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1 Introduction 

Higher education and the health care sectors share many similarities. From an academic perspective, 

both institutions are service providers who have a close affinity in terms of mission, organizational 

structure, and resources needed. Higher education and health care are both known for their service 

missions, which attract people who are involved in social causes. Experienced organizational leaders 

are well-positioned to capitalize on these similarities, especially during this time of increasing demand 

and limited supply. The situation is especially relevant in Germany where a sizeable proportion of Gross 

Domestic Product (GDP) is assigned to health and education sectors. In 2019, 11.9% and 6.4% of GDP 

were respectively allocated to health and education expenditures in Germany (Federal Statistical Office 

2021). More importantly, both of these expenditures have been on the rise during the past few years, as 

shown in Figure 1. Therefore, an instrument that is most suitable for a hospital or a university as a 

service provider is the optimization of efficiency, cost, and maintaining the quality of service. There 

has been an increase in the objective evaluation of performance and making of management decisions 

across all industries. Most administrators initially reacted to this by cutting costs or avoiding 

circumstances that would likely waste money, however in a while comprehended they had to improve 

their performance to remain profitable. 

 

Figure 1. Trends in German health and higher education expenditures (Federal Statistical Office 2021) 

Health care and education sectors will continue to face agitated periods and increasing 

competition. Various global threats, such as the COVID-19 pandemic and climate change, have brought 

to light the importance of the effective usage of limited resources to deal with these challenges (OECD 

and Union 2020). To survive, the managers of these institutions must promote and improve performance 

within their organizations. Improving performance is not a straightforward process. Various aspects of 

a service, organization, or process should be examined. In some cases, the quality of the service (output) 

may be improved by increasing resources used (or inputs). While maintaining quality in other cases, 

more must be accomplished with fewer resources. Organizations need to know their performance based 

on the employment of resources (inputs) such as materials and labor, as well as the outputs such as 
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service quality and customer satisfaction. The task of choosing the right balance between the inputs and 

outputs will always be a challenge for managers in both the health care and education sectors. 

In the German health care sector, hospitals account for 40% of health care expenditures, which 

amounts to over 160 billion euros in 2019 (OECD and Union 2020). Since the introduction of the 

Diagnosis-related Groups (DRGs) system1, hospitals in Germany have been under increasing pressure 

to operate more efficiently. In this context, the pressure on university (or teaching) hospitals to improve 

their efficiency is even higher, since they are responsible for combining training with patient care under 

one roof. On the other hand, Germany spent about 105 billion euros on research and development in 

2018. Of this amount, 18% was spent by higher education institutions (Federal Statistical Office 2021). 

Both academics and the general public are paying increasing attention to the efficiency of German 

universities as a result of tight public budgets (Kempkes and Pohl 2010). A key component of improving 

universities’ efficiency is internationalization, which enhances the quality of their services. A 

consequence of internationalization is that university missions are altered. In addition to changing 

funding structures and increased competition for resources among universities at national and global 

levels, universities also deal with multifaceted environmental factors (Valero and van Reenen 2019). In 

response to the opportunities and challenges that internationalization presents to universities, 

institutions of higher education across Western countries have adopted their business models (McAdam 

et al. 2017). 

Measuring efficiency is a central continuous enhancement tool for businesses/services to 

remain competitive. With performance evaluations, managers can diagnose the areas of strength and 

weakness of their business operations, activities, and processes. They can also identify opportunities to 

make difference and assess how to expand new services and processes. Benchmarking was developed 

as a new technique for evaluating performance. However, benchmarks based on classical analytical 

schemes (e.g., single-measure-based gap analysis) posed more dilemmas than solutions. For example, 

ratios such as return on investment and cost per unit can be employed as an indicator of financial 

performance (Cooper et al. 2007). Nevertheless, they are insufficient to discriminate between best 

practices and to evaluate operational efficiency. The evaluation of performance must not only create 

benchmarks but also provide information about inefficient organizations and explain how improvement 

can be achieved. That is what both the education and health care industries need in the present day 

(Street et al. 2006; Ozcan 2014). 

In the literature, there are various methods for performing comparative performance analyses 

that can be classified as parametric and non-parametric. The least-squares regression and Stochastic 

Frontier Analysis (SFA) are the most popular parametric frontier approaches. Data Envelopment 

Analysis (DEA) is a nonparametric approach widely used method of measuring efficiency. In this 

 
1 DRG aims to standardize payment to hospitals and encourage cost-saving initiatives. 
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context, efficiency is outlined as the amount/number of output units produced through a unit of input 

used. The production process involves the transformation of inputs (such as labor) into one or more 

outputs. This process is called the production function. The production function, in general, is a 

quantitative representation of the technology that stipulates the relationship between inputs employed 

to produce the maximum possible output(s). Based on the input-output vectors that correspond to the 

observed Decision-Making Unit (DMU), the DEA derives the Production Possibility Set (PPS) (Cooper 

et al. 2007). A nonparametric approach is taken here which does not make any assumptions about the 

production function. Therefore, it requires no knowledge of how such transformation occurs. A 

common misconception is that the DEA approach is only applicable in the absence of input and output 

prices. To measure cost efficiency, we can substitute the DEA with the SFA when only some regularity 

settings on the underlying technology can be imposed (Cooper et al. 2007).   

Despite the history of efficiency benchmarks starting with the study conducted by Farrell 

(1957), the theoretical expansion of the basic DEA model (known as CCR) was initiated by Charnes et 

al. (1978), who defined a measure of efficiency by maximizing the weighted ratio of outputs over inputs 

for each DMU. Mathematically speaking, by defining input vector 𝑿 = (𝑥1𝑜, … , 𝑥𝑚𝑜) and output vector 

𝒀 = (𝑦1𝑜, … , 𝑦𝑠𝑜) the overall efficiency of 𝐷𝑀𝑈𝑜 ∀𝑜 ∈ 𝑁 = {1,… , 𝑛} can be formulated as  

𝑇𝐸𝑜 = ∑ 𝑢𝑟𝑦𝑟𝑜
𝑠
𝑟=1 ∑ 𝑣𝑖𝑥𝑖𝑜

𝑚
𝑖=1⁄  where, 𝑢𝑟 and 𝑣𝑖 are the weights attached to output 𝑟 and input 𝑖, 

respectively. Corresponding to the terminology of efficiency developed in the literature (Street et al. 

2006), 𝑇𝐸𝑜 represents technical efficiency. Therefore, the mathematical program of the CCR DEA 

model in ratio form is presented as follows: 

 max𝑇𝐸𝑜 =
∑ 𝑢𝑟𝑦𝑟𝑜
𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑜
𝑚
𝑖=1

  (1.1) 

s.t. 
∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1, ∀𝑗  (1.2) 

 𝒖, 𝒗 ≥ 0  (1.3) 

Eq. (1.2) represents the only and important constraint that the CCR DEA model is subjected to: 

none 𝐷𝑀𝑈 can get a technical efficiency greater than 1. The weights (𝑢𝑟 and 𝑣𝑖) are the central feature 

of the CCR DEA model. They are optimized through solving the model to cast the 𝐷𝑀𝑈 under 

evaluation in the best possible light so that no other set of weights can yield a greater value than  𝑇𝐸𝑜. 

The objective function of Model (1) is non-linear. To deal with non-linearity, either the summation of 

weighted inputs in the numerator or the summation of weighted outputs in the denominator of Eq. (1.1) 

must equal 1 (Coelli et al. 2005). Then, we can rewrite the model by adding a constraint (summation of 

weighted inputs equals to 1) and operating Eq. (1.2) as Model (2). This is recognized as the multiplier 

form of the CCR DEA model. Using this form of the model, the orientation of an optimal production 

plan can be adjusted. Alternatively, this model can also be articulated as a dual counterpart model 
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(known as envelopment form), which has the advantage of requiring fewer constraints and is more 

known than Model (2) (Coelli et al. 2005). 

Multiplier CCR DEA  Envelopment CCR DEA  

 max∑ 𝑢𝑟𝑦𝑟𝑜
𝑠
𝑟=1   (2.1)  min𝜃𝑜 (3.1) 

s.t. ∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 − ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠
𝑟=1 ≥ 0, ∀𝑗  (2.2) s.t. ∑ 𝑥𝑖𝑗𝜆𝑗

𝑛
𝑗=1 ≤ 𝜃𝑜𝑥𝑖𝑜, ∀𝑖  (3.2) 

 ∑ 𝑣𝑖𝑥𝑖𝑜
𝑚
𝑖=1 = 1  (2.3)  ∑ 𝑦𝑟𝑗𝜆𝑗

𝑛
𝑗=1 ≥ 𝑦𝑟𝑜, ∀𝑟  (3.3) 

 𝒖, 𝒗 ≥ 0  (2.4)  𝝀 ≥ 0  (3.4) 

Note that in Model (3), 𝜃𝑜 represent the technical efficiency index of 𝐷𝑀𝑈𝑜 and 𝜆𝑗 are the 

intensity variables. In the CCR DEA model, the assumption of Constant Returns to Scale (CRS) is 

underlined. The PPS is assumed to have the following property: if (𝑥, 𝑦) is a feasible point, then 

(𝑎 ⋅ 𝑥, 𝑎 ⋅ 𝑦) is also feasible for any 𝑎 > 0. It is possible to modify this assumption to allow for different 

postulates for PPS. The CCR model has been extended in various ways since the beginning of DEA 

studies, and among them, the BCC (Banker-Charnes-Cooper) model is representative (Banker et al. 

1984) in which a more flexible Variable Returns to Scale (VRS) technology is accommodated. The 

BCC DEA model can be formed by adding the convexity constraint ∑ 𝜆𝑗
𝑛
𝑗=1 = 1 to the envelopment 

form of CCR DEA model (Model (3)). When not all DMUs operate at the optimal scale, then this model 

might be appropriate. It is often the case in the health care sector that inefficient scale is the result of 

flawed competition, financial constraints, and governing restrictions on mergers (Cooper et al. 2007). 

Choosing between CRS and VRS is therefore a complex decision that requires a thorough understanding 

of the limitations of the market in a particular sector. In the case of a hospital operating at a suboptimal 

scale, if the CRS setting is applied, then the estimates of technical efficiency might be skewed by scale 

efficiency effects (Street et al. 2006).  

Consider Model (2), there might be many zeros in the optimal weights of the model, indicating 

that the evaluating DMU may have a weakness in the factors (inputs and outputs) compared to efficient 

DMUs. Furthermore, a significant difference in weights between items may also be a cause for concern. 

Having no control over the boundaries of optimal weights leads to the emerging Assurance Region 

(AR) DEA model, which constrains the weight of special inputs/outputs relative to others (Thompson 

et al. 1986). For instance, one can limit the region of weights to some special area by adding this 

constraint 𝑙𝑏1,2 ≤
𝑢1
𝑢2⁄ ≤ 𝑢𝑏1,2 to Model (2), where 𝑙𝑏1,2 and 𝑢𝑏1,2 designate lower and upper bounds 

that the ratio of weights for outsputs 1 and 2 may assume.  

Both CCR and BCC DEA models are radial where inputs are proportionally reduced and 

outputs are proportionally expanded. This assumption can sometimes be too restrictive. For example, 

when labor, capital, and material are employed as inputs, some of them may not change proportionally 

and may be substituted. A further shortcoming of radial models is that they do not consider slacks when 

reporting efficiency scores. There are often loads of non-radial slacks left. Therefore, the radial models 
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may delude a decision-making process when these slacks have a significant role to play in estimating 

efficiency. These limitations lead to the expansion of non-radial models. Slacks-based Measure (SBM) 

DEA is a non-radial model that deals directly with slacks in reporting efficiency scores (Tone 2001). 

The non-oriented SBM DEA model under the CRS setting is a non-linear model that can be 

reformulated as a linear counterpart by using Charnes–Cooper transformation approach (Charnes and 

Cooper 1962) as follows: 

SBM DEA  Non-oriented transformed SBM DEA  

 

min𝜏𝑜 =
1−

1

𝑚
∑

𝑠𝑖
−

𝑥𝑖𝑜

𝑚
𝑖=1

1+
1

𝑠
∑

𝑠𝑟
+

𝑦𝑟𝑜

𝑠
𝑟=1

  (4.1) 
 

min𝜌𝑜 = 𝑡 −
1

𝑚
∑

𝑠𝑖
−

𝑥𝑖𝑜

𝑚
𝑖=1   (5.1) 

s.t. 𝑥𝑖𝑜 = ∑ 𝑥𝑖𝑗𝜆𝑗 + 𝑠𝑖
−𝑛

𝑗=1 , ∀𝑖  (4.2) s.t. 𝑡 +
1

𝑠
∑

𝑠𝑟
+

𝑦𝑟𝑜

𝑠
𝑟=1 = 1  (5.2) 

 𝑦𝑟𝑜 = ∑ 𝑦𝑟𝑗𝜆𝑗 − 𝑠𝑟
+𝑛

𝑗=1 , ∀𝑟  (4.3)  𝑡 ⋅ 𝑥𝑖𝑜 = ∑ 𝑥𝑖𝑗𝜆𝑗 + 𝑠𝑖
−𝑛

𝑗=1 , ∀𝑖  (5.3) 

 𝒔−, 𝒔+, 𝝀 ≥ 𝟎 (4.4)  𝑡 ⋅ 𝑦𝑟𝑜 = ∑ 𝑦𝑟𝑗𝜆𝑗 − 𝑠𝑟
+𝑛

𝑗=1 , ∀𝑟  (5.4) 

    𝒔−, 𝒔+, 𝝀 ≥ 𝟎, 𝑡 > 0  (5.5) 

where 𝜏𝑜 and 𝜌𝑜 are the SBM-efficiency in non-linear and transformed forms and they are units-

invariant. In other words, there is no dependence on the units of measurement of inputs or outputs for 

SBM efficiency values. 𝒔− and 𝒔+ are the vector of input and output slacks, respectively. 𝑡 is a positive 

scalar variable used during the transformation process. Consider the optimal solution system as of 

Model (5) be {𝜌∗, 𝑡∗, 𝝀∗, 𝒔−∗, 𝒔+
∗
}. The optimal solution of the SBM DEA model can be defined as 

{𝜌∗, 𝑡∗, 𝝀∗ 𝑡∗⁄ , 𝒔−∗ 𝑡∗⁄ , 𝒔+
∗
𝑡∗⁄ }. The output (input)-oriented SBM model can be derived from Model 

(4) by abandoning the numerator (denominator) of the objective function of the non-oriented SBM 

DEA. 

Now let us examine the production functions of radial and non-radial DEA models with an 

example of five DMUs that use two inputs (𝑥1 and 𝑥2 ) to produce one unity output (𝑦) (see Figure 2). 

To draw the DEA isoquants, inputs must be rescaled so that each input is divided by the output level 

which is equal to one. DMUs 𝐴, 𝐵, and 𝐶 form the efficient frontier production, whereas 𝐷 and 𝐸 are 

inefficient. The PPS is built on the area enclosed by the efficient frontier (solid line) plus the horizontal 

line prolonging to the right from 𝐶 and the vertical line ascending from 𝐴 (dashed lines). CCR- and 

SBM-efficiency scores for inefficient DMUs (𝐷 and 𝐸) are presented by 𝜃∗ and 𝜌∗, respectively. The 

role of nonzero slacks in the CCR model is illustrated by DMU E. The radial projection of 𝐸 (𝐸𝐶𝐶𝑅
′ ) 

encounters the virtual frontier going up from 𝐴 where is not naturally enveloped. However, the 𝐸𝐶𝐶𝑅
′  is 

not efficient. One could still reduce the amount of 𝑥2 by 𝐸𝐶𝐶𝑅
′ 𝐴̅̅ ̅̅ ̅̅ ̅̅ = 2. The difference between the two 

points 𝐸𝐶𝐶𝑅
′  on the virtual frontier and 𝐴 on the edge of the frontier indicates the slack for 𝑥2. However, 

the SBM efficiency reflects nonzero input/output slacks when they exist. Consider the inefficient DMU 

𝐸, SBM model projects this DMU along the efficient frontier (gray arrows) onto the DMU 𝐴 (𝐸𝑆𝐵𝑀
′ =
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𝐴). This results in 𝑠1
−∗ = 0.5 and 𝑠2

−∗ = 4.0 for DMU 𝐸. Similar investigation can also be conducted 

on inefficient DMU 𝐷. 

 

Figure 2. An illustration of radial and non-radial efficiency assessment 

DEA modeling comes in many forms (see, for example, Cooper et al. (2007) and Tone (2017)), 

and the models presented here are merely a few of those diverse forms. However, it has been well 

developed and documented in the literature from both theoretical and practical viewpoints. Over the 

last ten years, this trend has become exponentially more prevalent. Emrouznejad and Yang (2018) report 

that over 10,000 DEA-related articles have been published to date. Among the existing applications of 

DEA models, measuring the efficiency of health care and education (including higher education) are 

notable in the early days of DEA as mentioned by Liu et al. (2013). During the early stages of DEA 

development, education attracted the most attention. This may be due to the study of public education 

efficiency conducted by Charnes et al. (1981). The vast majority of publications in the health care area 

concern hospitals (Kohl et al. 2019). Some of the other applications are for nursing homes, physician 

practice and disease-specific, home health agencies, and other health care organizations (Ozcan 2014). 

Practitioners pay very close attention to the application and use of DEA as its popularity grows. 

However, there are several procedural issues in the application of DEA that should be addressed such 

as those that pertain to the homogeneity of the DMUs (Dyson et al. 2001). In practice, these issues can 
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pose difficulties. Additionally, it is important to handle data irregularities and issues related to structural 

complexity. These include accommodating flexible measures that can be designated as either input or 

output as well as conditions in which one or more inputs/outputs can take only integer quantities (Zhu 

and Cook 2007). For a study of hospital efficiency, consider the number of medical interns or the 

number of graduate students at a university. In addition to their role as output measure, these factors 

can serve as in ut since they are a key com onent of the or anization’s total staff com lement. 

The main goal of this dissertation is to investigate the advancement of efficiency analysis 

through DEA. This is practically followed by the case of German health care and higher education 

organizations. Towards achieving the goal, this dissertation is driven by the following research 

questions: 

1. How the quality of the different DEA models can be evaluated? 

2. How can hospitals’ efficiency be reliably measured in light of the pitfalls of DEA 

applications? 

3. In measuring teaching hospital efficiency, what should be considered? 

4. At the crossroads of internationalization, how can we analyze university efficiency? 

The remainder of this dissertation is organized as follows. Section 2 summarizes all 

contributions included in this dissertation. Note that the appendix provides a complete copy of each 

contribution. In Section 3, the research questions are addressed in detail. Finally, this dissertation comes 

to a close with some conclusions in Section 4. 
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2 Summary of Contributions 

A summary of the contributions of this dissertation to the current literature is presented in this section. 

In the appendix, you will find a complete version of each contribution. 

2.1 Analyzing the Accuracy of Variable Returns to Scale Data Envelopment Analysis Models 

As mentioned earlier, a critical component of decision-making management is evaluating efficiency to 

reduce resource waste and identify better performers. The most representative of the non-parametric 

approaches developed for efficiency analysis is DEA. Though DEA development and applications have 

progressed substantially in the last five decades, there remains no superior DEA model. As a matter of 

fact, the basic models (CCR and BCC) continue to be dominant in various applications such as health 

care despite known issues such as remaining slacks and zero weights. In Contribution 1, we mainly 

focus on VRS settings as the most commonly employed RTS in the DEA literature, and we try to 

determine if the prominence of the BCC model in the literature is justified. Without an appropriate 

benchmark to compare various DEA models, the development of a gold standard is not likely to be 

possible. Because of this, DEA is still viewed primarily as a scientific topic rather than an operational 

tool. Contribution 1 fills this gap by making DEA models comparable in accuracy based on VRS 

settings. It is impossible to evaluate the quality of the DEA estimates since true efficiency cannot be 

determined directly from the empirical data. It is however possible to generate artificial datasets using 

Monte Carlo simulations under certain assumptions and regimes to address this issue.  

Earlier studies in the Data Generation Process (DGP) have primarily used the Cobb-Douglas 

(CD) production function. This is because of the complications of the alternatives, including simple and 

convex constraints, that are imposed by microeconomic regularity conditions. Researchers such as 

Perelman and Santín (2009) have shown that CD is limited in imposing input substitution elasticity at 

one level and fixed-scale economies. In order to generate more testable production data, Translog 

(transcendental logarithmic) has emerged as a generalized form of CD. Contribution 1 provides then a 

way for the Translog production function to be used under pure VRS settings so as to extend its 

applicability. A majority of DGP studies use only one adjustment for input numbers. In general, scenario 

generation has not received enough attention. Contribution 1 also confirms that most studies vary three 

or fewer characteristics in the used DGP. CCR and BCC models have largely been studied beforehand, 

and their properties have sometimes been compared to parametric approaches. Nevertheless, the 

alternatives to these models (such as SBM and AR) are sparse. The robustness of the previous studies 

is also a concern. Based on the random data used in DEA estimations, it is impracticable to dispute the 

replication for each scenario.  Contribution 1 addresses these issues by providing a process allowing us 

the comparison of the accuracy of DEA models under the VRS assumption. Contribution 1 

demonstrates, through questions regarding the reliability of DEA results and by analyzing the efficiency 
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assessment process, that the environment of DEA applications has a significant impact on their 

accuracy. 

By advancing the scenario variation significantly, Contribution 1 aims to improve the general 

result validity. An important component of studying the quality of DEA models is designing a 

sophisticated DGP to produce well-behaved data for the DMUs, as mentioned earlier. In order to 

compare the estimated efficiencies from different DEA models with their true efficiency scores, we 

then generate artificial data to identify the true efficiency of each DMU. As a result, Contribution 1 

advances the scenario variation significantly to increase the general result validity. The generated 

scenarios are concrete arrangements of varying values of all characteristics of the DGP (e.g., number 

of inputs and DMUs, and importance of inputs). In contrast to the literature, which has used no more 

than 1300 scenarios, Contribution 1 analyzes 7,776 different scenarios. It also examines the coverage 

of different characteristics of a DEA study in addition to the number of scenarios in an attempt to 

evaluate whether the environment of the study influences the accuracy of the results.  

By using ten distinct characteristics with varied levels Contribution 1 advances the literature. 

As shown in Contribution 1, the monotonicity and curvature requirements are directly imposed by 

developing a mathematical model. As a result, valid scenarios are generated with VRS properties. As a 

result of the methodology proposed, a more sensible DGP can be guaranteed. By decomposing input 

substitution into substitutability and substitution distribution, realistic and well-behaved DMUs are also 

guaranteed. In terms of robustness, it is found that the number of DMUs is highly correlated with the 

number of replications in each scenario. The moving standard deviation of the benchmark value must 

therefore serve as an elastic stopping condition for replications of each scenario. In Contribution 1, the 

BCC model is compared with two other DEA models: AR and SBM. The results are compared using 

two methods: multiple performance indicator benchmark scores and DEA-based hypotheses testing. 

There are some important properties of an efficiency estimator introduced in the literature that are 

covered by the benchmark score. Contribution 1 addresses the statistical properties of DEA’s estimators 

by comparing estimations with the true efficiencies as a means of establishing a statistical foundation 

for DEA. 

Analyzing the accuracy of VRS DEA models indicates that the AR and SBM models both 

perform considerably better than the BCC model, which is most commonly used in DEA applications. 

The BCC model performs better than CCR among basic DEA models, which is not a surprise since 

DGP is built on VRS settings. Nonetheless, it can be taken as a positive sign that the DGP results are 

reliable and its working mechanism is clearer. The main conclusions drawn from analyzing the 

performance indicators are also reinforced by the results of hypothesis statistical tests. Compared with 

basic DEA models, the number of rejected scenarios in AR and SBM models is much lower. In addition, 

the results of these tests indicate the importance of selecting the right RTS, as, on average, the CCR 

DEA model fails to estimate the efficiency scores of 50% of scenarios generated under the VRS setting. 
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In this case, also, the AR and SBM models are undoubtedly outperforming the BCC model. 

Contribution 1 also confirms that the use of more inputs and a low number of DMUs both negatively 

affect accuracy. Furthermore, they lead to more rejected scenarios. By decreasing the lower bounds of 

true efficiencies, the accuracy drops slightly and the rejected scenarios increase trivially. Therefore, 

allocating a greater share of DMUs to the true efficiency frontier marginally reduces the quality of DEA 

models. When input importance is different for all inputs, the accuracy of all DEA models is to some 

degree lower than when all inputs are equally important. In terms of the results of the substitution 

distribution of inputs, all DEA models perform better when the input substitution is unequal. In the 

basic DEA models CCR and BCC, the performance is significantly diminished by increasing the scale 

effect value. In general, the AR and SBM models do better when the extent of scale effects is raised to 

increase the curvature of the production function. Across all models, it appears that larger input ranges 

lead to worse results. Finally, Contribution 1 concludes the prominent positioning of the AR model 

without a special tuning of the virtual weight restrictions. For some applications, however, establishing 

weight bounds may be too complex for explicit articulation. Based on the fact that the SBM model 

performs almost as well as the AR model, it is recommended that the SBM model be adopted as the 

VRS DEA standard in which weights are not pre-supposed. 

2.2 Homogeneity and Best Practice Analyses in Hospital Performance Management: An 

Analytical Framework 

The literature has steadily gained attention to hospital performance modeling using DEA models, as 

discussed earlier. Within the standard DEA framework, DMUs are frequently assumed to be 

functionally similar and therefore homogeneous. Therefore, hospitals’ inefficiency is supposedly 

caused by inefficient input use to create outputs. However, the difference in efficiency scores might be 

caused by non-homogeneous DMUs. Despite being used a lot as a benchmarking tool, the traditional 

DEA framework lacks predictive capabilities. In practice, predicting feasible levels of performance is 

a critical step towards achieving better performance than competitors, especially in the face of limited 

resources. Therefore, Contribution 2 aims to tackle these two common issues by developing and 

evaluating a framework for analyzing the performance of a large set of German hospitals. 

The homogeneity assumption is normally applicable in a sample based on implicit knowledge 

of the DEA investigator. Dyson et al. (2001) describe three major homogeneity assumptions made by 

DEA with regards to the DMUs under evaluation. They are resource similarity, functional similarity, 

and environment similarity. A DEA application can be heavily influenced by ignoring either of these 

assumptions. The DEA structure can be used to model explicitly these differences by identifying, 

defining, measuring, and then modeling them. However, even if all influential environmental variables 

can be considered, there will be less discrimination since this will lead to a substantial increase in inputs 

and outputs. The managers of inefficient hospitals usually request further information after being 
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presented with the results of the DEA such as keep close track of progress by analyzing what-if 

scenarios and setting performance goals during operational phases. Thus, hospitals must be able to set 

up actionable and specific performance targets. In spite of successful modeling to measure comparative 

efficiency among competing units, little attention has been given to integrating predictability into 

hospital performance measurement frameworks. 

In this contribution, we introduce a three-stage approach to analyzing market homogeneity and 

providing predictive capabilities to the DEA. By grouping similar DMUs based on their transformation 

capacity (or technology), environmental variables can be modeled implicitly. In Stage 1, an artificial 

neural network architecture based on a self-organizing map (SOM) is developed to cluster hospitals 

based on their similarity in terms of transformation capacity. In this way, categories are discovered in 

the multidimensional and large dataset of DMUs. According to the environment of the DMUs, the 

hospitals are clustered into homogeneous sets. Specifying the appropriate number of clusters is an 

important issue in clustering. The quality of partition and cluster validity has been assessed by several 

authors using different indices. Contribution 2 calculates three well-known criteria calle  the  aliński-

Harabasz, Silhouettes, and Davies-Bouldin to assess the quality of hospital clusters obtained from 

various configurations defined for the SOM networks. In addition, we cluster hospitals based on their 

natural clustering characteristics, which are typically the size (number of beds) and ownership type. By 

comparing the quality indicators calculated for SOM clustering with those calculated for natural 

clustering, we show that natural clustering cannot produce high-quality clusters for hospitals. Because 

of this, they cannot ensure homogeneity within clusters. 

Using an input-oriented SBM-DEA model, we calculate the efficiency score and projection of 

each hospital in each cluster in Stage 2. These estimates are then tested versus bootstrapped DEA 

estimates to determine whether or not they are biased upward. We also conduct DEA-based hypotheses 

tests to compare two groups of hospitals. We perform further appropriate tests after indicating the 

existence of a statistical difference between two clusters of hospitals to determine which group’s 

efficiency distribution is stochastically greater than the others. Using this method, we identify each 

hospital cluster’s leader and follower. To address heterogeneity, we analyze two aspects of clusters: 

transformative capacity and scale heterogeneity (scalability). Identified leaders and followers play a 

major role in this process. An MLP-ANN architecture is trained for each cluster to learn the relationship 

between inputs (input layer) and outputs (output layer), i.e., transformative capacity model (TCM). 

Next, the trained networks are used to simulate outputs for each cluster using the TCMs from all other 

clusters. It resembles the transformative capacity of a given cluster by which the set of inputs is 

transformed into the outputs. Next, we employ the comparison procedure developed in Stage 2 to 

investigate whether using the simulated outputs generated by the TCM of the leader increases the 

efficiency distribution of hospitals underlying in the following cluster. If it improves, then there is a 

reason to suggest the disparity between the (original) SBM-DEA efficiencies of the leading and 



Summary of Contributions 

12 

 

following clusters can be partially explained by differences in transformational capacity. To analyze 

scale heterogeneity (scalability), the simulated outputs of a leader obtained from the TCM of its follower 

are used to recalculate the efficiency of the leader. We then perform the comparison procedure 

developed in Stage 2 to determine whether the identified leaders (followers) remain as leaders. As long 

as a leader remains a leader, it is plausible that a part of the disparity between the efficiency distributions 

of Followers and Leaders stems from scale heterogeneity. Leaders can still achieve greater relative 

efficiency despite their less efficient transformational capacity process. We also develop a new MLP-

ANN architecture in the second part of Stage 3 to predict the best performance level beyond the indirect 

measure of efficiency scores. Each of these trained networks is called the best practice model (BPM). 

Here, we use both the inputs and outputs of the hospitals as inputs and the bootstrapped SBM-DEA 

efficiency scores as outputs node for the MLPs. An estimate of the relative efficiency score of the 

projected hospital is made using the efficient patterns learned by BPM. 

The framework analyzes hospital data compiled by the Federal Joint Committee of Germany 

in 2017. As the dataset is vast and complex, many preprocessing steps are involved in each stage of the 

process to ensure accuracy and robustness in calculations. The framework can assist decision-makers 

by identifying improvement and what-if scenarios. Environmental variables can be accounted for 

without adding additional variables to DEA models to address non-homogeneity. The results show that 

clustering hospitals according to ownership or size does not show heterogeneity within groups of 

hospitals, nor does it reveal homogeneity among groups of hospitals. Further, it is shown that the 

distribution underlying bootstrapped DEA estimates is not different from that underlying SBM 

estimates. The SBM estimates of DEA are therefore not significantly skewed upwards. Different levels 

of efficiency in some German hospitals can be attributed to differences in their transformation capacities 

and scale heterogeneity rather than inefficient input usage. It is finally shown that training the BPMs to 

replicate the nonlinear mapping and predictive abilities of DEA models compensates for the lack of 

predictability of the DEA models. 

2.3 A Mixed-Integer Slacks-Based-Measure Data Envelopment Analysis for Classifying 

Inputs and Outputs of German University Hospitals 

Aside from their reputation as reliable methodologies, DEA models are also seeing rapid expansion in 

their use, especially in public sectors such as health care and higher education. Contribution 3 analyzes 

the performance evaluation of university hospitals from a practical standpoint. Teaching hospitals 

provide both patient care and medical education, so they are more expensive than their non-teaching 

counterparts (e.g., acute and general hospitals). Teaching and research as an academic mission should 

be captured appropriately by defining appropriate measures in the performance assessment process. 

Almost all past studies have used the basic DEA models to evaluate teaching hospital performance and 

fail to acknowledge two significant challenges that exist in real-world situations: integer-valued 
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amounts and flexible measures. In Contribution 3, these two issues are adequately discussed after 

studying some recent publications on the performance assessment of teaching hospitals. 

 DEA models traditionally use real (continuous) values as inputs and outputs. There are, 

however, many situations in which one or some of the inputs/outputs are unavoidably integer values. 

An example would be the number of beds (input) and outpatients (output) of a hospital. After identifying 

the inputs and outputs of a DEA application, the first step is determining the suitable technology or 

PPS. Assumptions about feasible operating points of CRS and VRS are convex combinations of 

evaluation units, but neither of them considers the integrality constraints of some inputs or outputs. The 

integration constraints imposed by rounding off the integer values may have a significant effect on the 

optimality of the solution. When integer inputs and outputs are treated as real values, rounding up (or 

down) of them arbitrarily may cause infeasibility (outside of the PPS). Moreover, in the standard DEA 

model, measures (factors) are classified as either inputs or outputs. However, in certain situations, some 

measures can play either an input or an output role. Consider, for instance, the number of interns or 

nurses in a teaching (university) hospital. Measures such as these can be either input (two human 

resources available to the hospital) or output (experienced staff, thus allowing the hospital to take 

advantage of teaching/research funds). DEA literature refers to these measures as flexible measures. 

Contribution 3 presents an SBM model that combines flexible and integer measures 

simultaneously. All inputs, outputs, and flexible measures in this model can take both real and integer 

quantities without fluctuating efficiency levels. In addition, the proposed SBM model directly calculates 

the technical efficiency score, and inflation of scores is prevented by modifying input and output 

inefficiencies. Using the MILP approach, the proposed model can be solved by most non-commercial 

and open-source solvers. Additionally, slack values for inputs, outputs, and flexible measures derived 

from the proposed model are reported and compared with the literature. As a practical matter, 

Contribution 3 uses a real dataset from 28 German public university hospitals in 2017. Data were 

obtained through a variety of research methods, including visiting the websites of the hospitals and 

contacting the departments directly (e-mail/telephone inquiries). This proved very time-consuming and 

difficult. Inputs include the number of beds, physicians, and nurses. Beds are an integer input measure. 

Physicians and nurses, on the other hand, are measured in full-time equivalent (FTE) units, i.e., real 

values. As outputs, the number of outpatients and case-mix adjusted discharges for inpatients are 

depicted as integers and reals, respectively. Despite their importance, these two major hospital outputs 

do not include teaching functions. Accordingly, the number of students is used as the integer value of 

the output of the university hospitals. Additionally, contribution 3 introduces two more flexible 

measures for assessing the teaching function: graduates and third-party funding income. Graduates can 

play one of two roles at a university hospital: an input (a resource available to faculties) or an output 

(experienced staff who benefit from teaching funding). In the efficiency evaluation of university 

hospitals, third-party funding income can be interpreted similarly; as input (a form of income received) 
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or as output, as most research-granting agencies will allocate funds to university hospitals with the 

greatest impact. 

This contribution uses a sample of university hospitals with an average of 1,475 beds. 

Physicians and nurses are employed by them at more than 25,000 and 34,000 FTE, respectively. In 

terms of output, 2.8 million adjusted inpatient admissions and 11.4 million outpatient visits are 

recorded. There are approximately 11 thousand graduates and 84 thousand medical students in these 

units where they have receive  over €1.5 billion in research fun in . Results indicate the 7 university 

hospitals are characterized as efficient DMUs with the optimum slacks of zero. Most university 

hos itals treat “Thir - arty fun in  income” an  “Gra uates” as out uts in the final    .  oreover, 

Contribution 3 shows that the PPS is not comparable in certain situations where flexible measures can 

have a significant impact. Convex PPS slacks (generated by the non-integer DEA) are usually real-

valued amounts and the integer output slacks reported by the models are not always a rounding up or 

down of real-valued slacks. In addition, using the optimal solutions obtained from the models, the 

inefficiency scores for each inefficient university hospital are decomposed in order to analyze their 

magnitudes and causes.  By far, most of the sources identified by the model are input inefficiencies. 

Through an examination of magnitudes and sources of inefficiency, this decomposition can provide 

managers or policy-makers with enlightening information about how to become an efficient university 

hospital. 

2.4 Analyzing the Relative Efficiency of Internationalization in the University Business 

Model: The Case of Germany 

There has been a significant increase in competition/market-driven behavior in the German higher 

education sector, leading to the development of new business models. An important component of these 

models is the internationalization of university services. Universities are impacted by 

internationalization and their missions are changed as a result. Due to the opportunities and challenges 

internationalization poses to universities, many universities adopted business model approaches to 

respond. Increasing scrutiny of universities by the public and policymakers has led to a growing interest 

in exploring how universities can use public resources effectively to accomplish their institutional 

missions. The performance of a business model is determined by two measures: effectiveness (doing 

the right things) and efficiency (doing things right). The latter is the subject of this contribution, which 

examines internationalization in university missions in relation to university business models. To do 

this, Contribution 4 calculates the relative efficiency of the universities in terms of their overall and 

internationalization relative efficiency. To investigate the relative internationalization and overall 

efficiency of German universities, Contribution 4 develops a three-stage approach based on outlier 

detection, SBM DEA models, and regression/correlation analyses to evaluate the effect of 

environmental variables. As a result, we would be able to learn if universities are effective in their 
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pursuit of internationalization. Moreover, this enables us to explore the relationship between relative 

internationalization efficiency and the overall relative efficiency of German universities. 

The total annual expenditures and the total number of academic staff are the inputs used to 

evaluate overall efficiency. The inputs come from human/financial resources invested by the 

government and other institutions. The traditional university missions of teaching, research, and service 

should be considered when evaluating outputs for measuring overall efficiency. Total graduates 

represent teaching. Citations represent the quality of publications produced by researchers. Patenting, 

as represented by the total number of patent filings, represents service to society through knowledge 

transfer. As inputs to internationalization, we use total international staff, total funding from the EU and 

other international organizations. The university internationalization outputs are defined as what is 

produced by the inputs. They are total international professors, full-time international students, 

incoming students from the EU’s ERASMUS exchange program, and outgoing students from 

ERASMUS. The last output at this level reflects administrative efforts allocated to the diverse 

international objectives universities pursue. As an indicator of environmental influences, the total area, 

total population, and gross domestic product per capita of university municipalities are used in 

regression and correlation analyses. A drawback of conventional DEA models is their sensitivity to 

outliers (Dyson et al. 2001). Therefore, in the first stage (pre-processing), this study uses a super-

efficient DEA model to identify and exclude outliers. In the second stage, processing, an input-oriented 

SBM DEA model is used to estimate relative efficiencies for internationalization an  overall 

performance. As a post-processing process, regression and correlation analyses are used in the last stage 

to evaluate the impact of environmental factors on the efficiency scores. 

One university was identified as an outlier by the outlier detection. After excluding this unit 

from our sample, we move on to the next stage, which includes the rest of the universities. From the 

results of the second stage, only eight universities were found to be relatively efficient in both overall 

efficiency and internationalization respects and most universities were regarded as relatively efficient 

in only one respect. It is interesting to note that all university sizes appear in the efficient frontier, 

indicating that size is not a predictive factor. Compared with other studies in the literature on mission 

accomplishment relative efficiency in universities in Germany, these results are confirmed as accurate. 

