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Decoherence effects break reciprocity in matter transport
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The decoherence of quantum states defines the transition between the quantum world and classical physics.
Decoherence or, analogously, quantum mechanical collapse events pose fundamental questions regarding the
interpretation of quantum mechanics and are technologically relevant because they limit the coherent information
processing performed by quantum computers. We have discovered that the transition regime enables a novel
type of matter transport. Applying this discovery, we present nanoscale devices in which decoherence, modeled
by random quantum jumps, produces fundamentally novel phenomena by interrupting the unitary dynamics
of electron wave packets. Noncentrosymmetric conductors with mesoscopic length scales act as two-terminal
rectifiers with unique properties. In these devices, the inelastic interaction of itinerant electrons with impurities
acting as electron trapping centers leads to a novel steady state characterized by partial charge separation between
the two leads, or, in closed circuits to the generation of persistent currents. The interface between the quantum
and the classical worlds therefore provides a novel transport regime of value for the realization of a new category
of mesoscopic electronic devices.

DOI: 10.1103/PhysRevB.104.115413

I. INTRODUCTION

The measurement process is a mysterious phenomenon at
the heart of quantum physics. Starting with the Copenhagen
interpretation [1,2], numerous approaches have attempted to
describe this phenomenon. For an overview, see, e.g., [3]. The
Copenhagen interpretation, for example, states that a mea-
surement causes a spontaneous collapse of the wave function
[4], whereas the decoherence theory attributes the apparent
collapse to the entanglement of the system with its environ-
ment [5–7]. Hitherto unknown processes are also considered
to cause physically real quantum collapses, which for macro-
scopic systems create an observer-independent reality [8].
In this work we assume that physically real decoherence or
collapse events are initiated by inelastic interactions and show
that they impact mesoscopic transport without a macroscopic
measurement process. This concept underlies the quantum
trajectories approach widely and successfully used in quan-
tum optics [9–14]. We shall show that this method, applied to
solid state systems on the nanoscale, predicts nonreciprocal
transport properties of electrons.

We analyze the mesoscopic transport of electrons by
considering the event-type character of inelastic scattering,
which initiates collapse processes [15]. The idea behind
this approach is presented in Fig. 1. Whereas electron
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transport in the quantum regime is described by propagat-
ing extended waves and interference effects [Fig. 1(a)], it
is characterized in the classical world by scattering events
of particles [Fig. 1(c)]. These two transport regimes are ex-
emplified by the Landauer-Büttiker formalism [16,17] and
the Drude-Sommerfeld model, described by the Boltzmann
equation [18,19]. We focus here on the transition regime be-
tween classical and quantum transport and describe the charge
carriers as coherent wave packets of finite size [Fig. 1(b)].
Existing formalisms assessing this regime are usually based
on the Kubo formalism, which ensemble averages the effects
of collapses and dephasing processes [20]. Such effects in-
clude the broadening of energy levels [21] or “washing out of
states” [22] and adding noise to wave functions’ amplitudes
and phases [23–25]. These methods find a smooth crossover
from the quantum regime to the classical world [26,27]
because decoherence is modeled as a decay process phe-
nomenologically.

In contrast, the quantum trajectory approach treats an in-
elastic event (a “quantum jump”) as an individual event that
does or does not take place. It breaks time-reversal symmetry
by initiating a collapse of the wave function and occurs in
real space at a distinct location and time [15]. The quan-
tum jumps can equivalently be described by an appropriate
Lindblad master equation for the reduced density matrix of
the observed system [28] which in our case consists of the
electrons in a nanoscopic device. The spontaneous breaking
of time-reversal invariance of the microscopic dynamics does
not fit the assumptions underlying Onsager’s reciprocity rela-
tions [29,30]. It is therefore not guaranteed that the transport
must be reciprocal if quantum collapse processes are relevant.

This irreversibility is caused on a microscopic level by
inelastic scattering events. It is therefore impossible to model
it appropriately by a macroscopic procedure like tracing over
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FIG. 1. Illustration of electron transport through a ring structure in (a) the quantum world, (c) the classical or semiclassical world, and
(b) in the transition regime between both worlds. (a) In the quantum world, plane electron waves interfere without any events. (c) In the
classical world, localized particles undergo numerous inelastic scattering events (red diamonds), which quickly erase the phase memory. (b) In
the transition regime, wave packets interfere and undergo possible inelastic scattering events (half-filled diamond), which cause only a partial
loss of coherence.

unobserved degrees of freedom, as implemented by the meth-
ods mentioned above. Instead, we shall use a description
taking into account those events directly (see below). We
exploit this intrinsic irreversibility to design novel electronic
devices. These nonunitary quantum electronic devices work
as follows. To start, the devices are nanostructured into non-
centrosymmetric shapes. The spatial asymmetry induces a
temporal asymmetry; the transit time τtr of a wave packet
depends on whether the electron travels forward or backward
through the device as shown in Sec. II. This is because the
transit time depends on the interference of the wave function
due to the unitary dynamics. On the other hand, decoherence
is caused by inelastic scattering events as characterized by the
average time τi between such events. Therefore, the number of
quantum jumps per passage of the electron through the device
depends on τi/τtr and is thus nonreciprocal. In one direction
the electron transport is more coherent, in the other less so.
The intrinsic irreversibility of the quantum mechanical deco-
herence process leads to nonreciprocity of electron transport.

