroelectric spin-spiral
domains in a Mn0.95Co0.05WO4 single crystal and created neutral 180° ferroelectric domain walls by applying
an electric field through macroscopic electrodes (Figure 11(b), top). As the primary magnetic order prevents
the motion of the wall, a magnetic field of 6 T was used to switch the polarization by 90° without changing
the location of the domain wall (Figure 11(b), bottom). This way, a magnetic-field-driven change of the charge
state was achieved switching from electrically nominally neutral to positively/negatively charged walls [36].
Landau–Lifshitz–Gilbert simulations support the observations of the magnetic-field-induced change of the fer-
roelectric domain wall charge and give additional insight into the complex Néel-type structure of the domain
walls (Figure 4(c)).

A similar but discontinuous effect was observed for domain walls in TbMnO3 [39]. In orthorhombic
TbMnO3, a spin cycloid appears below TC = 27 K, which breaks inversion symmetry and leads to a sponta-
neous polarization along the c-axis [50]. Applying a magnetic field along the b-axis alters the orientation of the
magnetic easy-plane, giving rise to a polarization flop to the a-axis through a first-order phase transition (Fig-
ure 11(c)) [50]. Using SHG, Matsubara et al. [39] observed the evolution of multiferroic domains in a TbMnO3
single crystal under the application of an electric field applied along the c-axis. The crystal is naturally forming
neutral ferroelectric 180° domain walls elongated along the c-axis (Figure 9(d), top). As the magnetic exchange
interaction is also stronger along the c-axis, both magnetic and electric energies are lowered by the formation of
these walls. The team then used SHG at 9 K to track the evolution of domains with polarization parallel to the a-
and c-axes under a magnetic field of 10 T applied along the b-axis. Within the resolution of the technique (a few
microns), they did not detect any change in the domain pattern from 0 to 10 T while the polarization flopped
from the c- to the a-axis (Figure 11(d), bottom). This implies that the walls changed from a neutral side-by-side
configuration to either tail-to-tail or head-to-head charged states. LLG simulations concluded that the magnetic
field along the b-axis exerts an effective torque on the magnetization around this axis and leads to an identical
flop for both up and down polarization previously aligned along the c-axis. The deterministic nature of this
multiferroic phase transition allows to convert nominally neutral walls into charged domain walls.
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Figure 11: Magnetic control of the domain wall charge state in type II multiferroics. (a) Top, sketch illustrating the
magnetic-field-induced polarization re-orientation from the b- to the a-axis in Mn0.95Co0.05WO4. Bottom, pyroelectric cur-
rent (solid lines) and integrated SHG measurements (open symbols) at 5 K, showing the magnetic-field induced rotation
of polarization. (b) Top, spatially resolved SHG data of a side-by-side 180° domain wall prepared by applying an electric
field along the b-axis at zero magnetic field. Bottom, SHG image of the same area under a magnetic field of 6 T, showing
that the wall did not move and becomes a tail-to-tail wall with polarization along the a-axis. The scale bar is 250 μm. ((a) –
(b) are reprinted with permission from Springer Nature, taken from [36]. Copyright 2015 by Springer Nature.) (c) Electric
polarization flop from the c- to the a-axis in TbMnO3 with a magnetic field applied along the b-axis. ((c) is reprinted with
permission from Springer Nature, taken from [50]. Copyright 2003 by Springer Nature.) (d) Domain structure of TbMnO3
across the first-order polarization flop observed with SHG. Top, ferroelectric domain structure in the ground state. Bot-
tom, the application of a magnetic field of 10 T flops the polarization along the a-axis but the domain structure does not
change, implying that the walls become charged. ((d) is taken from [39]. Reprinted with permission from AAAS.) (e)
Schematic image of the optical poling procedure used by Manz et al. [161] to reversibly write antiferromagnetic domains
on TbMnO3. (f) SHG image showing laser-written antiferromagnetic domains with positive (+C, bright) and negative (–C,
dark) spin chirality. (g) SHG image of the same region shown in (f) after erasing the laser-written –C domains. ((e) – (g)
are reprinted with permission from Springer Nature, taken from [161]. Copyright 2016 by Springer Nature.)

The opportunity to magnetically convert neutral domain walls into charged domain walls is intriguing as it
allows, in principle, reversible control of the density of screening charges and, hence, conductivity. This would
enable the design of nano-sized electrical gates, where ON and OFF states are set by the magnetic field. Going
beyond the application of external magnetic (or electric) fields for controlling the domain wall charge state,
intense light fields have been used to selectively create nominally neutral and charged walls in spin-driven
multiferroics. Manz et al. showed that both nominally neutral and charged walls can be written and erased in
TbMnO3 using pulsed- or continuous-wave lasers (Figure 11(e)–(g)) [161]. The findings demonstrate the pos-
sibility to optically engineer individual domain walls or patterns of higher complexity as required, e.g., for
domain-wall-based circuitry. At present, however, any technological merit is clearly suspended by the cryo-
genic range of the multiferroic phase in spin-spiral multiferroics such as TbMnO3 and Mn0.95Co0.05WO4, and
a one-to-one correlation between domain wall charge state and local conductivity is yet to be demonstrated in
these materials. Still, the conceptual results reveal completely new pathways for domain wall engineering and
highlight the additional functionalities that arise from the strong coupling between electric and magnetic order
available in multiferroics.