Moreover, according to the correlation analysis of efficiency scores, the relationship is statistically 

significant, but not particularly strong. The contextual variables for university location do not show a 

strong relationship between variations at either level of analysis. Thus, the relative efficiency of other 

factors in estimating university efficiency in fulfilling its mission may also be ineffective, which 

suggests a better understanding of this issue may only be possible when all factors are considered 

together. This contribution suggests that the relative efficiency of different components may not be able 

to estimate the relative efficiency of overall university performance in meeting missions. The whole 

picture can only be understood when all components are considered together. 
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3 Discussion of Contributions 

This section discusses the four research questions presented in the dissertation’s introduction. Each of 

the contributions summarized in Section 2 fills a research gap in the existing literature. There are four 

sections in which the contributions are discussed in terms of how they provide answers to each research 

question. These questions are addressed through the integration of the findings of each contribution. 

3.1 Question 1: How the quality of the different DEA models can be evaluated? 

There is no denying that the CCR and BCC models are the most widely used. It may seem natural at 

first since the DEA has been represented by CCR and BCC models. It is impressive, however, when 

you consider how much effort has gone into developing models over the years. Despite the fact that the 

DEA model is extensively used for efficiency estimation, not enough papers try to determine the DEA 

model(s), which can give the most precise efficiency estimation. Bringing into question the reliability 

of DEA results when its environment changes, is the primary motivation for a study on the quality 

assessment of DEA models. RTS settings for DEA applications are most commonly defined as VRS. 

Possibly, this is a result of the fact that production technology may exhibit decreasing, constant, and 

increasing returns to scale. Thus, it is essential to determine whether the predominant position of the 

BCC model in the DEA applications is justified. Since true efficiency is not known in the empirical 

data, it is impossible to evaluate the quality of the DEA estimates. It is necessary to generate artificial 

data that mimic the behavior of production function in order to identify the true efficiency of each DMU. 

This enables us to compare estimations derived from different DEA models with the equivalent true 

efficiency scores. By doing so, we can make statements about the DEA models’ quality and answer the 

question. Generalized production functions are crucial here since they allow more testable production 

data to be generated. According to previous studies, Cobb-Douglas functions are used primarily to 

simulate artificial data. This can be explained by the complexities of the alternatives, such as the 

monotonicity and convexity constraints imposed by microeconomic behavioral regularities. Cobb-

Douglas is limited in imposing the substitution elasticity of one and fixed-scale economies. Therefore, 

the Translog production function emerges as a generalization of the Cobb-Douglas function. 

Another aspect to consider is reflecting different real-world situations that can occur when DEA 

models are used to measure efficiency. In this way, we can see how accurate DEA models are 

performing under various conditions. The number of DMUs and the total number of inputs and outputs 

can, for example, be adjusted to model several real situations. In order to achieve the general validity 

of the quality results, scenario variation should be significantly increased. Each generated scenario must 

represent a concrete arrangement of varying values of all the characteristics taken into account during 

the artificial data generation process. There have been no studies using more than 1300 scenarios up to 

now, based on the literature. As well as the number of scenarios, different characteristics with diverse 
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levels should be included to determine if the environment in which a DEA study is conducted affects 

the accuracy of the results. Answering this question requires also understanding that the DEA’s 

estimations are the basis for any quality judgment. A DEA statement on the quality of models must 

address four major areas: identifying inefficient DMUs, ranking DMU efficiency, improving the 

efficiency, and evaluating the overall efficiency of units. Statistical properties of DEA estimators should 

also be included in the statements when assessing the quality of DEA models. This problem can be 

addressed by performing statistical tests to compare the distribution of estimates with the actual 

efficiencies. 

3.2 Question 2: How can hospitals’ efficiency be reliably measured in light of the pitfalls of 

DEA applications? 

DEA has some limitations despite its power when it comes to assessing hospital performance. Three 

basic issues that DEA investigators should address are selecting appropriate inputs and outputs, 

selecting the right RTS, and orienting the DEA model. One pitfall in selecting inputs and outputs is to 

include too many factors. Due to the flexibility of DEA in choosing the weights on the inputs/outputs, 

the more factors involved, the lower the level of discrimination. Therefore, being sparing with the 

factors can increase discrimination. When it comes to the resources (inputs), if you can price them, you 

can eliminate flexible weights and replace them with fixed prices. Discrimination can be reinforced on 

the output side by removing performance measures that do not closely relate to hospital goals. Hospitals 

may be too small to operate efficiently or too large to manage. CRS DEA models do not accommodate 

such situations. As an alternative, VRS models have been designed specifically to account for scale 

effects during analysis. Regardless of whether variable returns to scale exist, the VRS models 

encompass the data more closely than the CRS model. A VRS model, where there are no inherent scale 

effects, tends to overestimate the efficiency of both large and small hospitals. When it is unknown 

whether the production technology of hospitals exhibits VRS or CRS, hypothesis tests must be 

conducted to determine the scale effects. 

In addition to these issues, the application of DEA also poses a number of issues related to the 

homogeneity of the hospitals and their environment. DEA makes certain assumptions about the 

homogeneity of the hospitals being assessed. Hospitals are naturally perceived as being similar in many 

ways. In order to create a common set of outputs for hospitals in the sample, the hospitals are assumed 

to perform similar activities and provide comparable services. The second assumption is that all 

hospitals have access to a similar range of resources. This could include personnel, raw materials, and 

equipment. As long as a common denominator is established, such as the price of the equipment, then 

comparisons can still be made, even if different equipment is being used. There is also the tacit 

assumption that hospitals serve in comparable environments, considering that environmental factors 

have a significant impact on overall hospital performance. This assumption can rarely be made with 
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confidence, and therefore, environmental variables are often incorporated into the analysis as a means 

of supplementing the input/output set. 

A basic pitfall in measuring the efficiency of hospitals arises from simply attempting to 

compare non-homogeneous hospitals. There are, for instance, non-teaching hospitals and teaching 

hospitals. In this case, the pitfall resides in the fact that teaching hospitals have inevitably more 

expensive delivery processes than general hospitals. In teaching hospitals, teaching and research are 

essential functions, so any normal assessment involving expenditures will show that those facilities are 

systematically less efficient. In this regard, hospitals can be clustered according to some similarities in 

the inputs and outputs into homogeneous sets. For example, unsupervised machine learning approaches 

can be used since they do not make any assumptions about which hospitals will be placed in which 

clusters. This situation is investigated in Contribution 2. Results of this contribution indicate that 

hospital heterogeneity may account for some variation in efficiency scores of the German hospital 

market. The performance of a hospital may be influenced by the economic and legislative conditions of 

its location. Ignoring these environmental variables will result in biased performance measurements. 

Inclusion of environmental variables may overcome this problem. In general, these might be related to 

the level of support the hospital receives from the catchment area. Some organizations, particularly 

those that provide a service, may even find it difficult to determine their catchment area. However, 

when it comes to defining and measuring environmental variables, the addition of those variables leads 

to new pitfalls (see Dyson et al 2001). 

In spite of all these issues, DEA continues to gain popularity as a method of assessing health 

care providers. However, the stochastic frontier approach, simple ratios, fixed-effect models, and other 

methods are all alternatives to estimate best practices. The reason for this is that DEA offers many 

advantages when it comes to evaluating the performance of health care organizations. In the first place, 

they are nonparametric, which means no functional form (e.g., nonlinear, log-linear, etc.) has to be 

specified explicitly. Second, DEA measures best practices by comparing hospital performance to that 

of all other hospitals in the sample. By doing so, DEA is able to identify the source and size of 

performance shortcomings. This differs from statistical regressions averaging many hospitals’ 

performance together. A third advantage is that unlike regression and other statistical methods, DEA 

allows for multiple variables, so the overall results are presented in a single, consolidated measure. For 

the last advantage, DEA groups hospitals into comparable subgroups to identify those that achieve the 

best results. Hospitals at the frontier perform the best and are considered efficient. Inefficient hospitals 

are those that are not located at the frontier; their efficiency is determined by distance from the frontier. 

3.3 Question 3: In measuring teaching hospital efficiency, what should be considered? 

A teaching hospital is known for its advanced level health care, high concentration of resources, and 

complex processes. In addition to providing care, they are deeply engaged in teaching and research as 
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well. Costs for these hospitals are normally higher than those for their non-teaching counterparts. This 

means that they should be more integrated with the circumjacent health care system. In addition, there 

is a need to develop new management studies to reduce resource waste. Health care organizations have 

had difficulty finding a single metric to measure performance. Since these services typically aim to 

meet multiple, intangible, conflicting, ambiguous, and complex goals. Therefore, any study of hospital 

efficiency is subject to criticism for not taking into account clinical innovation, quality of services, or 

evolving service characteristics. To date, researchers have focused most of their attention on acute 

hospitals. Most of these studies focused solely on DEA application. They mostly use the CCR model 

for measuring overall technical efficiency. Having proper inputs and outputs that are able to adequately 

describe teaching hospital activities and services is a critical aspect of complexity. Besides measuring 

care outputs, teaching hospital efficiency measurement is primarily concerned with capturing academic 

outputs such as teaching. This academic function of the teaching hospital can be represented by counting 

the number of students, the number of graduates, and third-party funding income in the efficiency 

analysis process. The academic function of a teaching hospital can be measured by counting the number 

of students, the number of graduates, and the income from third parties.  

However, these measures present some complexity by their very nature, such as the integrity 

of the number of graduates. By definition, DEA studies assume that inputs and outputs are real 

(continuous) values. The reality is that there are many situations in which some inputs or outputs are 

unavoidably integer values. It is inaccurate to consider the number of beds (as an input) and outpatients 

(as an output) in hospital efficiency studies as real. PPS is a convex combination of evaluating units in 

both the CRS and VRS DEA models without essentially considering integrality constraints associated 

with some inputs and outputs. In the case of large integer values, imposing integrality constraints by 

rounding off the optimum solution may not make a significant difference in the optimality, but this is 

not the case for small integer values where a few units less or more can make a major difference. A 

real-valued assumption about integer inputs and outputs may lead to infeasibility (e.g., operations 

outside of the PPS) or to a dominated (inferior) operating unit. Another fundamental assumption of 

traditional DEA models is categorizing measures (factors) as inputs or outputs. There are some 

situations, however, where some measures can be viewed as either inputs or outputs in teaching hospital 

efficiency studies. Consider, for instance, third-party funding income. In the efficiency evaluation of 

university hospitals, this measure may be construed as an input (a type of revenue received) or as an 

output, since funding agencies tend to allocate funds to hospitals with the greatest impact. In the area 

of measuring teaching hospital efficiency, both situations can exist simultaneously, i.e., some measures 

can serve as inputs as well as outputs and take integer values only. Consider, for instance, the number 

of graduates in a university hospital. Depending on their contribution, they may represent inputs 

(available human resources for the hospital) or outputs (trained staff, a result of teaching/research 

funding). Therefore, traditional DEA hospital studies probably would not have been useful to managers 
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in the field. An SBM DEA model can then be constructed which can account for the integer nature of 

certain measures whose status can be handled in a flexible manner, such as the model outlined in 

Contribution 3. 

3.4 Question 4: At the crossroads of internationalization, how can we analyze university 

efficiency? 

Comprehensive internationalization aims to improve the quality of services by exposing recipients to 

global themes. The integration of internationalization is a standard across all missions and operations 

to ensure global outcomes in teaching, research, and student programming. Comprehensive 

internationalization improves outcomes for stakeholders in higher education, including economic 

beneficiaries. As a result, internationalization has an important impact on university business models 

since it enhances both prestige and revenues for universities. Internationalization has been shown to 

improve university performance, so it is vital to determine if internationalization efficiency correlates 

with the success of university missions.  

The relative efficiency of university business model components provides insights into the 

overall efficiency of university business models. To accomplish university missions more effectively, 

university business models and internationalization should be studied by demonstrating how the two 

concepts are interconnected. Policymakers and university administrators can then use these metrics to 

evaluate aspects of business models and mission accomplishments. It is important to use appropriate 

mathematical techniques to measure internationalization’s relative impact on university mission 

accomplishments and university business models. Human and financial resources invested by 

governments and institutions in pursuing their missions contribute to the relative efficiency of university 

mission accomplishment. These broad institutional ends can be accomplished with the total 

expenditures (financial and human) and the total academic staff. Traditionally, university missions 

include teaching, research, and service to society. Total graduates represent the teaching mission, 

citations indicate the quality of research publications, and patenting, represented by total patent filings, 

represents the value that patents create for society. 

To determine internationalization inputs, comprehensive internationalization literature is 

useful. International strategies are operationalized by university administrators, represented by total 

international office staff. Total funding from the EU and other international organizations showing 

financial inputs for international research and programmatic efforts in university mission pursuit. In 

analyzing internationalization mission performance, the number of international professors displaying 

diversity recruitment efforts and internationalization in teaching can be used. Recruiting international 

students and incoming exchange students contribute to internationalization domestically. It can be 

expressed as the total number of international students who are enrolled full-time and the total number 
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of students participating in exchange programs. One of the other outputs at this level concerns university 

international partnerships. By partnering with institutions and organizations across the world, a 

university can expand its international influence. When considering internationalization efficiency 

analysis, some inputs (and outputs) work proportionally, while others are substitutional such as 

academic staff salaries which are usually included in budgets. Hence, radial models may mislead us 

when we want to assess university performance with DEA. 

Geographical differences could affect both internationalization and educational mission 

performances, which could, in turn, contribute to university heterogeneity. For instance, universities in 

affluent regions may benefit from environmental spillover effects. In order to build a strong higher 

education application, second stage models that examine factors associated with DEA scores should 

include such non-discretionary factors. In two-stage analysis, the DEA is solved using traditional inputs 

and outputs, and then the efficiency scores are regressed against the non-discretionary (environmental) 

variables from the first stage. The estimated regression coefficients can be used to adjust the efficiency 

scores so that all efficiency scores reflect the same level of environment if there is a significant 

relationship between environmental factors and DEA estimates. However, this approach is problematic 

because the efficiency scores are serially correlated with each other. Consequently, it violates the 

assumption of independent and equal distribution of variables in classical regression. It is not 

recommended to draw definite conclusions from this analysis by using conventional statistical tests. 

Instead, it may be viewed as exploratory, indicating which non-discretionary variables seem to impact 

performance the most. 
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4 Conclusions 

Both the higher education and the health care industries are characterized by similar missions, 

organizational structures, and resource requirements. There has been increasing pressure on universities 

and health care delivery systems around the world to improve their performance during the past decade. 

That is, to bring costs under control while ensuring high-quality services and better public accessibility. 

Achieving superior performance in higher education and health care is a challenging and intractable 

issue. Although many statistical methods have been used, DEA is increasingly used by researchers to 

find best practices and evaluate inefficiencies in productivity. By comparing DMU behavior to actual 

behavior, DEA produces best practices frontier rather than central tendencies, that is, the best attainable 

results in practice. The dissertation primarily focuses on the advancement of DEA models primarily for 

use in hospitals and universities. In Section 1 of this dissertation, the significance of hospital and 

university efficiency measurement, as well as the fundamentals of DEA models, are thoroughly 

described. The main research questions that drive this dissertation are then outlined after a brief review 

of the considerations that must be taken into account when employing DEA. Section 2 consists of a 

summary of the four contributions. Each contribution is presented in its entirety in the appendices. 

According to these contributions, Section 3 answers and critically discusses the research questions 

posed. 

Using the Translog production function, a sophisticated data generation process is developed 

in the first contribution based on a Monte Carlo simulation. Thus, we can generate a wide range of 

diverse scenarios that behave under VRS. Using the artificially generated DMUs, different DEA models 

are used to calculate the DEA efficiency scores. The quality of efficiency estimates derived from DEA 

models is measured based on five performance indicators, which are then aggregated into two 

benchmark-value and benchmark-rank indicators. Several hypothesis tests are also conducted to analyze 

the distributions of the efficiency scores of each scenario. In this way, it is possible to make a general 

statement regarding the parameters that negatively or positively affect the quality of DEA estimations. 

In comparison with the most commonly used BCC model, AR and SBM DEA models perform much 

better under VRS. All DEA applications will be affected by this finding. In fact, the relevance of these 

results for university and health care DEA applications is evident in the answers to research questions 

2 and 4, where the importance of using sophisticated models is stressed. 

To be able to handle violations of the assumptions in DEA, we need some complementary 

approaches when units operate in different environments. By combining complementary modeling 

techniques, Contribution 2 aims to develop and evaluate a framework for analyzing hospital 

performance. Machin learning techniques are developed to perform cluster analysis, heterogeneity, and 

best practice analyses. A large dataset consisting of more than 1,100 hospitals in Germany illustrates 

the applicability of the integrated framework. In addition to predicting the best performance, the 
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framework can be used to determine whether differences in relative efficiency scores are due to 

heterogeneity in inputs and outputs. In this contribution, an approach to enhancing the reliability of 

DEA performance analyses of hospital markets is presented as part of the answer to research question 

2. In real-world situations, integer-valued amounts and flexible measures pose two principal challenges. 

The traditional DEA models do not address either challenge. Contribution 3 proposes an extended SBM 

DEA model that accommodates such data irregularities and complexity. Further, an alternative DEA 

model is presented that calculates efficiency by directly addressing slacks. The proposed models are 

further applied to 28 universities hospitals in Germany. The majority of inefficiencies can be attributed 

to “third-party funding income” received by university hospitals from research-granting agencies. In 

light of the fact that most research-granting organizations prefer to support university hospitals with the 

greatest impact, it seems reasonable to conclude that targeting research missions may enhance the 

efficiency of German university hospitals. This finding contributes to answering research question 3. 

University missions are heavily influenced by internationalization, but the efficacy of this 

strategy and its relationship to overall university efficiency are largely unknown. Contribution 4 fills 

this gap by implementing a three-stage mathematical method to explore university internationalization 

and university business models. The approach is based on SBM DEA methods and 

regression/correlation analyses and is designed to determine the relative internationalization and 

relative efficiency of German universities and analyze the influence of environmental factors on them. 

The key question 4 posed can now be answered. It has been found that German universities are relatively 

efficient at both levels of analysis, but there is no direct correlation between them. In addition, the 

results show that certain locational factors do not significantly affect the university’s efficiency. 

For policymakers, it is important to point out that efficiency modeling methodology is highly 

contested and in its infancy. DEA efficiency results are affected by many technical judgments for which 

there is little guidance on best practices. In many cases, these judgments have more to do with political 

than technical aspects (such as output choices). This suggests a need for a discussion between analysts 

and policymakers. In a nutshell, there is no doubt that DEA models can contribute to any health care or 

university mission. Despite the limitations we have discussed previously to ensure that they are used 

appropriately, these methods still offer powerful insights into organizational performance. Even though 

these techniques are widely popular, they are seldom used in real clinical (rather than academic) 

settings. The only purpose of analytical tools such as DEA is to inform rather than determine regulatory 

judgments. They, therefore, have to be an essential part of any competent regulator’s analytical arsenal. 
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Abstract. The data envelopment analysis (DEA) model is extensively used to estimate efficiency, 

but no study has determined the DEA model that delivers the most precise estimates. To address this 

issue, we develop a Monte Carlo simulation-based data generation process. The process generates an 

artificial dataset using the Translog production function (instead of commonly used Cobb Douglas) 

to construct well-behaved scenarios under variable returns to scale (VRS). Using different VRS DEA 

models, we compute DEA efficiency scores with artificially generated decision-making units 

(DMUs). We employ five performance indicators followed by a benchmark value and ranking as 

well as statistical hypothesis tests to evaluate the quality of the efficiency estimates. The procedure 

allows us to determine which parameters negatively or positively influence the quality of the DEA 

estimates. It also enables us to identify which DEA model performs the most efficiently over a wide 

range of scenarios. In contrast to the most used BCC (Banker-Charnes-Cooper) model, we find that 

the Assurance Region (AR) and Slacks-Based Measurement (SBM) DEA models perform better. 

Thus, we endorse the use of AR and SBM models for DEA applications under the VRS regime. 

Keywords. Monte Carlo Data Generation; Data Envelopment Analysis; Assurance Region; Slacks 

Based Measurement; Variable Returns to Scale 
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1 Introduction 

In order to save resources and to detect inefficient performers, efficiency evaluations are the central 

component of decision-making management. There are two main classes of efficiency analysis methods 

in the literature: parametric and non-parametric. Parametric approaches usually use the econometric 

ordinary least squares method, which shifts regression towards more efficient units to estimate the 

efficient frontier. This approach is primarily hampered by the assumption about the form of the 

production function. Contrary to this, non-parametric methods measure efficiency as the distance to an 

empirical frontier function whose shape is determined by the most efficient decision-making units 

(DMUs) of the observed dataset. This approach is, without a doubt, best represented by data 

envelopment analysis (DEA) introduced by Charnes et al. (1978). This model is known as the CCR 

( harnes,  oo er, an   ho es)   A mo el.  ince the    ’s intro uction, a substantial amount of 

research has been conducted on various aspects of the theory and applications of DEA models. One of 

these aspects is the economic concept of returns to scale (RTS). There has been much emphasis on the 

importance of returns-to-scale settings in DEA literature (Dellnitz et al. 2018). In this framework, BCC 

(Banker, Charnes, and Cooper) DEA model, introduced by Banker et al. (1984), is the first to assume 

variable returns to scale (   ), rather than the    ’s constant returns to scale (   ). In the literature, 

both CRS and VRS forms have been developed for almost all upcoming DEA models. Despite this 

considerable progress over the last five decades, there is still no superior DEA method. Basic models 

(CCR and BCC) still dominate in various applications, such as healthcare (Kohl et al. 2019), despite 

known concerns including slacks and zero weights. Nevertheless, the development of a gold standard 

can hardly be achieved without a reasonable benchmark with which to compare different DEA models. 

Due to this lack of operational relevance, DEA is often seen primarily as a scientific topic instead of an 

operational tool. 

The lack of robustness in results an  ambi uity re ar in  the  recision of   A mo els’ estimates 

are deemed to be the major quality-related issues. Within the DEA literature, the accuracy and quality 

analysis of different DEA models have become an attractive area of research over the last two decades. 

To evaluate the quality of DEA estimates, the first challenge is the absence of true efficiency values. 

DEA estimates in real applications therefore cannot be investigated without these values. Researchers 

have applied Monte Carlo simulations to create artificial datasets based on certain assumptions and 

regimes (Cordero et al. 2015) to address this issue. A random distribution function cannot be directly 

used to derive the scale effect values to reflect the VRS property, so generating well-behaved data is a 

complicated task. In the following, we summarize the studies conducted on the assessment of the quality 

of DEA models using Monte Carlo simulations over the last two decades in the interest of brevity. We 

also discuss the main characteristics of these studies, including the production function used, the number 

of scenarios, the number of replications, inputs, and outputs. Cobb-Douglas (CD) production functions 

were most employed by previous studies in the Data Generation Process (DGP) (Resti 2000; Holland 
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and Lee 2002; Simar and Wilson 2002; Ruggiero 2005; van Biesebroeck 2007; López et al. 2016). The 

reason for this can be attributed to the complexities of the alternatives imposing microeconomic 

regularity conditions like monotonicity and convexity. The limitations of CD for imposing the input 

substitution elasticity of one and fixed-scale economies have been pointed out by several researchers 

such as Siciliani (2006) and Perelman and Santín (2009). The Translog1 production function has 

emerged as a generalization of the CD that allows the generation of more testable production data.  

Most studies only use one adjustment to account for the number of inputs (López et al. 2016; 

Ruggiero 2005). Generally, scenario generation has not been given sufficient attention. Most studies 

only vary three or fewer characteristics of the employed DGP. Next, previous studies have mainly 

focused on the properties of the basic DEA models, i.e., CCR and BCC, and comparisons between them 

and (in some cases) parametric methods (Santín and Sicilia 2017). However, models other than the 

basic ones are rather scarce. So far, only about one-third of previous studies have considered alternative 

DEA models, and none have utilized more than one model (Kohl and Brunner 2020). Another concern 

is the robustness of the results obtained in previous studies. Since the DEA estimations rely on randomly 

generated data, it is unquestionable that each scenario can be replicated. In this context, Krüger (2012) 

criticizes the low replication rate of many studies, which changes from 5 to 1,000. To our knowledge, 

the study by Kohl and Brunner (2020) represents the only attempt to date to assess the quality of DEA 

models by developing meaningful production scenarios using Translog production functions in a CRS 

setting. The authors develop a sophisticated DGP allowing them to hypothesize some general statements 

regarding parameters that affect the quality of DEA models through defining some performance 

indicators. Their results show that the Assurance Region (AR) and Slacks Based Measurement (SBM) 

models outperform the CCR model under the CRS setting. Kohl and Brunner (2020) primarily discuss 

the CRS, even though the BCC model remains widely used in most DEA applications (Kohl et al. 2019; 

Mahmoudi et al. 2020; Kaffash et al. 2020).  

Last but not least, the literature on DEA focuses mostly on operations research, where the DEA is 

viewed as a non-econometric or non-statistical approach (Simar and Wilson 2015; Banker et al. 2019). 

Thus, a DEA model constructed for assessment needs to move beyond simply explaining and predicting 

data in the most effective way possible. In the same way that statistical tests validate a statistical model 

developed to reproduce accurately the underlying data generation process, basic properties of 

production economics such as economies of scale and convexity, free disposability, the engineering 

logic of the production structure, the importance of identified peers to industry participants, etc., serve 

to validate the model (Bogetoft and Otto 2011b; Banker and Natarajan 2011). By identifying conditions 

under which DEA estimators are statistically consistent and likelihood-maximizing, Banker (1993) 

provided a formal statistical basis for DEA. Accordingly, DEA estimates are capable of providing 

interesting insights without heavily relying on statistical testing. However, most of the literature ignores 

 
1 Translog stands for transcendental logarithmic. 
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the statistical properties of the estimators and lacks consistent statistical tests to compare the efficiencies 

between two samples. These researchers compare their improvements to the basic model and highlight 

properties such as a shift in the average efficiency scores or a better discrimination power. Even if a 

certain problem can be solved through development, there is no guarantee that the overall results (from 

a quality perspective, for example) will also be improved. The main flaw here is comparing differences 

in DEA estimations through the mean value of the efficiency scores rather than the distribution of them. 

However, in cases where the distribution of efficiency scores is skewed, the mean value becomes an 

ineffective measure of central tendency (Weisberg 1992). Several studies have been performed on 

comparing differences in DEA estimation2 distributions for two groups of DMUs through developing 

statistical tests including parametric and non-parametric ones. For example, Cummins et al. (1999) use 

a regression-type parametric test with a dummy variable indicating the groups, regressing the efficiency 

scores on the dummy variable. However, many researchers (e.g., Golany and Storbeck (1999) and Lee 

et al. (2009)) believe that non-parametric tests such as the Mann–Whitney and Kruskal–Wallis tests are 

more appropriate since they do not make assumptions on the distribution of efficiency scores. One 

pioneering study in this direction has been conducted by Banker et al. (2010). They develop two sets of 

parametric and three non-parametric tests and compare them against the F-tests introduced by Banker 

(1993). They show that their developed tests outperform the F-tests in Banker (1993) when noise plays 

an important role in the data generating process. However, the F-tests in Banker (1993) remain effective 

if efficiency dominates noise. In our study, we integrate the idea of comparing two groups of DMUs 

with the performance indicators. 

The purpose of this study is to address these issues by providing a method for evaluating the 

accuracy of DEA models under the VRS assumption. A sophisticated DGP must be designed to create 

well-behaved data for the DMUs to study the quality of DEA models. In the next step, we generate 

artificial data so that the true efficiency of each DMU can be compared with the estimations obtained 

from the  ifferent   A mo els. Throu h this, we are able to evaluate the   A mo els’ quality. We 

then consider a variety of scenarios to arrive at generally sound conclusions. With these characteristics, 

it is possible to generate meaningful data through Monte Carlo Simulations. We use two aggregated 

benchmark values: benchmark value (B-Value) and benchmark rank (B-Rank). Combined with multiple 

performance indicators, these benchmark values cover all relevant properties of an efficiency estimator, 

such as identifying efficient and inefficient units and ranking the efficiency score of each unit in a set 

of DMUs. The B-Value and B-Rank provide additional insight into the performance of the procedure 

by using SBM, AR, the basic CCR DEA, and uniformly distributed random numbers (Rand). Based on 

our findings, we conclude that the environment of a DEA application influences its results significantly. 

We do this by casting doubt on the reliability of DEA results and analyzing the efficiency assessment 

 
2 In many stu ies, the terms “inefficiency” an  “efficiency” are interchan eably use  with each other to  escribe the scores obtained by DEA 

models. 
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process of the DEA model. We analyze the VRS settings as the most prevalent setting in the literature 

for DEA applications and try to find out whether the predominant BCC position is justified. Our study 

a  resses the statistical  ro erties of   As’ estimators by a  lyin  a consistent statistical test to 

compare the estimations calculated based on different DEA models with the true efficiencies. The 

details of our analysis will be presented in subsequent sections. As a summary, this paper contributes 

the following to the pertinent literature: 

I. The main question this stu y seeks to answer is whether    ’s  ominant  osition was in ee  

vindicated. To do this, we analyze and compare the BCC model estimates with two other DEA 

models: AR and SBM. Comparisons with the basic model for BCC DEA and uniformly 

distributed random numbers (i.e., Rand) reveal also the accuracy of the procedure.  

II. Two approaches are used to conduct the comparison: benchmark scores based on multiple 

performance indicators and DEA-based hypothesis tests. Benchmark scores cover many aspects 

of a measure of efficiency introduced by Pedraja-Chaparro et al. (1999), such as identifying the 

most efficient DMUs and ordering their efficiency scores within a sample. We acknowledge 

the need for a statistical foundation for DEA as pointed out by Banker (1993), Banker et al. 

(2010), and Simar and Wilson (2015), and test the estimations of DEA models with their actual 

efficiencies by running statistical tests. 

III. In order to improve the general validity of our results, we advance the scenario variation 

significantly. In our study, each generated scenario represents an arrangement of varying values 

for different characteristics of the DGP (e.g., number of inputs, number of DMUs, the 

importance of input). With 7,776 scenarios generated based on the VRS setting, we attain the 

highest level of validity in the quality assessment of VRS DEA models in comparison to the 

literature. To determine whether the environment of the DEA study influences the accuracy of 

results, we also consider the coverage of different characteristics. By utilizing ten different 

characteristics with varying levels, we provide another significant contribution to the literature.  

IV. The general form of Translogs has the consequence of not being monotonic or globally convex 

like CDs. For generating well-behaved data under the VRS setting, we need to impose the 

necessary curvature requirements on a Translog, which is a challenging problem (Greene 2008). 

Then we propose a mathematical model that directly enforces monotonicity and curvature 

requirements and generates valid scenarios with VRS properties. Using our methodology, one 

can modify the input substitution in order to ensure a more sensible DGP. According to the 

literature, a handful of studies, like Krüger (2012), consider different input substitutions using 

Constant Ratio of Elasticity of Substitution Homothetic or Constant Elasticity of Substitution 

production functions. Through several adjustable parameters, the Translog production function 

offers greater control over setting input substitutions. Setting these parameters to generate valid 
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scenarios (or well-behaved data), however, is a complicated process. As a result, only a few 

studies use it in a limited form to generate the data. For example, Cordero et al. (2015), who 

focus on generating data under decreasing returns to scale (DRS), or Perelman and Santín 

(2009), who define the parameters arbitrarily. We advance the approach used by Kohl and 

Brunner (2020) for the CRS setting so that realistic scenarios under the VRS regime can be 

generated systematically. 

V. By decomposing the input substitution into two terms: substitutability and distribution of 

substitutions, we are able to guarantee the generation of realistic and well-behaved DMUs under 

the VRS, along with a variety of scenarios. We find a high correlation between the number of 

replications for each scenario and the number of DMUs from the perspective of the robustness 

of the results. A scenario with 450 DMUs may need 50 replications while a small size scenario 

(e.g., 50 DMUs) might need over 200 replications. We must therefore define an elastic stopping 

condition for replications of each scenario based on the moving standard deviation (StD) of the 

benchmark value. Finally, we examine the impact of the characteristics considered in the 

generation of the distinctive scenarios (e.g., sample size) on the quality of estimations 

calculated using the different DEA models. 

The rest of this study is structured as follows. Section 2 describes in detail the steps of developing 

a DGP, statistical tests, performance indicators, and study design. In section 3, the results of 

comparisons are presented and discussed in detail. Finally, the paper is concluded in Section 4. 

2 Methodology 

We describe all steps within the proposed framework thoroughly in the following subsections, in order 

to compare and analyze the accuracy of DEA models within a VRS context. Figure 1 depicts the eight 

steps of the DGP for every DMU. 

2.1 Performance Indicators 

Following the purpose of evaluation and comparison of different DEA models, we utilize five 

performance indicators defined by Kohl and Brunner (2020) (see Appendix A) based on Pedraja-

Chaparro et al. (1999) for  onte  arlo   A analyses. The   A’s estimates are the core of any 

judgment on the quality. Therefore, for defining the performance indicators, we address the four main 

purposes of a DEA containing recognizing inefficient DMUs, ranking the efficiency of DMUs, 

assessing efficiencies and rooms for improvement, and investigating the overall efficiency of a 

company/organization.  
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2.2 Hypothesis Tests for Comparing Efficiency 

We compare the efficiency distribution of two groups of DMUs using DEA-based hypothesis tests in 

addition to performance indicators. Constructing statistical tests allows us to evaluate the null 

hypothesis of no difference in the distributions of true efficiency (𝜽) and estimated efficiency (𝜽̂) 

obtained from DEA models. The null hypothesis of no difference in efficiency distributions of true 

efficiency can be tested using the procedure proposed by Banker (1993). The first step of his method is 

to determine whether the efficiency scores are normally or exponentially distributed. The true efficiency 

in our DGP is normally distributed. Now suppose both 𝜽 and 𝜽̂ are distributed as normal with 

parameters 𝜌1 and 𝜌2, respectively. Then, the test statistic can be calculated as 

(∑ ( 𝜃𝑗)
2

𝑗 𝑛⁄ ) (∑ (𝜃𝑗)
2

𝑗 𝑛⁄ )⁄  under the null hypothesis of no difference between them (i.e., 𝐻0: 𝜌1 =

𝜌2), and compared with the critical value of the 𝐹 distribution with (𝑛, 𝑛) degrees of freedom at the 

significance level of 5%. Banker et al. (2010) evaluate the performance of this test against the other 

parametric (e.g., T-test) and non-parametric (e.g., Mann–Whitney’s  -test) tests used traditionally in 

the DEA literature (Banker and Natarajan 2011). Their simulation results indicate this test is adequate 

for detecting deviations from the efficiency frontier caused by a single inefficiency term. 

2.3 Data Generation Process under VRS Setting 

This paper extends the sophisticated DGP proposed by Kohl and Brunner (2020) for the CRS setting to 

generate well-behaved production data with the VRS system. The DGP produces a single output (𝑦) 

based on the generated meaningful inputs (𝑥𝑖, 𝑖 ∈ 𝕄 = {1,… ,𝑚}) and true efficiency values (𝜃𝑗) for 

each DMU in which the regularity conditions are met. We generate the well-behaved dataset by using 

the (logarithmic) Translog production function presented by Eq. (1). This technology has become the 

gold standard for Monte Carlo simulations (Bogetoft and Otto 2011a). 

ln 𝑦 =∑𝛼𝑖 ln 𝑥𝑖 +
1

2
∑∑𝛽𝑖ℎ ln 𝑥𝑖 ln 𝑥ℎ

𝑚

ℎ=1

𝑚

𝑖=1

𝑚

𝑖=1

 (1) 

where, 𝑦 is the initial output, parameters 𝛼𝑖 and 𝛽𝑖ℎ show respectively the importance of an input 𝑖, and 

the substitution possessions of the production procedure between two inputs 𝑖 and ℎ. These parameters 

are defined to acquire a well-behaved production function within the boundaries imposed by the inputs 

(𝑥𝑖). We develop a seven-step DGP for each DMU under the VRS setting (depicted in Figure 1) by 

ensuring adherence to the properties defined by Coelli et al. (2005) for well-behaved VRS data. In our 

DGP, apart from generating the parameters 𝜶 and 𝜷, true efficiency (𝜽), input vector 𝒙 (including the 

number of inputs (𝑚), input range, and input correlation), and the regularity conditions (monotonicity, 

curvature, and quasi-convexity) are meticulously taken into consideration to generate valid scenarios.  
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Figure 1. Developed DGP for each artificial DUM 

The value of true efficiency (𝜃) is drawn from a truncated normal distribution and then multiplied 

with the raw output value. We include different true efficiency distributions in our DGP as an adjustable 

characteristic to examine whether the true efficiency level influences the accuracy of VRS DEA models. 

The truncation is always set at 1.0 for the upper-efficiency values. Different lower bounds can be set to 

imitate diverse economies of scale. By adjusting the mode and StD of the true efficiencies, a comparable 

distribution shape can be preserved. We then calculate the final output 𝑦̅ by multiplying the initial output 

by the true efficiency value: 𝑦̅𝑗 = 𝜃𝑗 ∗ 𝑦𝑗. 

Adjusting the number of inputs, the range of inputs, and the correlation among inputs all lead to 

the generation of the input vector 𝒙. Adjustments are generally straightforward, for example, changing 

the number of inputs and parameters of the uniform distribution function used for the level of inputs. 

The wide range of inputs indicates a more heterogeneous production environment. Instead, the small 

range of inputs suggests a very homogeneous dataset with entities of similar sizes. A correlation 

between the input values also seems logical as larger entities usually use more inputs than smaller ones. 

A Cholesky decomposition method described in Hazewinkel (1992) accounts for this fact when 

generating inputs. 

An authentic VRS production data requires the change of scale effects with the size of the DMU. 

Therefore, an optimal size must be defined within the economically feasible region3 of production, at 

which the average product is maximized. For example, in the case of a single-input single-output 

production function, the average product is 
𝑦1
𝑥1⁄  where graphically represents the slope of the line 

(ray) that passes through the origin and that point. This point is known as the point of optimal scale (of 

operations) where units exhibit CRS, smaller units work under increasing returns to scale (IRS) and 

bigger ones work under DRS setting (Coelli et al. 1998). We represent units that have exactly the 

optimal scale of operations as 𝒙𝐶𝑅𝑆. Then, the necessary conditions of VRS setting for returns to scale 

can be written as Eq. (2) by straightforward operations on Eq. (1) (Balk 2001). 