Here we demonstrate this device concept by model-
ing the electron transport in a set of noncentrosymmetric
devices [31–33]. These include devices with longitudinal
asymmetry, devices with transverse asymmetry subject to a
magnetic field, and two-path interferometers. The devices
are constructed from idealized model materials that are de-
scribed by the single particle picture and by perfect screening.
The calculations were done by applying the Lindblad equa-
tion [28], or using a direct, stochastic implementation of the
wave-function collapse, by computing the quantum trajectory
of the particle [9–14]. Both kinds of calculations cover the
entire range from coherent quantum transport to classical
diffusive transport. As we work in the single particle pic-
ture, the Fermi statistics of the electron plays no role. For
a recent proposal to implement Lindblad dynamics in the
Meir-Wingreen transport formula, see [34,35]. Nonrecipro-
cal transport of wave packets is achieved in all devices in a
well-defined window of scattering rates, yielding a peak of
the nonreciprocity at a decoherence rate of � = 2/τi ≈ 1/τtr

(see Sec. III). Crucially, in the limits of large and small
scattering rates the transport is reciprocal. Therefore, this de-
vice concept illustrates the emergence of new functionality
in electron transport right in the transition regime between
quantum physics and classical physics. Having established the
nonreciprocity for excited states (wave packets), we address
in Sec. IV the question whether the effect persists close to

thermal equilibrium as described by a thermal density matrix.
It turns out that the thermal equilibrium taken as a starting
point of the state evolution is unstable against the collapse
dynamics or decoherence. Novel time-independent states are
established which show charge separation between the two
leads, and, for closed systems, persistent currents.

II. NONRECIPROCAL DYNAMICS OF WAVE PACKETS
FOR τi � τtr

Figure 2 shows the structure of the devices considered. The
conductors connect two ports, L and R, and are shaped asym-
metrically perpendicular to or in the direction of the current
flow (transversal and longitudinal asymmetry). We compare
these conductors to Aharonov-Bohm rings [36,37] with a
transversal asymmetry and to symmetric devices. To find the
electron dynamics in the devices, we solve Schrödinger’s
equation for the given device geometries by exact diagonal-
ization of the tight-binding Hamiltonian (see Appendix C).
Electron-electron interactions clearly modify the electron dy-
namics but, following the arguments used in Landauer’s
theory of ballistic transport [16,17], can be neglected to first
approximation in these nanoscopic devices. Likewise, we do
not consider additional elastic impurity scattering because
this mechanism only adds the time-reversal invariant weak
localization correction to the ballistic dynamics but does not
affect the breaking of the time-reversal invariance which is the
focus of the investigation.

The electron waves emitted by L or R into the one-
dimensional conductor are described by Gaussian wave

FIG. 2. Symmetric and asymmetric nanoscale conductors. The
figure shows a symmetric line, conductors with a transverse asymme-
try and a longitudinal asymmetry, and an example of an asymmetric
Aharonov-Bohm ring (from left to right).
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FIG. 3. Layouts and time resolved transmission and reflection probabilities of unitary conductors with (a) a longitudinal asymmetry, (b) a
transversal asymmetry, (c) an asymmetric Aharonov-Bohm loop, and (d) a symmetric device. The devices (b) and (c) with areas 28 a2 and
398 a2 are penetrated by magnetic fluxes � = 1.4 and 0.4 h/e, respectively, where a = 0.3 nm is the unit length of the tight-binding lattice
and h/e is the magnetic flux quantum. The structures connect two ports L and R. In the plots, the transmission probabilities Pm→n for electrons
emitted as Gaussian wave packets (k0 = π/3a, σx = 0.9 nm for (a), (b), (d) and 24 nm for (c)) by port m to reach port n calculated as a function
of time after emission are presented for the scattering-free, unitary transport. The devices’ lengths are (a) 1.8 nm, (b) 3.0 nm, (c) 12 nm, and
(d) 2.4 nm.

packets with momenta centered at kF = π/(3a), a being the
lattice constant. To consider transport across devices with a
similar size as the electron wave packets, small, dispersive
wave packets were chosen. The description in terms of wave
packets, which forms the basis of the well-established semi-
classical description of electron dynamics [38], is central to
our calculations, because Bloch-waves lack time dependence.
Since we use the exact eigenfunctions of the single-particle
Hamiltonian to compute the time evolution of the states, the
results in this section are obtained in the unitary quantum
regime.

