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Introduction

Ferroelectrics for energy harvesting and other engineering 
devices generally require embodiments that have poled polar-
izations in ceramics. Domain structures must be aligned in 
order for the photo-responses to add constructively. Most 
researchers assume that the equilibrium domain structures of 

Landau–Lifshitz–Kittel are present (‘Kittel Law’), but recent 
studies reveal highly non-equilibrium domain patterns and 
folding, which might adversely affect device performance. 
The two most important things about oxide ferroelectrics are: 
(1) In general they are not insulators. PbTiO3 has a band gap 
of approximately 2.96 eV, approximately that of wide-gap 
III–V semiconductors such as GaN or II–VI’s such as ZnO. 
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Abstract
Since the 1935 work of Landau–Lifshitz and of Kittel in 1946 all ferromagnetic, ferroelectric, 
and ferroelastic domains have been thought to be straight-sided with domain widths 
proportional to the square root of the sample thickness. We show in the present work that 
this is not true. We also discover period doubling domains predicted by Metaxas et al (2008 
Phys. Rev. Lett. 99 217208) and modeled by Wang and Zhao (2015 Sci. Rep. 5 8887). We 
examine non-equilibrium ferroic domain structures in perovskite oxides with respect to 
folding, wrinkling, and relaxation and suggest that structures are kinetically limited and in the 
viscous flow regime predicted by Metaxas et al in 2008 but never observed experimentally. 
Comparisons are made with liquid crystals and hydrodynamic instabilities, including 
chevrons, and fractional power-law relaxation. As Shin et al (2016 Soft Matter 12 3502) 
recently emphasized: ‘An understanding of how these folds initiate, propagate, and interact 
with each other is still lacking’. Inside each ferroelastic domain are ferroelectric 90° nano-
domains with 10 nm widths and periodicity in agreement with the 10 nm theoretical minima 
predicted by Feigl et al (2014 Nat. Commun. 5 4677). Evidence is presented for domain-
width period doubling, which is common in polymer films but unknown in ferroic domains. 
A discussion of the folding-to-period doubling phase transition model of Wang and Zhao is 
included.
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Therefore, especially in thin-film form, they are electrical con-
ductors. Hence it is necessary for device development to under-
stand their band structure, to know accurate effective masses 
(typically, for example BaTiO3 and SrTiO3, they are n-type 
with light and heavy electrons, and electron effective mass m* 
of order 5.5–6.5 me, in contrast to the values m*  =  1.0–1.4 me 
used, for example, in [1–6]), trap levels, and conduction 
mechanisms. (For example, In the present context, Turnbull 
[6] has shown that elastic instabilities in nematics depend 
upon the relative mobilities of electrode-Injected electrons 
and holes.) On large-energy Fermi-level metal electrodes such 
as Pt (work function W  =  5.34  ±  0.02 eV) or Pd or Au, their 
large electron affinities usually produce small Schottky barrier 
heights, of order 0.8–1.2 eV. Because their mean free paths are 
small compared to the Schottky barrier widths, conduction is 
usually in the Simmons-limit of Schottky conduction, which 
yields current J(E) proportional to Eexp(aE)1/2. For low volt-
ages the exponential is nearly unity, and J  =  bE results, giving 
the illusion of ohmic conduction (but unlike ohmic transport, 
insensitive to thickness and interface-limited). This aspect 
of Schottky barriers has been widely misunderstood; most 
recently [7] has discriminated between Schottky currents and 
impurity banding and resulting space charge limited currents, 
based upon a low-voltage linear current–voltage relation-
ship; however, such a criterion is invalid for oxides, where 
the Simmons’ form of the Schottky Equation (valid for short 
electron mean free paths) is generally linear in J(V) at low 
voltages. In order to design optimum oxide electronics, it is 
important to understand bulk versus interfacial processes and 
to get effective masses and mobilities correct. As Morozova 
and Eliseev [8] have pointed out, these semiconductor proper-
ties dominate domain wall relaxation times (a main part of the 
present paper), with an increase of  ×3 in carrier concentra-
tion decreasing relaxation time by a factor of  ×180. (2) Six 
is bigger than three! Direct tunneling through oxide films is 
typically limited to thickness d  <  6 nm, whereas ferroelec-
tric polarization is stable for d  >  2.4 nm. This gives a finite 
range of thickness for which ferroelectric tunnel junctions are 
attractive devices, as developed nicely by the THALES group 
of Barthelemy and Bibes et  al [9]. Unfortunately for three 
decades the scientific community was under the impression, 
based upon misleading publications, that the minimum fer-
roelectric film thickness for stability was tens or hundreds of 
nm. This error delayed progress for many years.