Φ𝑂𝑗(𝒙𝑗, 𝑦𝑗) = ∑
𝜕 ln𝑦

𝜕 ln 𝑥𝑖
 𝑖∈𝕄

= ∑ 𝛼𝑖
 𝑖∈𝕄

+ ∑ (𝛽𝑖𝑖 + ∑ 𝛽𝑖ℎ
 ℎ∈𝕄∖{𝑖}

) ln 𝑥𝑖
 𝑖∈𝕄

{
>
!
1 ↔ 𝐼𝑅𝑆 

=
!
1 ↔ 𝐶𝑅𝑆

<
!
1 ↔ 𝐷𝑅𝑆 

, ∀𝑗 ∈ ℕ (2) 

 
3 A region where is consistent with all properties defined for the production function such as monotonicity. 
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where Φ𝑂𝑗(𝒙𝑖, 𝑦𝑗) represents the scale elasticity value of 𝐷𝑀𝑈𝑗 at point (𝒙𝑗, 𝑦𝑗) as the output distance 

function. If the value of this function is greater than, equal to, and lower than 1, we respectively have 

IRS, CRS, and DRS.4 According to Eq. (2), we can define the sufficient conditions for satisfying the 

global VRS that still allows the implementation of substitution effects as: ∑ 𝛼𝑖 𝑖∈𝕄 > 1 ∩

 ∑ (𝛽𝑖𝑖 + ∑ 𝛽𝑖ℎ ℎ∈𝕄∖{𝑖} ) ln 𝑥𝑖 𝑖∈𝕄 < 0.  

For the data generation process, we want to test different optimal sizes as well as the extent of 

the economics scale effects. For that reason, we should set ∑ 𝛼𝑖𝑖∈𝕄 > 1, then ∑ 𝛼𝑖𝑖∈𝕄 = 1 + 𝜔, 𝜔 > 0 

in Eq. (2). 𝜔 is the parameter that can be used to adjust the extent of scale effects. A small 𝜔 implies 

weak scale effects, while the revert is true for a large value. We can implement different adjustments 

for the input importance through altering the value of 𝛼. We here apply two different adjustments 

containing equal and equidistant importance. In both settings, we must hold ∑ 𝛼𝑖𝑖∈𝕄 = 1 + 𝜔, 𝜔 > 0 

to guarantee the implementation of the VRS regime. In the first adjustment (hereafter referred to as 

SYM), every input is identically important in the production function. This can be achieved by Eq. (3). 

𝛼𝑖 =
1+𝜔

𝑚
, ∀𝑖  (3) 

Proposition 1. Eq. (3) fulfills the condition of ∑ 𝛼𝑖𝑖∈ℳ > 1. 

Proof. ∑ 𝛼𝑖
𝑚
𝑖=1 = ∑

1+𝜔

𝑚
𝑚
𝑖=1 = ∑ (

1

𝑚
+
𝜔

𝑚
)𝑚

𝑖=1 = (𝑚 ⋅
1

𝑚
+𝑚.

𝜔

𝑚
) = 1 + 𝜔 →

𝜔>0
∑ 𝛼𝑖
𝑚
𝑖=1 > 1. ∎ 

The second setting (hereafter referred to as ASYM) generates a production function with inputs of 

varying importance yet equidistant (see Eq. (4)). In this adjustment, the first input (𝑥1) is always the 

one with the lowest influence on the production, and the importance of the other inputs increases with 

their indices. Consider three inputs 𝑥1, 𝑥2, and 𝑥3, since 𝑥1 has the smallest importance (smallest index) 

to the production process, one unit increase in it would lead to a lesser rise in output level than one unit 

increase in either 𝑥2 or 𝑥3 does. Of these, 𝑥3 would lead to the largest growth in output. Since we only 

consider abstract inputs that can be rearranged, there will be no misrepresentation of results due to this 

regularity.  

𝛼𝑖 =
(1+𝜔)⋅(𝑖+𝑚)

1.5𝑚2+0.5𝑚
, ∀𝑖  (4) 

Proposition 2. Eq. (4) fulfills the condition of ∑ 𝛼𝑖𝑖∈𝕄 > 1. 

Proof. ∑ 𝛼𝑖
𝑚
𝑖=1 = ∑

(1+𝜔)⋅(𝑖+𝑚)

1.5𝑚2+0.5𝑚
𝑚
𝑖=1 = ∑

(1+𝜔)⋅𝑖

1.5𝑚2+0.5𝑚
𝑚
𝑖=1 + ∑

(1+𝜔)⋅𝑚

1.5𝑚2+0.5𝑚
𝑚
𝑖=1 = (1 + 𝜔) ⋅

[
1

2
𝑚⋅(𝑚+1)

1.5𝑚2+0.5𝑚
+

𝑚⋅𝑚

1.5𝑚2+0.5𝑚
] = (1 + 𝜔) ⋅ [

1.5𝑚2+0.5𝑚

1.5𝑚2+0.5𝑚
] = 1 + 𝜔 

𝜔>0
→  ∑ 𝛼𝑖

𝑚
𝑖=1 > 1. ∎ 

 
4  The corresponding output scale efficiency value 𝑆𝐸𝑂𝑗(𝑥𝑗 , 𝑦𝑗)  for 𝐷𝑀𝑈𝑗  can be calculated by ln 𝑆𝐸𝑂𝑗(𝑥𝑗 , 𝑦𝑗) = −(Φ𝑂𝑗(𝑥𝑗 , 𝑦𝑗) − 1)

2
/

2∑ ∑ 𝛽𝑖ℎ
𝑚
ℎ=1

𝑚
𝑖=1  (Balk 2001). 
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The second term of Eq. (2) i.e., ∑ (𝛽𝑖𝑖 + ∑ 𝛽𝑖ℎ ℎ∈𝕄∖{𝑖} ) ln 𝑥𝑖 𝑖∈𝕄 , which deals with 𝛽 parameters 

should be less than or equal to zero to ensure the VRS regime. 𝛽 represents the substitution of two 

inputs and must satisfy the symmetry condition 𝛽𝑖ℎ =
!
𝛽ℎ𝑖, ∀𝑖, ℎ (Coelli et al. 1998). Note that the 

condition of linear homogeneity of 𝑑𝑒𝑔𝑟𝑒𝑒 + 1 in outputs is automatically satisfied in a single-output 

case (Coelli et al. 1998). Having in mind ∑ 𝛼𝑖𝑖∈𝕄 = 1 + 𝜔, the second term of Eq. (2) must be exactly 

equal to –𝜔, in other words, ∑ (𝛽𝑖𝑖 + ∑ 𝛽𝑖ℎ ℎ∈𝕄∖{𝑖} ) ln 𝑥𝑖 𝑖∈𝕄 =
!
 – 𝜔 to achieve CRS at 𝒙𝐶𝑅𝑆, i.e., the 

optimum technical efficient size. This property can be fulfilled by Eq. (5) where it is assumed that the 

optimum technical efficient size of all inputs is at the same point, 𝑥𝐶𝑅𝑆 (i.e., 𝑥𝑖
𝐶𝑅𝑆 = 𝑥𝐶𝑅𝑆, ∀𝑖). 

∑ (𝛽𝑖𝑖 + ∑ 𝛽𝑖ℎℎ∈𝕄∖{𝑖} )𝑖∈𝕄 = −
𝜔

ln𝑥𝑖
𝐶𝑅𝑆  (5) 

𝛽 parameters are responsible for satisfying two main economic regularity properties: monotonicity 

(or non-decreasing) and concavity (or non-increasing) in all inputs (Coelli et al. 2005). Taking into 

account these properties, 𝛽 cannot be set freely. We decompose 𝛽 into two terms: substitution 

distribution (𝜎𝑖ℎ) and substitutability (𝜈), mathematically, 𝛽𝑖ℎ ∝ 𝜎𝑖ℎ ∗ 𝜈, ∀𝑖, ℎ. This decomposition 

advantages us in adjusting both characteristics substitutability and substitution distribution separately 

in our DGP as well as in examining their possible effects on the accuracy of DEA estimates. The 

substitution distribution (𝜎𝑖ℎ) deals with the fact that the inputs substitution might be identical between 

all inputs and it is responsible for the distribution of 𝛽. The substitutability (𝜈) characteristic determines 

the magnitude of 𝛽 to be able to consider fluctuating capabilities to substitute inputs. Since the final 

magnitude of 𝛽 should be regulated by its substitutability (𝜈), the substitution distribution (𝜎𝑖ℎ) are 

normalized between −1 and 1. Referring to the symmetry condition, we must hold 𝜎𝑖ℎ =
!
𝜎ℎ𝑖, ∀𝑖, ℎ. We 

can reflect the possible effects of the substitution distribution (𝜎𝑖ℎ) by defining two different settings: 

equal where the substitution between all inputs is equal (Eq. (6)); and unequal where we advance the 

pattern proposed by Kohl and Brunner (2020) to generate unequal yet symmetric values for 𝛽𝑖ℎ , ∀𝑖, ℎ. 

In both equal and unequal settings, we need to satisfy the condition presented by Eq. (5) as well as the 

symmetry to guarantee the implementation of VRS setting through the substitution distribution (𝜎𝑖ℎ).  

For the equal substitution distribution, we have ∑ (𝛽𝑖𝑖 + ∑ 𝛽𝑖ℎℎ∈𝕄∖{𝑖} )𝑖∈𝕄 = 𝑚 ∙ (𝛽𝑖𝑖 +

∑ 𝛽𝑖ℎℎ∈𝕄∖{𝑖} ) by construction, as a result, we can rewrite Eq. (5) as 𝛽𝑖𝑖 +∑ 𝛽𝑖ℎℎ∈𝕄∖{𝑖} =

−
𝜔

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 , ∀𝑖.  

𝛽𝑖𝑖 =
−𝜈⋅𝜔

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 , ∀𝑖 and 𝛽𝑖ℎ =

(𝜈−1)⋅𝜔

𝑚∙(𝑚−1)∙ln𝑥𝑖
𝐶𝑅𝑆 , ∀{𝑖, ℎ|𝑖 ≠ ℎ} (6) 

Proposition 3. Definitions provided in Eq. (6) fulfill 𝛽𝑖𝑖 + ∑ 𝛽𝑖ℎℎ∈𝕄∖{𝑖} = −
𝜔

𝑚∙ln𝑥𝐶𝑅𝑆
. 

Proof. By replacing 𝛽𝑖𝑖 and 𝛽𝑖ℎ in 𝛽𝑖𝑖 + ∑ 𝛽𝑖ℎℎ≠𝑖  and operating it, we have  
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𝛽𝑖𝑖 + ∑ 𝛽𝑖ℎℎ∈𝕄∖{𝑖} =
−𝜈⋅𝜔

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 +∑

(𝜈−1)⋅𝜔

𝑚∙(𝑚−1) ln𝑥𝑖
𝐶𝑅𝑆ℎ≠𝑖 =

−𝜈⋅𝜔

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 +

(𝑚−1)(𝜈−1)⋅𝜔

𝑚∙(𝑚−1) ln 𝑥𝑖
𝐶𝑅𝑆 = −

𝜔

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆  →

𝛽𝑖𝑖 + ∑ 𝛽𝑖ℎℎ≠𝑖 = −
𝜔

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 , ∀𝑖. ∎  

Imposing the equal or identical substitution distribution is simple and can be accomplished by 

defining 𝜎𝑖𝑖 = −
1

𝑚
, ∀𝑖 and 𝜎𝑖ℎ =

1

𝑚∙(𝑚−1)
, ∀{𝑖, ℎ|𝑖 ≠ ℎ}. Therefore, we can rewrite the definitions of 

𝛽 provided in Eq. (6) as follows: 

𝛽𝑖𝑖 =
𝜈⋅𝜔

ln𝑥𝑖
𝐶𝑅𝑆 ⋅ 𝜎𝑖𝑖, ∀𝑖 and 𝛽𝑖ℎ =

(𝜈−1)⋅𝜔

ln𝑥𝑖
𝐶𝑅𝑆 ⋅ 𝜎𝑖ℎ , ∀{𝑖, ℎ|𝑖 ≠ ℎ} (7) 

For modeling the unequal substitution scenario, we develop the pattern presented by Kohl and 

Brunner (2020), to create symmetric but unequal values for 𝛽 via formulas presented in Eq. (8). 

𝛽𝑖𝑖 = −
𝜔∙(1−𝜈∙𝜎′𝑖𝑖)

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 , ∀𝑖 and 𝛽𝑖ℎ =

𝜔∙𝜈

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 ∙ 𝜎

′
𝑖ℎ , ∀{𝑖, ℎ|𝑖 ≠ ℎ} (8) 

Proposition 4. Definitions provided in Eq. (8) fulfill Eq. (5). 

Proof. We call the unequal substitution distribution defined by Kohl and Brunner (2020), i.e., 𝜎′𝑖𝑖 =

−
𝑚∙(1.5−

𝑖−1

𝑚−1
)−(2−2∙

𝑖−1

𝑚−1
)

1.5∙𝑚−2
, ∀𝑖 and 𝜎′𝑖ℎ =

2−
ℎ−1

𝑚−1
−
𝑖−1

𝑚−1

1.5⋅𝑚−2
, ∀{𝑖, ℎ|𝑖 ≠ ℎ}. From the proof provided by them, 

we know that 𝜎′𝑖𝑖 +∑ 𝜎′𝑖ℎℎ∈𝕄∖{𝑖} = 0, ∀𝑖.5 Now, by replacing these two expressions in Eq. (5) and 

operating, we have: ∑ (𝛽𝑖𝑖 + ∑ 𝛽𝑖ℎℎ∈𝕄∖{𝑖} )𝑖∈𝕄 = ∑ (−
𝜔∙(1−𝜈∙𝜎′𝑖𝑖)

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 + ∑

𝜔∙𝜈

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 ∙ 𝜎

′
𝑖ℎℎ∈ℳ∖{𝑖} )𝑖∈𝕄 =

∑ (−
𝜔

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 +

𝜔∙𝜈∙𝜎′𝑖𝑖

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 +

𝜔∙𝜈

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 ∙ ∑ 𝜎′𝑖ℎℎ∈ℳ∖{𝑖} )𝑖∈𝕄 = ∑ (−

𝜔

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 ∙ (1 + 𝜈 ∙ 𝜎

′
𝑖𝑖 + 𝜈 ∙𝑖∈𝕄

∑ 𝜎′𝑖ℎℎ∈𝕄∖{𝑖} )) = ∑ (−
𝜔

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 ∙ (1 + 𝜈 ∙ (𝜎

′
𝑖𝑖 +∑ 𝜎′𝑖ℎℎ∈𝕄∖{𝑖} ) ))𝑖∈𝕄 = ∑ (−

𝜔

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 ∙ (1 +𝑖∈𝕄

0 )) = ∑ (−
𝜔

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆 ∙ (1 + 0 ))𝑖∈𝕄 = ∑ −

𝜔

𝑚∙ln𝑥𝑖
𝐶𝑅𝑆𝑖∈𝕄 = −

𝜔

ln𝑥𝐶𝑅𝑆
 . ∎ 

Now, we turn to the substitutability of inputs controlled by parameter 𝜈. Substitutability boundaries 

differ for certain inputs. Again, the monotonicity of the production function is the source of the 

substitutability conditions. For single-output multi-input, monotonicity implies constraints on partial 

derivatives of distance functions. These constraints can be expressed by Eq. (9). The mandatory 

curvature and monotonicity conditions of the production function are key factors in the characteristics 

of well-behaved production data (Cordero et al. 2015; Perelman and Santín 2009). The partial 

derivatives of distance functions must satisfy one condition for monotony: for 𝐷𝑂 as a single output, all 

marginal products (𝑓𝑖) must be non-negative across all inputs (𝑥𝑖) as outlined by Eq. (10).  

𝑠𝑖 =
𝜕 ln𝐷𝑂

𝜕 ln 𝑥𝑖
= 𝛼𝑖 + ∑ 𝛽𝑖ℎ ln 𝑥ℎℎ , ∀𝑖  (9) 

 
5 A detailed derivation of 𝜎′𝑖𝑖 and 𝜎′𝑖ℎ can be found in Kohl and Brunner 2020. 
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𝑓𝑖 =
𝜕𝐷𝑂

𝜕𝑥𝑖
=
𝜕 ln𝐷𝑂

𝜕 ln𝑥𝑖

𝐷𝑂

𝑥𝑖
= 𝑠𝑖

𝐷𝑂

𝑥𝑖
≥ 0 ↔ 𝑠𝑖 ≥ 0, ∀𝑖  (10) 

Curvature guarantees that all marginal products must be declining, i.e., the law of diminishing 

marginal productivity (Coelli et al. 2005). The condition can be satisfied by fulfilling Eq. (11) which is 

the second partial derivative obtained by applying the chain rule to Eq. (1). 

𝑓𝑖𝑖 =
𝜕2𝐷𝑂

𝜕𝑥𝑖𝜕𝑥𝑖
=
𝜕𝑓𝑖

𝜕𝑥𝑖
2 =

𝜕(𝑠𝑖
𝐷𝑂
𝑥𝑖
)

𝜕𝑥𝑖
= (𝛽𝑖ℎ + 𝑠𝑖𝑠𝑖 − 𝑠𝑖) (

𝐷𝑂

𝑥𝑖
2) < 0 ↔ 𝛽𝑖ℎ + 𝑠𝑖𝑠𝑖 − 𝑠𝑖 < 0, ∀𝑖  (11) 

For quasi-convexity in inputs, the corresponding bordered Hessian matrix 𝐹(𝑥𝑖) (Eq. (12)) on 

inputs need to be evaluated.  

𝐹(𝑥𝑖) =

[
 
 
 
 
0 𝑓1 𝑓2 ⋯ 𝑓𝑖
𝑓1 𝑓11 𝑓12 ⋯ 𝑓1𝑖
𝑓2 𝑓21 𝑓22 … 𝑓2𝑖
⋮ ⋮ ⋮ ⋱ ⋮
𝑓𝑖 𝑓𝑖1 𝑓𝑖2 ⋯ 𝑓𝑖𝑖 ]

 
 
 
 

 (12) 

where, 𝑓𝑖ℎ =
𝜕2𝐷𝑂

𝜕𝑥𝑖𝜕𝑥ℎ
=

𝜕𝑓𝑖

𝜕𝑥𝑖𝜕𝑥ℎ
=
𝜕(𝑠𝑖

𝐷𝑂
𝑥𝑖
)

𝜕𝑥ℎ
= (𝛽𝑖ℎ + 𝑠𝑖𝑠ℎ) (

𝐷𝑂

𝑥𝑖𝑥ℎ
) , ∀{𝑖, ℎ|𝑖 ≠ ℎ}, 𝑓𝑖 and 𝑓𝑖𝑖 have been 

already defined by Eqs. (10) and (11), respectively. The isoquants are strictly quasi-convex on inputs if 

this bordered Hessian matrix is negative definite (Coelli et al. 2005). 𝐹(𝑥𝑖) is negative definite if the 

successive principle minors alternate in sing. Defining the 𝑖 + 1 principle minor by 𝐹(𝑥𝑖), 𝐹 is negative 

definite if (−1)𝑖|𝐹𝑖(𝒙)| > 0.  

The expressive DGP should ensure that an increase in inputs does not lead to a decline in output 

despite changing the substitutability of inputs. It echoes the concept of input-free disposability found in 

the vast majority of DEA models. Keeping the curvature and monotonicity constraints is critically 

dependent on the magnitude of 𝛽. Therefore, we present the mathematical programming approach as 

Model (13) to derive the optimum value of 𝜈 that allows modifying the substitutability between inputs. 

Having a minimum value of 𝜈 gives a nearly flat substitution curve, resulting in high substitutability, 

while a maximum value of 𝜈 results in low substitutability. 

 min / max 𝜈 (13a) 

𝑠. 𝑡. 𝑠𝑖 ≥ 0, ∀𝑖 (13b) 

 𝛽𝑖ℎ + 𝑠𝑖
2 − 𝑠𝑖 < 0, ∀𝑖 (13c) 

 (−1)𝑖|𝐹𝑖(𝒙)| > 0, ∀𝑖 (13d) 

Values of the first and second partial derivatives, i.e., 𝑠𝑖 and 𝑓𝑖𝑖, fluctuate with input levels then, 

we cannot generally guarantee that the isoquants are strictly convex (Coelli et al. 1998). However, as 

explained by Coelli et al. (1998), there are areas in the input space where the Eqs. (10) and (11) are 

satisfied. Providing that these conditions can be satisfied for every data point for any proposed Translog 

function, the well-behaved area may be large enough to adequately represent the corresponding 
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production function. Note that the constraints of Model (13) change according to the number of inputs 

as the bordered Hessian matrix changes. The curvature and quasi-convexity inequalities (Eqs. (13c) and 

(13d)) are quadratic and nonlinear, respectively. These constraints make solving the optimization 

problem considerably more difficult. In the two-input single-output case (𝑖 = 1,2), the model and the 

bordered Hessian matrix in the quasi-convexity (the third constraint, i.e., (13d)) can be rewritten by 

considering the definitions of 𝛽𝑖𝑖 and 𝛽𝑖ℎ provided in Eq. (6), as follows: 

 min / max 𝜈 (14a) 

𝑠. 𝑡. 𝑠1 = 𝛼1 + 𝛽11 ln 𝑥1 + 𝛽12 ln 𝑥2 ≥ 0 (14b) 

 𝑠2 = 𝛼2 + 𝛽22 ln 𝑥2 + 𝛽21 ln 𝑥1  ≥ 0 (14c) 

 𝑓11 = 𝛽11 + 𝑠1
2 − 𝑠1 < 0 (14d) 

 𝑓22 = 𝛽22 + 𝑠2
2 − 𝑠2 < 0 (14e) 

 (−1)1|𝐹1| > 0 ↔ |𝐹1| = 0 ∗ 𝑓11 − 𝑓1 ∗ 𝑓1 = −𝑓1
2 < 0 (14f) 

 (−1)2|𝐹2| > 0 ↔ |𝐹2| = 𝑓1𝑓12𝑓2  −  𝑓1𝑓1𝑓22 + 𝑓2𝑓1𝑓21 − 𝑓2𝑓11𝑓2 > 0 (14g) 

We reformulate the model to transform the nonlinear constraints to a minimal number of 

conjunctive linear constraints that have the same admissible marking area as the nonlinear one does. 

The first quasi-convexity condition (Eq. (14f)) is fulfilled since the first principal minor |𝐹1|, is always 

negative. For 𝑖 = 2, the second principal minor |𝐹2| (Eq. (14g)), can be written as 2𝑓1𝑓2𝑓12 − 𝑓1
2𝑓22 −

𝑓2
2𝑓11. This expression should be positive to guarantee the necessary and sufficient condition of quasi-

convexity in inputs. The term −𝑓1
2𝑓22 − 𝑓2

2𝑓11, which is equivalent to −𝑠1
2 𝐷𝑂

3

𝑥1
2𝑥2
2 (𝛽22 + 𝑠2

2 − 𝑠2) −

𝑠2
2 𝐷𝑂

3

𝑥1
2𝑥2
2 (𝛽11 + 𝑠1

2 − 𝑠1), is always positive by construction. Consequently, we can simply show that one 

sufficient condition to fulfill the Eq. (12g) is that the term 𝑓1𝑓2𝑓12 be non-negative. From Eqs. (14b) 

and (14c), we know that 𝑓1 and 𝑓2 are non-negative. Therefore, one sufficient condition to assure quasi-

convexity is: 

𝑓12 = (𝛽12 + 𝑠1𝑠2) (
𝐷𝑂
𝑥1𝑥2

) ≥ 0 ↔ 𝛽12 ≥ 0 (15) 

The impositions of the 𝛼 and 𝛽 values play the main role in the design of scale elasticity as well 

as in the computation of scale efficiency scores. A well-behaved production function can be obtained 

with the proposed model by imposing desirable assumptions. There is no doubt that increasing the 

number of inputs also increases the number of regularity conditions to which the proposed mathematical 

model must submit. Nevertheless, the procedures described for the two-input sample can be adapted to 

cases with higher multi-input dimensions. By sizing up the dimension of the problem, the proposed 

model can be used to generate regular behaved data, which would otherwise become cumbersome. Now 

that all the characteristics are adjustable, a well-behaved DMU can be generated under the VRS setting. 
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2.4 Study design 

The characteristics used in this study are listed in Table 1 along with their values/levels. After creating 

one scenario as an example, the obtaining dataset is assessed using four different output-oriented DEA 

models: CCR (Charnes et al. 1978), BCC (Banker et al. 1984), VRS AR6 (Pedraja-Chaparro et al. 1997), 

and VRS SBM (Tone 2001). Moreover, we compute the benchmark model Rand, which consists of 

randomly drawn values similar to the real efficiency distribution, to ensure a thorough comparison of 

VRS DEA models with Monte Carlo simulated data. In theory, Rand provides a lower bound for 

benchmark values and allows the classification of B-Values derived from DEA models. DEA 

applications fall into three categories according to the number of DMUs: small (50 DMUs), medium 

(150 DMUs), and large (450 DMUs). 

Table 1. Defined characteristics for generating scenarios 

Characteristic  Value/Level 

Returns to scale VRS 

True efficiencies (𝜃) Low, Medium, and High 

# DMUs (𝑛) 50, 150 and 450 

# Inputs (𝑚) 2, 5 and 7 

Importance of inputs (𝛼𝑖) SYM and ASYM 

Input substitutability (𝜈) Low and High 

Input substitution distribution (𝛽𝑖ℎ) Equal and Unequal 

Input range U[100; 1,100] and U[100; 10,100] 

Input correlation 0.0, 0.4, 0.8 

Efficient size (𝑥𝑖
𝐶𝑅𝑆) 300, 600 

Extent of scale effects (𝜔) 0.2, 0.4, 0.8 

Total Number of Scenarios 7,776 

The number of DMUs in the generated scenarios can be modified by simply running the DGP for 

one DMU n times. True efficiency score 𝜃, as mentioned before, is drawn from the truncated normal 

distribution and multiplied by the raw output 𝑦𝑗 for each DMU. Using true efficiency distributions as 

characteristics, we examine whether the level of true efficiencies influences the accuracy of DEA 

models. In the true efficiency score, the upper bound is always set at 1.0, but the lower bound can be 

customized based on three different values: low (0.25), medium (0.40), and high (0.55). These levels 

reflect the reality that poor-efficiency DMUs cannot survive. Changing the modes and StD of true 

efficiencies will result in similar curves. Therefore, we use modes of 0.75 (low), 0.80 (medium), and 

0.85 (high) and StDs of 0.27 (low), 0.25 (medium), and 0.23 (high). For each DMU, the value of m 

inputs is randomly selected from two uniform distributions: 𝑈[100;  1,100] and 𝑈[100;  10,100]. The 

ranges used here have been derived from a study conducted by Kohl and Brunner (2020); they compared 

various ranges to determine the most meaningful ones. In addition, the Cholesky decomposition is 

applied to impose the correlation coefficients of 0.0, 0.4, and 0.8 between the raw inputs as described 

in Hazewinkel (1992). 

 
6 Since we deal with different input elasticities, we apply virtual weight restrictions (the product of weight and input/output) in the AR 

model. We set 𝑘 to limit the virtual weights to 2 as Pedraja-Chaparro et al. 1997 did.  
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3 Results and Discussions 

Our main objective is to evaluate the accuracy of four main DEA models and to determine the scale 

efficiency of generating scenarios based on the defined characteristics. The results are divided into three 

parts. First, we intend to make the results more understandable by introducing some numerical 

illustrations explaining the characteristics used for generating scenarios. Our next task is to present the 

results of our main computational study. This will enable us to figure out which models of DEA based 

on the VRS setting perform best and to explore the driving factors. Our final section provides guidelines 

on how to apply DEA models in VRS settings based on our computational results. 

3.1 Numerical Illustrations 

For the two-input single-output case, we generate the well-behaved production function based on the 

Translog output distance function described before. Consider the settings given in Table 2, we calculate 

the values of 𝛼𝑖, 𝜈, 𝛽𝑖ℎusing Eq. (3), Model 14, and Eq. (6), respectively. For a given input vector (e.g., 

𝒙 = [100;  1,100]), the obtained values are presented in Table 3. In Appendix B, we provide the dataset 

generated for this instance. If we set 𝑥𝑖
𝐶𝑅𝑆 close to the minimum of our input range (100), the change of 

scale effects with the size of the DMU starts at the beginning of the production function. This effect of 

𝑥𝑖
𝐶𝑅𝑆is shown in Figure 2(a) in which we represent the production function of 1,000 DMUs under two 

different values of 300 and 600 and the same setting for the other characteristics as reported in Table 2. 

The effect of 𝜔 which is responsible for adjusting the extent of scale effects, for two different values of 

0.2 and 0.4 is shown in Figure 2(b). As the value of 𝜔 increases, the curvature of the production function 

also increases. According to the minimum and maximum of 𝜈, which allow the adjustment of the 

substitutability, high and low substitutability are recommended between inputs. Figure 2(c) shows the 

effect of substitutability on the production function. We see that the minimum value of 𝜈 produces 

almost a level surface without large raised areas or indentations, while the maximum value of it 

produces a curve-shaped surface. 

Table 2. An example scenario for the two-input single-output case 

Characteristics  Value/Level 

True efficiencies (𝜃) Medium 

# DMUs (𝑛) 50 

# Inputs (𝑚) 2 

Input range U[100; 1,100] 

Input correlation 0 

Efficient size (𝑥𝑖
𝐶𝑅𝑆) 300 

Extent of scale effects (𝜔) 0.2 

Importance of inputs (𝛼𝑖) SYM 

Input substitutability (𝜈) Low 

Input substitution distribution (𝛽𝑖ℎ) Equal 
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Table 3. Results of the two-input single-output instance  

Characteristics Values 

Importance of inputs (𝛼𝑖) 𝛼 = [0.6, 0.6]  

Input substitutability (𝜈) 𝜈 = 12.3514  

Input substitution distribution (𝜎𝑖ℎ) 𝜎 = [
−1 1
1 −1

]  

Input substitution (𝛽𝑖ℎ) 𝛽 = [
−0.2165 0.1990
0.1990 −0.2165

]  

Monotonicity conditions (𝑠𝑖 ≥ 0) 𝑠1 = 0.8758 and 𝑠2 = 0.1312 

Curvature conditions (𝑓𝑖𝑖 < 0) 𝑓11 = −0.3252 and 𝑓22 = −0.3305 

Quasi-convex in inputs ((−1)𝑖|𝐹𝑖(𝒙)| > 0) |𝐹1| = −0.7671 and |𝐹2| = 0.3314 

 

  
(a) (b) 

 
(c) 

Figure 2. Effect of 𝑥𝑖
𝐶𝑅𝑆 (a), 𝜔 (b), and 𝜈 (c) on the form of the production function 

3.2 Results of Analyzing the Accuracy of DEA Models 

In the following sections, we discuss the results of the evaluation of four VRS DEA models and the 

Rand data gathered from 7,776 scenarios. In Table 4, we report the minimum (Min), maximum (Max), 

mean, and StD values of the performance indicators over all scenarios. In addition, boxplots depict the 

main descriptive statistics of B-Values and B-Ranks for each model in Figure 3. We use the Rand model 

as a lower bound for our benchmarks. The average, maximum, and minimum number of replications 

required for each scenario are respectively 111, 270, and 50. We define the stopping criterion for the 

replication based on the moving StD of the B-Value for the DEA models. If the moving StD of the B-

Value of all four DEA models is less than 0.001, the replication terminates. There are over 434,000 

replications in all, and each replication is tested using all four DEA models. By construction, we impose 
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VRS technology on the DGP so that the efficiency scores calculated with DEA models under the VRS 

setting should be better than those calculated with CRS DEA models. To compute scale inefficiency as 

well as evaluate the potential bias associated with computing efficiency scores under CRS when true 

technology is represented by VRS, we run the CCR model. CCR results emphasize the importance of 

using an accurate return to scale before conducting a practical DEA efficiency analysis. Consider, for 

instance, the mean B-Value of the CCR, which is equal to 0.295, and its VRS counterpart (BCC), which 

is almost double, 0.574. 

Table 4. Statistical values of performance indicators calculated for each model under the VRS setting 

Indicator Statistics Rand CCR DEA  BCC DEA AR DEA SBM DEA 

1-MAE Max 0.866 0.987 0.984 0.986 0.986 

Min 0.782 0.245 0.376 0.253 0.257 

Mean 0.824 0.764 0.836 0.904 0.898 

StD 0.030 0.191 0.122 0.133 0.130 

Rank (1-MAE) Max 5.000 5.000 4.318 4.318 4.441 

Min 1.000 1.000 1.042 1.000 1.000 

Mean 3.901 3.625 3.257 1.809 2.379 

StD 1.290 1.621 0.705 0.712 0.830 

SPEAR Max 0.048 0.996 0.971 0.987 0.987 

Min -0.041 0.057 -0.054 0.077 0.067 

Mean 0.000 0.634 0.703 0.858 0.841 

StD 0.011 0.269 0.277 0.186 0.188 

Rank (SPEAR) Max 5.000 4.154 4.711 2.422 3.077 

Min 3.244 1.000 2.339 1.000 1.018 

Mean 4.922 3.096 3.498 1.408 1.979 

StD 0.220 1.056 0.525 0.325 0.507 

TOP Max 0.198 0.924 0.885 0.905 0.905 

Min 0.118 0.155 0.133 0.158 0.155 

Mean 0.154 0.448 0.616 0.695 0.692 

StD 0.010 0.218 0.184 0.181 0.183 

Rank (TOP) Max 5.000 4.359 4.351 3.170 3.244 

Min 2.206 1.014 1.110 1.000 1.000 

Mean 4.681 3.314 2.612 1.447 1.540 

StD 0.538 0.963 0.562 0.406 0.471 

INEFF Max 0.193 0.972 0.910 0.973 0.973 

Min 0.117 0.168 0.123 0.188 0.187 

Mean 0.154 0.617 0.598 0.835 0.821 

StD 0.010 0.211 0.207 0.159 0.160 

Rank (INEFF) Max 5.000 4.083 4.531 1.868 2.656 

Min 2.580 1.048 1.706 1.000 1.000 

Mean 4.834 2.891 3.287 1.133 1.329 

StD 0.357 0.923 0.553 0.157 0.332 

CORRI Max 0.428 0.999 0.969 0.986 0.986 

Min 0.269 0.008 0.021 0.005 0.006 

Mean 0.344 0.405 0.494 0.737 0.707 

StD 0.053 0.333 0.279 0.265 0.264 

Rank (CORRI) Max 5.000 4.154 4.711 2.422 3.077 

Min 3.244 1.000 2.339 1.000 1.018 

Mean 4.922 3.096 3.498 1.408 1.979 

StD 0.220 1.056 0.525 0.325 0.507 

The small value of MAE suggests the estimated efficiency scores are on average close to their 

true counterparts, and therefore, high 1 −𝑀𝐴𝐸 values are preferred. According to Table 4, the MAE 

cannot provide information about the deviation because of the small mean value of this indicator for 
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Rand = 0.824) which is very close to the VRS DEA models. In order to handle this issue, we use 

CORRI to represent the mean value of estimated inefficiencies within a margin of 𝛿 = 0.05 around the 

true efficiencies. Using this indicator, the estimated efficiency of each model can be distinguished 

within 5% of its corresponding true efficiency. Compared to the basic DEA models, the AR and SBM 

models perform better. It is evident from the SPEAR indicator that the CCR model is barely able to 

mimic the true efficiency scores. In contrast, the AR and SBM indicate acceptable results. TOP and 

INEFF indicators provide the same result: AR and SBM exhibit high quality and outperform other 

models. 

  

Figure 3. Boxplots of B-Values and B-Ranks obtained from the models 

On the basis of Figure 3, the accuracy of the VRS DEA models can be explained as follows. In 

the first place, the AR and SBM models perform significantly better than the BCC model, while it is 

the most popular model in DEA applications. BCC has a mean and StD of 0.649 and 0.201, respectively, 

indicating superior quality to CCR (mean of 0.574 and StD of 0.238) which is not surprising since our 

DGP is implemented using the VRS setting. However, it is a clear indication of the reliability of the 

results of the DGP and provides insight into the mechanism by which it operates. In terms of the StD 

of the B-Values, the SBM and AR exhibit less dispersion from the corresponding mean values than the 

basic CCR and BCC DEA models. In light of the high B-Values for AR and SBM, which are close to 

1.0, it can be said that these two models provide (nearly) accurate estimates. This result becomes even 

more significant when considering that these results represent the average over at least 50 replications 

of each scenario. Conversely, an examination of the minimum B-Values sheds some light on the 

vulnerable performances of all four models in some scenarios. Both SBM and AR models that have a 

minimum B-Value of 0.150 are performing better than the basic DEA models. The B-Rank, whose best 

value is equal to 1.0, is in agreement with the majority of certain findings testified by the B-Value. This 

indicator is not only a measure of dominance at the average level of scenarios but also takes into account 

every performance indicator in each replication. Overall, the AR model (with mean and StD of B-Rank 

of 1.479 and 0.354, respectively) performs marginally better than the SBM model (mean and StD of 

1.877 and 0.568) and significantly better than the basic DEA models. 
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3.3 Results of Hypothesis Tests for Comparing Efficiency 

The results of the statistical tests evaluating the null hypothesis that there is no difference in the 

distributions of true efficiency and estimated efficiency determined by the four VRS DEA models are 

presented in this section. The test statistic and critical value are calculated for each scenario, and if the 

test statistic is greater than the critical value, the null hypothesis is rejected. In Table 5, we report the 

distribution of the rejected scenarios. The value of 0.0 reported for the Rand can serve as a valid 

indicator of the robustness of the hypothesis tests conducted. This value is equal to 0 because both the 

true and estimated efficiencies by Rand are generated from the same distribution function. These 

findings also corroborate the main conclusions drawn from analyzing performance indicators. The total 

number of rejected scenarios in the AR and SBM models (870 and 829, respectively) is considerably 

less than in the basic DEA models. Moreover, only 10% (11%) of scenarios have efficiency scores that 

are different from their true efficiency as calculated by the SBM (AR) model. By examining the rejected 

scenarios in more detail (see Tables C4 and C5 in Appendix C), it is apparent that the majority of them 

have fewer DMUs and more inputs. Moreover, these results underscore the importance of selecting the 

right RTS. This is because on average, the CCR DEA model fails to estimate the efficiency scores of 

50% of scenarios generated under the VRS setting. BCC, which has been widely used in the DEA 

literature, is unquestionably outperformed by the AR and SBM models under the VRS setting. 

Table 5. Results of conducting hypothesis tests 

Model Number of Rejected Scenarios (%) 

Rand 0 (0%) 

CCR 3,930 (50.5%) 

BCC 2,368 (30.5%) 

AR 870 (11.2%) 

SBM 829 (10.7%) 

3.4 Analysis of Characteristics Considered in the DGP 

The purpose of this section is to investigate the identification of trends and patterns prompted by the 

ten different characteristics considered in the DGP. In Appendix C, we provide the descriptive statistics 

of the aggregated performance indicators and hypothesis tests according to the various values/levels 

defined for each characteristic. Based on the main drivers of these results, several consistency patterns 

emerge. Studies indicate that the size of the dataset, i.e., the number of DMUs and inputs, has a 

significant effect on the accuracy of DEA models. As reported subsequently, the results of our study 

confirm that increasing the size of the dataset results in decreasing the mean B-Values and in increasing 

the rejections. These two characteristics, however, are not the only ones responsible for the distinct 

influences. The use of more inputs and a low number of DMUs both negatively affect the mean B-

Value. This results in more rejected scenarios as well. The mean B-Value of the BCC DEA model (see 

Table C3) is reduced by 25% from 0.750 to 0.560 when we use 7 inputs instead of 2 and the number of 

rejections is almost doubled from 529 to 1,134. 
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The lower bounds of 0.25 (low), 0.40 (medium), and 0.55 (high) for true efficiency levels reflect 

the fact that units with extremely poor efficiency cannot survive in the real world. B-Values and the 

number of rejected scenarios reported in Appendix C can be used to determine how true efficiency 

levels affect the quality of DEA models. Increasing the lower bounds of true efficiencies causes a slight 

decline in the mean B-Values and a slight rise in the number of rejections in DEA models. The quality 

of the DEA models is marginally diminished by allocating a larger share of DMUs to the true efficiency 

frontier (efficiency score of 1.0). This may be partly explained by the fact that scaling down the lower 

bounds of the true efficiency results in a broader range of scores. The result is that more DMUs are 

moving closer to the efficiency frontier. Due to this, the discrimination power of DEA models is 

reduced, while the negative effects are marginally present. When the importance of every input is 

different (ASYM), we see that the mean B-Values of all DEA models are to some extent less than when 

all inputs have equal importance in the production function. Accordingly, fewer scenarios are rejected 

under the SYM setting than under ASYM. According to our results, DEA estimations are not affected 

significantly by input importance. 