Figure 3 displays the probability that the electron has
reached one of the ports of the conductor with the transverse
asymmetry as a function of time t after the electron emission.
As demanded by the unitarity of the scattering matrix, these
probabilities are reciprocal in the long-time limit [21,26]. In

contrast, the time evolution does depend on the travel direc-
tion [31–33]. The left-right symmetry is broken because the
phase shifts of the individual plane waves are nonreciprocal.
As the phase shifts are also k dependent, they influence the
temporal behavior of the wave packet, which comprises many
plane waves with different k values. This leads to τL→R �=
τR→L, where τL→R denotes the time spent in the device by a
wave packet coming from port L before it leaves through port
R (see also videos 8 and 9).

We find that a nonreciprocal temporal dependence of
particle transport is a generic property of many quantum
devices with appropriately broken symmetries. Figure 3(a)
shows a device that is symmetric in the transversal direc-
tion, but asymmetric in the longitudinal direction. In these
devices, the reflected electrons follow a nonreciprocal tem-
poral dependence even without an applied magnetic field.
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The nonreciprocal temporal dependence has been predicted
for asymmetric Rashba rings and for Aharonov-Bohm rings
biased with magnetic fields [31,32] [Fig. 3(c), videos 9(a)
and 9(b)]. Note that the reflection probabilities PL→L, PR→R

are equal for the systems in Figs. 3(b) and 3(c), while the
transmission probabilities PL→R, PR→L are equal in the sys-
tem of Fig. 3(a) without magnetic field. This feature reflects
the symmetries of the scattering matrix under spatial inver-
sion and time reversal [33]. In contrast, conductors without
adequately broken symmetries [Fig. 3(d)] show reciprocal
dynamics.

III. NONRECIPROCAL BEHAVIOR OF WAVE PACKETS
FOR ANY τi

In order to calculate the transport in the transition regime
between unitary quantum physics and classical physics, we
now add decoherence to the dynamics of the wave pack-
ets. This decoherence is commonly characterized by the
phase-breaking time τi. We expect the physics of the tran-
sition regime to emerge when the defect density causes τi

to be of the order of the average electron transmission time
(τL→R + τR→L )/2. As shown, the electron transmission time
is not necessarily equal for both transmission directions. In
those cases, electrons that pass the device in the slower di-
rection suffer stronger decoherence than those that pass in the
faster one. The transmission probabilities for both directions,
however, are guaranteed to be equal only if the degree of phase
breaking is equal in both directions. Therefore, the transmis-
sion probabilities are expected to be possibly nonreciprocal in
devices with nonreciprocal decoherence.

The interaction with the environment is mediated by one
or more sites of the tight-binding lattice that we use to model
the device, see Appendix C. Apart from the localized nature
of the interaction, we introduce no constraint on the nature of
the decoherence or collapse processes, which may be caused,
e.g., by local lattice distortions (local phonons) or the internal
degrees of freedom of an impurity giving rise to a localized
resonant level. We are interested in a description of the elec-
tron dynamics, i.e., the time evolution of the reduced density
matrix ρe(t ) of the (single) electron. This reduced matrix is
obtained from the full density matrix by tracing over the unob-
served degrees of freedom. The general form of the resulting
time evolution is a time-local master equation for ρe(t ) that
preserves complete positivity [28]:

dρe

dt
= − i

h̄
[H0, ρe] +

∑
r

γrD[P̂r](ρe). (1)

Here H0 is the single particle Hamiltonian of the system
without the impurities. The Lindblad dissipators D[P̂r](·) de-
pend on the index r of the site at which an impurity and the
concomitant electronic level are located. They are generally
defined as

D[Â](ρe) = ÂρeÂ† − 1
2 (Â†Âρe + ρeÂ†Â), (2)

where Â denotes the so-called jump operators. For devices A,
B, and D we choose Hermitian jump operators P̂r that project
the electron wave function onto the site r, i.e., P̂r = |r〉〈r|, with
P̂r = P̂†

r = P̂2
r . This mechanism corresponds to a measure-
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FIG. 4. Nonreciprocity of the devices introduced in Fig. 3 calcu-
lated with the Lindblad formalism (continuous lines) and the Monte
Carlo wave function method (dotted). (a) Nonreciprocal transport
through the device A [Fig. 3(a)] occurs for 5 × 1012 < � < 3 ×
1015 s−1. As anticipated, both methods yield coincident results. The
Monte Carlo data was obtained from 6.4 × 106 realizations of the
time evolution. (b) Nonreciprocal transport of device B [orange,
Fig. 3(b)] in the transition regime and return to reciprocal behavior
for large and small �. The transport through the symmetric device
D [gray, Fig. 3(d)] is fully reciprocal, however. (c) Nonreciprocal
transmission of device C [Fig. 3(c)] as obtained with the Monte Carlo
wave function method.

ment of the occupation of site r without readout. For device
C we chose a projection onto the full subspace spanned by the
sites of one interferometer arm. In both cases the localization
erases the information about the momentum and phase of the
electron trapped at the site r. All jump operators are multi-
plied with the r-independent rate � = γr = 2/τi, where τi is
the mean time between two phase-breaking scattering events.
After release from the trap, the electron state evolves again
according to the Schrödinger equation given by H0.