The fact that ferroelectrics are wide-gap semiconduc-
tors means that early work on them—including domain 
dynamics—that treated them as perfect insulators must 
be revised. In particular, the fact that domain walls can be 
charged or uncharged, straight or curved, makes the assump-
tion of equilibrium structures less likely than appeared a gen-
eration ago. Depletion and accumulation layers occur at or 
near interfaces and domain walls. Charges accumulate or leak 
off with various relaxation times, and these and other causes 
can produce long-lived but non-equilibrium structures, which 
can be kinetically limited.

Since 1935 it has been known that magnetic or ferroelec-
tric domains often stabilize in rectilinear structures that can 

be easily calculated by assuming mechanical equilibrium. 
Their domain stripe widths are found to be proportional to 
the square root of film thickness. Although first derived by 
Landau–Lifshitz [10], this was independently rediscovered by 
Kittel a decade later [11] and is often referred to as the ‘Kittel 
Law’. It also applies to many ferroelastic domains, as shown 
later by Roitburd [12]. Very recently, however, it was shown 
[13–15] that some ferroics exhibit quite different patterns, with 
parabolic domain walls and stripe widths unrelated to the film 
thicknesses, or exhibit viscoelastic properties [16–18]. Some 
of these have 5 nm-scale ferroelectric domains embedded 
inside micron-scale ferroelastic domains, with the contact 
angles of 45° between the two, with what Vaclav Janovec 
first termed [19] ‘walls within walls’. The overall pattern is 
somewhat jumbled and described by Salje and Carpenter as a 
‘domain glass’ [20]. The overlapping domains resemble those 
studied previously in smectic liquid crystals in terms of wrin-
kling [21] and Helfrich–Hurault instabilities [22, 23].

The idea that switching in ferroelectrics can be mediated 
by an ultra-thin transient layer of ferroelastic planes with a 
dipole glass structure has been presented in a different context 
recently for PZT [24]. Hence the idea of glassy fluid layers 
and hence hydrodynamics playing a role in domain switching 
seems to be supported from different observations and models.

Very recently it has been shown [25, 26] that even glassy 
materials behave as having phase transitions where ‘standard 
elastic behaviour breaks down...and nonlinear elastic moduli 
diverge’. This may be important in the present context of 
folding instabilities in glassy domain systems. See also earlier 
work on jamming and disorder [27–29].

We emphasize that the basic ansatz in our discussion 
is that ferroelastic domain walls are a kind of folding, 
produced by stress; this is carefully argued previously by 
Lukyanchuk et  al [29] as the origin of domains in free-
standing ferroelectrics.

Experiment

These patterns may be detrimental to energy applications of 
ferroelectrics. Figure 1 below shows the TEM patterns in mul-
tiferroic submicron single crystals 80–120 nm thick of lead zir-
conate titanate iron tantalate (PZTFT). The 5 nm ferroelectric 
domains can easily be seen inside the curved micron-diameter 
ferroelastic domains in figures 1(a)–(d) with 45° intersections. 
Note however that they all seem to be right-handed tilts (no 
herringbone patterns). The ferroelectric domain tilts are at 
ca. 45° from the inside edges of the larger ferroelastic walls; 
this shows that the latter behave as external boundaries (such 
as surfaces or grain boundaries) and implies that the nm-wide 
ferroelectric stripes are 90° domains, since in-plane 180° walls 
cannot satisfy this 45° constraint. The observed walls satisfy 
the requirement (P1  −  P2)  ⋅  n  =  0 that the ferroelastic wall be 
uncharged (here P1,2 are the polarizations of the two visible 
ferroelectric nanodomains and n is the normal to the ferro-
elastic wall); however, they are sometimes at mutual angles of 
ca. 80° or 100°, not 90, and hence have net strain.
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Models

In order to discuss these phenomena, it is helpful to consider a 
few definitions. Table 1 lists some characteristic temper atures 
for ferroelectrics, together with some instabilities known 
better in liquid crystals. The temperature of most interest 
in the present context is probably the Kauzmann temper-
ature [33]. This is a theoretical temperature of great interest, 
because if it exists, it implies a true phase transition between 
supercooled liquids and crystalline states, a moot proposition 
for many years. In the present context we use it loosely to 
mean a temperature at which domain patterns freeze in. It is 
important that it lies below the Burns temperature (ordering 
of local, nanoscale polarizations), but despite its relationship 
with ordering, it has no known direct connection to Vogel–
Fulcher freezing. The latter is a semi-empirical model param-
eter anyway, and generally it is not possible to infer a model 
from an empirical equation.