Taking a look at the input substitution distribution, it is evident that when the input substitution 

is considered unequal, the performance of all DEA models is significantly better than when it is equal. 

In reality, substitution between all inputs utilized by DMUs does not need to be identical. The situation 

is different when inputs differ in substitutability. The AR and SBM DEA models are almost insensitive 

to substitutability variations. The high input substitutability adversely affects the performance of basic 

DEA models (CCR and BCC). Another two characteristics that are crucial to the form of the production 

function are the efficient size (𝑥𝑖
𝐶𝑅𝑆) and the extent of scale effects 𝜔. In Appendix C, we demonstrate 

that when the efficient size is near the lower bound of the input range, i.e., 300, the performance of the 

VRS DEA models is marginally reduced since the scale effect starts at the beginning of the production 

function. As expected, this reduction in performance is more apparent in the CCR model. When the 

extent of the scale effect is increased, the performance of the basic DEA models CCR and BCC is 

diminished as the B-Values decrease and the number of rejected scenarios increases substantially. Once 

again, AR and SBM models perform better when the curvature of the production function is increased 

by increasing the extent of scale effects. Across all models, it is evident that larger input ranges result 

in less satisfactory results. This is very well reflected in the substantial increase in rejected scenarios. 

The results also reveal the trivial influence of the correlation of inputs upon the results of all DEA 

models. In real life, it is likely that there is a strong correlation between inputs, and that a complete lack 

of correlation is unlikely.  

In summary, this set of results leads to a soundly clear ranking of the DEA models: 𝐴𝑅 ≊

𝑆𝐵𝑀 ≻ 𝐵𝐶𝐶 ≻ 𝐶𝐶𝑅. As a result of comparing the superior SBM and AR models, it is evident that 

despite almost identical B-Values and the number of rejections, some differences exist on the 

performance indicator level. Additionally, the results of B-Rank confirm the dominance of the AR 
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model over the SBM model. The SBM model, however, shows almost the same performance as the AR 

model. The usage of both AR and SBM models as standard VRS DEA models can therefore be 

endorsed. 

4 Conclusions 

In this paper, we propose a method based on Monte Carlo simulation to assess the quality of DEA model 

estimates. Our method involves generating data by using a flexible technology (Translog production 

function) that satisfies microeconomic regularity conditions such as convexity and monotonicity. Prior 

studies have lacked diversity in the DGPs, which is a serious handicap when evaluating the quality of 

DEA model estimations. We generate 7,776 distinct scenarios under the VRS setting by defining a 

variety of characteristics. Our evaluations of the quality of estimates obtained from DEA models are 

based on five performance indicators, as well as DEA-based hypothesis tests. Furthermore, we 

demonstrate how a valid range of characteristics and parameters can be derived when the necessary and 

sufficient microeconomic conditions are all met. 

To our knowledge, this is the first study that compares the quality of VRS DEA models to date. 

We show that the BCC model, which is the most commonly used VRS DEA model in the literature, is 

outperformed by AR and SBM models. According to hypothesis tests results, we find that more than 

30% of BCC model estimations differ from the distribution of the true efficiency, but this rejection 

percentage is 11% for AR and 10% for SBM models. It is noteworthy that the AR model emerged at 

the top without applying any special tuning to the virtual weight restrictions. However, it may be too 

complex to explicitly articulate weights in some applications. We, therefore, endorse the establishment 

of the SBM model as the standard VRS DEA model in which there are no prior conditions to be 

comprehended on weights since its performance is almost equal to that of the AR model. From our 

perspective, the dominance of the AR and SBM models can be explained by the presence of slacks. 

While the BCC model ignores slacks entirely in reporting the efficiency score, the SBM model 

calculates the efficiency score directly based on the slacks. Furthermore, the AR model prevents the 

emergence of slacks via assigning boundaries to the weights. We also examine the impact of 

characteristics used for generating scenarios on the quality of the DEA estimates. According to our 

results, the most important factors affecting the quality of VRS DEA models are the number of inputs, 

range of inputs, distribution of input substitution, and scale effects. Our results may also be useful for 

decision-makers who might use them as a guideline for their own DEA studies in order to ensure 

acceptable results accuracy. 

Consideration of the single-output case is one of the drawbacks of our DGP. The methodology 

may therefore be generalized to meaningful multi-input multi-output cases in the future. Furthermore, 

the proposed DGP identifies the deviation of the output from the efficiency frontier as a single 

inefficiency term. A stochastic framework is another method of extending the DGP. The DGP can then 
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be extended by defining the inefficiency score as the sum of two terms: inefficiency and noise. Another 

line of investigation would be extending our method for panel data with a time trend. Using this, we 

can assess and improve the accuracy of Malmquist productivity index calculations and their 

decomposition. In addition, we believe the methodology presented here can also be used to investigate 

other multi-input multi-output production functions, such as the one presented by Färe et al. (2005). All 

of this may eventually make DEA models more practical by increasing their reliability and showing 

how accurate their estimations are to decision-makers. 
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Appendix A. Performance Indicators 

In Table A, 𝜃𝑗 and 𝜃𝑗denote the true efficiency and efficiency score calculated by the DEA model for 

𝑗th DMU (𝑗 ∈ {1,… , 𝑛}), respectively. There are two important points to consider when defining the 

performance indicators. First, DEA estimates 𝜃𝑗 = 1 for some DMUs while their corresponding true 

efficiency scores obtained from the DGP might be less than (but close to) one, i.e., 𝜃𝑗 = 0.90 < 1.0 

since they are based on a random continuous function. Second, in the small size samples, it is expected 

that only a few DMUs (or no DMU) with a true efficiency score of 1.0 have been produced. These two 

points preclude using a simple indicator that only evaluates whether DMUs with an estimated efficiency 

score of 1.0 (𝜃𝑗 = 1.0) also have a corresponding true efficiency score of 1.0 (𝜃𝑗 = 1.0). Our objective 

is therefore to determine whether the DEA models are capable of identifying the top-performing DMUs 

in a sample, although, not all of them have a true efficiency score of 1.0 but are close to it. In light of 

these two points, TOP and INEFF are performance indicators based on the quantiles of worst- and best-

performing DMUs, respectively. This study defines an efficient DMU as one that has at least as high a 

true efficiency value as a specific quantile (𝑄(𝜀)) of the distribution of true efficiency. In the same 

manner, a DMU is inefficient if and only if its true efficiency is less than or equal to 𝑄(1 − 𝜀). For 

example, consider 50 DMUs (𝑛 = 50) where 𝜀 = 0.8. In the ascending order of true efficiencies, 

𝑄(𝜀) = 𝜃𝑗 where 𝑗 = 40. The same logic can be applied to 𝑄(1 − 𝜀). In this way, we are able to handle 

multiple efficiency distributions in the DGP as well as compare different scenarios. Ideally, parameter 

𝜀 should be large enough to serve as a satisfactory limit for efficient DMUs. We also employ the CORRI 

to track the mean value of estimates in certain corridors around the true efficiencies, since Mean 

Absolute Error (MAE) cannot provide information on the deviation. The parameters 𝛿 and 𝛾 determine 

the tightness of the corridors and the number of corridors, respectively. As in Kohl and Brunner (2020), 

we also use a corrugated line of 𝛿 = 0.05 to test an estimate  mo el’s efficacy at most 5%  oints. This 

is in addition to the corresponding true score. Having generated the data (including inputs, outputs, and 

a true efficiency score) of a scenario and calculated the efficiency scores by DEA models, we 
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constructed the performance indicators. To aggregate and represent all the performance indicators with 

a single score we use B-Value. To capture the influence of dominance, we also introduce a second 

aggregated indicator called B-Rank. In Table A, the last two rows give the formulas for these two 

aggregated indicators. 

Table A. Performance indicators used for quality evaluation of DEA models (Kohl and Brunner 2020) 

Indicator Symbol Formula 

Mean absolute error MAE 1

𝑛
∑ |𝜃𝑗 − 𝜃𝑗|
𝑛
𝑗=1   

Spearman Correlation 

Coefficient 

SPEAR ∑ (Rg(𝜃𝑗)−Rg(𝜃)
̅̅ ̅̅ ̅̅ ̅̅ )(Rg(𝜃̂𝑗)−Rg(𝜃̂)

̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑗

√∑ (Rg(𝜃𝑗)−Rg(𝜃)̅̅ ̅̅ ̅̅ ̅̅ )
2

𝑗 √∑ (Rg(𝜃̂𝑗)−Rg(𝜃̂)
̅̅ ̅̅ ̅̅ ̅̅ ̅)

2

𝑗

  

Best-performing 

DMUs 

TOP |{𝑗:𝜃𝑗≥𝑄(𝜀)∩𝜃̂𝑗≥𝑄(𝜀)}|

|{𝑗:𝜃𝑗≥𝑄(𝜀)}|
⋅ (1 −

max{|{𝑗:𝜃̂𝑗≥𝑄(𝜀)}|−|{𝑗:𝜃𝑗≥𝑄(𝜀)}|, 0}

𝑛
)  

Worst-performing 

DMUs 

INEFF |{𝑗:𝜃𝑗≤𝑄(1−𝜀)∩𝜃̂𝑗≤𝑄(1−𝜀)}|

|{𝑗:𝜃𝑗≤𝑄(1−𝜀)}|
∙ (1 −

max{|{𝑗:𝜃̂𝑗≤𝑄(1−𝜀)}|−|{𝑗:𝜃𝑗≤𝑄(1−𝜀)}|, 0}

𝑛
)  

Mean value over the 

results of the corridor 

CORRI ∑
1

𝛾

|{𝑗: |𝜃𝑗−𝜃̂𝑗|≤𝑘⋅𝛿}|

𝑛

𝛾
𝑘=1   

Benchmark value B-Value (1−MAE)+SPEAR+EFF+INEFF+CORRI

5
  

Benchmark rank B-Rank rank(1−MAE) + rank(SPEAR) +rank(EFF) +rank(INEFF)+rank(CORRI)

5
  

Appendix B. One Sample Scenario 

Table B. One scenario (50 DMUs, two inputs, and one output) generated by the developed DGP 

DMU Input 1 Input 2 Output 1 True Eff. DMU Input 1 Input 2 Output 1 True Eff. 

1  996.00   722.00   1,147.38   0.7879   26   234.00   610.00   474.28   0.7814  

2  295.00   964.00   641.16   0.7908   27   259.00   1,015.00   629.63   0.8469  

3  122.00   997.00   215.45   0.5526   28   985.00   974.00   1,254.82   0.7422  

4  863.00   173.00   264.04   0.5058   29   894.00   583.00   1,172.46   0.9484  

5  307.00   948.00   821.23   0.9880   30   816.00   978.00   621.86   0.4032  

6  1,092.00   122.00   372.20   0.9502   31   989.00   814.00   1,197.65   0.7737  

7  143.00   565.00   323.09   0.7819   32   961.00   362.00   528.62   0.5639  

8  1,045.00   310.00   495.89   0.5783   33   628.00   1,002.00   695.69   0.5156  

9  1,075.00   573.00   933.06   0.7117   34   249.00   132.00   233.94   0.7640  

10  102.00   832.00   219.42   0.6729   35   1,051.00   939.00   1,708.48   0.9983  

11  514.00   399.00   544.08   0.6858   36   808.00   962.00   970.23   0.6369  

12  812.00   151.00   424.62   0.9202   37   749.00   638.00   1,107.77   0.9195  

13  814.00   724.00   792.67   0.5937   38   390.00   862.00   685.65   0.7191  

14  535.00   228.00   383.96   0.6706   39   939.00   867.00   1,383.95   0.8863  

15  227.00   311.00   295.18   0.6347   40   997.00   149.00   268.93   0.5748  

16  146.00   1,058.00   365.69   0.7916   41   923.00   995.00   1,384.13   0.8365  

17  906.00   534.00   1,095.83   0.9283   42   258.00   380.00   520.20   0.9540  

18  813.00   715.00   1,023.81   0.7721   43   765.00   835.00   1,250.16   0.9000  

19  783.00   686.00   738.67   0.5788   44   709.00   359.00   606.92   0.7170  

20  230.00   418.00   515.33   0.9751   45   985.00   954.00   1,316.94   0.7868  

21  1,091.00   826.00   1,219.96   0.7496   46   773.00   1,079.00   1,494.10   0.9561  

22  243.00   275.00   346.09   0.7584   47   356.00   991.00   468.93   0.5017  

23  1,093.00   674.00   1,141.91   0.7857   48   660.00   297.00   315.07   0.4310  

24  651.00   992.00   1,112.20   0.8106   49   111.00   613.00   198.47   0.5828  

25  970.00   1,025.00   1,364.69   0.7938   50   1,090.00   1,083.00   1,573.86   0.8430  
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Appendix C. Detailed Results of Analysis of Characteristics 

Table C1. Rand Model 

Model Characteristic Value/Level B-Value Rejection 

Max Min Mean StD Mean StD Sum 

Rand True efficiency level Low 0.299 0.259 0.276 0.005 0 0 0 

Medium 0.320 0.277 0.293 0.005 0 0 0 

High 0.339 0.301 0.317 0.005 0 0 0 

#DMU 50 0.339 0.264 0.298 0.017 0 0 0 

150 0.332 0.259 0.294 0.017 0 0 0 

450 0.330 0.261 0.295 0.017 0 0 0 

#Inputs 2 0.339 0.259 0.295 0.017 0 0 0 

5 0.335 0.262 0.295 0.017 0 0 0 

7 0.332 0.262 0.295 0.017 0 0 0 

Input Importance ASYM 0.335 0.261 0.295 0.017 0 0 0 

SYM 0.339 0.259 0.295 0.017 0 0 0 

Input substitution distribution  Equal 0.335 0.262 0.295 0.017 0 0 0 

Unequal 0.339 0.259 0.295 0.017 0 0 0 

Input substitutability  High 0.339 0.259 0.295 0.017 0 0 0 

Low 0.335 0.262 0.295 0.017 0 0 0 

Efficient size  300 0.339 0.259 0.295 0.017 0 0 0 

600 0.335 0.262 0.295 0.017 0 0 0 

Input range [100; 1,100] 0.339 0.259 0.295 0.017 0 0 0 

[100; 10,100] 0.335 0.261 0.295 0.017 0 0 0 

Extent of scale effects 0.2 0.339 0.262 0.295 0.017 0 0 0 

0.4 0.332 0.259 0.295 0.017 0 0 0 

0.8 0.332 0.262 0.296 0.017 0 0 0 

Input correlation 0 0.335 0.259 0.295 0.017 0 0 0 

0.4 0.335 0.262 0.295 0.017 0 0 0 

0.8 0.339 0.261 0.295 0.017 0 0 0 

Table C2. CCR DEA Model 

Model Characteristic Value/Level B-Value Rejection 

Max Min Mean StD Mean StD Sum 

CCR True efficiency level Low 0.974 0.192 0.614 0.223 0.484 0.500 1,254 

Medium 0.967 0.169 0.576 0.236 0.505 0.500 1,310 

High 0.958 0.140 0.532 0.246 0.527 0.499 1,366 

#DMU 50 0.973 0.154 0.573 0.227 0.577 0.494 1,495 

150 0.974 0.142 0.573 0.240 0.522 0.500 1,352 

450 0.973 0.140 0.575 0.246 0.418 0.493 1,083 

#Inputs 2 0.965 0.164 0.627 0.232 0.402 0.490 1,042 

5 0.934 0.140 0.571 0.238 0.406 0.491 1,052 

7 0.974 0.236 0.523 0.233 0.708 0.455 1,836 

Input Importance ASYM 0.974 0.140 0.573 0.238 0.508 0.500 1,977 

SYM 0.973 0.148 0.574 0.238 0.502 0.500 1,953 

Input substitution distribution  Equal 0.974 0.140 0.456 0.200 0.717 0.450 2,789 

Unequal 0.973 0.240 0.691 0.214 0.293 0.455 1,141 

Input substitutability  High 0.974 0.146 0.629 0.234 0.409 0.492 1,590 

Low 0.965 0.140 0.518 0.229 0.602 0.490 2,340 

Efficient size  300 0.973 0.140 0.553 0.236 0.540 0.498 2,101 

600 0.974 0.153 0.594 0.238 0.470 0.499 1,829 

Input range [100; 1,100] 0.974 0.215 0.677 0.231 0.344 0.475 1,337 

[100; 10,100] 0.892 0.140 0.471 0.197 0.667 0.471 2,593 

Extent of scale effects 0.2 0.974 0.236 0.667 0.218 0.341 0.474 883 

0.4 0.960 0.193 0.574 0.229 0.525 0.499 1,360 

0.8 0.950 0.140 0.480 0.229 0.651 0.477 1,687 

Input correlation 0 0.973 0.148 0.576 0.232 0.461 0.499 1,196 

0.4 0.974 0.142 0.574 0.238 0.513 0.500 1,329 

0.8 0.973 0.140 0.572 0.243 0.542 0.498 1,405 
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Table C3. BCC DEA Model 

Model Characteristic Value/Level B-Value Rejection 

Max Min Mean StD Mean StD Sum 

BCC True efficiency level Low 0.938 0.138 0.654 0.209 0.284 0.451 736 

Medium 0.928 0.154 0.650 0.201 0.307 0.462 797 

High 0.926 0.162 0.644 0.192 0.322 0.467 835 

#DMU 50 0.889 0.148 0.634 0.184 0.391 0.488 1,013 

150 0.923 0.141 0.652 0.204 0.365 0.482 946 

450 0.938 0.138 0.662 0.212 0.158 0.365 409 

#Inputs 2 0.938 0.558 0.715 0.137 0.204 0.403 529 

5 0.880 0.138 0.673 0.202 0.272 0.445 705 

7 0.830 0.160 0.560 0.220 0.438 0.496 1,134 

Input Importance ASYM 0.938 0.141 0.647 0.203 0.310 0.463 1,206 

SYM 0.935 0.138 0.652 0.199 0.299 0.458 1,162 

Input substitution distribution  Equal 0.938 0.138 0.556 0.232 0.462 0.499 1,798 

Unequal 0.935 0.561 0.742 0.096 0.147 0.354 570 

Input substitutability High 0.938 0.138 0.688 0.213 0.196 0.397 762 

Low 0.876 0.141 0.611 0.179 0.413 0.492 1,606 

Efficient size  300 0.938 0.138 0.634 0.209 0.328 0.469 1,274 

600 0.935 0.146 0.665 0.191 0.281 0.450 1,094 

Input range [100; 1,100] 0.938 0.196 0.688 0.174 0.210 0.408 818 

[100; 10,100] 0.931 0.138 0.611 0.217 0.399 0.490 1,550 

Extent of scale effects 0.2 0.938 0.423 0.739 0.119 0.162 0.369 420 

0.4 0.925 0.160 0.653 0.195 0.303 0.460 786 

0.8 0.875 0.138 0.556 0.228 0.448 0.497 1,162 

Input correlation 0 0.935 0.150 0.641 0.190 0.271 0.444 702 

0.4 0.938 0.143 0.651 0.202 0.311 0.463 807 

0.8 0.933 0.138 0.657 0.210 0.331 0.471 859 

Table C4. AR DEA Model 

Model Characteristic Value/Level B-Value Rejection 

Max Min Mean StD Mean StD Sum 

AR True efficiency level Low 0.962 0.208 0.812 0.165 0.109 0.311 282 

Medium 0.963 0.185 0.806 0.179 0.111 0.315 289 

High 0.962 0.150 0.798 0.193 0.115 0.320 299 

#DMU 50 0.907 0.164 0.775 0.165 0.124 0.330 322 

150 0.947 0.152 0.812 0.181 0.114 0.318 296 

450 0.963 0.150 0.831 0.188 0.097 0.296 252 

#Inputs 2 0.963 0.854 0.919 0.029 0.000 0.000 0 

5 0.931 0.216 0.796 0.160 0.103 0.305 268 

7 0.923 0.150 0.703 0.216 0.232 0.422 602 

Input Importance ASYM 0.963 0.150 0.799 0.184 0.121 0.327 472 

SYM 0.962 0.160 0.812 0.175 0.102 0.303 398 

Input substitution distribution  Equal 0.962 0.150 0.746 0.233 0.224 0.417 870 

Unequal 0.963 0.687 0.866 0.056 0.000 0.000 0 

Input substitutability  High 0.963 0.158 0.806 0.180 0.112 0.315 435 

Low 0.961 0.150 0.806 0.179 0.112 0.315 435 

Efficient size  300 0.962 0.150 0.795 0.192 0.124 0.330 482 

600 0.963 0.175 0.816 0.165 0.100 0.300 388 

Input range [100; 1,100] 0.963 0.284 0.846 0.123 0.055 0.229 215 

[100; 10,100] 0.954 0.150 0.765 0.214 0.168 0.374 655 

Extent of scale effects 0.2 0.962 0.681 0.869 0.056 0.000 0.000 0 

0.4 0.963 0.280 0.823 0.143 0.086 0.280 223 

0.8 0.958 0.150 0.726 0.250 0.250 0.433 647 

Input correlation 0 0.961 0.160 0.789 0.176 0.102 0.303 265 

0.4 0.963 0.152 0.808 0.179 0.117 0.322 304 

0.8 0.962 0.150 0.820 0.182 0.116 0.320 301 
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Table C5. SBM DEA Model 

Model Characteristic Value/Level B-Value Rejection 

Max Min Mean StD Mean StD Sum 

SBM True efficiency level Low 0.962 0.206 0.798 0.165 0.101 0.301 262 

Medium 0.963 0.185 0.793 0.178 0.107 0.309 278 

High 0.962 0.150 0.786 0.192 0.111 0.315 289 

#DMU 50 0.907 0.165 0.759 0.165 0.121 0.326 314 

150 0.947 0.153 0.799 0.180 0.107 0.309 277 

450 0.963 0.150 0.818 0.186 0.092 0.289 238 

#Inputs 2 0.963 0.854 0.919 0.029 0.000 0.000 0 

5 0.908 0.213 0.781 0.154 0.096 0.294 248 

7 0.881 0.150 0.676 0.204 0.224 0.417 581 

Input Importance ASYM 0.963 0.150 0.788 0.183 0.114 0.318 443 

SYM 0.962 0.161 0.796 0.175 0.099 0.299 386 

Input substitution distribution  Equal 0.962 0.150 0.737 0.231 0.213 0.410 829 

Unequal 0.963 0.645 0.847 0.068 0.000 0.000 0 

Input substitutability  High 0.963 0.159 0.793 0.179 0.106 0.308 413 

Low 0.961 0.150 0.791 0.178 0.107 0.309 416 

Efficient size  300 0.962 0.150 0.782 0.191 0.117 0.322 456 

600 0.963 0.175 0.802 0.165 0.096 0.295 373 

Input range [100; 1,100] 0.963 0.283 0.828 0.126 0.049 0.216 191 

[100; 10,100] 0.954 0.150 0.756 0.213 0.164 0.370 638 

Extent of scale effects 0.2 0.962 0.645 0.851 0.066 0.000 0.000 0 

0.4 0.963 0.279 0.809 0.144 0.079 0.271 206 

0.8 0.958 0.150 0.716 0.248 0.240 0.427 623 

Input correlation 0 0.962 0.161 0.776 0.177 0.094 0.292 244 

0.4 0.963 0.153 0.794 0.179 0.112 0.315 290 

0.8 0.962 0.150 0.806 0.180 0.114 0.318 295 
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Abstract: Performance modeling of hospitals using data envelopment analysis (DEA) has received 

steadily increasing attention in the literature. As part of the traditional DEA framework, hospitals are 

generally assumed to be functionally similar and therefore homogenous. Accordingly, any identified 

inefficiency is supposedly due to the inefficient use of inputs to produce outputs. However, the 

disparities in DEA efficiency scores may be a result of the inherent heterogeneity of hospitals. 

Additionally, traditional DEA models lack predictive capabilities despite having been frequently 

used as a benchmarking tool in the literature. To address these concerns, this study proposes a 

framework for analyzing hospital performance by combining two complementary modeling 

approaches. Specifically, we employ a self-organizing map artificial neural network (SOM-ANN) to 

conduct a cluster analysis and a multilayer perceptron ANN (MLP-ANN) to perform a heterogeneity 

analysis and a best practice analysis. The applicability of the integrated framework is empirically 

shown by an implementation to a large dataset containing more than 1,100 hospitals in Germany. 

The framework enables a decision-maker not only to predict the best performance but also to explore 

whether the differences in relative efficiency scores are ascribable to the heterogeneity of hospitals. 

Keywords: Cluster Analysis; Data Envelopment Analysis; Hospital Efficiency Analysis; Artificial 

Neural Networks; Heterogeneity Analysis 
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1 Introduction 

The Federal Statistical Office1 of Germany reports that the costs of inpatient hospital care amounted to 

around 91.3 billion euros in 2017, 3.9% higher than in 2016 (87.8 billion euros). Health care costs are 

driven primarily by hospitals around the world. Because of this, hospitals must constantly monitor and 

improve their efficiency. Data Envelopment Analysis (DEA) is one of the most effective tools for 

measuring efficiency, and it is widely used to evaluate the efficiency of decision-making units (DMUs). 

Nowadays, the use of DEA is rapidly expanding and its usage for hospital efficiency measurement is 

widely accepted (Kohl et al. 2019). In particular, basic DEA models have two major issues including 

restrictions by some fundamental assumptions such as homogeneity of DMUs in the dataset (Dyson et 

al. 2001; Brown 2006) as well as lack of predictive capabilities while they are frequently used as a 

benchmarking tool. In the following, we introduce these two issues and then explain the main aims of 

our study. 

Homogeneity. In the DEA context, homogeneity of a set of DMUs means that all DMUs operate 

in the same environment and pursue the same target with the same processes. Although significant 

research has been conducted on the heterogeneity of DMUs, many studies utilize the homogeneity 

assumption as pointed out by Haas and Murphy (2003) and Wojcik et al. (2019). The applicability of 

the homogeneity assumption in a sample is usually based on the implicit knowledge of investigators 

conducting DEA (Dyson et al. 2001). As elucidated by Samoilenko and Osei-Bryson (2010), two factors 

are important to assume the homogeneity of DMUs in DEA models. The first one that is known as 

semantic homogeneity brings up the common sense and logic concerned with the meaning assigned to 

all DMUs in the sample by decision-makers. The second factor is scale homogeneity, where the 

decision-maker must ensure that the functional similarity of DMUs would not be affected by the input 

and output levels. Paying no attention to either of these assumptions can heavily influence the results 

of a DEA application (Dyson et al. 2001). The differences may stem from the type of ownership, the 

hospital size, and the differences in political and legal environments where the hospitals operate. In the 

production process, environmental variables are not considered to be traditional inputs and are assumed 

to be out of the mana ers’ control. The  ebate about the best ways to incor orate these variables into 

DEA is still ongoing. Even assuming that the complete consideration of all influential environmental 

variables is possible, this will cause a lower level of discrimination because of the resulting substantial 

increase in the number of inputs and outputs (Dyson et al. 2001; Samoilenko and Osei-Bryson 2010).  

The impact of the hospital environment can be modeled implicitly by grouping similar DMUs 

to their transformation capacity (or technology) together. This requires a technique that uncovers 

categories in the large and multidimensional dataset of DMUs. Incorporating environmental variables 

in DEA studies has traditionally relied on the two-stage model (Cooper et al. 2011). This approach 

 
1 Press Release No. 435 as of November 12, 2018 
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employs the traditional inputs and outputs in the first stage to compute DEA efficiency scores, which 

are then regressed against the environmental variables (Simar and Wilson 2007). Since both ends of the 

0 − 1 distribution are restricted, it is often appropriate to use a censored regression model (such as 

Tobit) for these data. DEA estimates are corrected for environmental effects using regression 

coefficients. As a result, all efficiency scores will be aligned with the same environment, say the sample 

mean. However, there is a flaw in this approach. In classical regression, variables are assumed to be 

independent and identically distributed. According to Simar and Wilson (2007), the DEA efficiency 

scores considered as the dependent variable in the regression analysis are serially correlated. Therefore, 

conclusions from the results of this type of study should be drawn with caution. Rather, the method can 

be regarded as exploratory, indicating which environmental variables are most influential in 

performance. Another acknowledged approach (Brown 2006; Dyson et al. 2001) to address this issue 

is to cluster the DMUs into homogenous sets according to some similarities in their environment. Using 

cluster analysis, we can identify homogeneity between different clusters based on their similarity.  

To illustrate how clustering may improve efficiency estimates, consider a sample of 6 DMUs 

that use an input to generate one output, as shown in Figure 1. DEA benchmarks actual DMU behavior 

against a set of best practice frontiers. These frontiers create the production possibility set (PPS). As a 

measure of overall performance, the distance from the DMUs to the frontier is calculated. Best practices, 

therefore, play a prominent role in calculating the efficiency score. Figure 1 below shows the differences 

between three different PPSs. As we perform a DEA to measure the efficiency of all six DMUs together, 

DMUs 𝐴1 and 𝐴2 create the efficient frontier. The PPS consists of the area enclosed by this efficient 

frontier line, plus the horizontal line that extends down from 𝐴1 and the vertical line that extends right 

from 𝐴2. The four DMUs 𝐵1, 𝐶1, 𝐵2, and 𝐶2 are identified by the DEA as inefficient, and their 

efficiency can be evaluated by referring to the frontier lines. The efficiency of 𝐵1, for example, within 

this PPS is evaluated by 𝑂𝐵1′̅̅ ̅̅ ̅̅ ̅ 𝑂𝐵1̅̅ ̅̅ ̅̅⁄ = 0.73. This unit is inefficient since it underperforms compared 

to the set of efficient DMUs: {𝐴1, 𝐴2}. It is referred to as the reference set or peer group of the DMU 

𝐵1. Nevertheless, when we implement clustering before running the DEA, two distinct clusters are 

detected: cluster 1 (vertical stripes area) includes 𝐴1, 𝐵1, and 𝐶1, and cluster 2 (horizontal stripes area) 

includes 𝐴2, 𝐵2, and 𝐶2. In cluster 1, the efficient frontier is formed by 𝐴1 and 𝐵1, the DMU that was 

previously shown to be inefficient. 𝐶2, the DMU that was previously indicated as inefficient, now forms 

the efficient frontier of cluster 2 together with 𝐴2. This example illustrates how the clustering can 

contribute to the estimation of efficiency behind identifying similar DMUs forming the PPS. Clustering 

may be a useful approach for determining homogeneity and heterogeneity in data sets. To help identify 

homogenous groups, clustering techniques maximize homogeneity within a group and heterogeneity 

between groups. Therefore, the resulting inefficiency scores will not be influenced by, e.g., economies 

of scale. 
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DMU 𝑷𝑷𝑺{𝑨𝟏,𝑨𝟐} 𝑷𝑷𝑺{𝑨𝟏,𝑩𝟏} 𝑷𝑷𝑺{𝑪𝟐,𝑨𝟐} 

A1 Efficient Efficient – 

B1 
𝑂𝐵1′̅̅ ̅̅ ̅̅ ̅

𝑂𝐵1̅̅ ̅̅ ̅̅
= 0.73 Efficient – 

C1 
𝑂𝐶1′̅̅ ̅̅ ̅̅ ̅

𝑂𝐶1̅̅ ̅̅ ̅̅
= 0.80 

𝑂𝐶1′̅̅ ̅̅ ̅̅ ̅

𝑂𝐶1̅̅ ̅̅ ̅̅
= 0.80 – 

A2 Efficient – Efficient 

B2 
𝑂𝐵2′̅̅ ̅̅ ̅̅ ̅

𝑂𝐵2̅̅ ̅̅ ̅̅
= 0.78 – 

𝑂𝐵2′′̅̅ ̅̅ ̅̅ ̅̅

𝑂𝐵2̅̅ ̅̅ ̅̅
= 0.82 

C2 
𝑂𝐶2′̅̅ ̅̅ ̅̅ ̅

𝑂𝐶2̅̅ ̅̅ ̅̅
= 0.93 – Efficient 

 

Figure 1. Contribution of clustering to measuring efficiency 

Traditional DEA models can present several traps for the unwary because of the issue of 

homogeneity. By analyzing the transformative capacity of hospitals, this study aims to examine the 

source of differences in the inefficiency of hospitals. 

Predictive capabilities. When managers of inefficient hospitals receive the results of a DEA, 

they usually have subsequent requests, including the possibility of keeping a watchful eye on progress 

by analyzing what-if scenarios during operational phases and setting target performance levels. 

Therefore, hospitals must be capable of setting up actionable targets that are specific and measurable. 

Additionally, analyzing hypothetical scenarios via an adaptive estimation capability can be a valuable 

addition to assist managers in the monitoring process during the operational phase of change. Although 

there have been successful models to measure the comparative efficiency of competing units, little 

attention has been given to including predictability in the performance measurement framework (Kohl 

et al. 2019). As a second objective, this study explores what level of improvement is needed to see an 

inefficient hospital become efficient by approximating the efficient frontiers of each cluster and 

predicting the best performance of each inefficient hospital within its cluster (compared to its leader). 

Additionally, it facilitates the controlling process during implementation by adding value to if-then 

scenarios. 

2 Literature Review and Contribution 

This section reviews the literature relevant to DEA models, neural networks in DEA, clustering in DEA, 

and the hypothesis tests developed for comparing two groups of DMUs. This section also summarizes 

our contribution to the literature. 
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Model Selection. The basic DEA model introduced by Charnes, Cooper, and Rhodes, known 

as CCR, evaluates the relative efficiency of a set of DMUs (Charnes et al. 1978). Using a variable 

return-to-scale (VRS) setting, Banker et al. (1984) advance the CCR model. This model is called the 

BCC model. As radial models, CCR and BCC deal with proportional changes in outputs or inputs. 

Using these models, the efficiency score is the proportional maximum output (or input) expansion (or 

reduction) ratio common to all outputs (or inputs) (Tone 2017, 2001). The assumption that these factors 

will behave proportionally is too restrictive in real-world situations. A further limitation of radial 

models is ignoring slacks in calculating efficiency scores. Non-radial Slacks-Based Measure (SBM) 

models have been developed to address these restrictions. SBM DEA models do away with the 

proportional change assumption and deal directly with slacks. The DEA model has been recognized to 

be a powerful tool for performance analysis and benchmarking, spanning a wide range of industries and 

functional areas, including healthcare (Kohl et al. 2019; Almeida Botega et al. 2020; Araújo et al. 2014). 

In a recent study on the German hospital market, Schneider et al. (2020) investigate hospital urgency 

scores (noting the average level of medical urgency in all cases treated at a hospital) are compared to 

technical efficiency. They use the data of 1,428 hospitals throughout Germany for the years 2015, 2016, 

and 2017. Simar and Wilson (1998) promote bootstrapping as a resampling method for DEA, which 

has become one of the most commonly used methods in hospital DEA applications (Kohl et al. 2019). 

There are two main reasons why it is relevant to DEA. DEA estimates tend to be positively biased 

(Nedelea and Fannin 2013; Mitropoulos et al. 2014) because the estimated production frontier is 

determined by the units included in the sample. A DMU does not use every input/output combination 

that is theoretically possible. Hence, the estimated frontier of efficient DMUs is typically too low, even 

if efficient DMUs are not missing for other reasons (Simar and Wilson 2004). DEA, therefore, assigns 

efficiency scores that are biased upward because the DMUs are assumed to be closer to the production 

frontier than they actually are. This upward bias can be corrected via the bootstrapping procedure by 

creating significance intervals for the efficiency estimates. Our study uses an input-oriented SBM DEA 

model, in contrast to previous studies (Kwon 2017; Samoilenko and Osei-Bryson 2010, 2008; Omrani 

et al. 2018), which mostly utilized radial models. We conduct a statistical analysis to determine whether 

the SBM estimates are significantly biased upward in comparison to the bootstrapped DEA model.  

DEA and Machine Learning. Few studies have attempted to reinforce DEA models with 

machine learning such as artificial neural networks (ANNs) for hospital performance evaluation despite 

the established effectiveness of these approaches (Kohl et al. 2019). Generally, incorporating ANNs 

with DEA can be categorized into two distinct research streams. The first consists of studies comparing 

DEA to ANN as an alternative way of assessing efficiency (Athanassopoulos and Curram 1996; Santín 

et al. 2004). According to the second stream of research, ANN can be used as a complement to DEA to 

gain potential advantages. Clustering is one of the machine learning methods used in the literature for 

subdividing a dataset of DMUs into subsets (clusters) according to how similar the observations are 
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within each cluster. Several algorithms have been developed in the literature for conducting clustering 

(Saxena et al. 2017). Among these techniques, three general approaches comprising hierarchical, two-

step, and partitional clustering have been used as complements to DEA to handle the scale heterogeneity 

of samples in the dataset (Mahmoudi et al. 2019; Omrani et al. 2018; Samoilenko and Osei-Bryson 

2010). The application of clustering in the literature can be divided into two approaches. One approach 

is applying clustering to the results of a DEA to facilitate creating multiple reference subdivisions from 

the original set of DMUs (Bojnec and Latruffe 2008). Second, each DMU is compared with only a 

subset of its reference set. In the presence of dataset heterogeneity, we can use this approach to isolate 

the multiple homogenous subsets (Herrera-Restrepo et al. 2016; Samoilenko and Osei-Bryson 2010). 

In clustering, it is also important to specify the appropriate number of clusters. The quality of partition 

and cluster validity has been assessed by several authors using different indices (Rocci and Vichi 2008). 

The  aliński-Harabasz index (CH-index), the Silhouettes, and the Davies-Bouldin criteria were found 

to be acceptable in a study of clustering conducted by Łukasik et al. (2016). In the literature, details 

regarding these two criteria and how they are calculated can be found, for example, in Ünlü and 

Xanthopoulos (2019).  