To quantify the effects of the decoherence on the trans-
port, we prepare the electron at time t = 0 as a Gaussian
wave packet which enters the system either at port L or
port R. We integrate the time-dependent local probability
current at site rL,R in the left or right port until time tfin

to obtain transmission and reflection probabilities (see Ap-
pendix B). Reciprocal transport demands PL→R = PR→L for
sufficiently large tfin. Figure 4 shows the nonreciprocity
fs = PL→R − PR→L as function of � computed with Eq. (1)
and a set of localization centers at positions r1, . . . , rn within
the devices (see Appendix C). For the ballistic regime, i.e., for
small �, fs indeed vanishes.
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FIG. 5. Color maps showing the transmission probability distri-
bution as a function of Ptr and decoherence rate � for device A.
(a) The direction-independent mean of the distributions for L →
R and R → L directions illustrate the different transport regimes.
(b) The difference of the distributions for the two directions shows
the direction dependent effect of decoherence, which leads to nonre-
ciprocal dynamics on long time scales in the transition regime.

However, sorting occurs in the asymmetric devices A, B,
and C in a specific window of �. In this window, electrons that
are emitted by L and R reach port R with a higher probability
than port L. The window for nonreciprocal transport matches
the inverse device transit time which is a function of the prop-
erties of the chosen wave packet. Furthermore, we observe a
restoration of reciprocity at high inelastic scattering rates �,
corresponding to the crossover to classical diffusive transport.
Notably, the sorting is completely absent for the symmetric
device D.

The physics behind the nonreciprocal transport happening
in a well-defined window of � may be intuitively understood
by unraveling the Lindblad equation (1) as a stochastic evolu-
tion of the wave function. Following this concept, we consider
events at randomly chosen times t1 · · · tn with a mean spacing
〈t j+1 − t j〉 = τi = 2/�. As before, the rate 1/τi of this Pois-
son process is proportional to the coupling between electrons
and the defect or phonon systems. Between the “collapse
times” t j and t j+1 the wave function evolves unitarily with the
Hamiltonian H0. At t j and t j+1 the wave function changes ac-
cording to the corresponding jump operator P̂r. Two outcomes
can be distinguished: In the first case, the wave function is
projected onto an eigenstate of the operator P̂r, it becomes |r〉
with probability p+ = |〈ψ |r〉|2 as given by the Born rule [4].
In the second case the “measurement result” is negative: The
state is projected onto the orthogonal complement of |r〉 and
changes to |r⊥〉 with probability p− = 1 − p+. For t > t j+1,
the wave packet evolves again unitarily until it undergoes a

FIG. 6. Sketch of the tight-binding chain used for most of the cal-
culations in Sec. IV. The blue circles represent the tight-binding sites.
The fill color of the sites sketches the local value of the electrostatic
potential. The darker the shade, the higher is the potential at that
site. The sites |4〉, |5〉, and |6〉 implement an asymmetric potential
barrier. The central site |5〉 highlighted by the red arrows is coupled
to a trap, which may absorb the particle and release it again as a
wave packet. The observables QL, QR, and QC are used to measure
the charge density in the left, right, and central region of the open
system shown, respectively.

second random inelastic scattering event at t j+2 or leaves the
system via the two ports (see video 10).

Due to the stochastic time evolution, the transmission
probability PL→R is itself a random variable. To obtain its dis-
tribution function nL→R = n(PL→R), we consider an ensemble
of many stochastic quantum trajectories. Figure 4(a) shows
the average 〈PL→R〉 − 〈PR→L〉 for 6.4 × 106 such evolutions
for device A. As shown in the figure, the results obtained by
this stochastic implementation of the wave-function collapse
are quantitatively consistent with the calculation based on the
Lindblad formalism.