3.3 Tailoring topological states in multiferroics

The ability to electrically write ferroelectric domain patterns with a conductive tip offers exciting possi-
bilities to realize and harness configurations beyond domain walls that will show topological properties
(i.e., possessing an integer or semi–integer topological charge Q). The most classical topological textures
are vortices (Q = 1/2) and skyrmions (Q = 1) (antivortices have Q = –1/2 and antiskyrmions Q = –1) (see also
DOI:10.1515/PSR.2019.0017). So far, research has concentrated mostly on topological magnetic structures, but
more and more examples of electric textures with non-trivial topology are reported.

After early theoretical predictions by Naumov et al. [162], ferroelectric vortices were first observed in mi-
croscale capacitors of PZT by Gruverman et al. in 2008 [163]. Since then, there have been numerous reports
in various types of systems (mostly Pb(Zr,Ti)O3, BaTiO3 and BiFeO3). Two main strategies have been pursued,
namely: (i) nanostructuration by, e.g., self-organized growth (Figure 12(a)-(c)) [164, 165] or deposition through
sacrificial templates [166], and (ii) electric-field manipulation by scanning probe tips [167]. Only in a few of these
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studies, the topological character of the vortices has been explicitly quantified, for instance, by computing the
vorticity from vector-PFM maps (Figure 12(d)) or phase-field simulations mimicking the observed polarization
textures. Some works report the electrical manipulation of these vortices, paving the way towards their use in
nanoelectronics. Ferroelectric skyrmions were predicted to be stable in nanocomposites (Figure 12(g)–(h)) [168]
and nanodomains (Figure 12(e)–(f)) [169] and, most recently, their existence has been confirmed experimen-
tally in ferroelectric superlattices of (PbTiO3)n/(SrTiO3)n [170]. To date, whether these ferroelectric topological
structures translate into magnetic ones through the local magnetoelectric coupling remains elusive, but new
high-sensitivity magnetic microscopy techniques, such as scanning NV microscopy, may shed light on this
issue.

Figure 12: Topological structures in multiferroics. (a) Atomic force microscopy image of a BiFeO3 film on LaAlO3 with
self-assembled nanoplates. (b) Vector maps of in-plane piezoresponse overlaid on the corresponding out-of-plane PFM
contrast of one such nanoplate. (c) In-plane piezoresponse angle maps extracted from the yellow box in (b). (d) Winding
number (WN) maps determined from (c). ((a)–(d) are reprinted with permission from Springer Nature, taken from [165].
Copyright 2018 by Springer Nature.) Calculated (e) polarization and (f) Pontryagin density of a nanodomain in PbTiO3
((e)-(f) reprinted with permission of AAAS from [169] © The Authors, some rights reserved; exclusive licensee American
Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License
4.0 (CC BY-NC) http://creativecommons.org/licenses/by-nc/4.0/). (g) Vortex structure of a BaTiO3 nanowire embedded
in SrTiO3. (h) Associated Pontryagin density map. ((g)–(h) are reprinted with permission from Springer Nature, taken
from [168]. Copyright 2015 by Springer Nature.)

In metallic systems with magnetic skyrmion structures, the topological charges can influence the electron trans-
port to produce a topological Hall effect. Many questions arise regarding the consequence of the presence of
electric and/or magnetic topological textures in multiferroics in view of their very low conductivity, practically
hampering Hall measurements, and more generally on the influence of an electrical topological charge on the
macroscopic physical properties. Several papers have predicted other phenomena arising from the presence
of magnetic topological charges, such as the appearance of a topological orbital moment [171, 172] or a spin-
chirality-driven inverse Faraday effect [173]. The mounting interest for topological structures in ferroelectrics
and multiferroics now calls for similar predictions of exotic effects, driven by electrical topology.

4 Conclusions

In this article, we reviewed the recent developments in the field of domains and domain walls in multiferroics.
More complete review articles dedicated to domain wall nanoelectronics [55, 56, 174] or functional domain
and domain walls in multiferroics [40, 54, 62] can be found elsewhere. Charged domain walls have emerged
within the last few years as nanoscale objects with enhanced conductivity or distinct magnetism. They are
found naturally in improper ferroelectrics [105] or designed in multiferroics by SPM [114], which opens the
way towards reconfigurable nanocircuitry [30, 55] and on-demand spintronic nanocomponents.

New tools are now available to image magnetic textures in antiferromagnets at the local scale. These tech-
niques could help understanding the interplay between ferroelectricity and magnetism in multiferroic domain
walls. In addition, the field of antiferromagnetic spintronics [150] could be extended to multifunctional mate-
rials, such as multiferroics, in which the propagation of spin waves [175] could be controlled by the electric
control of ferroelectric domains.
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Finally, the possibility to design topological states [176] with electric-field input is particularly exciting
for multiferroics. Theoretical works suggest the possibility to fabricate the electric counterpart of magnetic
skyrmions. In addition, recent observations reveal the presence of non-Ising walls in 180° domain walls of reg-
ular ferroelectrics (Pb(Zr,Ti)O3 and LiTaO3) [35]. This indicates that complex interconnected chiral electric and
magnetic structures could be realized in multiferroics.
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