Efficiency Comparison. This study advances the benchmarking paradigm suggested by 

Samoilenko and Osei-Bryson (2010), which is an extension of Samoilenko and Osei-Bryson (2008), by 

successfully integrating the clustering and ANN prediction models into an SBM DEA. In Samoilenko 

and Osei-Bryson (2010), the averages of the relative efficiencies of clusters are used to analyze 

heterogeneity. A cluster that has a higher average efficiency is referred to as a leader, and a cluster with 

a lower average efficiency is referred to as a follower. Their method is imprecise because they compare 

DEA estimates using the mean value of the efficiency scores without considering the distribution of the 

estimates. The mean value becomes an inappropriate measure when the frequency distribution of the 

efficiency scores is skewed (Weisberg 1992). Several studies have been conducted where DEA 

estimation distributions between two groups of DMUs are compared by developing both parametric 

and non-parametric statistical tests. Banker et al. (2010) develop two sets of parametric and three non-

parametric tests. The idea of comparing two groups of DMUs is combined with a heterogeneity analysis 

in our study. Additionally, we apply our framework to a setting with more than one pair consisting of 

one leader and one follower. 

Our contribution proposes an analytical framework consisting of three stages. We design SOM-

ANN for clustering, followed by an SBM DEA model that calculates the relative efficiency of the 

clustered hospitals. We develop two MLP-ANNs to generate: (i) the transformative capacity model 

(TCM) to analyze the homogeneity, and (ii) the best practice model (BPM) to predict the level of 

improvement desired, to achieve efficient operation. The rest of the paper follows this structure. In 

Section 3, we describe the research methodology and the multi-stage analytical framework combining 

SOM-ANN, SBM DEA, and MLP-ANN. The dataset of German hospitals used to demonstrate the 



Appendix II. Homogeneity and Best Practice Analyses in Hospital Performance Management 

60 

 

framework’s a  licability is  resente  in  ection  . The results of the im lementation of the framework 

are presented in Section 5. Section 6 concludes with a discussion of future research directions and 

conclusions. 

3 Methodology 

In this section, we describe our proposed framework (see Figure 2). The framework contains three main 

stages: 1) Clustering using SOM-ANN, 2) efficiency analysis, and 3) heterogeneity and predictability 

analyses. Each stage is described in detail in the following subsections. 

3.1 Stage 1: Cluster Analysis 

We use an SOM-ANN architecture because SOMs are non-linear techniques that can summarize and 

analyze numerous aspects of variability in a complex, large, multivariate, multi-dimensional dataset 

(Hudson et al. 2011). In contrast to more traditional clustering methods (such as K-means), SOM-ANN, 

without imposing a structure on the input/output variables, identifies natural groupings by producing a 

succinct organization based on similarities among the transformation capacity. As network optimization 

remains a challenging task, SOM-ANN settings such as initial neighborhood size, topology, and 

distance functions have been determined by trial and error (Emrouznejad and Shale 2009; Kwon 2017). 

We also stu y alternative clusterin  a  roaches that are base  on the hos itals’ natural characteristics: 

their size (number of beds) and ownership type. The size-related clusters are: small (𝑏𝑒𝑑𝑠 < 500), 

medium (500 ≤ 𝑏𝑒𝑑𝑠 < 1,000), and large (𝑏𝑒𝑑𝑠 > 1,000), while the ownership type clusters are: 

public, non-profit, and private. This allows us to determine whether natural clustering produces high-

quality clusters for hospitals and, consequently, ensures homogeneity within those clusters by 

comparing the quality indicators calculated for SOM clustering and natural clustering. The function 

developed for our clustering approach in Python 3.8 is presented in Appendix A. 

 

Figure 2. Proposed analytical framework 
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3.2 Stage 2: Efficiency Analysis 

We run the input-oriented SBM DEA model under VRS settings to calculate the efficiency score of 

each hospital in each cluster. The mathematical formulation is presented in Appendix B. We also 

provide details regarding how to calculate the projections based on the slacks determined by the SBM 

DEA model. In DEA applications, the orientation is chosen based on which parameters managers have 

more control over (Cooper et al. 2004). While marketers, referral sources, and other methods such as 

reputation management, can sometimes generate additional patients for hospitals (Ozcan 2014), we use 

an input orientation under the assumption that hospital managers can more readily control the resources 

used for patient treatments. Thus, we are interested in the amount by which the resources/inputs (e.g., 

staff) can be reduced proportionately without reducing the number of treated patients. The downside of 

using an input-oriented model is the limited applicability when demand for care is higher than the 

supplied capacity. While this situation may occur for specific treatment types such as chemotherapy or 

respiratory assistance temporarily, the German healthcare system is set up to continuously assess long-

term capacity requirement projections and to react to demand changes with di-/investments into 

treatment capacities on a state level, so that supply and demand are balanced in the long run.  

Furthermore, to determine whether SBM DEA estimates are biased upward or not, we perform 

a statistical test analysis (explained in the following subsection) between the SBM DEA estimates and 

bootstrapped DEA estimates produced by implementing the algorithm developed in Daraio and Simar 

(2007) with the conduct of 200 bootstrap iterations. For brevity, we will not repeat the steps of the 

algorithm here, however, the reader may refer to Daraio and Simar (2007) for more details. 

3.2.1 Efficiency Comparison of Two Groups of Hospitals 

A DEA estimator of the production frontier is a fully-fledged statistical methodology (Banker 1993) by 

which we can construct a variety of statistical tests based on efficiency scores represented as stochastic 

variables. Appendix C describes the comparison algorithm in detail. After indicating the existence of a 

statistical difference between 𝐺1 and 𝐺2, we reperform the appropriate tests under the one-tailed null 

hypothesis to indicate whether the efficiency of 𝐺1 is greater than 𝐺2 or vice versa. Throughout the 

study, all hypothesis tests are performed with a significance level of 5%. Following this procedure, we 

label the leader and follower in each pair of hospitals. 

3.3 Stage 3: Heterogeneity and Best Practice Analyses 

In this stage, two MLP-ANN architectures are designed in two different ways, which are explained in 

detail in the following subsections. The first architecture supports the scale heterogeneity analysis and 

the second one is used to predict the actual output level necessary for an inefficient hospital to be 

efficient. The MLP-ANN maps complex unknown relationships in the dataset because (i) MLP-ANNs 

have a stochastic learning process, which minimizes the chance of being trapped in local minima, and 
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(ii) there is no necessity to specify and know the relationships within the dataset. This architecture, the 

multilayer feedforward network, is mostly used with the backpropagation algorithm.  

3.3.1 Heterogeneity Analysis 

A model of transformative capacity for each cluster is generated by creating and training an MLP-ANN. 

Here, it is proposed that score estimates obtained from DEA can be indirectly employed to investigate 

the factors influencing relative efficiency scores (Hoff 2007; Samoilenko and Osei-Bryson 2010). The 

DEA efficiency score calculation, however, is hampered by the unavoidable misspecification of the 

model when determining which inputs are converted into which outputs. Therefore, the decision-maker 

needs to know the correct transformation function of inputs into the outputs used for conducting the 

modeling of these estimated scores by DEA. We generate and analyze the transformative capacity 

model for cluster 𝑘 denoted by 𝑇𝐶𝑀𝑘. For each cluster, the designed MLP-ANN is trained using the 

set of input variables (number of beds, physicians, and nurses) as input nodes and the set of output 

variables (number of adjusted inpatients, outpatients, and surgeries) as output nodes. This is analogous 

to the way that input data can be transformed into outputs by a given cluster. Then, we investigate for 

any leader-follower-pair whether the relative efficiency score of the follower improves when comparing 

the efficiency score distribution of the follower, using the simulated outputs of the follower employing 

𝑇𝐶𝑀𝑘 of its leader 𝑘. When the efficiency score of the follower improves, there is a reason to 

recommend that the disparity between the original efficiencies of the leading and following clusters is 

partly due to the differences in transformative capacity. To analyze the scale heterogeneity (scalability), 

we use the original inputs and outputs of the follower and the initial inputs and simulated outputs of its 

leader obtained from the 𝑇𝐶𝑀𝑘 (follower 𝑘) for any leader-follower pairs. If the efficiency of the leader 

is still higher than the follower, then we can say that scale heterogeneity plays a part in explaining the 

disparity between the relative efficiencies of the leading and following cluster. In other words, even 

with the less efficient process of the transformative capacity (i.e., 𝑇𝐶𝑀𝑘, follower 𝑘), the leader remains 

relatively more effective. Visual description is given in Stage 3 of the framework presented in Figure 1 

as “ roce ure 1: Hetero eneity Analysis.” 

3.3.2 Best Practice Analysis 

The second MLP-ANN architecture is designed to deliver improved estimation precision due to its 

pattern mapping and learning capabilities as a complementary method to DEA. The objective of this 

analysis is to investigate the predictive capabilities of ANN when used alongside DEA. To this end, the 

MLP-ANN architecture is trained based on inputs and outputs of the hospitals in each cluster as the 

input layer and their SBM DEA efficiency scores (see Stage 2 in Figure 1) as the target nodes. Managers 

can benefit from this analysis in two different ways. First, in a capital-intensive and competitive 

environment such as in the hospital setting, the ability to estimate input/output levels beyond the 
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calculated relative efficiency scores is essential for performance benchmarking in real-world 

applications (Ozcan 2014). Therefore, the first way this analysis can be used by decision-makers is to 

estimate the efficiency level that can be reached by using a given level of inputs to produce a given 

level of outputs. Second, the analysis allows managers to set stepwise improvement goals by utilizing 

what-if scenarios for each inefficient hospital to become an efficient unit, not only in its cluster but also 

in other clusters without requiring a new DEA. For example, we conduct further experiments to 

investigate the potential of the proposed framework based on the leader-follower strategy. While DEA 

has powerful optimization capabilities and a wide range of applications, it has restrictions when working 

with new or unobserved data sets. If a new DMU is added to a sample and the DEA model is rerun, the 

results might be completely different as this new DMU might alter the PPS. Hence, the second way this 

analysis helps managers is to calculate the relative efficiency score of a new or hypothetical hospital by 

using BPMs trained to learn efficiency patterns existing in the market. This provides managers with 

alternative paths leading toward best practices, which typically occur at the planning stage and before 

implementation. Visual description is also given in Stage 3 of the framework presented in Figure 1 as 

“ roce ure  :  est  ractice Analysis.” 

4 Data Set and Descriptive Statistics 

The proposed framework in this study is examined in the context of a large dataset of hospitals recorded 

by the Federal Joint Committee2 in Germany in 2017. The raw dataset includes all the hospital quality 

reports of the reporting year 2017. In this study, the information on standard input and output variables 

for performance assessment of hospitals (Kohl et al. 2019; Tone 2017) was extracted from these reports. 

Appendix D provides more details about the data sources and a flowchart of the steps involved in data 

preprocessing. The processed dataset includes 1,124 hospitals. 

 Kohl et al. (2019) provide some insights into standard input/output settings in their review of 

hospital DEA studies. Their report indicates that the parameters most used in hospital DEA applications 

are beds, nurses, physicians, inpatients, and outpatients. These measures are suitable for describing the 

service process of a hospital as stated by Ozcan (2014). A hos ital’s ca acity can be measure  by the 

number of be s it has.  hysicians an  nurses  lay the main role in the hos ital’s service  rocess. 

Therefore, the input factors can be considered as beds (Beds), nurses (Nurses), and physicians 

(Physicians). In our sample, we use full-time equivalents (FTE) of physicians and nurses. As for the 

outputs, we use the most common output variables used in the literature (Kohl et al. 2019): the number 

of a  uste  in atients (A  uste  In atients) an  the number of out atients ( ut atients).  atients’ 

conditions need to be considered when evaluating inpatient cases, as not every patient requires the same 

level of care. Following a prior study on efficiency measuring of the German hospital market (Schneider 

et al. 2020), we apply the case-mix adjustment based on the relative length of stay for groups of hospital 

 
2 In German: Gemeinsamer Bundesausschuss. https://www.g-ba.de/  

https://www.g-ba.de/


Appendix II. Homogeneity and Best Practice Analyses in Hospital Performance Management 

64 

 

diagnoses (according to the International Classification of Diseases Tenth Revision [ICD-10] codes) as 

suggested by Herr (2008). The German Federal Statistical Office3 publishes hospital statistics on 

average lengths of stay for each diagnosis group. In addition to these outputs, we consider the number 

of surgeries based on OPS-54 codes (Surgeries). This output plays a major role in generating net revenue 

for hospitals. Table 1 represents some descriptive statistics regarding the inputs and outputs of the 

hospitals in our dataset. 

5 Results and Discussion 

This section presents the key experimental results of each stage of the proposed framework. We 

interpret and explain how far these results support the hypothesis and answer the research questions. 

Table 1. Descriptive statistics of inputs and outputs of dataset (after preprocessing) 

Statistic Beds Physicians Nurses Adjusted Inpatients Outpatients Surgeries 

Mean 386.1 131.7 295.2 20,051.6 39,713.2 16,991.7 

Standard Error 10.2 5.0 9.5 634.5 2,486.7 606.6 

Median 283.0 79.7 199.6 12,262.1 20,780.0 9,795.5 

StD 340.5 168.2 318.3 21,253.4 83,368.1 20,335.6 

Kurtosis 9.8 28.3 20.7 15.6 137.6 11.9 

Skewness 2.5 4.3 3.6 3.0 9.7 2.8 

Minimum 50.0 6.0 11.0 628.8 11.0 1.0 

Maximum 3,011.0 2,066.7 3,695.7 204,827.6 1,568,896.0 178,580.0 

Sum 434,023.0 147,983.0 331,815.8 22,497,902.8 44,637,688.0 19,098,719.0 

Confidence Level (95.0%) 19.9 9.8 18.6 1,244.9 4,879.0 1,190.1 

*Including all types of physicians such as specialist, non-specialist, and external in full-time equivalent (FTE) unit. 

**Including all types of nurses such as pediatric, geriatric, auxiliary, and general in the FTE unit. 

5.1 Results of Cluster Analysis 

For the optimal number of clusters, we create a list of 54 distinct two-dimensional hexagonal layer 

topologies. We then run the SOM-ANN for each topology of this list to generate clustering vectors. For 

each clustering vector, three quality criteria are calculated: CH-index, Silhouettes, and Davies-Bouldin 

(see Appendix E). We then calculate the quality indicators for the clusters resulting from the size and 

ownership. The results are presented in Table 2. When compared to the best SOM clustering, size 

(small: 𝑏𝑒𝑑𝑠 < 500, medium: 500 ≤ 𝑏𝑒𝑑𝑠 < 1,000, and large: 𝑏𝑒𝑑𝑠 > 1,000) and the ownership 

(public, non-profit, and private.) of hospitals provide low-quality clusters. Interestingly, clustering 

based on ownership is ineffective when identifying homogeneity within a group of hospitals and 

heterogeneity across groups, yet this approach is adopted often in DEA hospital applications with 

multiple stages (Ozcan 2014; Jacobs et al. 2006; Herr 2008). In identifying homogenous groups, size 

(number of beds) clustering performs better than ownership; however, they are both outperformed by 

 
3 https://www.destatis.de/ 
4 Chapter 5 of OPS (Operationen- und Prozedurenschlüssel) which is the German modification of the International Classification of Procedures 

in Medicine. 
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SOM. By using SOM-ANN, we have three clusters and can calculate the efficiency scores of hospitals 

in each cluster. 

Table 2. Results of comparing the clustering approaches 

Clustering Approach No. of hospitals CH-index* Silhouette** Davies-Bouldin*** 

Size Small: 853 Medium: 201 Large: 70 647.35 0.48 1.08 

Ownership Non-profit: 450 Private: 238 Public: 436 25.77 -0.11 7.59 

SOM Cluster 1: 186 Cluster 2: 249 Cluster 3: 689 874.54 0.57 0.76 

* A high score is achieved when clusters are dense and well separated. 

** The score ranges from −1 for incorrect clustering to +1 for dense and well-separated clustering. 

*** A value closer to zero indicates a better partition. 

5.2 Results of Efficiency Analysis 

We calculate the efficiency of each hospital and the projections calculated for each hospital using an 

input-oriented SBM DEA under the VRS setting. SBM DEA estimates (𝐺𝑆𝐵𝑀) are compared to 

bootstrapped DEA estimates (𝐺𝐵𝑇) produced by the implementation of the algorithm developed by 

Daraio and Simar (2007) to determine if they are biased upward. Table 3 presents the results of the 

comparison. In all three clusters, efficiency scores are skewed. They follow neither an exponential nor 

a half-normal distribution. 

Table 3. Comparison of bootstrapped DEA and SBM estimates 

Cluster Mean 
(Bootstrapped DEA, 

SBM) 

StD 

(Bootstrapped DEA, 

SBM) 

Median 

(Bootstrapped DEA, 

SBM) 

p-value 

(𝑯𝟎: 𝑮𝑺𝑩𝑴 = 𝑮𝑩𝑻; 𝑯𝟏: 𝑮𝑺𝑩𝑴 ≠ 𝑮𝑩𝑻) 

1 (0.8078, 0.8300) (0.1066, 0.1364) (0.8259, 0.8465) 0.5540 

2 (0.6439, 0.6862) (0.1295, 0.1760) (0.6469, 0.6575) 0.5650 

3 (0.6797, 0.6891) (0.1259, 0.1716) (0.6808, 0.6610) 0.5332 

Mann–Whitney tests reveal that the distribution underlying input-oriented SBM estimates is 

not significantly different from the distribution underlying bootstrapped DEA estimates. The p-values 

indicate that the null hypothesis should be retained. We then continue our analysis using the input-

oriented SBM DEA model. Table 4 summarizes the results of the relative efficiency scores calculated 

for the clusters and all hospitals. As a result of clustering, both the mean and median efficiency scores 

as well as the number of efficient hospitals increase. Table 5 shows that the amounts by which inputs 

need to be reduced proportionately (while keeping the outputs constant) are significantly diminished 

after applying cluster analysis. For example, the number of beds that hospitals need to reduce, on 

average, to become efficient before clustering is 60% higher than after clustering. Clustering all 

hospitals in one group may conceivably distort the results since an important assumption of DEA is that 

all DMUs are homogenous.  
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Table 4. Descriptive statistics of efficiency scores before and after clustering 

Statistics Cluster 1 Cluster 2 Cluster 3 

Before clustering After clustering Before clustering After clustering Before clustering After clustering 

Mean 0.7135 0.8300 0.6034 0.6862 0.5964 0.6891 

Standard Error 0.0124 0.0100 0.0108 0.0112 0.0071 0.0065 

Median 0.6898 0.8465 0.5905 0.6575 0.5633 0.6610 

StD 0.1688 0.1364 0.1706 0.1760 0.1865 0.1716 

Kurtosis -0.1618 0.0765 0.4956 -0.5742 0.0077 -0.4841 

Skewness -0.0005 -0.5851 0.4991 0.3601 0.7116 0.3184 

Minimum 0.2202 0.3352 0.2161 0.2973 0.1959 0.2516 

Maximum 1.0 1.0 1.0 1.0 1.0 1.0 

Efficient DMUs 20 39 9 34 41 84 

Table 5. Descriptive statistics of input excesses before and after clustering  

Statistics Beds Physicians Nurses 

Before clustering After clustering Before clustering After clustering Before clustering After clustering 

Mean 155.92 96.32 50.94 36.98 115.83 90.68 

Standard Error 4.45 3.81 1.73 1.65 3.21 3.05 

Median 120.25 57.30 34.66 20.42 85.34 63.91 

Mode 0.00 0.00 0.00 0.00 0.00 0.00 

StD 149.02 127.60 57.97 55.37 107.75 102.09 

Kurtosis 28.48 48.18 15.45 21.59 12.93 17.23 

Skewness 3.50 4.66 3.19 3.92 2.74 3.17 

Maximum  2,062.56   1,982.96   568.81   559.61   1,169.14   1,165.43  

Sum  175,254.98   108,266.58   57,253.24   41,565.68   130,189.20   101,929.65  

5.3 Results of Heterogeneity and Best Practice Analyses 

This section presents the results of the last stage of the proposed framework. First, the simulated output 

sets for each cluster are generated based on the TCMs created by MLP-ANN. The first procedure of 

Stage 3 is focused on determining: (i) whether the relative efficiency score of hospitals in a certain 

cluster improves if we consider the TCM of other clusters, and (ii) identifying the differences that are 

partially due to scale heterogeneity. The second part of the analysis aims at exploiting the non-linear 

mapping capabilities of MLP-ANN by using the input and output data of each cluster as input nodes 

(input layer) and assigning their efficiency scores received from DEA-SBM as target nodes (output 

layer). We develop both MLP-ANNs using an end-to-end open-source platform called TensorFlow in 

Python 3.8. We set the mean absolute percentage error (MAPE) as the performance measure due to its 

scale independence, interpretability, and simplicity. For training, validation, and testing, we use a 

random data division function. The trainin  function u  ates wei ht an  bias values base  on “A am”, 

a stochastic optimization method developed by Kingma and Ba (2014). More details regarding the 

parameters of the developed MLP-ANNs are provided in Appendix F. 

5.3.1 Results of Heterogeneity Analysis 

For each cluster, we design an MLP-ANN to create a TCM (𝑇𝐶𝑀𝑘, ∀𝑘 ∈ {1,2,3}). Using the TCMs of 

the other two clusters, we simulate the output values of adjusted inpatients, outpatients, and surgeries 

for each cluster. For example, in the case of Cluster 1, we import the actual inputs (Beds, Physician, 

and Nurses) of this cluster to the TCMs generated for Cluster 2 (𝑇𝐶𝑀2) and Cluster 3 (𝑇𝐶𝑀3) to 
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generate two simulated output sets for Cluster 1. The simulated outputs are then substituted for the 

actual outputs of Cluster 1, and the new relative efficiency scores are calculated. As a result, we have 

three sets of efficiency scores for Cluster 1 based on three sets of outputs: the original outputs, simulated 

out uts usin  T  ’s  luster   (𝑇𝐶𝑀2), an  simulate  out uts usin  T  ’s  luster   (𝑇𝐶𝑀3). 

𝐶𝑘
𝑇𝐶𝑀

𝑘′ , ∀𝑘, 𝑘′ ∈ {1,2,3} 𝑎𝑛𝑑 𝑘 ≠ 𝑘′ represents the set of relative efficiency scores calculated based on 

actual inputs of Cluster 𝑘 and the simulated outputs obtained from 𝑇𝐶𝑀𝑘′ . The MAPE values calculated 

for each TCM are presented in Table 6. Surgeries show the highest MAPE value among the outputs, 

likely because its variance is higher than that of other outputs across all three clusters. 

Table 6. Best settings of the designed MLP-ANNs for simulating outputs 

Transformative capacity model Layers Train:Test:Validation Ratio MAPE of the test dataset 

Adjusted Inpatients Outpatient Surgeries 

𝑇𝐶𝑀1  [20, 10, 10] 75:20:5 15% 16% 24% 

𝑇𝐶𝑀2  [20, 10, 10] 80:15:5 7% 10% 14% 

𝑇𝐶𝑀3  [20, 10, 10] 80:15:5 6% 6% 11% 

We must first define the leader-follower relationship for all cluster pairs by comparing the 

efficiency of two groups of hospitals. The efficiency scores of all clusters are skewed, as shown in Table 

4. Following that, according to the algorithm developed for comparing efficiencies, we check whether 

the efficiency is distributed exponentially or half-normally for each pair of hospitals (𝐺1 and 𝐺2). Based 

on the Q-Q (Quantile-Quantile) plots of all clusters, they do not appear to have come from populations 

with an exponential or half-normal distribution. Therefore, we conduct the Mann–Whitney test to 

determine if one hospital cluster is stochastically more efficient than the other, i.e., determining the 

leader and the follower of the pair. Table 7 shows the results of comparing the distribution of efficiency 

scores of all clusters, including their leader and/or follower. There is no significant difference in 

efficiencies underlying Clusters 2 and 3. Therefore, in this pair, no leader (or follower) can be identified. 

However, if we only compare the mean efficiency scores (see Table 4) and determine the leader solely 

based on them, Cluster 3 emerges as the leader. In this regard, comparing the efficiency of two groups 

of hospitals only based on mean values could lead to the wrong detection of leaders. Based on the Q-Q 

plots of the simulated outputs, the new efficiency score sets are neither exponentially nor half-normally 

distributed. Therefore, we compare efficiency scores using the Mann–Whitney test (see Table 7). 

Transformative capacity. We utilize the actual inputs and the simulated outputs of the follower 

using 𝑇𝐶𝑀 of its leader and compare the resulting efficiency scores with the original efficiency of the 

follower. Consider the results reported in Table 8 for Clusters 1 and 2 as one instance. Cluster 1 is the 

leader of Cluster 2. The results indicate that the efficiency of Cluster 2 as a follower, based on its actual 

inputs and the 𝑇𝐶𝑀1 outputs (𝐶2
𝑇𝐶𝑀1), has increased compared with its initial efficiency score, i.e., 𝐶2 <

𝐶2
𝑇𝐶𝑀1. This means that the difference between the relative efficiencies of Cluster 1 (leader) and Cluster 

2 (follower) is caused by the disparities in their transformative capacities. However, this conclusion is 
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not valid for Cluster 3 (𝐶3 > 𝐶3
𝑇𝐶𝑀1) as the other follower of Cluster 1. For the pair {𝐶2, 𝐶3}, whose 

leader (follower) cannot be identified, this analysis should not be conducted. If we compared the mean 

values, the leader-follower analysis would proceed as follows: the average efficiency score 𝐶2
𝑇𝐶𝑀3 is 

equal to 0.8838, a significant increase from the initial average efficiency score (0.6862). Thus, we could 

infer that the disparity in efficiency scores has to do with their differences in transformative capacity. 

However, as no leader/follower was identified in the first place, the efficiency distributions of the two 

clusters could not be determined to be significantly different. We can conclude that there are instances 

where the difference between the relative efficiencies of hospitals in Germany is due to disparities in 

their transformative capacities. 

Scale heterogeneity (scalability). We compare the original efficiency of a follower with the 

efficiency scores of its leader (based on the actual inputs and the simulated outputs by the TCM of the 

follower). Results are reported in Table 8. In the case of Clusters 1 and 2, the distributions of the initial 

efficiency score of the follower (𝐶2) and the distributions of the efficiency score calculated based on 

𝑇𝐶𝑀2 for the leader (𝐶1
𝑇𝐶𝑀2) are compared. Since 𝐶1

𝑇𝐶𝑀2 is greater than 𝐶2, Cluster 1 remains the leader 

of Cluster 2. Thus, scale heterogeneity partially explains the difference in relative efficiencies between 

Clusters 1 and 2. For Cluster 3, the other follower of Cluster 1, similar results can be observed (𝐶3 <

𝐶1
𝑇𝐶𝑀3).  verall, there is no case in which the relative efficiency score of the lea er is smaller than the 

relative efficiency score of the follower. There is no case in which the new relative efficiency scores of 

a leader are stochastically lower than those of the follower. In this way, we can argue that a part of the 

reason for the disparities between the relative efficiency scores of followers and leaders is scale 

heterogeneity. This indicates that in the German hospital market, despite the less efficient process of 

TCM (i.e., follower), the leading hospitals are relatively more efficient than the following ones. 

Table 7. Comparing relative efficiency scores via Mann–Whitney test 

Pair {𝑮𝟏, 𝑮𝟐} p-value 

(𝑯𝟎: 𝑮𝟏 = 𝑮𝟐, 𝑯𝟏: 𝑮𝟏 ≠ 𝑮𝟐) 

Result of hypothesis tests Leader 

{𝑪𝟏, 𝑪𝟐}  0.0000 𝐶1 > 𝐶2  𝐶1  

{𝑪𝟏, 𝑪𝟑}  0.0000 𝐶1 > 𝐶3  𝐶1  

{𝑪𝟐, 𝑪𝟑}  0.6785 𝐶2 = 𝐶3  – 

Table 8. Results of comparing relative efficiency scores calculated based on the TCMs via Mann–Whitney test 

Analysis Leader Follower 𝑮𝟏 𝑮𝟐 p-value 

(𝑯𝟎: 𝑮𝟏 = 𝑮𝟐;𝑯𝟏: 𝑮𝟏 ≠ 𝑮𝟐) 

Result of hypothesis tests 

Transformative Capacity 1 2 𝐶2  𝐶2
𝑇𝐶𝑀1  0.0002 𝐶2 < 𝐶2

𝑇𝐶𝑀1  

1 3 𝐶3  𝐶3
𝑇𝐶𝑀1  0.0000 𝐶3 > 𝐶3

𝑇𝐶𝑀1  

Scale Heterogeneity 1 2 𝐶2  𝐶1
𝑇𝐶𝑀2  0.0164 𝐶2 < 𝐶1

𝑇𝐶𝑀2  

1 3 𝐶3  𝐶1
𝑇𝐶𝑀3  0.0000 𝐶3 < 𝐶1

𝑇𝐶𝑀3  
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5.3.2 Results of Best Practice Analysis 

Similar to the first procedure, our next step is to find the best settings for the newly designed MLP-

ANNs (i.e., BPMs) for our best practice analysis of hospitals. The performance measure of the trained 

BPMs is reported in Table 9. In each case, a low MAPE indicates a good fit and generalizability. 

Table 9. Best settings of the designed MLP-ANNs for best practice analysis 

Cluster Layers Train:Test:Validation Ratio MAPE of the test dataset 

1 [8, 8] 75:20:5 8% 

2 [10, 10] 80:15:5 8% 

3 [10, 10] 80:15:5 7% 

The frontier function can be viewed as the upper limit of the support of the density of hospitals 

in the input and output space. On the efficient frontier, concavity and monotonicity assumptions are 

assumed to be preserved by DMUs. However, the bootstrapped estimates do not necessarily preserve 

the concave monotone increasing condition. As a result, BPMs are trained based on the SBM DEA 

estimates where concave monotonic properties of the efficient frontier are preserved (Pendharkar 2005, 

2011; Kwon 2017). 

To elaborate, we look at one inefficient hospital in Cluster 2, for instance, which has an 

efficiency score of 0.7422. The SBM DEA projections suggest reducing the number of beds by 27%, 

physicians by 21%, and nurses by 24%. In terms of output, the projection calls for increasing the number 

of outpatients by 16%, adjusted inpatients by 5%, and surgeries by 887%, which sounds unrealistic. It 

is now necessary for the management of this hospital to have a list of possible improvement scenarios 

that determine what efficiency level can be achieved by using a given level of inputs to provide a given 

level of outputs. Re-running the DEA for every scenario setting is one option. If, however, we want to 

keep the PPS unchanged, we cannot consider scenarios with lower reduction rates than those predicted 

by input projections or higher expansion rates than those set by output projections. By reducing beds 

by 35% and keeping the remaining factors unchanged, DEA might form a new PPS according to the 

new data. However, the designed BPM of Cluster 2 (𝐵𝑃𝑀2) can predict the desired level of this 

hos ital’s best  erformance in any settin  without concern over creatin  a new efficient frontier. Table 

10 presents the estimation results on possible improvement scenarios for this hospital and shows the 

projected efficiency increase that can be achieved by decreasing inputs and/or increasing outputs. As 

we can see from Scenario 7, the management of the hospital under study does not have to follow the 

projections derived from the DEA (e.g., unrealistic increasing the number of surgeries by about 900%) 

to become efficient in the peer group. Compared to SBM projections, these changes sound more realistic 

and applicable. For varying input levels, the proposed approach can support managers in setting optimal 

levels of outputs (e.g., the number of adjusted inpatients or outpatients). The same analysis and 

investigation can be applied to every other inefficient hospital. 
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Furthermore, we conduct additional experimentation to explore the potential of the proposed 

framework based on the leader-follower strategy. The results presented in Table 7 can also be utilized 

to measure hos itals’ efficiency within a mana erial network. In cases where a lea er-follower strategy 

can be applied, managers of inefficient or weakly-efficient hospitals can utilize the BPM(s) of their 

leader(s) as well. Consider a hospital that is part of a private hospital group with 15 hospitals in Cluster 

2 and 10 hospitals in Cluster 1, which is the leader of Cluster 2. As reported in Table 11, the relative 

efficiency score obtained from the SBM DEA model for this hospital is 0.5797 based on original inputs 

and outputs. The projection of this hospital suggests that drastic changes would be required to become 

an efficient hospital in its Cluster 2: reducing the number of beds by 33%, physicians by 53%, and 

nurses by 40%, and increasing the number of outpatients, and surgeries by 2% and 35%, respectively. 

As a result of Scenario 5, we need less reduction in inputs and less expansion of outputs generated by 

the hospital to become efficient when using 𝐵𝑃𝑀1 (leader).  

Table 1 .  ossible im rovement scenarios for an inefficient hos ital usin  its cluster’s     

Actual inputs and outputs Beds Physicians Nurses Adjusted Inpatients Outpatients Surgeries Efficiency 

256 46.5 172.92 19,474.2 7,175 220 0.7423 

Projections 188 

(-27%) 

36.9 

(-21%) 

130.97 

(-24%) 

19,474.2 

(0%) 

15,085.3  

(110%) 

2,170.8 

(887%) 

1.0000 

Improvement scenarios 1 -5% -10% -5% 0% 10% 20% 0.7462 

2 -10% -10% -5% 0% 10% 40% 0.7526 

3 -15% -15% -10% 0% 10% 60% 0.7708 

4 -20% -15% -10% 5% 20% 80% 0.7964 

5 -25% -20% -10% 5% 20% 100% 0.8907 

6 -30% -20% -15% 5% 20% 150% 0.9599 

7 -35% -10% -15% 10% 30% 150% 0.9958 

8 -40% -10% -15% 10% 30% 150% 1.0250 

9 -45% -10% -15% 10% 30% 0% 1.0224 

10 -50% -10% -15% 10% 30% 0% 1.0374 

Table 11.  ossible im rovement scenarios for another inefficient hos ital usin  its lea er’s     

Actual inputs and outputs Beds Physicians Nurses Adjusted Inpatients Outpatients Surgeries Efficiency 

341.0  130.5  275.2  18,313.5 22,221.0  12,969.0  0.5797 

Projections 226.8 

(-33%)  

61.8 

(-53%)  

165.2 

(-40%)  

18,313.5 

(0%)  

22,717.5 

(2%) 

17,564.8 

(35%)  

1.0000 

Improvement scenarios 1 -5% -10% -5% 0% 0% 5% 0.9055 

2 -10% -10% -10% 0% 0% 10% 0.9248 

3 -15% -15% -15% 0% 2% 15% 0.9531 

4 -20% -15% -20% 0% 2% 20% 0.9717 

5 -25% -20% -25% 0% 2% 25% 0.9969 

6 -30% -20% -30% 0% 5% 30% 1.0159 

7 -35% -30% -35% 5% 10% 35% 1.0472 

8 -40% -30% -40% 5% 15% 0% 1.0621 

9 -45% -30% -45% 5% 0% 0% 1.0677 

10 -50% -30% -50% 10% 0% 0% 1.0891 

The results show that a nondiscriminatory standard DEA for all hospitals would fail to account 

for differences in scale heterogeneity, differences in transformational capacities, and likely other 

exogenous factors that vary between hospitals of the same group. The non-linear mapping and adaptive 

prediction capabilities of our trained BPMs allow for the compensation of the lack of predictive 
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capabilities of standard DEA models, which are still frequently used as benchmarking tools. Therefore, 

the framework proposed in this study can assist managers in setting any performance targets for their 

hospitals over time. 

6 Conclusions 

There are limited economic resources available to hospitals. Therefore, it is essential to determine how 

the resources are being utilized and whether they are being distributed appropriately. DEA has been 

used in numerous studies. However, if hospitals operate under different environments, basic DEA alone 

may not be the best approach and may need some complementary approaches to deal with violations of 

its assumptions. In this study, we propose a framework for improving the discriminatory and estimation 

power of DEA. Traditional DEA classifies DMUs in the sample as efficient or inefficient, whereas the 

proposed framework can account for heterogeneity as a result of the size of the dataset and its ability to 

transform the data. As complementary to DEA, the framework designs two different architectures of 

neural networks, namely SOM-ANN and MLP-ANN.  

The framework examines the hospital dataset that the Federal Joint Committee of Germany 

recorded in 2017. To ensure complete accuracy and robustness in calculations, many preprocessing 

steps are involved in each stage of the framework due to the vast and complex dataset. The proposed 

framework possesses improved prescriptive capabilities over DEA approaches in a heterogeneous 

environment. The developed framework may also contribute to the creation of continuous improvement 

opportunities by promoting the best management practices within a group of hospitals. The proposed 

framework advances the current benchmarking paradigm of hospitals by learning the optimal 

performance pattern of hospitals on the efficient frontier of each group. By using what-if and identifying 

improvement scenarios, the framework can assist decision-makers in evaluating efficiencies. There are 

clearly  efine  sta es in this stu y’s framework, an   ifferent methods are employed as part of each 

stage. Analyzers can address the effect of environmental variables on heterogeneity without adding 

additional variables to DEA models. The key findings of this study can be summarized as follows: 

• Natural clustering of hospitals (i.e., based on ownership or size) would not reveal homogeneity 

within groups of hospitals, nor would it identify heterogeneity between groups of hospitals. 

• According to the SBM DEA estimates, the distribution underlying the bootstrapped DEA 

estimates is identical to the distribution underlying the SBM DEA estimates. 

• The differences in the relative efficiency of some German hospitals can be due to differences 

in their transformation capacities rather than inefficient input usage in producing outputs. 

Furthermore, a part of the reason for the disparities between the relative efficiency scores of 

hospitals is scale heterogeneity. 
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• The trained BPMs can compensate for the lack of predictability of standard DEA models due 

to their nonlinear mapping and adaptive prediction abilities. 

Most studies ignore the heterogeneity pitfall even though it is widely recognized that DEA 

studies can be compromised by it. DEA would be more robust if methods were developed to prove the 

reliability and correctness of results. DEA models alone cannot resolve the major problems in hospital 

performance management that arise from operating in an environment heterogeneous in nature. Because 

exogenous factors are complex and multiplicative, identifying and measuring them is challenging. 

Consequently, the process of selecting a reference set for every hospital should be handled cautiously. 

As demonstrated by well-established quality indicators, it is interesting to note that, contrary to previous 

findings (Tiemann et al. 2012; Herr 2008), clustering hospitals based on ownership failed to create 

homo eneity within a  rou  an  hetero eneity between  rou s of hos itals un er stu y. The fin in s 

are also  ifferent from what one woul  intuitively ex ect to fin  in the context of  erformance 

management of hospital markets. For example, one could assume that the relative homogeneity of 

hospitals would allow for simple emulation of successful policies: if a hospital pursues the goal of 

increasin  its out ut  ro uction efficiency, then such a  oal can be accom lishe  by adopting the 

strategy of a better-performing peer. However, the adoption of a strategy of a better-performing hospital 

may not work in the German hospital market since not all hospitals represent a homogenous group. As 

the results of our clustering show, not every better-performing hospital is a better-performing peer for 

any other hospital. Nevertheless, we acknowledge this research is not without limitations. While 

clustering has been used to determine heterogeneity, it remains unclear what exactly constitutes 

heterogeneity. As heterogeneity is a relative concept that often requires intimate knowledge of the 

problem domain, this issue falls outside the scope of this study. The proposed framework can therefore 

be explored further in future research to examine the sources of heterogeneity, such as the differences 

in hospital environments. 
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Appendix A. SOM function 

In Figure I, we present the function developed and used for clustering which is based on the SOM-

ANN. The function is developed by using Scikit-learn (https://scikit-learn.org/) which is an open-source 

platform for machine learning. However, the main codes can be also provided upon request. 