We use the stochastic approach to illustrate the tran-
sition between the different regimes of electron transport.
Figure 5(a) shows the distribution n(Ptr, �) of the transmission
probability Ptr of device A as a function of � = 2/τi averaged
over the two travel directions. For � � 5 × 1012 s−1, in the
unitary quantum regime, the probability for Ptr is peaked at
0.3, indicating that individual electrons leave the system in
a state that is a superposition of 70 % being located in the
port of origin and 30 % in the other port. For 5 × 1012 �
� � 3 × 1015 s−1—in the transition regime—the distribution
varies rapidly with changing � and superpositions of any
composition are found. For 3 × 1015 � � � 3 × 1017 s−1, in
the classical regime, the distribution is peaked at Ptr = 0 and
Ptr = 1. Each individual electron is either reflected or trans-
mitted by the device. States with a coherent superposition are
no longer possible. Finally, for � � 3 × 1017 s−1, the proba-
bility has a single peak at Ptr = 0. This is due to the quantum
Zeno effect [39]: the scattering rate is so high that electrons
cannot pass through the device. Figure 5(b) shows the dif-
ference of the distributions belonging to the two directions.
We draw attention to three features of the graph. First, the
largest difference is observed at Ptr = 0.3, the most probable
transmission in the case without scattering. This implies that
electrons traveling in one of the directions are indeed more
frequently scattered inelastically than electrons traveling in
the opposite direction. Second, positive differences are found
at higher values of Ptr than negative differences. This implies
nonreciprocity of the average transmission. Finally, the non-
reciprocity is easily observed when approaching the classical
regime: the peak at Ptr = 0 is negative and the peak at Ptr = 1
is positive. Therefore, more electrons are transmitted when
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FIG. 7. (a) Plots showing the time evolution of charges and the
total current of the open nine-site chain. The initial state is given
by a thermal density matrix with kT = 1 eV. The thermal density
matrix is not a steady state of the dynamics and the system transitions
within ≈10−12 s to the new charge-separated steady state. The initial
charge separation is caused by the asymmetric electrostatic potential.
This charge difference is reversed through the nonreciprocal collapse
dynamics: the electrochemical potential is no longer the same in
both ports. (b) The plot of the total current J as a function of
time t and wave-packet generation rate γ for the closed (shorted)
device shows that a finite steady-state current is achieved for γ ≈
5 × 1014–2 × 1016 Hz. The timescale of the transition to the new
steady state is again ≈10−12 s. (c) Steady-state current Jsteady plotted
as function of the scattering rate γ . The current develops a peak at
γ ≈ 2 × 1015 Hz. This peak is the counterpart of the peak shown by
the nonreciprocity of the wave-packet transmission probability as a
function of � [Fig. 4(a)].

originating from L and more electrons are reflected when
originating from R. The stochastic time evolution of single
electrons provides an understanding of the dynamics in the
transition regime and confirms the reasoning that the observed
nonreciprocity is caused by direction dependent decoherence.

IV. THE CHARGE-SEPARATED STEADY STATE

In the previous two sections we have shown that non-
reciprocal transport is present when electrons are described
as wave packets. How are these results to be interpreted in
the larger framework of transport theory which refers to the
states in the vicinity of thermal equilibrium, characterized
by a well-defined constant temperature on the nanoscopic

scale? In equilibrium, electron wave packets may occur as
fluctuations, e.g., by the thermally excited release of electrons
from trapping sites. Indeed, the success of the semiclassical
theory of electron transport shows unambiguously that physi-
cally relevant thermal excitations from the Fermi sea are wave
packets of finite size. According to Onsager’s reciprocity re-
lations, such fluctuations always relax back to the equilibrium
state, which is the starting point of both the semiclassical and
quantum theories of linear transport [16–20,22–27].

For the devices presented here, however, these fluctuations
do not necessarily relax back into the standard thermal equi-
librium state. Wave packets that occur as fluctuations around
the thermal equilibrium may be sorted by the devices as
discussed in Secs. II and III and therefore lead to a charge
accumulation at one side of the device. To demonstrate this
numerically, we employ a minimized version of the models
used in the previous sections. This system, sketched in Fig. 6,
is given by a chain of nine sites with the site basis vectors
|1〉, |2〉, . . . , |9〉. A ramp-shaped electric potential is applied
to sites |4〉, |5〉, and |6〉 to break the symmetry. The potential
at the remaining sites is zero (see Appendix C 3).