Table 1 also lists some hydrodynamic instabilities known 
in liquid crystals. The process we see in figure 1 is likely to be 
caused by a sliding instability in which one layer of polariza-
tion domains pops up and slides over the adjacent layer. Other 
hydrodynamic instabilities are well known in liquid crystals; 
for example, Delov et al (table 1 below) discuss how ‘hydro-
dynamic flow develops inside the flexoelectric stripe pattern...
(and) electro-convection sets in’.

It is useful to note that not all parabolic domain shapes need 
arise from hydrodynamic flow. Figure 4 from [40] illustrates 

the growth rates for residual stress of out-of-plane wrinkles 
from a model calculation based upon wrinkling in a viscoe-
lastic film. This is for the case in which the film is rather iso-
tropic and the stress ratio in the folded layer and viscoelastic 
underlayer is 80%.

Theory

In this short note an insufficient number of parameters are 
known for our viscous domain system; however, we can 
attempt some superficial contact with published theories: ref-
erence [40] gives an expression for wrinkle wavelength Λ at 
long times (quasi-equilibrium) as

π ν ν µΛ = h HE h2 1–2 3 1– ,1 4{[ ( ) ]/[ ( ) ]} / (1)

where h/H is the ratio of folded layer to underlying visco-
elastic substrate layer; ν, Poisson’s ratio; C11, elastic constant; 
E, Young’s modulus; μ is a short-time relaxation constant 
of order C11. The value of μ varies by 104 depending upon 
whether the folding process is slow viscuous flow or rapid; we 
assume rapid folding. For our system ν  =  0.35, E  =  67 GPa, 
C11  =  1.8  ×  1011 dynes cm−2  =  18 GPa (taken as typical of 
oxide perovskites), H  =  90–120 nm, and h  =  ca. 8–15 nm 
(accurate perhaps to only  ±50%). Although the ratio E/μ is 
not accurately known, this ratio occurs within a fourth-root, 
and hence Λ is relatively insensitive to its exact value and is 
generally [40, 41] an order of magnitude larger than the film 

Figure 1. Transmission electron micrographs of PZTFT, showing clearly in (a)–(d) 10 nm wide ferroelectric 90° domains nested inside 
ferroelastic domains at nearly 45° angles: examples showing non-coplanar folds with chevron-like structures NOT at 90°.
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thickness h. This estimates wrinkle wavelength as Λ  =  30–
50 nm, in reasonable accord with figure 1. Other models [32] 
give slightly different wrinkle wavelengths, but all have in 
common an approximately linear proportionality (h3/4 in 
equation  (1); h in [41]) between wrinkle wavelength Λ and 
film thickness h; note that this disagrees qualitatively with the 
square-root dependence of the Landau–Lifshitz–Kittel law.

The same model [40] gives a critical folding stress of

σ ν µ ν ν= − − −E h H2 1 3 1 2 1c
2 1 2{[ ( ) ]/[ ( )( ) ]} / (2)

which for our parameters predicts ca. 65 GPa. By compar-
ison, the critical stress in BaTiO3 is ca. 40 GPa (another typ-
ical perovskite oxide, PZT, does not even de-pole [42] until 
200 MPa), showing some consistency in the model and justi-
fying our estimate of h.

We can use the recent phase diagram of stress versus elastic 
coefficient from Wang and Zhao [43] to estimate in general 
the fold to period-doubling phase transition. They find this 
transition at a modulus ratio of ca. 10:1 for film/substrate (i.e. 
favored for soft substrates) and a large mismatch strain of 
ca. 30%, figure 2(a). For further numerical modeling of the 
folding to period-doubling transition in soft (biological) mat-
erials, see also [44], in which Lihua, finds period doubling at 
strains as low as 10%. Additionally, Budday et al [45] have 
shown that period doubling always precedes period tripling.