Sklearn is an open-source machine learning platform 
from sklearn_som.som import SOM 
from sklearn import metrics 
import numpy as np 
def CA_SOM(Data, i, j): 
    # Data = {Beds, Physicians, Nurses, Inpatients, Outpatients, Surgeries} 
    # i and j are the vertical and horizontal dimensions of the SOM, respectively.  
    clusters = {}; CalinskiHarabasz = {}; Silhouette = {}; DaviesBouldin = {} 
    # Create SOM and train: i and j can be adjusted in a loop, for example. 
    SOMCluster = SOM(m=i, n=j, dim=6, lr=0.9, sigma=1.0, max_iter=2000)  
    SOMCluster.fit(train_data, epochs=1, shuffle=True) 
    clusters = SOMCluster.predict(train_data) 
    # Calculate the metricts for SOM clusters 
    CalinskiHarabasz = metrics.calinski_harabasz_score(train_data, clusters) 
    Silhouette = metrics.silhouette_score(Data, clusters) 
    DaviesBouldin = metrics.davies_bouldin_score(Data, clusters) 
    # Concatenate the quility metrics 
    metrics = {CalinskiHarabasz, Silhouette, DaviesBouldin} 
    return clusters, metrics 
# Import Bed_Cluster and Ownership_Cluster 
# Calculate the metricts for clusters based on Bed size  
CalinskiHarabasz_BedSize = metrics.calinski_harabasz_score(Data, Bed_Cluster) 
Silhouette_BedSize = metrics.silhouette_score(Data, Bed_Cluster) 
DaviesBouldin_BedSize = metrics.davies_bouldin_score(Data, Bed_Cluster)   
# Calculate the metricts for clusters based on Owernership type  
CalinskiHarabasz_Ownership = metrics.calinski_harabasz_score(Data, Ownership_Cluster) 
Silhouette_Ownership = metrics.silhouette_score(Data, Ownership_Cluster) 
DaviesBouldin_Ownership = metrics.davies_bouldin_score(Data, Ownership_Cluster) 

Figure I. Function developed for clustering based on the SOM-ANN 

Appendix B. Input-oriented SBM DEA model under VRS 

We have a set of hospitals in each cluster as 𝐷𝑀𝑈𝑗 ∀𝑗 ∈ 𝑁 = {1,2,… , 𝑛}, each hospital having 𝑚 inputs 

𝑿 = (𝑥1𝑗, 𝑥2𝑗, … , 𝑥𝑚𝑗) and 𝑠 outputs 𝒀 = (𝑦1𝑗, 𝑦2𝑗 … , 𝑦𝑟𝑗). The linear input-oriented SBM model 

under the VRS assumption can be written as Model (1). 

 min𝜌ℎ = 1 −
1

𝑚
∑

𝑠𝑖
−

𝑥𝑖ℎ

𝑚
𝑖=1   (1.1) 

s.t. 𝑥𝑖ℎ = ∑ 𝑥𝑖𝑗𝜆𝑗 + 𝑠𝑖
−𝑛

𝑗=1 , ∀𝑖 = 1,… ,𝑚  (1.2) 

 𝑦𝑟ℎ = ∑ 𝑦𝑟𝑗𝜆𝑗 − 𝑠𝑟
+𝑛

𝑗=1 , ∀𝑟 = 1,… , 𝑠  (1.3) 
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 ∑ 𝜆𝑗
𝑛
𝑗=1 = 1  (1.4) 

 𝒔−, 𝒔+, 𝝀 ≥ 𝟎, 𝑡 > 0  (1.5) 

where 𝜌ℎ is the SBM-efficiency score of 𝐷𝑀𝑈ℎ. 𝒔− and 𝒔+ are the vector of input and output slacks, 

respectively. 𝛌 is a non-negative vector and can modify the production possibility set by imposing some 

constraints on it, such as the VRS constraint ∑ λ𝑗
𝑛
𝑗=1 = 1. The optimal solution of the SBM DEA model 

can be defined as {𝜌ℎ
∗ , 𝝀∗, 𝒔−∗, 𝒔+

∗
}. Figure II presents the function developed for solving Model (1) 

using Gurobi Optimizer (more information available at: https://www.gurobi.com/) in Python 3.8. 

Gurobi Optimizer: Mathematical programming solver 
def SBM_IO_VRS(X, Y): 
    # Tone (2001) \ European Journal of Operational Research 130, 498–509. 
    # Get number of DMUs (n), inputs (m) and outputs (s) 
    n = len(X) 
    m = len(X[0]) 
    s = len(Y[0]) 
    # Create arrays for saving the results  
    Eff = {}; sol_Sm = {} ; sol_Sp = {} ; sol_lam = {} 
    sol = {} 
    # # Main loop over No. of DMUs 
    for h in range(n): 
        SBM_IO = Model("SBM-IO-VRS") 
        # Variables 
        Sm = SBM_IO.addVars(m, name="InputSlack") 
        Sp = SBM_IO.addVars(s, name="OutputSlack") 
        lam = SBM_IO.addVars(n, name="Lambda") 
        # Constraints 
        SBM_IO.addConstrs((sum(X[j][i]*lam[j] for j in range(n)) + Sm[i] == X[h][i] for i in range(m))) # 'CT1.2' 
        SBM_IO.addConstrs((sum(Y[j][r]*lam[j] for j in range(n)) - Sp[r] == Y[h][r] for r in range(s))) # 'CT1.3' 
        SBM_IO.addConstr((sum(lam[j] for j in range(n)) == 1)) # 'CT1.4' 
        # Objective function 
        SBM_IO.setObjective((1 - (1/m)*sum(Sm[i]/X[h][i] for i in range(m))), GRB.MINIMIZE) 
        SBM_IO.optimize()       
        if SBM_IO.status == GRB.INF_OR_UNBD: 
            # Turn presolve off to determine whether model is infeasible 
            # or unbounded 
            SBM_IO.setParam(GRB.Param.Presolve, 0) 
            SBM_IO.optimize()     
        if SBM_IO.status == GRB.OPTIMAL: 
            Eff[h] = SBM_IO.objVal 
            print(f'DMU[{h+1}]: Optimal objective: {SBM_IO.objVal}') 
            # SBM_IO.write('SBM_IO.sol') 
            sol[h] = [(v.varName, v.X) for v in SBM_IO.getVars()] 
            #sys.exit(0) 
        elif SBM_IO.status != GRB.INFEASIBLE: 
            print(f'DMU[{h+1}]: Optimization was stopped with status {SBM_IO.status}.') 
            #sys.exit(0) 
    return Eff, sol 

Figure II. Function developed for solving SBM DEA model 

Definition 1. (Projection). The projection of 𝐷𝑀𝑈𝑜 = (𝒙𝑜, 𝒚𝑜) onto the efficient frontiers can be 

defined by an optimal solution of the input-oriented SBM DEA model as Eq. (2) (Tone, 2001, 2017).  

(𝒙𝑜
𝑝
, 𝒚𝑜
𝑝
) = (𝒙ℎ − 𝒔

−∗, 𝒚ℎ + 𝒔
+∗) (2) 

The projected 𝐷𝑀𝑈ℎ
𝑝
= (𝒙ℎ

𝑝
, 𝒚ℎ
𝑝
) is SBM-input-efficient (Tone 2001). We use the SBM DEA 

model to compute efficiency scores for each hospital in the second stage of our proposed framework, 

relative efficiency analysis. Following this, the framework generates projections of the efficiency 

requirements for each inefficient hospital to become efficient. 
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Appendix C. Efficiency comparison of two hospital groups 

The algorithm that is developed for efficiency comparison of two DMU groups (𝐺1 and 𝐺2): 

Step 1: Calculate the skewness of inefficiencies of both groups. 

Step 2: If the inefficiencies are not skewed (symmetrically distributed), conduct the efficiency 

com arison base  on the mean values. A  arametric test such as the un aire   tu ent’s t-test might be 

appropriate (Banker et al. 2010). 

Step 3: If the inefficiencies are either positively or negatively skewed (asymmetrically distributed), the 

following are the procedures for testing the null hypothesis of a difference in efficiency between 𝐺1 and 

𝐺2: 

Step 3.1: Determine whether inefficiencies in 𝐺1 and 𝐺2 exhibit exponential distributions by 

using the Quantile-Quantile (Q-Q) plots. If so, the test statistic is therefore calculated as 

(∑ 𝜌𝑗
∗

𝑗∈𝐺1
‖𝐺1‖⁄ ) (∑ 𝜌𝑗′

∗
𝑗′∈𝐺2

‖𝐺2‖⁄ )⁄  and assessed to the critical value of the 𝐹 distribution 

with (2 ⋅ ‖𝐺1‖, 2 ⋅ ‖𝐺2‖) degrees of freedom under the null hypothesis that there is no 

difference between them (Banker 1993). 

Step 3.2: Determine whether inefficiencies in 𝐺1 and 𝐺2 exhibit half-normal distributions by 

using Q-Q plots. If so, the test statistic is therefore calculated as 

(∑ (𝜌𝑗
∗)
2

𝑗∈𝐺1
‖𝐺1‖⁄ ) (∑ (𝜌𝑗′

∗ )
2

𝑗′∈𝐺2
‖𝐺2‖⁄ )⁄  and assessed to the critical value of the 𝐹 

distribution with (‖𝐺1‖, ‖𝐺2‖) degrees of freedom under the null hypothesis that there is no 

difference between them. 

Step 3.3: In the absence of such assumptions in steps 3.1 and 3.2, use a non-parametric test, 

such as Kolmogorov–Smirnov or Mann–Whitney tests. The results of the study conducted by 

Banker et al. (2010) indicate that the Mann–Whitney test performs better than Kolmogorov–

Smirnov concerning error types I and II. Next, run the Mann–Whitney test to determine whether 

one of the random variables is stochastically greater than the other. In a combined and ordered 

sample of 𝐺1 and 𝐺2, the Mann–Whitney statistic is calculated by counting how many times 

each 𝜌𝑗
∗, 𝑗 ∈ 𝐺1 occurs before 𝜌𝑗′

∗ , 𝑗′ ∈ 𝐺2. Define the random variable as Eq. (3).  

𝐷𝑗𝑗′ = {
1   𝜌𝑗

∗ < 𝜌𝑗′
∗     

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

Then, Mann–Whitney’s statistic is  iven by 𝑈 = ∑ ∑ 𝐷𝑗𝑗′𝑗′∈𝐺2𝑗∈𝐺1 . Mann and Whitney (1947) 

prove that for large samples of 𝐺1 and 𝐺2 (‖𝐺1‖ 𝑎𝑛𝑑 ‖𝐺2‖ ≥ 30), Mann–Whitney’s statistic is 

normally distributed with the mean of 𝜇 = ‖𝐺1‖ ⋅ ‖𝐺2‖ 2⁄  and the variance of 𝜎2 =

(‖𝐺1‖ ⋅ ‖𝐺2‖ ⋅ (‖𝐺1‖ + ‖𝐺2‖ + 1)) 12⁄ . Therefore, the large-sample (more than 20 
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observations) Mann–Whitney’s test statistics can be a  roximated via 𝓏 = (𝑈 − 𝜇)/𝜎 which 

follows a normal standard distribution function. Note, since there are a number of ties (i.e., the 

ranks of efficient DMUs) in each cluster, we need to revise the variance as 𝜎𝑟𝑒𝑣𝑖𝑠𝑒𝑑
2 = 𝜎2 ⋅

(1 − ∑ 𝑓𝑡
3 − 𝑓𝑡𝑡 𝑓𝑡

3 − 𝑓𝑡⁄ ), where t varies over the set of tied ranks and 𝑓𝑡 represents frequency 

of the rank 𝑡. A further complication is that since we approximate a discrete distribution via a 

continuous one it is desirable to apply a continuity correction on the 𝓏-score as 𝓏𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑈 − 𝜇 − 0.5 ⋅ 𝑠𝑖𝑔𝑛(𝑈 − 𝜇) 𝜎⁄ . 

Appendix D. Data preprocessing 

In this study, the proposed framework is examined in the context of a large dataset of hospitals that 

were originally classified by the Federal Joint Committee (G-BA) in Germany in 2017. Data protection 

regulations prevent the dataset from being publicly available. Nevertheless, G-BA would send a copy 

to researchers upon official request (more information: https://www.g-ba.de/english/). In the German 

healthcare system, the G-BA, founded on 01.01.2004 due to the Healthcare Modernization Act, is the 

highest decision-making body. They establish guidelines that determine which medical treatments 

approximately 73 million insured people can claim. Furthermore, the G-BA establishes quality 

assurance measures for hospitals and healthcare practices. It is their responsibility to properly 

implement quality-improving measures. The implementation of individual quality assurance measures 

should be delegated as part of this overall responsibility. For the reporting year 2017, raw data includes 

all hospital quality reports from hospitals, the State Office for Quality Assurance, and the Institute for 

Quality Assurance and Transparency in Health Care at the end of medical transcription (MT). The 

preprocessing steps applied to the dataset in this study are illustrated in Figure III. Our dataset covers 

the following periods:  

• Hospitals MT periods: October 15th to November 15th, 2018, and November 23rd to December 

15th, 2018, 

• State Office for Quality Assurance and Institute for Quality Assurance and Transparency in Health 

Care MT periods: November 15th to December 15th, 2018, and 

• the subsequent reports of the State Office for Quality Assurance and the Institute for Quality 

Assurance and Transparency in Health Care occurring from January 20th to 23rd, 2019. 

Appendix E. Quality criteria for clustering approaches 

Figure IV shows the three quality criteria - CH-index, Silhouettes, and Davies-Bouldin - calculated to 

assess the homogeneity within hospitals clusters and the heterogeneity between clusters. These criteria 

are calculated in the function developed for the SOM (Figure I). Clusters that are dense and well 

separated achieve a high score on the CH-index. A clustering score of −1 is assigned for incorrect 
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clustering, whereas a clustering score of +1 is assigned to dense and well-separated clustering. Davies-

Bouldin with a value close to zero indicates a more effective partition. Results show that cluster  [1,3] 

outperforms other clusters on all three quality criteria. 

 

Figure III. Data preprocessing steps 

 

Figure IV. Quality criteria of clusters 
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Appendix F. Developed MLP-ANNs for creating TCM and BPM 

As shown in Figure V, we have developed functions to create the TCMs and BPMs respectively by 

using two open-source platforms for machine learning: TensorFlow (more information available at: 

https://www.tensorflow.org/) and Scikit-learn (more information available at: https://scikit-learn.org/). 

TensorFlow and scikit-learn are open-source machine learning platforms. 
from sklearn.model_selection import train_test_split 
from sklearn import metrics 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Dense 
from tensorflow.keras.optimizers import Adam 
 
def Create_TCM(Inputs, Outputs): 
        in_dim = Inputs.shape[1]  # Input dimension 
        out_dim = Output.shape[1] # Target dimension 
        # Split train/test data 
        xtrain, xtest, ytrain, ytest=train_test_split(Inputs, Output, test_size=0.15) # TCM_1 -> test_size=20 
        print(\txtrain:', len(xtrain), 'ytrian:', len(ytrain)) 
        # Create the network 
        TCM= Sequential() 
        TCM.add(Dense(L1_k, input_dim=in_dim, activation='sigmoid')) # [L1_1, L1_2, L1_3] = [20, 20, 20]  
        TCM.add(Dense(L2_k, input_dim=in_dim, activation='sigmoid')) # [L2_1, L2_2, L2_3] = [10, 10, 10] 
        TCM.add(Dense(L3_k, activation='relu')) # [L3_1, L3_2, L3_3] = [10, 10, 10] 
        TCM.add(Dense(out_dim)) 
        TCM.compile(loss='mape', optimizer='adam') 
        # Set optimizer parameters 
        keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) 
        TCM.summary() 
        ## Training 
        TCM.fit(xtrain, ytrain, epochs=2000, batch_size=10, verbose=0,  
                validation_split=0.05,validation_data=None)          
        ypred = TCM.predict(xtest) 
        print("\tTest MAPE: %.3f" % metrics.mean_absolute_percentage_error(ytest, ypred)) 
        return TCM 
 
def Create_BPM(Data, Eff): 
        in_dim = Data.shape[1]  # Input dimension 
        out_dim = Eff.shape[1]  # Target dimension =1 
        # Split train/test data 
        xtrain, xtest, ytrain, ytest=train_test_split(Inputs, Output, test_size=0.15) # BPM_1 -> test_size=20 
        print(\txtrain:', len(xtrain), 'ytrian:', len(ytrain)) 
        # Create the network 
        BPM= Sequential() 
        BPM.add(Dense(L1_k, input_dim=in_dim, activation='sigmoid')) # [L1_1, L1_2, L1_3] = [8, 10, 10]  
        BPM.add(Dense(L2_k, activation='relu')) # [L2_1, L2_2, L2_3] = [8, 10, 10]  
        BPM.add(Dense(out_dim)) 
        BPM.compile(loss='mape', optimizer='adam') 
        # Set optimizer parameters 
        keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) 
        BPM.summary() 
        ## Training 
        BPM.fit(xtrain, ytrain, epochs=1500, batch_size=10, verbose=0, validation_split=0.05,validation_data=None)          
        ypred = BPM.predict(xtest) 
        print("\tTest MAPE: %.3f" % metrics.mean_absolute_percentage_error(ytest, ypred)) 
        return BPM 

Figure V. Functions developed for creating TCMs and BPMs 
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Abstract. Standard Data Envelopment Analysis (DEA) models consider continuous-valued and 

known input and output statuses for measures. This paper proposes an extended Slacks-Based-

Measure (SBM) DEA model to accommodate flexible (a measure that can play the role of input and 

out ut) an  inte er measures simultaneously. A flexible measure’s most a  ro riate role 

(designation) is determined by maximizing the technical efficiency of each unit. The main advantage 

of the proposed model is that all inputs, outputs, and flexible measures can be expressed in integer 

values without inflation of efficiency scores since they are directly calculated by modifying input 

and output inefficiencies. Furthermore, we illustrate and examine the application of the proposed 

models with 28 university hospitals in Germany. We investigate the differences and common 

properties of the proposed models with the literature to shed light on both teaching and general 

inefficiencies.  esults of inefficiency  ecom osition in icate that “Thir -party fun in  income” that 

university hospitals receive from the research-granting agencies dominates the other inefficiencies 

sources.  

Keywords. Data Envelopment Analysis; Integer-valued Measures; Flexible Measures; University 

Hospitals 
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1 Introduction 

Data Envelopment Analysis (DEA) is a nonparametric approach introduced by Charnes et al. (1978) to 

estimate the relative efficiency of a set of homogeneous Decision-Making Units (DMUs) where utilize 

similar inputs to generate similar outputs. This basic model (from now referred to as CCR) has come 

up with a fruitful area for efficiency evaluation. DEA models can be categorized as radial and non-

radial. The CCR represents the radial models where they cope with relative changes of inputs and/or 

outputs factors so that, the efficiency score imitates the proportional maximum output (input) expansion 

(reduction) rate which is common to all outputs (inputs). However, in many practical applications, not 

all inputs/outputs operate proportionally. Consider the hospitals as an instance, we utilize beds, 

physicians, and nurses as inputs where they may not change proportionally. There might be several non-

radial slacks left that play an imperative role in reporting managerial efficiency, but they are not taken 

into account in the radial model. The Slacks-Based Measure (SBM) approach, on the other hand, 

disregards proportional changes and evaluates efficiency considering the input excess and output 

shortfall (slacks) directly (Tone 2001). Both non-radial and radial DEA models have been well-

documented from the theoretical perspective in the literature (Tone 2017). In addition to the theoretical 

development of DEA models, their application is significantly growing since it is well-known as a 

reliable methodology, e.g., for healthcare (Kohl et al. 2019), higher education (Villano and Tran 2018), 

transportation (Stefaniec et al. 2020), and production process (Kourtzidis et al. 2021). However, to our 

knowledge, most of the previous studies done in the field of teaching hospital performance assessment 

use the basic DEA models and pay no attention to two principal challenges that exist in the real-world 

situation: integer-valued amounts and flexible measures. In the following subsections, these two issues 

are adequately addressed. 

1.1 Integrality-constrained DEA 

Conventional DEA models consider that inputs and outputs are continuous values. However, we face 

many real situations in which one or some of the inputs/outputs are unavoidably integer values, for 

instance, the number of beds (as input) and outpatients (as output) in the hospital performance 

assessment. Usually the first step in DEA application, after identifying the list of inputs and outputs, is 

determining the suitable technology or the Production Possibility Set (PPS). These technologies are 

grouped as non-convex and convex. The non-convex Free Disposal Hull (FDH) (Tulkens 2006) and the 

convex Constant and Variable Returns to Scale (CRS and VRS respectively) technologies are the most 

common choices. FDH targets are always feasible when some of the inputs/outputs are integer-valued 

since they project the units whose efficiency is to be evaluated onto one of the existing DMUs. In 

contrast, the PPS in both CRS and VRS assumes feasible operating points that are a convex combination 

of evaluating units without essentially considering any integrality constraint of some inputs/outputs. 

While imposing the integrality constraints by rounding off the optimum solution of the large integer 
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values may have not a major effect on the optimality, it is not the case with small integer values where 

a few units less or more can make a significant difference in the optimality (Lozano and Villa 2007; 

Kuosmanen and Matin 2009; Du et al. 2012). Assuming the integer-valued inputs/outputs as continuous 

values and arbitrarily rounding up (or down) of them may easily cause infeasibility (i.e., an operation 

point out of the PPS) or to a dominated (inferior) operating unit as mentioned by (Kuosmanen et al. 

2015). As illustrated by a single input single output example in Figure 1, DMUs 𝐵 and 𝐶 are inefficient 

and their reference set includes DMUs 𝐴 and 𝐷. The input excess of DMUs 𝐵 and 𝐶 are 1.5 and 2.67. 

That means 1.5- and 2.67-units reduction in the input of DMU 𝐵 and 𝐶, respectively, project them on 

the green marks 𝐵′ and 𝐶′ on the efficient frontier (blue dashed line). However, if they are integer-

valued, arbitrarily rounding up the input excess of 𝐶 to 3.0 causes infeasibility, in other words, the red 

mark 𝐶′′ where is out of the PPS. As it is clear from the graph, an arbitrary rounding down the input 

excess of B to 1.0 (𝐵′′) does not approach the efficient frontier. 

 
Figure 1. An example of infeasibility in the presence of integer-valued input under the VRS setting 

1.2 Flexible Measure DEA 

The usual setting for a DEA study is to evaluate DMUs, such as hospitals, according to specific input 

and output factors. The output represents the result of the DMU, while the input is intended to describe 

what led to the creation of that output. However, there exist some situations where some measures can 

play the role of either output or input. Consider, for example, the number of graduates or trainee nurses 

in a university hospital. These measures can constitute either input (two available human resources to 

the hospital) or output (trained staff, henceforth an advantage resulting from teaching/research funding). 

These measures are known as flexible or dual-role measures in DEA literature. In cases of ambiguity, 

it is imperative to adhere to the most equitable treatment possible for a particular DMU in order to 

decide the status of a variable. This ambiguity is further compounded if one views performance 

measurement from the perspective of an administrative organization as a manager. As with university 

hospitals, deciding whether graduates are to be regarded as an input or an output can have a tremendous 

impact on the funding received by each individual candidate. Therefore, these hospitals have a financial 

interest in using the least controversial and most fair method possible to assess efficiency.  
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The use of a factor as both an input and an output is not completely unheard of in the DEA 

framework. The status of flexible variables in DEA settings can be determined by at least three 

approaches. The first approach treats flexible measures on both the input and output sides 

simultaneously. For exam le,  easley (1   ) treats “research fun in ” on both the in ut an  out ut 

sides at the same time in university efficiency measuring. Later, Cook et al. (2006) show that this 

treatment is not completely appropriate. Second, and perhaps most obvious, is to consider the issue 

from the standpoint of individual DMUs. A DEA model is run specifically for each DMU to determine 

the optimal role of each flexible measure. It could then be decided based on the majority choice among 

the DMUs what the overall input versus output status of any flexible measure is. In this case, it would 

seem to be the least controversial way to choose to apply a simple majority decision rule (Cook and 

Zhu 2007). As a third alternative, it is possible to consider the situation from the viewpoint of the 

manager of a collection of DMUs. Specifically, consider defining each flexible variable as an input or 

output so that the average or aggregate efficiency of the set of DMUs is maximized. An approach such 

as this would be useful if ties are encountered on a case-by-case basis (Cook and Zhu 2007; Cook et al. 

2006; Ghiyasi and Cook 2021). 

This study aims to develop an SBM DEA model that includes integer- and continuous-valued 

inputs, outputs, and flexible measures at the same time. Each flexible measure in the proposed model 

can be viewed as input, output, or both. The flexible measure's optimal role for the DMU being 

evaluated is dedicated to maximizing its technical efficiency. As a result, both the input surplus and 

output shortfall (slacks) may be present in the optimal solution set for each inefficient DMU. For 

efficient DMUs, flexible measures can be viewed both as input and output without affecting the degree 

of efficiency, since they are the ones with no slacks in their optimal solution. The proposed model has 

another advantage in that all three classes of measures can only take integer-valued slacks. 

The rest of this paper is structured as follows. The literature on theoretical and application issues 

is reviewed in Section 2. In section 3, we review the advances in SBM DEA models in the presence of 

integer-valued and flexible measures. Then, we propose a new model as well as a new efficiency index. 

Section 4 presents the case study of the German university hospitals and the results of running the 

proposed models (efficiencies and slacks) and the developed ones in the literature. We also analyze the 

obtained results from the models and investigate the inefficiencies sources in this section. Finally, we 

wrap up our study and findings in Section 5. 

2 Literature Review 

This section provides an overview of the theoretical and application literature. We begin by examining 

studies related to the measurement of university hospital performance. Afterward, we review the 

theoretical development of the DEA models for integer-valued and flexible measures. 
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From a practical perspective, this study focuses on the performance evaluation of university 

hospitals. As reported in the health economics literature, teaching and university hospitals are more 

expensive than non-teaching counterparts (e.g., acute and general hospitals) since they engage in not 

only patient care but also in medical education and research. Therefore, this teaching/researching 

mission should be appropriately captured by defining proper measurements in the performance 

assessment process. One of the first studies in this field is conducted by Grosskopf et al. (2001). They 

compare the patient service provision of both non-teaching and teaching hospitals by the means of the 

basic DEA model. They apply the DEA model to a dataset that includes 556 non-teaching and 236 

teaching hospitals in the US. Their results specify around 10% of the teaching hospitals can efficiently 

compare with non-teaching counterparts. Later, Grosskopf et al. (2004) evaluate the relative scale and 

technical efficiencies of 254 US teaching hospitals. They find that intensified competition results in 

superior efficiency deprived of cooperating teaching intensity. Ozcan et al. (2010) evaluate the 

performance of Brazilian teaching hospitals considering both medical care and teaching/research. They 

conclude their study by indicating the required changes for the inefficient teaching hospitals as some 

recommendations for public financing and teaching ratios. In another study, Lobo et al. (2014) study 

the efficiency of 104 teaching hospitals in Brazil. They use a two-stage weighted DEA model followed 

by logistic regression analysis in the second stage to examine the effect of non-discretionary variables 

(e.g., ownership type) on the efficiency scores. The result of the regression shows no significant 

relationship between ownership and efficiency. In the case of the German hospital market, recently, 

Schneider et al. (2020) conduct a study on efficiency analysis of German hospitals (including both 

teaching and non-teaching) with a focus on investigating the relation between medical urgency and 

efficiency. Their results show a lower efficiency for teaching hospitals compared to the non-teaching 

ones. This is because the same set of input/output with the non-teaching hospitals are only used in their 

DEA model and teaching function is not apprehended.  

The integer DEA models have not attracted too much attention even though this situation can 

happen frequently in real-case applications. One reason for this may be the commitment of the DEA 

researchers to Linear Programming (LP) models since most LP DEA models can be proficiently solved 

even for big datasets using non-commercial solvers. To our knowledge, Lozano and Villa (2006) 

intro uce the first   A mo el whose in uts an  out uts are intuitively constraine  to take inte er values 

only. They model their problem as a Mixed-Integer Linear Programming (MILP) for assessing 

efficiency of    s. Kuosmanen an   atin (    )  evelo  a new axiomatic foun ation (namely, 

“natural  is osability” an  “natural  ivisibility”) for   A sub ect to the inte rality constraints. They 

derive a new DEA PPS that fulfills the minimum extrapolation principle under their advanced axioms. 

They also present an MILP formula for assessing efficiency scores of Iranian university departments 

under the CRS assumption. Later, Kazemi Matin and Kuosmanen (2009) extend their axiomatic 

foundation for the integer DEA under VRS, non-increasing, and non-decreasing returns to scale. 
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Khezrimotlagh et al. (2013b) critique these two models and show that the input targets obtained from 

the model proposed by Kuosmanen and Matin (2009) and Kazemi Matin and Kuosmanen (2009) may 

not be less than those computed by the model developed by Lozano and Villa (2006). Jie et al. (2015) 

provide a technical note on the model proposed by Kuosmanen and Matin (2009) and improve their 

model into a rectified model. They show that the new model can effectively answer the problem of a 

counter case studied by Khezrimotlagh et al. (2013b). Since additive models target slacks directly in 

reporting the efficiency, they reveal higher discrimination power especially in the presence of integer 

values.  Du et al. (2012) propose new models based on Andersen and Petersen's technique (Andersen 

and Petersen 1993) in which slacks are directly investigated in order to compute efficiency and super-

efficiency scores when inputs and outputs are integer-valued. 

For the purpose of incorporating flexible measures, Cook and Zhu (2007) present a 

modification of the standard CCR DEA model and illustrate its application in two practical problem 

settings. They develop their model using the MILP approach to suggest both a specific DMU model 

and an aggregate model as methods to originate the suitable descriptions for flexible measures. 

However, their technique may report incorrect inefficiency indices attributable to a computational 

problem as a result of utilizing a large positive number in their model. This situation is addressed by 

Toloo (    ). He revises  ook an  Zhu’s mo el so that it  oes not nee  to intro uce a lar e  ositive 

number. The metho olo y classifies flexible measures either as input or output according to their 

contribution to technical efficiency o timization (o timum solution) base  on  IL  housin  both 

 ossibilities simultaneously. Afterwar , several stu ies try to  ro ose further refinements (Toloo   1 ; 

Toloo et al. 2021; Arana-Jiménez et al. 2020; Ghiyasi and Cook 2021). Some of the researchers also try 

to provide an ensuing and instructive discussion on the infeasibility issues of these models such as 

Amirteimoori and Emrouznejad (2012) and Sedighi Hassan Kiyadeh et al. (2019). The flexible SBM 

(FSBM) models have recently been addressed by some studies. Amirteimoori et al. (2013) introduce an 

FSBM for calculating the efficiency score where flexible measures are present. They show that if a 

DMU is perceived as efficient the flexible measure can play both input and output roles. Tohidi and 

Matroud (2017) develop an alternative non-oriented model to classify the status of flexible measures 

and determine returns to scale setting.  

There are as well situations in the real world where certain measures can play either input or 

output roles and can only take integer values, for instance, the number of graduates. Such real situations 

result in new unified DEA models in which both integer-valued amounts and flexible measures are 

simultaneously addressed. Kordrostami et al. (2019) contribute to this topic by proposing an additive 

slacks-based approach which is also treatable under both VRS and CRS environments. However, 

additive models do not directly calculate the efficiency score of the DMU under evaluation in their 

objective function. Therefore, the final efficiency score can be (post) calculated using the SBM DEA 

mo el’s  efinition. However, as  ointe  out by Khezrimotla h et al. (  1 a) the score of     for the 
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additive model may not result in an appropriate efficiency score. The SBM model measures the 

maximum possible slacks to minimize the efficiency score, whereas the additive model measures the 

maximum possible slacks without concerning the minimum efficiency score (Tone 2001). Therefore, 

the proposed model by Kordrostami et al. (2019) which is based on Du et al. (2012) may not report all 

inefficiencies (efficiency scores) correctly. Another issue that can be recognized is the way the flexible 

measures have been addressed in the FSBM models such as in Amirteimoori et al. (2013). They address 

the flexible measures in a way that  eviates from the stan ar     .  ince flexible measures can 

simultaneously be designated as input and output in the objective function, the averages in both the 

numerator (in ut excess) an   enominator (out ut shortfall) are res ectively com ute  usin  the fixe  

numbers of in uts  lus the flexible measures an  the fixe  numbers of out uts  lus the flexible measures 

regardless of the optimum solution where the status of the flexible measure is determined. 

 onsequently, the efficiency score is overestimate  com are  to the efficiency score obtaine  from the 

stan ar     . Furthermore, the flexible measure may be  ifferently classifie  for some    s.  oďa 

(2020) addresses this issue by proposing a modified model that distinguishes the same efficient and 

inefficient DMUs as Amirteimoori et al. (2013), however, realizes different projections for inefficient 

DMUs which means different classifications of flexible measures. 

This study proposes an SBM model in which both flexible and integer measures are 

simultaneously presented. The main advantage of the proposed model is all input, output, and flexible 

measures can take integer-valued quantities without fluctuating the efficiency level. Furthermore, the 

technical efficiency score is directly calculated in the proposed SBM model and inflation of scores is 

prevented by modifying the input and output inefficiencies. The proposed model is developed based on 

the MILP approach then, can be easily solved by most non-commercial and open-source solvers. 

Furthermore, slack values of inputs, outputs, and flexible measures calculated by the proposed model 

are reported and compared with those obtained from Kordrostami et al. (2019). However, the same 

efficient and inefficient DMUs are detected as Kordrostami et al. (2019), the projections for inefficient 

DMUs and, consequently, classifications of flexible measures are different from each other. We also 

propose a new objective function for the model developed by Kordrostami et al. (2019) so that the new 

additive efficiency index falls between zero and one. The applicability of the introduced models is 

illustrated and scrutinized via a real-case dataset of German university hospitals. The main practical 

goal is to indicate the magnitude and source of inefficiencies for the university hospitals. This might 

support both local and national health authorities in decision-making processes including resource 

allocation, utilization, and planning. 

3 Slacks-Based Measure Data Envelopment Analysis 

We first present progress made in integer-valued and flexible DEA models in literature before moving 

on to the final proposed model. By doing this, readers should be able to better understand how the 
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models have evolved over the past two decades. Moreover, it allows us to point out how our proposed 

model advances other models by investigating their differences and commonalities. To begin with, it is 

worth mentioning the notations used in this paper as follows: 

Sets and indices: 

• 𝑁: set of DMUs, 𝑁 = {1,… , 𝑛} 

• 𝐼: set of real-valued inputs, 𝐼 = {1,… ,𝑚} 

• 𝑂: set of real-valued outputs, 𝑂 = {1,… , 𝑠} 

• 𝐾: set of real-valued flexible measures, 𝐾 = {1,… , 𝑝} 

• 𝐼𝐼: set of the integer-valued inputs, 𝐼𝐼 = {1,… ,𝑚𝐼} 

• 𝐼𝑁𝐼: set of the non-integer valued inputs, 𝐼𝑁𝐼 = {1,… ,𝑚𝑁𝐼} 

• 𝑂𝐼: set of the integer-valued outputs, 𝑂𝐼 = {1,… , 𝑠𝐼} 

• 𝑂𝑁𝐼: set of the non-integer-valued outputs, 𝑂𝑁𝐼 = {1,… , 𝑠𝑁𝐼} 

• 𝐾𝐼: set of integer-valued flexible measures, 𝐾𝐼 = {1,… , 𝑝𝐼} 

• 𝐾𝑁𝐼: set of non-integer-valued flexible measures, 𝐾𝑁𝐼 = {1,… , 𝑝𝑁𝐼} 

• 𝑗: index of DMUs, 𝑗 ∈ 𝑁 = {1,… , 𝑛} 

• 𝑖: index of inputs 𝑖 ∈ 𝐼 = 𝐼𝐼 ∪ 𝐼𝑁𝐼 

• 𝑟: index of outputs 𝑟 ∈ 𝑂 = 𝑂𝐼 ∪ 𝑂𝑁𝐼  

• 𝑘: index of flexible measures 𝑘 ∈ 𝐾 = 𝐾𝐼 ∪ 𝐾𝑁𝐼 

Parameters: 

• 𝑥𝑖𝑗: real-valued amounts of input 𝑖 utilized by 𝐷𝑀𝑈𝑗 

• 𝑦𝑟𝑗: real-valued amounts of output 𝑟 produced by 𝐷𝑀𝑈𝑗 

• 𝑧𝑘𝑗: real-valued amounts of flexible measure 𝑘 utilized/produced by 𝐷𝑀𝑈𝑗 

Decision variables: 

• 𝜆𝑗: coefficients of the convex linear combination 

• 𝑠𝑖
𝑥: real-valued amounts of input 𝑖 excess 

• 𝑠𝑟
𝑦

: real-valued amounts of output 𝑟 shortfall 

• 𝑠1𝑘
𝑧 , 𝑠2𝑘

𝑧 : real-valued amounts of flexible measure 𝑘 slack designated as input and output, 

respectively  

• 𝑠̃𝑖
𝑥: integer-valued amounts of input 𝑖 excess 

• 𝑠̃𝑟
𝑦

: integer-valued amounts of output 𝑟 shortfall 

• 𝑠̃1𝑘
𝑧 , 𝑠̃2𝑘

𝑧 : integer-valued amounts of flexible measure 𝑘 slack designated as input and output, 

respectively 

• 𝑑̃𝑘 , 𝑑𝑘: binary variables to indicate the role of integer- and non-integer valued flexible measure 

𝑘, respectively 

Auxiliary variables: 

• 𝑥̃𝑖𝑗: integer-valued reference point for input 𝑖 utilized by 𝐷𝑀𝑈𝑗 
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• 𝑦̃𝑟𝑗: integer-valued reference point for output 𝑟 produced by 𝐷𝑀𝑈𝑗  

• 𝑧̃𝑘𝑗: integer-valued reference point for flexible measure 𝑘 utilized/produced by 𝐷𝑀𝑈𝑗 

• 𝑠′1𝑘
𝑧
, 𝑠′2𝑘

𝑧
: auxiliary variables for real flexible measure k as input and output, respectively  

• 𝛿𝑖
𝑥: auxiliary variable for the real input 𝑖 excess 

• 𝛿𝑟
𝑦

: auxiliary variable for the real output 𝑟 shortfall 

• 𝛿1𝑘
𝑧 , 𝛿2𝑘

𝑧 : auxiliary variables for real flexible measure 𝑘 as input and output, respectively 

• 𝑠̃′1𝑘
𝑧
, 𝑠̃′2𝑘

𝑧
: auxiliary variables for integer flexible measure 𝑘 as input and output, respectively 

• 𝛿𝑖
𝑥: auxiliary variable for the integer input 𝑖 excess 

• 𝛿𝑟
𝑦

: auxiliary variable for the integer output 𝑟 shortfall 

• 𝛿1𝑘
𝑧 , 𝛿2𝑘

𝑧 : auxiliary variables for integer flexible measure 𝑘 as input and output, respectively 

• 𝑎𝑘′ , 𝑎̃𝑘′: auxiliary binary decision variables 

Now, assume we have 𝑛 DMUs, 𝐷𝑀𝑈𝑗 ∀𝑗 = 1,… , 𝑛, that utilize 𝑚 inputs (real-valued inputs), 

𝑥𝑖𝑗 , ∀𝑗, 𝑖 = 1,… ,𝑚 to produce 𝑠 outputs (real-valued outputs) 𝑦𝑟𝑗 , ∀𝑗, 𝑟 = 1,… , 𝑠. The inputs and 

outputs can take only positive values1 i.e., 𝒙, 𝒚 > 𝟎. Then, the SBM DEA model proposed by Tone 

(2001) can be formulated as: 

 [𝑆𝐵𝑀]    

 ρℎ
𝑆𝐵𝑀 = 𝑀𝑖𝑛 

1−𝑚−1[∑
𝑠𝑖
𝑥

𝑥𝑖ℎ
𝑖∈𝐼 ]

1+𝑠−1[∑
𝑠𝑟
𝑦

𝑦𝑟ℎ
𝑟∈𝑂 ]

  (1.1) 

𝑠. 𝑡. 𝑥𝑖ℎ = ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 + 𝑠𝑖

𝑥 , ∀𝑖 ∈ 𝐼  (1.2) 

 𝑦𝑟ℎ = ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 − 𝑠𝑟

𝑦
, ∀𝑟 ∈ 𝑂  (1.3) 

 𝜆𝑗, 𝑠𝑖
𝑥 , 𝑠𝑟

𝑦
≥ 0, ∀𝑗, 𝑖, 𝑟  (1.4) 

where ρℎ
𝑆𝐵𝑀 is the SBM efficiency score of the unit under evaluation 𝐷𝑈𝑀ℎ.  𝝀 = (𝜆1, … , 𝜆𝑛) is called 

the intensity vector which identifies the reference sets for 𝐷𝑀𝑈ℎ. 𝒔𝑥 = (𝑠1
𝑥 , … , 𝑠𝑚

𝑥 ) and 𝒔𝑦 =

(𝑠1
𝑦
, … , 𝑠𝑟

𝑦
) are respectively representing the input and output slacks. Note that Model (1) and the 

following models are formulated under the CRS setting, however, they can be reformulated under the 

VRS setting by simply adding ∑ 𝜆𝑗
𝑛
𝑗=1 = 1 to the set of constraints. 