Because the existence of wave packets is crucial, we mod-
ify the jump operators in Eq. (1) to now describe the capture of
the electron at site r and the subsequent release from this site
into state |ψr(p)〉 which is a wave packet. The wave packet is
generated at r with momentum p which is determined by the
recoil of the trap which now carries the momentum −p. For
the momentum p the value π/3a is used because it is in the
range of momenta for which relevant interference effects take
place in the device. The following results do not depend on
the choice of p in a qualitative manner. The corresponding
jump operators Âr are non-Hermitian, Âr = |ψr(p)〉〈r| with
the Lindblad equation

dρe

dt
= − i

h̄
[H0, ρe] +

∑
r

γrD[Âr](ρe). (3)

Figure 7(a) shows the time-dependent probability for the elec-
tron being in the left, right, or central part of the chain, as
derived from the dynamics of Eq. (3) with wave packets being
generated at site |5〉 with the rate γ = 1.5 × 1015 Hz. The
initial state is given by the thermal density matrix ρe(0) =∑

i |Ei〉〈Ei|e−Ei/kT , where |Ei〉 are the eigenstates of H0 with
energy Ei and kT = 1 eV. As shown by Fig. 7, this state is
not stable, but evolves into a steady state with a lower entropy
and partial charge separation between the two ports. The chain
spontaneously develops a charge imbalance with net current
zero. The I-V characteristic contains therefore a new, constant
term,

V (I ) = V0 + RI + O(I2). (4)

The central assumption underlying Onsager’s reciprocity
relations is therefore not satisfied in the case discussed.
Furthermore, this I-V characteristic suggests a net current
to flow in case the chain is bent into a ring, with the left
and right chain ends being shorted. Figures 7(b) and 7(c),
showing the results of the corresponding calculation, reveal
that a circulating persistent current is indeed generated for
γ ≈ 5 × 1014–2 × 1016 Hz, corresponding to the transition
regime. This persistent current induces a corresponding mag-
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FIG. 8. (a) Unitary propagation of a wave packet (blue) across a conducting line (gold) with a transverse asymmetry. A magnetic field is
applied perpendicular to the conducting plane. The wave packet, presented as |ψ (r, t )|2, arrives from the left and is partially reflected. The data
have been obtained by exact diagonalization as described in the main text. (b) The wave packet arriving from the right.

netic moment. Notably, this steady-state current vanishes for
very small and large rates γ . This behavior is analogous to
the behavior of the wave-packet transmission probabilities,
which are nonreciprocal only in a well-defined window of the
decoherence rate.

To investigate whether the asymmetric device geometry
is responsible for the charge separation and the circulating
current, the state evolution of a chain and a ring with sym-
metric potential barriers were calculated. As expected, these
displayed no charge separation (Fig. 14). With Hermitian
jump operators [Eq. (1)], also no charge separation is found in
the long time limit, even when starting from a nonequilibrium
density matrix (Fig. 15). This underlines the importance of
the existence of wave packets with nonzero momentum for
the charge-separated steady state. To explore whether the un-
conventional steady state generated by Eq. (3) is destroyed by
other inelastic processes that may exist and drive the system
towards standard equilibrium, we have also added such pro-
cesses to the master equation and found that the novel steady
state persists also in this case (see Appendix C 3).

V. DISCUSSION AND OUTLOOK

The transition between the quantum and classical worlds
is of intense interest. It harbors fundamental questions con-

cerning the appropriate description of decoherence and the
measurement process. The devices we have discussed operate
precisely at the border between these two worlds, because
they utilize a small number of random phase-breaking events
that interrupt the otherwise unitary evolution of wave packets.
Our work shows that in the unitary regime, electrons flow
through devices with nonreciprocal velocities if the devices
are shaped with appropriate asymmetries. Our results have
been obtained by using several assumptions and are only
valid in those cases in which these assumptions apply. In
particular, we have considered idealized model systems fol-
lowing a strict single particle picture with perfect screening
and without disorder. For those real materials that may be
influenced by the phenomena described, e.g., lightly doped
semiconductors, nothing more than nanostructuring a film
is required in order to achieve rectification as described by
Eq. (4). The optical analog of such devices is presented
in [40]. The effects presented differ from the nonrecipro-
cal behavior of standard diodes [41], quantum rings [42],
quantum dots [43], chiral structures [44], Weyl semimet-
als [45], noncentrosymmetric superconductors [46], and mul-
tiferroics [47]. In those cases, the nonreciprocity is achieved
by nonlinear, higher-order processes; the voltage for I →
0 vanishes, V0 = 0. In those cases, also no unconventional
steady state exists besides the standard thermal equilibrium.

FIG. 9. (a) Unitary propagation of a wave packet (blue) across an asymmetric Aharonov-Bohm ring (gold) biased with a magnetic flux
penetrating the hole of the ring. The wave packet, presented as |ψ (r, t )|2, arrives from the left and passes the ring in a straightforward manner.
The data have been obtained by exact diagonalization as described in the main text. (b) The wave packet arriving from the right passes the ring
only after having been reflected back and forth.
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FIG. 10. Propagation of a wave packet in a closed system pro-
vided by two contacts and an asymmetric Aharonov-Bohm ring
biased with a magnetic flux penetrating the hole of the ring. The
wave packet is represented by |ψ (r, t )|2. The unitary propagation is
interrupted by three collapse processes highlighted in purple which
correspond to negative and to positive result measurements. The data
have been obtained by the method described in the main text.