Summary of folded domains

We call attention to the fact that these instabilities and domain 
patterns, undesirable for energy applications, can be avoided 
by choosing ferroelectrics that are not also ferroelastic—a 
new criterion to consider. That is the situation in any crystal in 

which the ferroelectric and paraelectric phases belong to the 
same crystal class [46]. Examples are lead germanate (rhom-
bohedral-rhombohedral) [47], lithium niobate or lithium 
tantalate (rhombohedral–rhombohedral) [48], or KTiOPO4 
(orthorhombic–orthorhombic) [49], and many others. If other 
materials are employed, which change crystal class at their 
Curie temperatures, then attention should be paid to their pro-
cessing and especially their poling in order to maximize per-
formance in energy devices. The relationship between folding 
and relaxation times is discussed in [50–52].

Further work: absence of true chevron domains

We note in figure 1 the absence of chevron domains for the nm-
scale ferroelectric domains within each ferroelastic domain. 
Here the ferroelectric stripes are all at approximately 45° to 
the constraining ferroelastic walls. This is reminiscent of the 
behaviour of ferroelectric liquid crystals, where according to 
the model of Handschy and Clark [53], the presence of an 
in-plane polarization P destroys the chevron bistability. The 
origin of chevron domains and their stability in smectic liquid 
crystals is discussed further by Rieker et al [54, 55]. An impor-
tant point in both magnetic domains [56] and liquid crystal 
domains [57] is that chevron structures are generally found 
only in large, extended systems and are suppressed in those 
of very small lateral area, such as the present case. Lagerwall 
has pointed out [58] that ferroelectric (smectic) films usually 

Figure 2. (a) Phase diagram for folding to period-doubling 
transition in thin films. Modulus ratio film/substrate is shown with 
threshold near 10:1 (soft substrate) versus misfit strain (ca. 30%). 
The third axis is normalized adhesion energy between film and 
substrate. Adapted from Wang and Zhao [34]; (b) domain stripe-
width period doubling (straight lines are guides to the eye.

Table 1. Characteristic transition temperatures and hydrodynamic 
instabilities. (For a full list and discussion of non-equilibrium 
patterning, see [17, 18].)

Transition temperature: Simple description Reference

Burns temperature Tb Localized polar 
nano-domains

[30]

Vogel–Fulcher freezing 
temperature Tvf

d.c. dielectric peak T 
in relaxors

[31, 32]

Kauzman temperature Tk Fluid-crystal entropy 
equality

[33]

Glass temperature Tg Conventional label 
from brittle to rubbery

[34]

Instability:

Richtmyer–
Meshkov

Shock-driven globular 
emission in fluid bilayers

[35, 36]

Helfrich–Hursault Sliding instability of layers 
under mechanical stress

[22, 23]

Kauzmann Glass-fluid equi-entropy 
temperature

[33]

Parodi Periodic instability in 
smectics under electric fields

[37]

Bobylev–Pikin Flexoelectric patterning in 
nematics

[38, 39]

                                          



               

5

have polarization P out-of-plane, whereas chevrons are non-
polar and therefore seldom favoured. The dynamics of folds 
under biaxial compressive stress has very recently been shown 
elsewhere [59] to result in curved domain walls and lenticular 
shapes; however, these authors emphasize that ‘The gradual 
in-plane compression of a solid film bonded to a soft substrate 
can lead to surface wrinkling and even to the formation of a 
network of folds for sufficiently high strain. An understanding 
of how these folds initiate, propagate, and interact with each 
other is still lacking’. It is this network of folds and walls and 
their propagation and interaction that the present manuscript 
has addressed.

Period doubling

If you look at the nm-scale ferroelectric domains in figure 2(b), 
where the added lines along domain walls are guides to the 
eye, you will see that some adjacent walls differ by  ×2 in wall 
spacing. Although it is possible that this arises simply because 
the overlapping domains differ in thickness, a factor of two 
can arise in a different way: The full phase diagram of shear 
modulus M versus film/substrate adhesion energy G gives an 
interesting result [60], with a triple point connecting buckling 
(delamination), creasing, and wrinkling. But at a higher shear 
strain, the wrinkled phase undergoes period doubling. So one 
possibility is that these data show a period doubling of domain 
stripe widths within a wrinkled phase. Period doubling is not 
possible within the Landau–Lifshitz–Kittel model, because 
they assume infinitesimally small strains, whereas doubling 
requires nonlinear (large) strains. Note that the exact doubling 
of domain stripe widths cannot arise from coincidentally 
having layers twice as thick, because the Kittel Law varies not 
linearly with thickness but as its square root; hence an acci-
dental doubling of stripe widths due to differing layer thick-
nesses would require a very unlikely thickness ratio of 1.414 
within Kittel theory.