3.1 Integer-valued SBM DEA Model 

Suppose that some of the inputs and outputs are only valid in integer form. The input set 𝐼 = 𝐼𝐼 ∪ 𝐼𝑁𝐼, 

where 𝐼𝐼 shows the index of the integer-valued inputs and 𝐼𝑁𝐼 shows the index of the rest of the inputs 

(non-integers). Similarly, the output set 𝑂 = 𝑂𝐼 ∪ 𝑂𝑁𝐼. To analyze the efficiency score of DMUs in the 

 
1A difficulty arises with zero value measures since the slacks-based ratios are then divided by zero. To handle this problem Tone [Tone] 

provides some insights on how to deal with zeros in Section 6 of his paper.  
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presence of integer-valued quantities, Model (1) can be straightforwardly formulated based on the PPS 

defined by Du et al. (2012). Accordingly, the Integer-valued SBM (ISBM) DEA model can be written 

as follows: 

 [𝐼𝑆𝐵𝑀]   

𝑠. 𝑡. ρℎ
𝐼𝑆𝐵𝑀 = 𝑀𝑖𝑛 

1−𝑚−1[∑
𝑠𝑖
𝑥

𝑥𝑖ℎ𝑖∈𝐼𝑁𝐼 +∑
𝑠̃𝑖
𝑥

𝑥𝑖ℎ𝑖∈𝐼𝐼 ]

1+𝑠−1[∑
𝑠𝑟
𝑦

𝑦𝑟ℎ𝑟∈𝑂𝑁𝐼
+∑

𝑠̃𝑟
𝑦

𝑦𝑟ℎ𝑟∈𝑂𝐼
]

  (2.1) 

 𝑥𝑖ℎ = ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 + 𝑠𝑖

𝑥 , ∀𝑖 ∈ 𝐼𝑁𝐼  (2.2) 

 𝑦𝑟ℎ = ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 − 𝑠𝑟

𝑦
, ∀𝑟 ∈ 𝑂𝑁𝐼  (2.3) 

 𝑥̃𝑖ℎ ≥ ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 , ∀𝑖 ∈ 𝐼𝐼  (2.4) 

 𝑥̃𝑖ℎ = 𝑥𝑖ℎ − 𝑠̃𝑖
𝑥 , ∀𝑖 ∈ 𝐼𝐼  (2.5) 

 𝑦̃𝑟ℎ ≤ ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 , ∀𝑟 ∈ 𝑂𝐼  (2.6) 

 𝑦̃𝑟ℎ = 𝑦𝑟ℎ − 𝑠̃𝑟
𝑦
, ∀𝑟 ∈ 𝑂𝐼  (2.7) 

 𝜆𝑗, 𝑠𝑖
𝑥 , 𝑠𝑟

𝑦
, 𝑠̃𝑖
𝑥 , 𝑠̃𝑟

𝑦
≥ 0, ∀𝑗, 𝑖, 𝑟, 𝑘  (2.8) 

 𝑥̃𝑖ℎ , 𝑦̃𝑟ℎ  𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀𝑖 ∈ 𝐼
𝐼 , 𝑟 ∈ 𝑂𝐼  (2.9) 

where ρℎ
𝐼𝑆𝐵𝑀 shows the efficiency score of 𝐷𝑀𝑈ℎ in the presence of integer measures. Du et al. [11] ’s 

model does not offer a zero-to-one integrated efficiency score, as in the standard additive DEA model. 

Model (2) differs from the Du et al. (2012) model in its definition of the efficiency index (the objective 

function), which mirrors    ’s efficiency score (Tone 2001). Variables 𝑠̃𝑖
𝑥 and 𝑠̃𝑟

𝑦
 are respectively 

non-radial slacks for integer-valued inputs and outputs while variables 𝑥̃𝑖ℎ  and 𝑦̃𝑟ℎ ∈ ℤ
+are the integer-

valued reference points (targets) for inputs and outputs of 𝐷𝑀𝑈ℎ, respectively. The slack variables 𝑠̃𝑖
𝑥 

and 𝑠̃𝑟
𝑦

 signify the absolute difference between the reference points (𝑥̃𝑖ℎ and 𝑦̃𝑟ℎ) and the integer-valued 

inputs and outputs. As shown in Figure 1, under the VRS setting, the integer DEA targets may not lie 

within the feasible area (the convex hull). That is why the modeling of the relationship between the 

convex linear combination and the integer-valued targets i.e., Eqs. (2.4) and (2.5) for integer-valued 

inputs, and Eqs. (2.6) and (2.7) for integer-valued outputs are slightly different from real-valued 

counterparts in Model (1). In other words, by defining the integer-valued reference points (𝑥̃𝑖ℎ  and 𝑦̃𝑟ℎ) 

we guarantee the feasibility of the integer DEA model (Du et al. 2012). 

3.2 Flexible SBM DEA Model 

Consider 𝑝 flexible measures shown by 𝑧𝑘𝑗, ∀𝑗 = {1,… , 𝑛}, 𝑘 = {1,… , 𝑝} whose statuses (input or 

output) are unknown. To incorporate these measures, Model (1) can be reformulated based on the SBM 

model proposed by Amirteimoori et al. (2013) for classifying the flexible measures as follows: 
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 [𝐹𝑆𝐵𝑀]   

𝑠. 𝑡. ρℎ
𝐹𝑆𝐵𝑀 = 𝑀𝑖𝑛 

1−(𝑚+(𝑝−∑ 𝑑𝑘
𝑝
𝑘=1 ))

−1
[∑

𝑠𝑖
𝑥

𝑥𝑖ℎ
𝑖∈𝐼 +∑

𝑠1𝑘
𝑧

𝑧𝑘ℎ
𝑘∈𝐾 ]

1+(𝑠+∑ 𝑑𝑘
𝑝
𝑘=1 )

−1
[∑

𝑠𝑟
𝑦

𝑦𝑟ℎ
𝑟∈𝑂 +∑

𝑠2𝑘
𝑧

𝑧𝑘ℎ
𝑘∈𝐾 ]

   (3.1) 

 𝑥𝑖ℎ = ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 + 𝑠𝑖

𝑥 , ∀𝑖 ∈ 𝐼  (3.2) 

 𝑦𝑟ℎ = ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 − 𝑠𝑟

𝑦
, ∀𝑟 ∈ 𝑂  (3.3) 

 𝑧𝑘ℎ = ∑ 𝜆𝑗𝑧𝑘𝑗
𝑛
𝑗=1 + 𝑠1𝑘

𝑧 − 𝑠2𝑘
𝑧 , ∀𝑘 ∈ 𝐾  (3.4) 

 𝑠1𝑘
𝑧 ⋅ 𝑠2𝑘

𝑧 = 0, ∀𝑘 ∈ 𝐾  (3.5) 

 𝜆𝑗, 𝑠𝑖
𝑥 , 𝑠𝑟

𝑦
, 𝑠1𝑘
𝑧 , 𝑠2𝑘

𝑧 ≥ 0, ∀𝑗, 𝑖, 𝑟, 𝑘  (3.6) 

where 𝑠1𝑘
𝑧  and 𝑠2𝑘

𝑧  are the slacks vectors responding to the flexible measures treating as inputs and 

outputs, respectively. 𝑠1𝑘
𝑧 > 0 results in designating 𝑧𝑘𝑜 as input and  𝑠2𝑘

𝑧 > 0 means 𝑧𝑘𝑜 plays the role 

of output in the PPS. Since 𝑧𝑘ℎ must be either designated as input or output, the unique status of it in 

the PPS is indicated by Eq. (3.5). The nonlinearity of this constraint can be handled by introducing a 

large positive number ℳ and a binary decision variable 𝑑𝑘 , ∀𝑘 that assures one and only one of the 

variables 𝑠1𝑘
𝑧  and 𝑠2𝑘

𝑧  takes positive (non-zero) values simultaneously. Then, Eq. (3.5) can be replaced 

with the following equivalent linear constraints: 

 𝑠1𝑘
𝑧 ≤ℳ ⋅ (1 − 𝑑𝑘), ∀𝑘 ∈ 𝐾 (3.5.1) 

 𝑠2𝑘
𝑧 ≤ ℳ ⋅ 𝑑𝑘 , ∀𝑘 ∈ 𝐾 (3.5.2) 

This condition should be reflected in the objection function Eq. (3.1) as well. In other words, if 

𝑠1𝑘
𝑧 > 0, ∀𝑘 (𝑑𝑘 = 0, ∀𝑘) then 𝑠2𝑘

𝑧 = 0 (𝑑𝑘 = 1, ∀𝑘) and the total number of inputs is (𝑚 + 𝑝) in the 

numerator consequently, the total number of the outputs in the denominator is (𝑠). However, this issue 

is skipped by Amirteimoori et al. (2013), and the number of inputs and outputs they utilize are (𝑚+ 𝑝) 

and (𝑠 + 𝑝), respectively. In other words, they consider the number of flexible measures at the same 

time in both numerator and denominator of the objective function. This results in overestimating the 

efficiency score since the second term of both numerator and denominator is underestimated. This issue 

can be solved by redefining the efficiency score as Eq (3.1). However, the objective function of Model 

(3) is non-linear. A linear counterpart of Model (3) is proposed by  oďa (2020). He modifies the FSBM 

model proposed by Amirteimoori et al. (2013) and proposes the following model: 

 [𝑚𝐹𝑆𝐵𝑀]   

 

ρℎ
𝑚𝐹𝑆𝐵𝑀 = 𝑀𝑖𝑛 

1−[∑
𝛿𝑖
𝑥

𝑥𝑖ℎ
𝑖∈𝐼 +∑

𝛿1𝑘
𝑧

𝑧𝑘ℎ
𝑘∈𝐾 ]

1+[∑
𝛿𝑟
𝑦

𝑦𝑟ℎ
𝑟∈𝑂 +∑

𝛿2𝑘
𝑧

𝑧𝑘ℎ
𝑘∈𝐾 ]

   (4.1) 

𝑠. 𝑡. 𝑥𝑖ℎ = ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 + 𝑠𝑖

𝑥 , ∀𝑖 ∈ 𝐼  (4.2) 

 𝑦𝑟ℎ = ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 − 𝑠𝑟

𝑦
, ∀𝑟 ∈ 𝑂  (4.3) 
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 𝑧𝑘ℎ = ∑ 𝜆𝑗𝑧𝑘𝑗
𝑛
𝑗=1 + 𝑠1𝑘

𝑧 − 𝑠2𝑘
𝑧 , ∀𝑘 ∈ 𝐾  (4.4) 

 𝑠1𝑘
𝑧 ≤ℳ ⋅ (1 − 𝑑𝑘), ∀𝑘 ∈ 𝐾  (4.5.1) 

 𝑠2𝑘
𝑧 ≤ℳ ⋅ 𝑑𝑘 , ∀𝑘 ∈ 𝐾  (4.5.2) 

 ∑ 𝑘′ ⋅  𝑎𝑘′
𝑝
𝑘′=0 = ∑ 𝑑𝑘

𝑝
𝑘=1   (4.6) 

 ∑ 𝑎𝑘′
𝑝
𝑘′=0 = 1  (4.7) 

 −(1 − 𝑎𝑘′) ⋅ ℳ + 𝛿𝑖
𝑥 ⋅ (𝑚 + 𝑝 − 𝑘′) ≤ 𝑠𝑖

𝑥 ≤ (1 − 𝑎𝑘′) ⋅ ℳ + 𝛿𝑖
𝑥 ⋅ (𝑚 + 𝑝 − 𝑘′),

∀𝑘′, 𝑖  
(4.8) 

 −(1 − 𝑎𝑘′) ⋅ ℳ + 𝛿𝑟
𝑦
⋅ (𝑠 + 𝑘′) ≤ 𝑠𝑟

𝑦
≤ (1 − 𝑎𝑘′) ⋅ ℳ + 𝛿𝑟

𝑦
⋅ (𝑠 + 𝑘′), ∀𝑘′, 𝑟  (4.9) 

 −(1 − 𝑎𝑘′) ⋅ ℳ + 𝛿1𝑘
𝑧 ⋅ (𝑚 + 𝑝 − 𝑘′) ≤ 𝑠1𝑘

𝑧 ≤ (1 − 𝑎𝑘′) ⋅ ℳ + 𝛿1𝑘
𝑧 ⋅ (𝑚 + 𝑝 −

𝑘′), ∀𝑘′, 𝑘  
(4.10) 

 −(1 − 𝑎𝑘′) ⋅ ℳ + 𝛿2𝑘
𝑧 ⋅ (𝑠 + 𝑘′) ≤ 𝑠2𝑘

𝑧 ≤ (1 − 𝑎𝑘′) ⋅ ℳ + 𝛿2𝑘
𝑧 ⋅ (𝑠 + 𝑘′), ∀𝑘′, 𝑘  (4.11) 

 𝜆𝑗, 𝑠𝑖
𝑥 , 𝑠𝑟

𝑦
, 𝑠1𝑘
𝑧 , 𝑠2𝑘

𝑧 , 𝑠′1𝑘
𝑧
, 𝑠′2𝑘

𝑧
, 𝛿𝑖
𝑥, 𝛿𝑟

𝑦
, 𝛿1𝑘
𝑧 , 𝛿2𝑘

𝑧 ≥ 0, ∀𝑗, 𝑖, 𝑟, 𝑘  (4.12) 

 𝑑𝑘 , 𝑎𝑘′ ∈ {0,1}, ∀𝑘, 𝑘
′  (4.13) 

where the optimal solution of the model determines the source of overestimating efficiency scores 

∑ 𝑑𝑘
𝐾
𝑘=1 . This issue can be fixed by introducing an auxiliary binary variable 𝑎𝑘′ , ∀𝑘

′ = {0,… , 𝑝} which 

controls the optimized number of flexible measures indicated as outputs ∑ 𝑑𝑘
𝑝
𝑘=1 . Constraints (4.6) to 

(4.13) ensure that the decision variables 𝛿𝑖
𝑥 = (𝑚 + (𝑝 − ∑ 𝑑𝑘

𝑝
𝑘=1 ))

−1
⋅ 𝑠𝑖
𝑥 , ∀𝑖, 𝛿𝑟

𝑦
= (𝑟 +

∑ 𝑑𝑘
𝑝
𝑘=1 )

−1
⋅ 𝑠𝑟
𝑦
, ∀𝑟, 𝛿1𝑘

𝑧 = (𝑚 + (𝑝 − ∑ 𝑑𝑘
𝑝
𝑘=1 ))

−1
⋅ 𝑠1𝑘
𝑧 , ∀𝑘, and 𝛿2𝑘

𝑧 = (𝑠 + ∑ 𝑑𝑘
𝑝
𝑘=1 )

−1
⋅ 𝛿2𝑘

𝑧 , ∀𝑘. 

Therefore, the efficiency score is calculated based on the correct total number of inputs and outputs. 

Eqs. (4.6) and (4.7) ensure the abovementioned equalities are accomplished only and only for 𝑘′ =

∑ 𝑑𝑘
𝑝
𝑘=1  (equivalently, 𝑎∑ 𝑑𝑘

𝑝
𝑘=1

= 1) in Constraints (4.8) to (4.11) otherwise, they turn into free limits. 

The conditions defined for flexible measures in Model (3) are valid in this model as well. Let 𝑑𝑘 = 1 

then 𝑠1𝑘
𝑧 = 0, ∀𝑘, 𝑠2𝑘

𝑧 > 0, ∀𝑘, and the flexible measure 𝑧𝑘𝑜 is designated as output. In contrast, if 𝑑𝑘 =

0 then 𝑧𝑘𝑜 plays the role of input. 

3.3 Integer-valued Flexible SBM DEA Model 

In the presence of both integer and flexible measures (𝐾 = 𝐾𝐼 ∪ 𝐾𝑁𝐼), Kordrostami et al. (2019) 

develop the additive model proposed by Du et al. (2012) to assess the relative efficiency. Our first step 

towar s assessin  the mo el’s  ro erties is to write the mo el as follows: 

 [𝐹𝐼𝑆𝐵𝑀]   

 
τℎ
𝐹𝐼𝑆𝐵𝑀 = 𝑀𝑎𝑥 ∑

𝑠𝑖
𝑥

𝑥𝑖ℎ𝑖∈𝐼𝑁𝐼 + ∑
𝑠̃𝑖
𝑥

𝑥𝑖ℎ𝑖∈𝐼𝐼 + ∑
𝑠1𝑘
𝑧

𝑧𝑘𝑜𝑘∈𝐾𝑁𝐼 + ∑
𝑠̃1𝑘
𝑧

𝑧𝑘𝑜𝑘∈𝐾𝐼 + ∑
𝑠𝑟
𝑦

𝑦𝑟𝑜𝑟∈𝑂𝑁𝐼 +

∑
𝑠̃𝑟
𝑦

𝑦𝑟𝑜𝑟∈𝑂𝐼 + ∑
𝑠2𝑘
𝑧

𝑧𝑘𝑜𝑘∈𝐾𝑁𝐼 + ∑
𝑠̃2𝑘
𝑧

𝑧𝑘𝑜
𝑘∈𝐾𝐼   

(5.1) 

𝑠. 𝑡. 𝑥𝑖ℎ = ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 + 𝑠𝑖

𝑥 , ∀𝑖 ∈ 𝐼𝑁𝐼  (5.2) 



Appendix III. Mixed-Integer SBM DEA for Classifying Inputs and Outputs of German University Hospitals 

93 

 

 𝑦𝑟ℎ = ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 − 𝑠𝑟

𝑦
, ∀𝑟 ∈ 𝑂𝑁𝐼  (5.3) 

 𝑧𝑘ℎ = ∑ 𝜆𝑗𝑧𝑘𝑗
𝑛
𝑗=1 + 𝑠1𝑘

𝑧 − 𝑠2𝑘
𝑧 , ∀𝑘 ∈ 𝐾𝑁𝐼  (5.4) 

 𝑠1𝑘
𝑧 ⋅ 𝑠2𝑘

𝑧 = 0, ∀𝑘 ∈ 𝐾𝑁𝐼  (5.5) 

 𝑥̃𝑖ℎ ≥ ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 , ∀𝑖 ∈ 𝐼𝐼  (5.6) 

 𝑥̃𝑖ℎ = 𝑥𝑖ℎ − 𝑠̃𝑖
𝑥 , ∀𝑖 ∈ 𝐼𝐼  (5.7) 

 𝑦̃𝑟ℎ ≤ ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 , ∀𝑟 ∈ 𝑂𝐼  (5.8) 

 𝑦̃𝑟ℎ = 𝑦𝑟ℎ − 𝑠̃𝑟
𝑦
, ∀𝑟 ∈ 𝑂𝐼  (5.9) 

 𝑧̃𝑘ℎ = ∑ 𝜆𝑗𝑧𝑘𝑗
𝑛
𝑗=1 + 𝑠̃′1𝑘

𝑧
− 𝑠̃′2𝑘

𝑧
, ∀𝑘 ∈ 𝐾𝐼  (5.10) 

 𝑧̃𝑘ℎ = 𝑧𝑘𝑗 − 𝑠̃1𝑘
𝑧 + 𝑠̃2𝑘

𝑧 , ∀𝑘 ∈ 𝐾𝐼  (5.11) 

 𝑠̃′1𝑘
𝑧
⋅ 𝑠̃′2𝑘

𝑧
= 0, ∀𝑘 ∈ 𝐾𝐼  (5.12) 

 𝑠̃1𝑘
𝑧 ⋅ 𝑠̃2𝑘

𝑧 = 0, ∀𝑘 ∈ 𝐾𝐼  (5.13) 

 𝑠̃′1𝑘
𝑧
⋅ 𝑠̃2𝑘
𝑧 = 0, ∀𝑘 ∈ 𝐾𝐼  (5.14) 

 𝑠̃1𝑘
𝑧 ⋅ 𝑠̃′2𝑘

𝑧
= 0, ∀𝑘 ∈ 𝐾𝐼  (5.15) 

 𝜆𝑗, 𝑠𝑖
𝑥 , 𝑠𝑟

𝑦
, 𝑠1𝑘
𝑧 , 𝑠2𝑘

𝑧 , 𝑠̃𝑖
𝑥 , 𝑠̃𝑟

𝑦
, 𝑠̃1𝑘
𝑧 , 𝑠̃2𝑘

𝑧 ≥ 0, ∀𝑗, 𝑖, 𝑟, 𝑘  (5.16) 

 𝑥̃𝑖ℎ , 𝑦̃𝑟ℎ , 𝑧̃𝑘ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀𝑖 ∈ 𝐼
𝐼 , 𝑟 ∈ 𝑂𝐼 , 𝑘 ∈ 𝐾𝐼  (5.17) 

where τℎ
𝐹𝐼𝑆𝐵𝑀 is the maximum summation of slacks. Similar to Model (2), a new integer decision 

variable 𝑧̃𝑘𝑜, ∀𝑘 is introduced which represents integer-valued projection points for flexible measure 𝑘 

of 𝐷𝑀𝑈𝑜. To calculate the efficiency score, Kordrostami et al. (2019) calculate the optimum value of 

slacks 𝒔∗ = (𝒔∗𝑥 , 𝒔∗𝑦, 𝒔̃∗𝑥 , 𝒔̃∗𝑦, 𝒔∗1
𝑧, 𝒔∗2

𝑧) and the determined status of flexible measure 𝒅∗ obtained from 

 o el (5). Then, they use the    ’s scalar measure as a  osteriori efficiency in ex base  on a set of 

optimal solution from Model (5) as follows: 

 ζ∗ℎ
𝐹𝐼𝑆𝐵𝑀 =

1−(𝑚+(𝑝−∑ 𝑑𝑘
∗𝑝

𝑘=1 ))
−1
[∑

𝑠∗𝑖
𝑥

𝑥𝑖ℎ𝑖∈𝐼𝑁𝐼 +∑
𝑠̃∗𝑖
𝑥

𝑥𝑖ℎ𝑖∈𝐼𝐼 +∑
𝑠∗1𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝑁𝐼 +∑
𝑠̃∗1𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝐼 ]

1+(𝑠+∑ 𝑑𝑘
∗𝑝

𝑘=1 )
−1
[∑

𝑠∗𝑟
𝑦

𝑦𝑟ℎ𝑟∈𝑂𝑁𝐼
+∑

𝑠̃∗𝑟
𝑦

𝑦𝑟ℎ𝑟∈𝑂𝐼
+∑

𝑠∗2𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝑁𝐼
+∑

𝑠̃∗2𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝐼 ]

  (6) 

This model (as an additive model) deals directly with both integer- and real-valued input 

excesses and output shortfalls. However, it has no ratio efficiency term (scalar measure) per se. Model 

(5) is able to discriminate inefficient from efficient DMUs by looking for slacks, but it is unable to 

assess the real degree of inefficiency (Tone 2017; Khezrimotlagh et al. 2013a). Mathematically 

speaking, min [
1−𝒔𝑥 𝑚⁄

1+𝒔𝑦 𝑠⁄
 ] ≢ max [

𝒔𝑥

𝑚
+
𝒔𝑦

𝑠
]. For example, consider 𝑠𝑥 + 𝑠𝑦 = 0.2 + 0.4 = 0.8 which is 

greater than 𝑠𝑥 + 𝑠𝑦 = 0.4 + 0.3 = 0.7 but 
1−𝑠𝑥

1+𝑠𝑦
=
1−0.2

1+0.4
= 0.5 is not less than 

1−𝑠𝑥

1+𝑠𝑦
=
1−0.4

1+0.3
= 0.46. 

Therefore, we introduce a modified SBM DEA model (hereafter mFISBM) in an attempt to define the 

efficiency index directly based on the slacks and in the presence of integer and flexible measures as 

Model (7). 



Appendix III. Mixed-Integer SBM DEA for Classifying Inputs and Outputs of German University Hospitals 

94 

 

 [𝑚𝐹𝐼𝑆𝐵𝑀]   

 

ρℎ
𝑚𝐹𝐼𝑆𝐵𝑀 = 𝑀𝑖𝑛 

1−[∑
𝛿𝑖
𝑥

𝑥𝑖ℎ𝑖∈𝐼𝑁𝐼
+∑

𝛿̃𝑖
𝑥

𝑥𝑖ℎ𝑖∈𝐼𝐼
+∑

𝛿1𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝑁𝐼
+∑

𝛿̃1𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝐼 ]

1+[∑
𝛿𝑟
𝑦

𝑦𝑟ℎ𝑟∈𝑂𝑁𝐼
+∑

𝛿̃𝑟
𝑦

𝑦𝑟ℎ𝑖∈𝑂𝐼
+∑

𝛿2𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝑁𝐼
+∑

𝛿̃2𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝐼 ]

  

(7.1) 

𝑠. 𝑡. (5.2) – (5.15)   

 ∑ 𝑘′ ⋅ 𝑎𝑘′
𝑝𝑁𝐼

𝑘′=0
= ∑ 𝑑𝑘

𝑝𝑁𝐼

𝑘=1   (7.2) 

 ∑ 𝑎𝑘′
𝑝𝑁𝐼

𝑘′=0
= 1  (7.3) 

 −(1 − 𝑎𝑘′) ⋅ ℳ + 𝛿𝑖
𝑥 ⋅ (𝑚𝑁𝐼 + 𝑝𝑁𝐼 − 𝑘′) ≤ 𝑠𝑖

𝑥 ≤ (1 − 𝑎𝑘′) ⋅ ℳ + 𝛿𝑖
𝑥 ⋅ (𝑚𝑁𝐼 +

𝑝𝑁𝐼 − 𝑘′), ∀𝑖 ∈ 𝐼𝑁𝐼 , 𝑘′ = 0,… , 𝑝𝑁𝐼  

(7.4) 

 −(1 − 𝑎𝑘′) ⋅ ℳ + 𝛿𝑟
𝑦
⋅ (𝑠𝑁𝐼 + 𝑘′) ≤ 𝑠𝑟

𝑦
≤ (1 − 𝑎𝑘′) ⋅ ℳ + 𝛿𝑟

𝑦
⋅ (𝑠𝑁𝐼 + 𝑘′), ∀𝑟 ∈

𝑂𝑁𝐼 , 𝑘′ = 0,… , 𝑝𝑁𝐼  

(7.5) 

 −(1 − 𝑎𝑘′) ⋅ ℳ + 𝛿1𝑘
𝑧 ⋅ (𝑚𝑁𝐼 + 𝑝𝑁𝐼 − 𝑘′) ≤ 𝑠1𝑘

𝑧 ≤ (1 − 𝑎𝑘′) ⋅ ℳ + 𝛿1𝑘
𝑧 ⋅ (𝑚𝑁𝐼 +

𝑝𝑁𝐼 − 𝑘′), ∀𝑘 ∈ 𝐾𝑁𝐼 , 𝑘′ = 0,… , 𝑝𝑁𝐼  

(7.6) 

 −(1 − 𝑎𝑘′) ⋅ ℳ + 𝛿2𝑘
𝑧 ⋅ (𝑠𝑁𝐼 + 𝑘′) ≤ 𝑠2𝑘

𝑧 ≤ (1 − 𝑎𝑘′) ⋅ ℳ + 𝛿2𝑘
𝑧 ⋅ (𝑠𝑁𝐼 + 𝑘′),

∀𝑘 ∈ 𝐾𝑁𝐼 , 𝑘′ = 0,… , 𝑝𝑁𝐼  

(7.7) 

 ∑ 𝑘′ ⋅  𝑎̃𝑘′
𝑝𝐼

𝑘′=0
= ∑ 𝑑̃𝑘

𝑝𝐼

𝑘=1   (7.8) 

 ∑ 𝑎̃𝑘′
𝑝𝐼

𝑘′=0
= 1  (7.9) 

 −(1 − 𝑎̃𝑘′) ⋅ ℳ + 𝛿𝑖
𝑥 ⋅ (𝑚𝐼 + 𝑝𝐼 − 𝑘′) ≤ 𝑠̃𝑖

𝑥 ≤ (1 − 𝑎̃𝑘′) ⋅ ℳ + 𝛿𝑖
𝑥 ⋅ (𝑚𝐼 + 𝑝𝐼 −

𝑘′), ∀𝑖 ∈ 𝐼𝐼 , 𝑘′ = 0,… , 𝑝𝐼  

(7.10) 

 −(1 − 𝑎̃𝑘′) ⋅ ℳ + 𝛿𝑟
𝑦
⋅ (𝑠𝐼 + 𝑘′) ≤ 𝑠̃𝑟

𝑦
≤ (1 − 𝑎̃𝑘′) ⋅ ℳ + 𝛿𝑟

𝑦
⋅ (𝑠𝐼 + 𝑘′), ∀𝑟 ∈

𝑂𝐼 , 𝑘′ = 0,… , 𝑝𝐼  

(7.11) 

 −(1 − 𝑎̃𝑘′) ⋅ ℳ + 𝛿1𝑘
𝑧 ⋅ (𝑚𝐼 + 𝑝𝐼 − 𝑘′) ≤ 𝑠̃1𝑘

𝑧 ≤ (1 − 𝑎̃𝑘′) ⋅ ℳ + 𝛿1𝑘
𝑧 ⋅ (𝑚𝐼 + 𝑝𝐼 −

𝑘′), ∀𝑘 ∈ 𝐾𝐼 , 𝑘′ = 0,… , 𝑝𝐼  

(7.12) 

 −(1 − 𝑎̃𝑘′) ⋅ ℳ + 𝛿2𝑘
𝑧 ⋅ (𝑠𝐼 + 𝑘′) ≤ 𝑠̃2𝑘

𝑧 ≤ (1 − 𝑎̃𝑘′) ⋅ ℳ + 𝛿2𝑘
𝑧 ⋅ (𝑠𝐼 + 𝑘′), ∀𝑘 ∈

𝐾𝐼 , 𝑘′ = 0,… , 𝑝𝐼  

(7.13) 

 𝜆𝑗, 𝑠𝑖
𝑥 , 𝑠𝑟

𝑦
, 𝑠1𝑘
𝑧 , 𝑠2𝑘

𝑧 , 𝑠′1𝑘
𝑧
, 𝑠′2𝑘

𝑧
, 𝛿𝑖
𝑥, 𝛿𝑟

𝑦
, 𝛿1𝑘
𝑧 , 𝛿2𝑘

𝑧 , 𝑠̃𝑖
𝑥 , 𝑠̃𝑟

𝑦
, 𝑠̃1𝑘
𝑧 , 𝑠̃2𝑘

𝑧 , 𝑠̃′1𝑘
𝑧
, 𝑠̃′2𝑘

𝑧
, 𝛿𝑖
𝑥 , 𝛿𝑟

𝑦
, 𝛿1𝑘
𝑧 , 

𝛿2𝑘
𝑧 ≥ 0, ∀𝑗, 𝑖, 𝑟, 𝑘  

(7.14) 

 𝑥̃𝑖ℎ , 𝑦̃𝑟ℎ , 𝑧̃𝑘ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀𝑖 ∈ 𝐼
𝐼 , 𝑟 ∈ 𝑂𝐼 , 𝑘 ∈ 𝐾𝐼  (7.15) 

 𝑑𝑘 , 𝑎𝑘′ , 𝑑̃𝑘 , 𝑎̃𝑘′ ∈ {0,1}, ∀𝑘, 𝑘
′  (7.16) 

 where similar to Model (4), the set of decision variables {𝜹𝑥, 𝜹𝑦, 𝜹𝑧}, and their equivalents for integer-

valued measures (i.e., {𝜹̃𝑥, 𝜹̃𝑦, 𝜹̃𝑧}) make sure that the efficiency score is calculated based on the correct 

total number of inputs and outputs in the objective function by setting the boundaries of Constraints 

(7.4) to (7.7) and Constraints (7.10) to (7.13) via introducing the binary decision variable set 

{𝑑𝑘 , 𝑎𝑘′ , 𝑑̃𝑘 , 𝑎̃𝑘′}. The nonlinear Constraints (5.12) to (5.15) can be equivalently reformulated as the 

following set of linear constraints: 

 𝑠̃1𝑘
𝑧 ≤ℳ ⋅ (1 − 𝑑̃𝑘), ∀𝑘 ∈ 𝐾𝐼 (5.12.1) 
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 𝑠̃2𝑘
𝑧 ≤ℳ ⋅ 𝑑̃𝑘 , ∀𝑘 ∈ 𝐾𝐼 (5.13.1) 

 𝑠̃′1𝑘
𝑧
≤ ℳ ⋅ (1 − 𝑑̃𝑘), ∀𝑘 ∈ 𝐾𝐼 (5.14.1) 

 𝑠̃′2𝑘
𝑧
≤ℳ ⋅ 𝑑̃𝑘 , ∀𝑘 ∈ 𝐾𝐼 (5.15.1) 

The modified flexible integer-valued SBM DEA model introduced here has all properties of 

the SBM DEA model originally developed by Tone (2001). The mFISBM is units-invariant, i.e., the 

value of ρ∗ℎ
𝑚𝐹𝐼𝑆𝐵𝑀

 (≤ 1) is autonomous of the units in which the inputs, outputs, and flexible measures 

are assessed. It can as well be confirmed that ρℎ
𝑚𝐹𝐼𝑆𝐵𝑀 is monotone decreasing in all input excesses, 

output shortfalls, and flexible slacks. To such an extent, a larger value results larger performance score 

in the attainment of the efficient frontier/facet. ρ∗𝑜
𝑚𝐹𝐼𝑆𝐵𝑀 = 1 means 𝒔𝒙∗ = 𝟎, 𝒔𝒚∗ = 𝟎, 𝒔𝟏

𝒛∗ = 𝟎, 𝒔𝟐
𝒛∗ =

𝟎, 𝒔̃𝒙∗ = 𝟎, 𝒔̃𝒚∗ = 𝟎, 𝒔̃𝟏
𝒛∗ = 𝟎, and 𝒔̃𝟐

𝒛∗ = 𝟎, i.e., no real and integer input excesses, no real and integer 

output shortfalls, and no real and integer flexible measure slacks in any optimal solution. 𝐷𝑀𝑈𝑜 

(𝒙ℎ , 𝒚ℎ , 𝒛ℎ, 𝒙̃ℎ , 𝒚̃ℎ , 𝒛̃ℎ) is inefficient if ρ∗ℎ
𝑚𝐹𝐼𝑆𝐵𝑀 < 1. This condition means we have the following 

expression for inefficient 𝐷𝑀𝑈ℎ (𝒙ℎ, 𝒚ℎ , 𝒛ℎ, 𝒙̃ℎ, 𝒚̃ℎ , 𝒛̃ℎ): 𝒙ℎ = 𝑿𝝀
∗ + 𝒔𝒙∗, 𝒚ℎ = 𝒀𝝀

∗ − 𝒔𝒚∗, 𝒛ℎ =

𝒀𝝀∗ + 𝒔𝟏
𝒛∗ − 𝒔𝟐

𝒛∗ where 𝒔𝟏
𝒛∗. 𝒔𝟐

𝒛∗ = 𝟎, 𝒙̃ℎ = 𝑿̃𝝀
∗ + 𝒔̃𝒙∗, 𝒚̃ℎ = 𝒀̃𝝀

∗ − 𝒔̃𝒚∗, 𝒛̃ℎ = 𝒀̃𝝀
∗ + 𝒔̃𝟏

𝒛∗ − 𝒔̃𝟐
𝒛∗ where 

𝒔̃𝟏
𝒛∗. 𝒔̃𝟐

𝒛∗ = 𝟎. Straightforwardly, 𝐷𝑀𝑈ℎ can become efficient by omitting the slacks i.e., 𝒙ℎ ← 𝒙ℎ −

𝒔𝒙∗, 𝒚ℎ ← 𝒚ℎ + 𝒔
𝒚∗, 𝒛ℎ ← 𝒛ℎ − 𝒔𝟏

𝒛∗ + 𝒔𝟐
𝒛∗: 𝒔𝟏

𝒛∗ ⋅ 𝒔𝟐
𝒛∗ = 𝟎, 𝒙̃ℎ ← 𝒙̃ℎ − 𝒔̃

𝒙∗, 𝒚̃ℎ ← 𝒚̃ℎ + 𝒔̃
𝒚∗, 𝒛̃ℎ ← 𝒛̃ℎ −

𝒔̃𝟏
𝒛∗ + 𝒔̃𝟐

𝒛∗: 𝒔̃𝟏
𝒛∗ ⋅ 𝒔̃𝟐

𝒛∗ = 𝟎. These operations can be called mFISBM-projections as the SBM-projection 

in Tone (2001).  

The set of DMUs with the corresponding 𝝀∗ > 𝟎 is called reference-set to 𝐷𝑀𝑈ℎ as the SBM 

DEA model. Furthermore, a DMU is FISBM-efficient if and only if it is mFISBM-efficient (see 

Appendix A). Similar to the SBM model (Tone 2001), the formulation of ρℎ
𝑚𝐹𝐼𝑆𝐵𝑀 in Model (7) can be 

interpreted as the product of input and output inefficiencies or the second term of numerator and 

denominator, correspondingly. Then, the numerator and denominator evaluate, respectively, the mean 

reduction rate of inputs and mean expansion rate of outputs considering the optimal role of flexible 

measures as well. It should be noted that when ρ∗ℎ
𝑚𝐹𝐼𝑆𝐵𝑀 = 1, the status of the real- and integre-valued 

flexible measures cannot be declared for 𝐷𝑀𝑈𝑜. As explained by  oďa (2020), this is the case of 

indefinite and it reports technical efficiency score where no matter what L-tuple of {0,1} is taken for 

{𝒅, 𝒅̃}. 