In conclusion, we have presented a device concept in which
nonreciprocal matter transport emerges when the inverse de-
coherence rate is of the order of the characteristic time for
unitary transport through the device. This situation exists
exactly in the transition regime between quantum physics
and classical physics. The nonreciprocal matter transport is
expected to occur not only in top-down patterned devices but
also in molecules with appropriate asymmetric structures and
in crystals with suitable lattices. The phenomena found are ex-
plorable by experiments on mesoscopic electronic or photonic
devices. The described mechanism underlying nonreciprocal,
directed dynamics could even be responsible for the proper
operation of biomolecules and thus for living systems.
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APPENDIX A: VIDEOS

Videos of selected time evolutions. Figure 8 shows the
starting configuration of the time evolution of a wave packet
passing a device unitarily with a transverse asymmetry that
is shown in the videos. Figure 9 shows the corresponding
configuration for an asymmetric Aharonov-Bohm ring. Figure
10 shows the starting image of the video display the wave
packet propagating across an asymmetric Aharonov-Bohm
ring interrupted by collapse processes. The videos are avail-
able at [51,52].

APPENDIX B: TIME-DEPENDENT WAVE PACKETS AND
CURRENTS

In this Appendix we show that the time-dependent currents
of wave packets are not reciprocal in a two-terminal device.
Nevertheless, the total transported charge is reciprocal in the

long time limit. Unitary evolution yields therefore reciprocal
transport probabilities independent from the shape of the elec-
tronic wave function in the steady state.

We consider a one-dimensional wire along the x axis on
a two-dimensional substrate with a local potential V (r̂) con-
fined to a finite region in the x/y plane and a homogeneous
magnetic field perpendicular to the plane. The wire is at-
tached to charge reservoirs (ports) on the left and the right
side with chemical potentials μl and μr , respectively. The
single-particle Hamiltonian reads then (with electron charge
qe = e and mass me)

H = p̂ − e
c A(r̂)2

2me
+ V (r̂) + Vconf (r̂). (B1)

The potential Vconf (r̂) confines the electrons to the wire,
whereas the potential V (x, y) = 0 for |x| > R. With the choice
A(x, y) = (0, Bx, 0)T , we can approximate the eigenfunctions
of Eq. (B1) in the wire outside the interaction region by plane
waves ψ1,2(x, y) = φn(y)ψ1,2

k (x) with ψ1,2
k (x) ∝ exp(±ikx)

The transversal quantum number is denoted by n. We assume
for simplicity that the energy Ek = h̄2k2/(2me) of ψ1,2

k,n does
not depend on it.

The asymptotic form of ψ1,2
k (x) for |x| 	 R reads in gen-

eral

ψ1
k = 1

N

{
eikx + Rl

ke−ikx, x 
 −R,

T l
k eikx, x 	 R,

(B2)

ψ2
k = 1

N

{
T r

k e−ikx, x 
 −R,

e−ikx + Rr
keikx, x 	 R,

(B3)

with the normalization factor N ∝ √
L, where L 	 R is the

length of the wire. A wave function with energy E (k) is in
general a superposition of incoming waves from the left with
amplitudes A−

k and from the right with amplitudes A+
k (k � 0).

Both waves are scattered in the region of V (r) �= 0, with
direction-dependent transmission and reflection amplitudes
T s

k , Rs
k , s = r, l . The S matrix of the system reads

Ŝk =
(

Rl
k T r

k

T l
k Rr

k

)
. (B4)

Unitarity of Ŝk requires∣∣T s
k

∣∣2 = 1 − ∣∣Rs
k

∣∣2
, s = r, l, (B5)∣∣T l

k

∣∣2 = ∣∣T r
k

∣∣2
. (B6)

In the steady state, the current jk,n(x0) of state ψ1
k,n injected

from the left reservoir at some point x0 
 −R reads

jl
k,n(x0) = ev(k)

N2
, (B7)

with the electron velocity v(k) = h̄k/me. The total current
injected from the left and passing the point x0 is

I l (x0) = e
∑
k,n

v(k)N−2 = eNy

∫ μl

0
dEρ(E )v[k(E )]L−1.

(B8)

Here Ny is the number of transversal channels and ρ(E ) =
2L/[hv(E )] is the one-dimensional density of states per chan-
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nel. It follows that

I l (x0) = 2e

h
Nyμl . (B9)

The total current at x0 contains a contribution from electrons
which are reflected at the central region and those transmitted
from the right reservoir:

I (x0) = 2e

h
Ny

(∫ μl

0
dE

∣∣T l
k(E )

∣∣2 −
∫ μr

0
dE

∣∣T r
k(E )

∣∣2
)

. (B10)

To obtain the linear response for stationary states, one aver-
ages |T l,r

k(E )|2 over E . Using Eq. (B6) we obtain [53]

I (x0) = 2e

h
Ny

∣∣T l
k(E )

∣∣2
(μl − μr ) (B11)

= 2e2

h
Ny

∣∣T l
k(E )

∣∣2
(Vl − Vr ), (B12)

where Vl (Vr) are the voltages of the left (right) reservoir. One
sees that because of Eq. (B6), the coherent linear response for
stationary states is reciprocal and I (x0) = 0 if Vl = Vr .