Non-exponential stress relaxation

If ferroic domains are sometimes not in mechanical equilib-
rium, the next question to ask is how they relax with time. 
There is a long-standing puzzle concerning the relaxation of 
stress in different systems and in particular whether this is best 
described by a power law or an exponential. It is not practical 
to try to measure stress relaxation in our submicron-diameter 
PZTFT samples (figure 1), because of their size and the fact 
that they require FIB and TEM processing. Therefore we turn 
to a simpler system of ferroelectric-ferroelastic domain pat-
terns. Previously we showed [61] that the kinetics of some 
nano-ferroelectric domain walls in BaTiO3 satisfied the stan-
dard linear model of rheology with respect to spatial coordi-
nates, with wall velocity v(x)  =  Ax, where x designates the 
distance from an external wall. However, no attempt was 
made to describe the temporal dependence. In the present 
section  we show that this is a power-law, non-exponential 
decay, with some data compatible with a power ca.  −1/4 on 

a time scale of hours. The data x(t) are too sparse to reveal 
any stick-slip behaviour. It may be important to note that the 
polarization time dependence P(t) in BaTiO3 is also known 
[62] to give an exact power-law dependence for thin films 
5 nm  <  d  <  20 nm over a wide range of fields from zero to 
530 kV cm−1; the authors of [59] did not give the exponent n, 
but visual inspection of their data (figure 2(b) in [62]) suggests 
a value near n  =  6.

Non-exponential stress relaxation in thin films of vis-
coelastic materials, including polymers, has been a puzzle 
in recent years [40, 63–65]. Typically a power law of t−1/4 
is predicted by models of folding and creep [4], whereas 
Fondado et al have shown [66] that values equal to or greater 
than unity can be found for magnetic or dielectric relaxa-
tions, and Ikegami and Ueda showed fifty years ago [67] that 
some BaTiO3 ceramics exhibited a logarithmic time decay 
for the positions x t( )  we measure in figure 3; rather recently 
the Belfast group [68] also fitted single-crystal BaTiO3 film 
domain wall positions to a logarithmic dependence. It is not 
trivial to distinguish logarithmic dependences from power 

Figure 3. (a) Time dependence of ferroelectric domain wall relation 
x(t), from [52]. Note that there is a power law with exponent n, 
and like the case of wrinkling, n approximates 1/4; (b) relaxation 
time after collision, showing exponent n near 2; note however that 
exponents as small as 0.25 are not incompatible with the error bars 
and that there is an energy loss after collision (lower velocities in 
(b) than in (a)).
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laws with small exponents n for sparse data sets, and in gen-
eral this question has no definitive answer and may depend 
upon specific geometry. Generally relaxations in dielectrics of 
form t−n are said to obey the Curie–von Schweidler Law [69]. 
However, fitting such models in ferroelectrics has generally 
been limited to displacement currents, not domain wall posi-
tions, where 0.75  <  n  <  0.95. In the present work we show 
that these models are more accurate than exponential decay 
for data [61] on ferroelectric BaTiO3 nano-domain positions 
x(t) over periods of 30 min to 20 h (2  ×  103–7  ×  104 s) and 
find n ca. 1/4 for typical data (figure 3). However, the uncer-
tainty in this exponent is large for existing data and can range 
from 0.1  <  n  <  0.3 with the addition or subtraction of a few 
points. These data are for domain walls colliding along an x-
axis; after this event walls recoil at 90° along the y-axis and 
give a rather different relaxation exponent n (ca. 1.9). Because 
such data exhibit n greater than unity one should not assume 
that this is simply an example of Curie–von Schweidler 
dependence t−n, nor Jonscher’s generalization to ‘universal 
dielectric relaxation’, because in those models it is impossible 
for n to be greater than unity. Moreover, Jonscher’s universal 
relaxation law for dielectrics generally refers to displace-
ment current J(t), whereas the position = −x t x to

n( )    for a 
charged domain wall should contribute = − −x t t x td d o

n 1( )/  
to such currents, worsening the agreement in the present case. 
However, it is known [70–72] that values of n between 1.0 and 
2.0 are observed in LiNbO3 and NaNO3 and generally imply 
long-range diffusion of ions (such as variable-range hopping), 
ignored in Jonscher’s theory.