The non-oriented mFISBM DEA model can be reformulated as input-oriented (IO) by setting 

the denominator of the Eq. (7.1) to one and excluding Constraints (7.4), (7.6), (7.10), and (7.12) from 

the system. In the same way, the output-oriented (OO) mFISBM DEA model can be written but, in this 

case, we maximize the denominator and set the numerator to 1, and remove Constraints (7.5), (7.7), 

(7.11), and (7.13) from the model. The oriented mFISBM technical efficiency scores are optimal values 
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ρ∗ℎ
𝑚𝐹𝐼𝑆𝐵𝑀−𝐼𝑂

and 1 ρ∗ℎ
𝑚𝐹𝐼𝑆𝐵𝑀−𝑂𝑂⁄  where ρ∗ℎ

𝑚𝐹𝐼𝑆𝐵𝑀−𝐼𝑂𝑎𝑛𝑑 1 ρ∗ℎ
𝑚𝐹𝐼𝑆𝐵𝑀−𝑂𝑂⁄ ≥ ρ∗ℎ

𝑚𝐹𝐼𝑆𝐵𝑀
. Then, there 

is no need for the Charnes–Cooper transformation (explicitly, no need for dealing with multiplying the 

scalar variable 𝑡 > 0 in slacks) since both objective functions are linear and the optimum solutions are 

directly reported by the models.  

When dealing with large case studies, there may be a concern about the size (total number of 

decision variables and constraints) of Model (7) compared to Model (5). This could be problematic 

from the perspective of computational complexity. To handle this issue, we propose Model (8) with less 

size than Model (7) as follows (hereafter revised FISBM or rFISBM): 

 [𝑟𝐹𝐼𝑆𝐵𝑀]   

 Ωℎ
𝑟𝐹𝐼𝑆𝐵𝑀 = 𝑀𝑖𝑛  1 −

[∑
𝑠∗𝑖
𝑥

𝑥𝑖ℎ𝑖∈𝐼𝑁𝐼
+∑

𝑠̃∗𝑖
𝑥

𝑥𝑖ℎ𝑖∈𝐼𝐼
+∑

𝑠∗1𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝑁𝐼
+∑

𝑠̃∗1𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝐼
+∑

𝑠∗𝑟
𝑦

𝑦𝑟ℎ𝑟∈𝑂𝑁𝐼
+∑

𝑠̃∗𝑟
𝑦

𝑦𝑟ℎ𝑟∈𝑂𝐼
+∑

𝑠∗2𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝑁𝐼
+∑

𝑠̃∗2𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝐼
]

𝑚+𝑠+𝑝
   

(8.1) 

𝑠. 𝑡. (5.2) – (5.17).   

Model (8) is also units-invariant and provides an integrated efficiency index (Ωℎ
𝑟𝐹𝐼𝑆𝐵𝑀) ranging 

from 0 to 1 (see Appendix B). Ωℎ
𝑟𝐹𝐼𝑆𝐵𝑀can be also called monotonically decreasing with respect to 

input, output, and flexible slacks so that a larger value represents a smaller slack ratio then, better 

performance in reaching the efficient frontier. However, unlike ρℎ
𝑚𝐹𝐼𝑆𝐵𝑀,  Ωℎ

𝑟𝐹𝐼𝑆𝐵𝑀 cannot be construed 

as the product of input and output inefficiencies. Therefore, the efficiency index calculated by Model 

(8) cannot be recommended when investigating inefficiency sources is the goal of performance 

evaluation. 

4 Application: The Case of German University Hospitals 

In this section, we use a dataset of 28 public university hospitals in Germany2 in 2017. The data 

collection was carried out in different research steps including homepages of the hospitals and direct 

contact (e-mail/telephone inquiries) to the responsible departments and proved to be very cumbersome. 

For inputs, we consider the number of beds, physicians, and nurses. The number of beds is an integer-

valued input measure. However, physicians and nurses are in full-time equivalent (FTE) units, i.e., real 

values. The number of outpatients and case-mix adjusted discharges for inpatients are designated as 

integer and real outputs, respectively. However, these two outputs as the major outputs for general 

hospitals, do not provide teaching function. Therefore, we use the number of medical students as the 

integer-valued output of the university hospitals. The total number of students enrolled in the university 

hos ital’s me ical  e ree  ro rams is reflecte  in this factor.  ince they are not yet traine  to  ractice 

medicine alongside physicians at a population level, they cannot work in any specialties. This makes 

 
2 There exist 35 German university hospitals together with their medical faculties. However, due to the lack of availability of data for seven 

units, they have been excluded from the analysis. A complete list of German university hospitals is available at https://www.uniklinika.de/.  

https://www.uniklinika.de/
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them ineligible to be considered as input (trained staff) for university hospitals. However, the degree to 

which teaching contributes to the training of highly skilled personnel is also an important component 

in the academic mission performance of a university hospital. Therefore, the total number of medical 

students is considered as an output (Ozcan et al. 2010). We also introduce two more flexible measures 

to represent the teaching function in the efficiency assessment: the number of graduates and third-party 

funding income. Graduates who have completed their doctorate in medicine (trained) in a university 

hospital can play the role of either input (an available and qualified resource who can work under the 

supervision of the faculties or physicians so can affect their productivity) or output (accomplished staff, 

then a benefit resulting from teaching funding). Third-party funding income can be similarly interpreted 

in the efficiency evaluation of university hospitals; as input (a form of earnings received) or as output 

since most research-granting agencies are willing to assign funds to the university hospitals with the 

supreme impact. 

Table 1 represents the data of 28 university hospitals with 3 inputs, 3 outputs, and 2 flexible 

measures. In the last four rows of the table, the descriptive statistics are reported. The university 

hospitals considered in this study have on average 1,475 beds which are categorized as the large 

hospital. They employ more than 25,000 and 34,000 FTE physicians and nurses, respectively. From the 

output perspective, in total over 2.8 million adjusted inpatient admissions and over 11.4 million 

outpatient visits occurred. The teaching measures show that about 11 thousand graduates and about 84 

thousan  me ical stu ents in these hos itals where have receive  over €1.5 billion from the research-

granting agencies. 

The results of efficiency analysis of the teaching universities obtained from Model (5) 

(Kordrostami et al. 2019), and the proposed Models (7) and (8) are respectively reported in Tables C1, 

C2, and C3 in Appendix C. All three models are run under the CRS setting and implemented in IBM 

ILOG CPLEX Optimization Studio. As might be expected, they exhibit differences and share properties 

in common. University hospitals 2, 6, 8, 15, 21, 23, and 27 are characterized by all three models as 

efficient DMUs with the optimum slacks of zero. As claimed in Theorem 1, Model (7) will characterize 

a DMU as efficient if and only if Model (5) characterizes it as efficient. To interpret the integrality, we 

run the relaxed form of Model (7) in which the integrality is relaxed. Then, we examine the result of an 

inefficient unit, say university hospital #9. The optimum objective value of the integrality-relaxed 

Model (7) ρ∗9
𝑟𝑒𝑙𝑎𝑥𝑒𝑑 = 0.7799 obtained with the intensity optimum weights {𝜆2

∗ = 0.3189, 𝜆5
∗ =

0.1753, 𝜆23
∗ = 0.0550} and other 𝜆∗ are equal to zero. This set of optimum weights results in the 

reference input (number of beds)  ∑ 𝜆𝑗
∗𝑥𝐵𝑒𝑑𝑠,𝑗

28
𝑗=1 = 1,269.0274 which dominates the integer-valued 

input target obtained from Model (7), 𝑥̃𝐵𝑒𝑑𝑠 = 1280. Model (7) implies that 𝑥̃𝐵𝑒𝑑𝑠 = 1280 (or 330 

units reduction in beds) is a feasible target where is not outside of the real PPS. However, there exist 

some situations in which the integer-valued reference input is not feasible. For example, consider 
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university hospital #4. The optimum efficiency score obtained from the integrality-relaxed Model (7), 

ρ∗4
𝑟𝑒𝑙𝑎𝑥𝑒𝑑 = 0.8201. This yields with the intensity optimum weights {𝜆6

∗ = 0.7795, 𝜆12
∗ =

0.0245, 𝜆23
∗ = 0.0516} (others are equal to zero). This reports the reference in ut (“ e s”) 

∑ 𝜆𝑗
∗𝑥𝐵𝑒𝑑𝑠,𝑗

28
𝑗=1 = 1,173.5570 which does not dominate the integer-valued input target 𝑥̃𝐵𝑒𝑑𝑠 = 1049. 

The result is due to the designated status of the flexible measures in the final PPS. For the 𝐷𝑀𝑈4, the 

real flexible measure “Thir - arty fun in  income” is  etecte  as in ut in the non-integer PPS while it 

plays the role of output in the integer PPS. Therefore, the PPS may not be comparable in some situations 

where the flexible measures can play different roles. Slacks of the convex PPS (produced by the non-

integer DEA) are usually real-valued amounts and that the optimal integer input/output slacks reported 

by the models are not constantly a rounding up or down of the real-valued slacks. As reported in Table 

C2 in Appendix, for example, 𝐷𝑀𝑈4, the inte er slacks of “ e s” 𝑠̃𝐵𝑒𝑑𝑠
∗ = 146 which is not equal to 

the rounded up or down of its convex (non-integer) slack 𝑠𝐵𝑒𝑑𝑠
∗ = 121.44. Incontestably, for the 

university hospital #19, 𝑠̃𝐵𝑒𝑑𝑠
∗ = 39 differs expressively from its corresponding non-integer slack 

𝑠𝐵𝑒𝑑𝑠
∗ = 259.58. 

Table 1. Data of 28 German university hospitals in 2017 

DMU Beds Physicians Nurses Inpatients Outpatients Students Third-party 

funding income 

(𝟏𝟎𝟑 €) 

Graduates 

1 1,517 878.81 1,124.81 79,965.62 245,085 2,339 38,708 330 
2 3,011 1,998.50 2,618.66 224,328.58 1,537,233 7,432 153,400 795 

3 1,237 725.71 897.95 76,312.64 342,327 2,993 40,524 289 

4 1,295 852.98 1,304.83 97,594.78 428,046 2,699 46,882 315 
5 1,303 793.38 1,035.13 89,673.48 377,545 3,232 31,678 386 

6 1,378 823.63 1,353.20 113,658.93 517,851 3,212 37,249 472 

7 1,260 831.50 1,035.27 85,042.01 226,331 1,885 35,505 240 
8 1,297 709.43 936.18 81,876.35 276,610 3,416 39,286 562 

9 1,610 1,067.65 1,274.21 95,335.71 578,049 3,090 76,200 459 

10 1,554 845.50 1,294.47 89,431.96 214,921 2,861 52,169 346 
11 919 436.70 715.07 56,000.14 17,095 1,598 21,248 204 

12 984 521.20 762.04 58,401.14 169,302 2,110 11,473 199 

13 1,436 1,118.10 1,468.10 96,848.74 337,455 3,347 79,946 405 
14 1,520 834.93 1,314.90 118,360.73 459,719 2,581 91,368 328 

15 1,988 1,471.50 1,573.59 137,557.42 1,093,862 3,398 105,465 478 
16 1,396 741.83 1,130.74 93,933.26 463,361 2,334 27,000 315 

17 1,464 790.14 1,210.11 101,525.98 329,189 3,338 98,513 402 

18 1,345 773.03 1,042.71 86,053.41 296,937 2,758 42,977 381 
19 1,662 978.73 1,314.89 107,254.52 269,380 3,417 45,800 442 

20 1,352 621.37 757.41 69,898.95 214,535 1,483 41,913 211 

21 2,050 1,182.41 1,856.37 155,754.00 834,985 5,616 96,770 676 
22 1,091 949.94 1,071.65 86,508.14 254,462 1,715 45,585 496 

23 1,457 948.44 1,228.14 146,479.82 391,521 2,777 47,620 293 

24 833 626.85 898.83 69,979.62 154,657 2,010 22,220 268 
25 2,196 1,156.13 1,996.66 160,488.88 302,263 3,566 63,900 452 

26 1,559 850.40 1,065.25 98,409.18 383,947 2,998 90,400 541 

27 1,150 741.23 813.20 79,745.76 247,370 2,736 55,200 340 
28 1,438 862.50 1,294.44 98,027.93 489,027 2,842 36,388 366 

Sum 41,302.0 25,132.5 34,388.8 2,854,447.7 11,453,065.0 83,783.0 1,575,387.0 10,991.0 

Average 1,475.1 897.6 1,228.2 101,944.6 409,038.0 2,992.3 56,263.8 392.5 

StD 430.6 301.6 408.3 35,664.6 305,287.9 1,185.6 31,836.8 138.7 
Min 833.0 436.7 715.1 56,000.1 17,095.0 1,483.0 11,473.0 199.0 

Max 3,011.0 1,998.5 2,618.7 224,328.6 1,537,233.0 7,432.0 153,400.0 795.0 
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Figure 2. Efficiency scores calculated by Models (5), (7), and (8) 

In Tables C1, C2, and C3 in Appendix C, 𝑑𝑘
∗  and 𝑑̃𝑘

∗  in icate the roles of “Thir -party funding 

income” an  “Gra uates” in the final    , res ectively. In  o el (5), 1  out of the    university 

hospitals treat these two flexible measures as output i.e., the majority treats both as output. The same 

results are re orte  by  o el ( ) where 1  an        s  etermine the status of both “Thir -party 

fun in  income” an  “Gra uates” as out ut, corres on in ly. However,  o el ( ) assi ns  ifferent 

optimal designations for these two flexible measures so that only 9 and 7 university hospitals identify 

the role of “Thir - arty fun in  income” an  “Gra uates” res ectively as out ut, i.e., the ma ority of 

19 and 21 DMUs treat them as input. This can explain the difference between the efficiency scores 

calculated by Models (5) and (7) with those calculated by Model (8) as illustrated in Figure 2. The 

inefficiency scores obtained from all three models are asymmetrically distributed since the medians of 

inefficiency scores are not in the middle of the boxes, and the whiskers are not about the same on the 

upper and lower sides. These boxes are also advantageous for offering a visual indicator of the 

variability of inefficiencies. The minimum of 0.6263, the first quartile at 0.7660, and a standard 

 eviation equal to  .1  5, all si nify the limite   iscriminative  ower of  o el ( )’s inefficiencies in 

this case. However, the situation changes with Models (5) and (7) where the longer boxes show more 

dispersed and scattered inefficiency scores. Since the median lines of Model (5) (= 0.6434) and Model 

(7) (= 0.6760) are close to each other, there is likely to be no difference between the efficiency scores 

of these two models. On the other hand, the median line of Model (5) that sits above 0.8534, represents 

the possibility of a difference between the inefficiency scores calculated by this model and the others. 

None inefficiency score is detected as the outlier. In other words, the lowest inefficiency score computed 

by the models is within one and a half interquartile range of its 25th-percentile, and the maximum 

efficiency score (1.0) is within one and a half of its 75th-percentile. 

To analyze the magnitudes and sources of inefficiency regarding the corresponding 

inputs/outputs for each inefficient university hospital, the inefficiency scores can be decomposed using 

the optimal solution obtained from the models as exhibited in Table 2. This decomposition provides 

managers or policy-makers with enlightening information about how to become an efficient DMU by 

examining the magnitudes and sources of inefficiency. As might be expected, the majority of the 
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inefficiency sources identified by Models (7) and (8) are input inefficiency since we run the input-

oriented form of Model (7) and Model (8) also calculates the scores by minimizing the Ω𝑜
𝑟𝐹𝐼𝑆𝐵𝑀 (Eq. 

(8.1)). From Table 2, we can see 17 out of 21 inefficiencies are caused by input inefficiencies in both 

Models (7) and (8). However, this is different for Model (5) where 18 out of 21 inefficiencies are 

attributed to the output inefficiency. Part of the clarification for the distinct results may be that Model 

(5) is additive and its objective function maximizes the summation of slacks (see Eq. (5.1)) instead of 

targeting input/output inefficiencies. Those four university hospitals (namely, 5, 12, 16, and 24) in 

which the output inefficiency is identified as the main source of inefficiency share one significant 

property in common. They all have a considerable amount of slacks of the flexible measure “Thir -

 arty fun in  income” that is  esi nate  as out ut (𝑑𝑘
∗ = 1) in the optimum solutions obtained from all 

three models (see Tables C1, C2, and C3 in Appendix C). This indicates the significant shortage in the 

third-party funding income dominates other inefficiencies. 

Table 2.  Inefficiency decomposition  

DMU Model (5) Model (7) Model (8) 

Input Ineff Output Ineff Dominant Input Ineff Output Ineff Dominant Input Ineff Output Ineff Dominant 

1 0.0000 0.6605 Output Ineff 0.3092 0.0000 Input Ineff 0.2957 0.0000 Input Ineff 

2 - - - - - - - - - 

3 0.0292 0.1511 Output Ineff 0.0700 0.0122 Input Ineff 0.0700 0.0122 Input Ineff 
4 0.0752 0.2428 Output Ineff 0.1673 0.0021 Input Ineff 0.1799 0.0000 Input Ineff 

5 0.0265 0.2363 Output Ineff 0.0645 0.1207 Output Ineff 0.0645 0.1207 Output Ineff 

6 - - - - - - - - - 
7 0.0129 0.6903 Output Ineff 0.2678 0.0000 Input Ineff 0.2494 0.0000 Input Ineff 

8 - - - - - - - - - 

9 0.2034 0.0318 Input Ineff 0.2183 0.0000 Input Ineff 0.2200 0.0000 Input Ineff 

10 0.0249 0.6076 Output Ineff 0.2410 0.0000 Input Ineff 0.2472 0.0000 Input Ineff 

11 0.0881 3.6791 Output Ineff 0.1835 0.0348 Input Ineff 0.1663 0.0000 Input Ineff 

12 0.0074 1.0592 Output Ineff 0.1505 0.4298 Output Ineff 0.1505 0.4298 Output Ineff 
13 0.1966 0.2590 Output Ineff 0.2813 0.0000 Input Ineff 0.2386 0.0000 Input Ineff 

14 0.1704 0.1366 Input Ineff 0.1853 0.0000 Input Ineff 0.1866 0.0549 Input Ineff 

15 - - - - - - - - - 
16 0.0203 0.4655 Output Ineff 0.1334 0.2007 Output Ineff 0.1334 0.2007 Output Ineff 

17 0.1082 0.2251 Output Ineff 0.1644 0.0000 Input Ineff 0.1887 0.0442 Input Ineff 

18 0.0884 0.3586 Output Ineff 0.1705 0.0000 Input Ineff 0.1705 0.0000 Input Ineff 
19 0.0636 0.6312 Output Ineff 0.1731 0.0000 Input Ineff 0.1731 0.0000 Input Ineff 

20 0.1411 0.4423 Output Ineff 0.3012 0.0000 Input Ineff 0.3067 0.0000 Input Ineff 

21 - - - - - - - - - 
22 0.2009 0.4104 Output Ineff 0.3737 0.0000 Input Ineff 0.3737 0.0000 Input Ineff 

23 - - - - - - - - - 

24 0.1272 0.4113 Output Ineff 0.1335 0.1383 Output Ineff 0.1335 0.1383 Output Ineff 
25 0.0480 0.4826 Output Ineff 0.1682 0.0000 Input Ineff 0.1816 0.0000 Input Ineff 

26 0.2039 0.1230 Input Ineff 0.2469 0.0000 Input Ineff 0.2469 0.0000 Input Ineff 

27 - - - - - - - - - 
28 0.0128 0.3692 Output Ineff 0.1577 0.1149 Input Ineff 0.1577 0.1149 Input Ineff 

Ineff: Inefficiency  

Now turning to the teaching function, we can see from the reported slacks in Tables C2 and C3 

that “Thir - arty fun in  income” as one of the teachin   roxies have the maximum ratio of slacks 

(either input excesses or output shortfalls) in all university hospitals except DMU7 in Model (7) where 

excesses in in uts (“ e s”, “ hysicians”, an  “Nurses”)  ominate other inefficiencies. This s ecifies 

in almost all the evaluating university hospitals in Germany, teaching inefficiency dominates the general 

inefficiency. As is now apparent the same result is not seen in the optimum solutions calculated by 

 o el (5) in Table  1 in A  en ix  . In this mo el, the slacks of “Thir - arty fun in  income” are as 
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well substantial while shorta es in “ ut atients” are i entifie  as the  ominator. This disparity can be 

due to the fact that Model (5) is additive and its objective function cannot be explained as the 

inefficiency ratio.  

It is not easy to evaluate our findings in the light of other studies since there are no recent and 

comparable studies on the university hospital performance assessment, especially in Germany. 

However, studies dealing with the efficiency of university hospitals (as discussed in Section 2) have 

already pointed out differences in efficiency between teaching and non-teaching hospitals. Generally 

speaking, university hospitals are not able to compete with non-teaching counterparts since they pursue 

different goals. 

5 Conclusions 

In this study, we advance the SBM DEA model proposed by Tone (2001) to consider the real 

circumstances of the integer nature of certain measures whose status can be flexibly designated. 

Besides, we develop a revision to the additive model developed by Kordrostami et al. (2019) to make 

the model report of a non-negative inefficiency index with an upper limit of one. Then, the optimal 

solutions derived from the proposed and revised models are investigated in comparison with 

Kor rostami’s solutions. This is illustrate  by the  erformance analysis of    university hospitals in 

Germany. In this case study, in addition to the patient care function, the teaching function of the units 

is captured in the PPS by introducing two flexible measures containing one real-value  (“Thir -party 

fun in  income”) an  one inte er-value  (“Gra uates”) as well as one inte er-valued output 

(“ tu ents”). In this a  lication, the inclusion of the inte rality constraints lea s to more vali  slacks, 

i.e., ensures to lie within the integer PPS and to not be dominated by any other feasible units. The 

proposed model describes more reliable and discriminated inefficiency scores from which a more 

successful ordering of the university hospitals can be originated.  

From a practical viewpoint, the decomposition of inefficiencies provides hospital managers, 

local and national health authorities some informative insights on the source and magnitude of the 

inefficiency of German university hospitals. The significant shortage in the third-party funding that 

university hospitals receive as a form of revenue is identified as the main source of inefficiency. Having 

this fact in mind that most research-granting organizations (e.g., German Research Foundation) 

consider the university hospitals with the greatest impact, it can be concluded that targeting research 

missions might boost the efficiency of German university hospitals. A reconsideration might therefore 

be required in the university hospital performance management. The enormous public funds that flow 

into medical education should be allocated more according to efficiency aspects. Now that health care 

is under increasing pressure to be more efficient due to the introduction of a more results-oriented 

reimbursement system, similar instruments should also be used for the reimbursement of the academic 
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mission. The proposed SBM DEA model could be used as an accompanying controlling and monitoring 

instrument. At the same time, in order to avoid cross-subsidies between academic and patient care 

missions in university hospitals, more transparency is urgently needed by applying a performance 

assessment approach that allows both missions to be efficiently combined under one roof. Since high-

quality teaching cannot be separated from patient care, this realization can give politicians a clear 

mandate to find a solution to this dilemma. The proposed model could be a suitable monitoring approach 

for this path, taking into account further comparative parameters and the necessary modifications in the 

dataset used in the analysis such as identifying new measures. 

A weakness of the conceptualized model is the lack of the quality of patient care in the analysis. 

However, these datasets are usually classified and are not publicly available. In addition, an attempt 

should be made to integrate the other university hospitals into the investigation and to conduct an 

analysis over a longer period of time. A longitudinal study would allow statements on the development 

of efficiency of individual university hospitals, for instance, in order to assess the efficiency effect of 

mergers. As a real example, the German Federal Cartel Office3 has recently explicated plans to merge 

the cardiological and cardiosurgical services of the Charité and Deutsches Herzzentrum Berlin and 

establish the heart center Deutsches Herzzentrum der Charité (Bundeskartellamt 2021). Furthermore, 

from a theoretical perspective, one of the limitations of this study that can be addressed in the future 

may be extending the present model by incorporating the perspective of the radial characteristics of 

measure in inefficiency sources. This leads to bring the effects of inputs/outputs that are subject to 

change proportionally. 
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Appendix A.  

Theorem 1. A DMU is FISBM-efficient if and only if it is mFISBM-efficient, i.e.,  τ∗ℎ
𝐹𝐼𝑆𝐵𝑀 = 0 ↔

ρ∗ℎ
𝑚𝐹𝐼𝑆𝐵𝑀 = 1. 

Proof. τ∗ℎ
𝐹𝐼𝑆𝐵𝑀 = 0 if and only if the optimum value of all inputs, outputs, and flexible slacks be equal 

to 0 considering the nonnegativity condition imposed by Constraint (5.16), i.e., 𝒔∗ =

(𝒔∗𝑥 , 𝒔∗𝑦, 𝒔̃∗𝑥 , 𝒔̃∗𝑦, 𝒔∗1
𝑧, 𝒔∗2

𝑧) = 𝟎. By replacing this solution into Model (7), we have 𝜹𝑥 ≤ 𝟎 and 𝜹𝑥 ≥

𝟎 from Constraint (7.8) which results in 𝜹𝑥 = 𝟎. The same results about 𝜹𝑦, 𝜹𝑧 and 𝜹̃𝑥 , 𝜹̃𝑦, 𝜹̃𝑧 would 

be achieved from Constraints (7.4), (7.5), (7.6), (7.10), (7.11), (7.12), and (7.13), respectively. On the 
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other hand, we know that 𝐷𝑀𝑈ℎ in mFISBM model is called efficient if and only if ρ∗ℎ
𝑚𝐹𝐼𝑆𝐵𝑀 = 1. This 

stipulation is equal to 𝜹∗ = (𝜹∗𝑥, 𝜹∗𝑦, 𝜹∗𝑧, 𝜹̃∗
𝑥
, 𝜹̃∗

𝑦
, 𝜹̃∗

𝑧
) = 𝟎. This completes the proof. ∎ 

Appendix B.  

Theorem 2. Ω𝑜
𝑟𝐹𝐼𝑆𝐵𝑀 ≤ 1. 

Proof. Assume a solution of 𝐷𝑀𝑈ℎ in which all input excesses (including the flexible measures 

designated as input) are equal to the corresponding utilized inputs (or their maximum values) i.e., 

{𝒔∗
𝑥 = 𝒙ℎ , 𝒔̃

∗𝑥 = 𝒙̃ℎ , 𝒔1
∗ 𝑧 = 𝒘ℎ, 𝒔̃1

∗𝑧 = 𝒘̃ℎ}. This follows that 0 ≤ (𝑚 + 𝑝)−1 [∑
𝑠∗𝑖
𝑥

𝑥𝑖ℎ𝑖∈𝐼𝑁𝐼 +

∑
𝑠̃∗𝑖
𝑥

𝑥𝑖ℎ𝑖∈𝐼𝐼 + ∑
𝑠∗1𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝑁𝐼 + ∑
𝑠̃∗1𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝐼 ] ≤ 1. However, in the case of outputs, the maximum values for 

output shortfalls cannot be defined since any output slacks can exceed the corresponding produced 

outputs {𝟎 ≤ 𝒔∗
𝑦, 𝟎 ≤ 𝒔̃∗𝑦, 𝟎 ≤ 𝒔2

∗ 𝑧, 𝟎 ≤  𝒔̃2
∗𝑧}, however, it always holds 0 ≤ (𝑠 +

𝑝)−1 [∑
𝑠∗𝑟
𝑦

𝑦𝑟ℎ𝑟∈𝑂𝑁𝐼 + ∑
𝑠̃∗𝑟
𝑦

𝑦𝑟ℎ𝑟∈𝑂𝐼 + ∑
𝑠∗2𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝑁𝐼 + ∑
𝑠̃∗2𝑘
𝑧

𝑧𝑘ℎ𝑘∈𝐾𝐼 ]. Since the inefficiency scores are non-

negative (0 ≤ Ωℎ
𝑟𝐹𝐼𝑆𝐵𝑀), this limits the upper bound of the summation of output mix inefficiencies so 

that the ratio of average input and output inefficiencies cannot take more than 1. It can reach the upper 

limit, Ω∗ℎ
𝑟𝐹𝐼𝑆𝐵𝑀 = 1, only if slacks are equal to their minimum values defined by Eq. (5.16), i.e., 

{𝒔∗𝑥 = 𝟎, 𝒔∗𝑦 = 𝟎, 𝒔̃∗𝑥 = 𝟎, 𝒔̃∗𝑦 = 𝟎, 𝒔∗𝑧 = 𝟎, 𝒔̃∗𝑧 = 𝟎} which is also a feasible solution for Model (8). 

∎ 
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Appendix C. 

Table C1. Results of efficiency analysis of university hospitals via Model (5) 

DMU 𝝉∗𝒉
𝑭𝑰𝑺𝑩𝑴

 Real Slacks Integer Slacks  

Physicians Nurses Inpatients Third-party 
funding income 

as input 

Third-party 
funding income 

as output 

𝑑𝑘
∗  Beds Outpatients Students Graduates 

as input 

Graduates 

as output 
𝑑̃𝑘
∗  𝜁∗

ℎ
𝐹𝐼𝑆𝐵𝑀

 

1 3.303 0.00 0.00 21,132.69 0.00 45,754.35 1 0 247,811 843 0 160 1 0.4760 

2 0.000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 0 1.0000 

3 0.843 39.52 0.00 2,310.42 0.00 5,683.70 1 41 0 0 0 169 1 0.7849 

4 1.440 105.99 132.17 794.97 0.00 14,250.33 1 0 99,474 848 0 112 1 0.6798 

5 1.261 63.19 0.00 214.45 0.00 28,063.17 1 0 27,475 0 0 85 1 0.7061 

6 0.000 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 0 1.0000 

7 3.490 32.22 0.00 5,129.48 0.00 30,963.51 1 0 332,770 1,042 0 119 1 0.4614 

8 0.000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 1 1.0000 

9 1.112 230.31 176.43 0.00 12,816.52 0.00 0 347 54,914 1 128 0 0 0.6487 

10 3.113 0.00 0.00 19,489.45 0.00 16,459.12 1 116 389,319 1,024 0 116 1 0.4894 

11 18.660 0.00 49.78 0.00 0.00 14,094.23 1 179 296,223 395 0 32 1 0.1328 

12 5.318 0.00 0.57 6,885.81 0.00 51,051.96 1 21 52,676 0 0 83 1 0.3600 

13 1.823 259.89 58.42 21,558.21 41,107.25 0.00 0 0 201,961 1 0 87 1 0.6381 

14 1.228 0.00 9.65 0.00 52,655.75 0.00 0 149 23,974 489 0 100 1 0.7299 

15 0.000 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 1 1.0000 

16 2.388 0.00 0.13 1,900.89 0.00 41,436.56 1 85 0 1,010 0 107 1 0.5563 

17 1.333 0.00 0.00 572.29 37,050.27 0.00 0 83 190,826 421 0 76 1 0.7279 

18 1.788 0.00 29.46 744.06 0.00 16,366.99 1 180 297,582 118 73 0 0 0.6710 

19 2.779 0.00 32.12 2,631.27 0.00 29,331.48 1 187 483,372 224 52 0 0 0.5740 

20 2.333 45.75 0.00 0.00 10,492.57 0.00 0 325 11,989 1,121 0 202 1 0.5955 

21 0.000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 1 1.0000 

22 2.445 228.37 128.18 0.00 0.00 6,331.82 1 0 253,996 865 220 0 0 0.5666 

23 0.000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 0 1.0000 

24 2.154 113.40 167.11 0.00 0.00 13,546.93 1 0 160,147 0 38 0 0 0.6185 

25 2.557 0.00 177.77 0.00 0.00 53,178.41 1 121 387,149 572 0 63 1 0.5383 

26 1.388 26.38 0.00 0.00 35,009.23 0.00 0 280 141,659 0 228 0 0 0.6149 

27 0.000 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 1 1.0000 

28 1.885 33.12 0.10 10,781.51 0.00 31,896.10 1 0 92,511 1,067 0 108 1 0.6143 
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Table C2. Results of efficiency analysis of university hospitals via input-oriented Model (7) 

DMU 𝝆∗
𝒉
𝒎𝑭𝑰𝑺𝑩𝑴−𝑰𝑶

 Real Slacks Integer Slacks 

Physicians Nurses Inpatients Third-party funding 

income as input 

Third-party funding 

income as output 
𝑑𝑘
∗  Beds Outpatients Students Graduates 

as input 

Graduates 

as output 
𝑑̃𝑘
∗  

1 0.3730 278.03 320.53 0.00 0.00 0.00 1 495 0 0 0 0 1 

2 1.0000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 1 

3 0.8505 87.93 0.00 817.04 0.00 2,034.74 1 110 0 0 0 0 1 

4 0.6927 141.97 290.51 0.00 0.00 486.24 1 146 0 0 0 0 1 

5 0.8687 98.34 0.46 0.00 0.00 19,115.53 1 90 0 0 0 0 1 

6 1.0000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 1 

7 0.4753 242.54 275.07 0.00 0.00 0.00 1 310 0 0 0 0 1 

8 1.0000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 1 

9 0.5533 236.00 194.26 0.00 16,860.89 0.00 0 330 0 0 134 0 0 

10 0.5021 183.52 301.66 0.00 0.00 0.00 1 424 0 0 0 0 1 

11 0.5919 31.62 152.13 0.00 0.00 3,699.12 1 244 0 0 0 0 1 

12 0.6660 76.90 66.68 0.00 0.00 24,656.44 1 213 0 0 0 0 1 

13 0.5785 353.75 434.63 0.00 35,435.49 0.00 0 100 0 0 0 0 1 

14 0.6674 0.23 114.65 0.00 47,997.54 0.00 0 195 0 0 0 0 1 

15 1.0000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 1 

16 0.7331 2.04 183.74 0.00 0.00 21,677.36 1 284 0 0 52 0 0 

17 0.6975 38.12 72.32 0.00 41,829.17 0.00 0 183 0 0 0 0 1 

18 0.6648 57.59 73.33 0.00 17,251.91 0.00 0 126 0 0 81 0 0 

19 0.6646 86.88 39.81 0.00 21,297.25 0.00 0 39 0 0 114 0 0 

20 0.3144 139.27 98.86 0.00 17,769.25 0.00 0 576 0 0 0 0 1 

21 1.0000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 1 

22 0.2394 376.22 327.58 0.00 15,517.20 0.00 0 211 0 0 314 0 0 

23 1.0000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 1 

24 0.7329 128.27 171.26 0.00 0.00 12,295.51 1 7 0 0 35 0 0 

25 0.6339 70.03 436.79 0.00 11,565.67 0.00 0 467 0 0 0 0 1 

26 0.4978 76.81 24.63 0.00 52,067.65 0.00 0 299 0 0 191 0 0 

27 1.0000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 1 

28 0.6846 107.60 255.90 0.00 0.00 16,717.84 1 247 0 0 50 0 0 
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Table C3. Results of efficiency analysis of university hospitals via Model (8) 

DMU 𝜴∗𝒉
𝒓𝑭𝑰𝑺𝑩𝑴

 Real Slacks Integer Slacks 

Physicians Nurses Inpatients Third-party funding 

income as input 

Third-party funding 

income as output 
𝑑𝑘
∗  Beds Outpatients Students Graduates 

as input 

Graduates 

as output 
𝑑̃𝑘
∗  

1 0.7043 241.79 233.92 0.00 16,521.33 0.00 0 403 0 0 100 0 0 

2 1.0000 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 0 

3 0.9580 87.93 0.00 817.04 0.00 2,034.74 1 110 0 0 0 0 1 

4 0.8561 149.01 168.98 0.00 15,054.90 0.00 0 122 0 0 0 0 1 

5 0.9613 98.34 0.46 0.00 0.00 19,115.53 1 90 0 0 0 0 1 

6 1.0000 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 0 

7 0.7506 241.97 248.51 0.00 9,865.38 0.00 0 305 0 0 47 0 0 

8 1.0000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 0 

9 0.7800 239.28 190.01 0.00 18,973.93 0.00 0 341 0 0 122 0 0 

10 0.7528 100.17 228.10 0.00 31,822.90 0.00 0 196 0 0 71 0 0 

11 0.8337 0.00 101.41 0.00 6,322.95 0.00 0 153 0 0 46 0 0 

12 0.9097 76.90 66.68 0.00 0.00 24,656.44 1 213 0 0 0 0 1 

13 0.7614 279.35 333.13 0.00 50,563.19 0.00 0 0 0 0 34 0 0 

14 0.8507 9.80 54.59 0.00 52,680.10 0.00 0 177 0 0 0 72 1 

15 1.0000 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 0 

16 0.8932 2.04 183.74 0.00 0.00 21,677.36 1 284 0 0 52 0 0 

17 0.8490 0.22 161.30 0.00 54,756.14 0.00 0 96 0 0 0 71 1 

18 0.8295 57.59 73.33 0.00 17,251.91 0.00 0 126 0 0 81 0 0 

19 0.8269 86.88 39.81 0.00 21,297.25 0.00 0 39 0 0 114 0 0 

20 0.6933 143.81 133.31 0.00 17,390.89 0.00 0 609 0 0 55 0 0 

21 1.0000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 1 

22 0.6263 375.95 327.28 0.00 15,587.54 0.00 0 210 0 0 314 0 0 

23 1.0000 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 0 

24 0.8932 128.27 171.26 0.00 0.00 12,295.51 1 7 0 0 35 0 0 

25 0.8184 42.31 508.89 0.00 15,647.05 0.00 0 389 0 0 88 0 0 

26 0.7531 76.81 24.63 0.00 52,067.65 0.00 0 299 0 0 191 0 0 

27 1.0000 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 0 

28 0.8738 107.60 255.90 0.00 0.00 16,717.84 1 247 0 0 50 0 0 
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Abstract. Internationalization is impacting universities and changing their core missions. In turn, 

many western universities have adopted a business model approach to deal with opportunities and 

challenges posed to their missions by internationalization. Resulting from increased scrutiny from 

the public and policy makers on the ability of universities to efficiently utilize public resources to 

achieve institutional missions, there is a growing interest to analyze this development and its effects 

upon the university business model. The purpose of this paper is to examine and evaluate how 

internationalization within the university's mission im acts the university’s business mo el.  sin  a 

sample of German universities, this study develops a unique, three-stage, mathematical analysis to 

investigate this connection. By determining the internationalization and overall efficiencies of each 

institution relative to the other institutions in the dataset, it is found that no direct correlation between 

the relative internationalization efficiency and overall institutional efficiency exists, while also 

evidencing the use of efficiency analysis in allocating resources for internationalization and overall 

university mission achievement. These results show that while the relative efficiency of 

internationalization may contribute to a university’s overall relative efficiency, other com onents of 

the university business model may also play key roles in determining overall relative efficiency, and 

the interplay of these components should be investigated in the future research. 
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