Generally more data are required to make these models 
quantitative for ferroic domain wall relaxation. As emphasized 

in [8], these times are strongly dependent upon carrier concen-
tration in BaTiO3 (since the walls appear to be charged) and are 
therefore extrinsic. It has been known for thirty years [73] that 
relaxation of domain structures in BaTiO3 is often dominated by 
‘volume effects’, particularly the alignment of polarization with 
macroscopic strain and a gradual reorientation of polar defects. 
In the presence of applied electric fields of ca. 200 V cm−1 these 
gave relaxation times fitted to exponential decay with relaxation 
half-lives of order 100 s, much shorter than the zero-field values 
measured in the present work. However, domain relaxations 
on a time scale of 20 h, as in the present study, were reported 
[74–77] in 2014 with 50% decay reached in a few thousand 
seconds, as in our data. Very low (sub-Hz) frequency dielectric 
studies imply that these long relaxation times involve oxygen 
vacancy motion [78].

The ferroelectric domain periodicity studied here is slightly 
larger than the previous lower 6 nm reported by Vlooswijk et al 
[79] or the 4 nm shown by Daumont et al [80]. The wrinkled 
structure in the latter resembles some of the present data in 
figure 1. Our measured 10 nm widths agree with the minimum 
value theoretically predicted by Feigl et al [81]. Those authors 
also find an h4/9 law relating domain width w to film thickness 
h, the same exponent originally published for folding in thin 
films by Holmes and Crosby [82] (not cited in [81]) but not 
yet verified in ferroic domains. Finally, the Obukhov model of 
strain relaxation in polymeric lamellae gives a power law with 
1/4  <  n  <  2 [83], as we observe. Although the present domains 
are not polymeric, they are lamellar, and hence this might be 
relevant.

The deeper question in this work is why BaTiO3 has fer-
roelastic and ferroelectric domain walls that are coincident, 
whereas PZTFT has ferroelectric walls inside the ferroelastic 
ones (‘walls within walls’). This is addressed by Janovec 
and Privratska [19] and generally depends upon the coupling 
between mechanical strain and polarization, which is complex 
in systems with charged domains. This in turn relates to nano-
size and coherence lengths, since strain is unscreened whereas 
polarization is screened. Note that both relaxation and wrin-
kles can be anisotropic (figure 4).

Further details to be examined include whether the domain 
flows are thixotropic, like toothpaste (viscosity decreases with 
time at constant stress), or superplastic, or exhibit overshoot. 
A general review is given in [84] and the specific application 
of Mittag–Leffler models of relaxation to dielectrics, with 
power laws, in [85].

We emphasize in concluding that it has been known 
theor etically for some time [86] that domains should exhibit 
three regimes: (1) creep; (2) depinning; and (3) viscous flow. 
However, it has not been experimentally practical to study 
the flow regime prior to the present work. In concluding we 
note that the first clear evidence of diffusion of domain walls 
in ferroelectrics was shown in [87], where the Brillouin 
spectra of Ba2NaNb5O15 near its phase transition that exhib-
ited linewidth G proportional to the square of momentum 
transfer q. Such a q2 dependence is an unambiguous signa-
ture of diffusion.

Figure 4. Model calculation for wrinkling anisotropy in a 
viscoelastic layer [31], as discussed in the text. The ordinate and 
abscissa are dimensionless measures of growth rates for residual 
stress. The grapefruit-segment-like shapes are to be compared 
with experimental data for ferroelastic domains in figure 1 and 
suggest an alternative non-hydrodynamic origin; however, note 
that growth rate patterns are not the same as the resulting shapes 
of the ferroelastic domains, but only show how the latter develop 
anisotropy and hence might appear elliptical or parabolic, rather 
than circular. Copyright, Huang PhD Thesis Harvard University 
(used by permission).

                                          



               

7

A whole issue of a journal has previously been devoted 
to nonequilibrium domain behavior, and in particular, power-
law, nonexponential time dependences. See Salje [88] and 
other papers in the special issue [88].
Note added in proof: After this paper was accepted a coars-
ening exponent for the time dependence of thin-film morpho-
logical transitions appeared. The authors [89] find a power-law 
with exponent -1/4, as in the present case. There is no obvious 
physical connection between the jamming trans ition in our 
paper and the coarsening in theirs, but such coincidences 
should be noted.
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