Now we consider wave packets instead of the time-
independent stationary eigenstates of the system, e.g., of
Gaussian form. At the initial time t = 0, the packet is lo-
calized in the left part of the wire around xl

in 
 −R with
momentum expectation value h̄k0 > 0, moving to the right:

ψl (x, 0) = (
πσ 2

x

)−1/4
e
− (x−xl

in )2

2σ2
x

+ik0x
(B13)

=
∫ ∞

0
dk

[
A−

l,kψ
1
k (x) + A+

l,kψ
2
k (x)

]
. (B14)

If the packet is sufficiently narrow, the coefficients A±
l,k may be

computed using the asymptotic expressions given in Eq. (B2)
and Eq. (B3) to obtain

A−
l,k = σ 1/2

x N√
2π3/4

e− σ2
x
2 (k−k0 )2−ikxl

in , (B15)

A+
l,k = (B−

l,k − A−
l,kRl

k )/T r
k , (B16)

B−
l,k = σ 1/2

x N√
2π3/4

eik0xl
in e− σ2

x
2 (k+k0 )2+ikxl

in . (B17)

The state given in Eq. (B14) is time dependent. The associated
current at some point xr 	 R on the right side of the interact-
ing region reads at time t ,

jl (xr, t ) = e

me
Re〈ψl (t )|δ(x − xr ) p̂x|ψl (t )〉, (B18)

where Rez denotes the real part of z. Now

ψl (x, t ) =
∫ ∞

0
dk

[
A−

l,kψ
1
k (x) + A+

l,kψ
2
k (x)

]
e−iE (k)t/h̄,

(B19)

and to compute jl (xr, t ) we may use the asymptotics of
ψ1,2

k (x). This yields

jl (xr, t ) = eh̄

meN2
Re

∫ ∞

0
dk

∫ ∞

0
dk′{k′[C∗

l,kCl,kei(k′−k)xr

+ A+∗
l,k Cl,kei(k+k′ )xr

] − k′[C∗
l,kA+

l,ke−i(k+k′ )xr

+ A+∗
l,k A+

l,kei(k−k′ )xr
]}

ei(E (k)−E (k′ ))t/h̄, (B20)

with Cl,k = T l
k A−

l,k + A+
l,kRr

k . We consider now a second initial
state ψr (x, 0) obtained from ψl (x, 0) by reflection of x at the
origin: ψr (x, 0) = ψl (−x, 0), centered around −xl

in 	 R:

ψr (x, 0) = (
πσ 2

x

)−1/4
e
− (x+xl

in )2

2σ2
x

−ik0x
(B21)

=
∫ ∞

0
dk

[
A−

r,kψ
1
k (x) + A+

r,kψ
2
k (x)

]
. (B22)

The state ψr (x, t ) has average momentum −h̄k0 and moves to
the left. The coefficients A±

r,k read

A+
r,k = A−

l,k, (B23)

A−
r,k = (

B+
r,k − A+

r,kRr
k

)
/T l

k , B+
r,k = B−

l,k . (B24)

For this state we calculate the current at a time t and at the
point xl = −xr . The result is

jr (−xr, t ) = eh̄

meN2
Re

∫ ∞

0
dk

∫ ∞

0
dk′{k′[A−∗

r,k A−
r,kei(k−k′ )xr

+ C∗
r,kA−

r,ke−i(k+k′ )xr
] − k′[A−∗

r,k Cr,kei(k+k′ )xr

+ C∗
r,kCr,kei(k′−k)xr

]}
ei(E (k)−E (k′ ))t/h̄, (B25)

with Cr,k = T r
k A+

r,k + A−
r,kRl

k . By comparing Eqs. (B20)
and (B25), one sees that the currents are reflection symmetric,
i.e., jr (−xr, t ) = − jl (xr, t ), if T l

k = T r
k and Rl

k = Rr
k . This

follows from the reflection symmetry of the Hamiltonian

H[ p̂x, p̂y, x̂, ŷ, A(x̂, ŷ)] = R(H )

= H[−p̂x, p̂y,−x̂, ŷ, A(−x̂, ŷ)],
(B26)

because then

R(ψ )(t ) = eitH/h̄R[ψ (0)] = R[eitH/h̄ψ (0)] = R[ψ (t )].
(B27)

However, if Eq. (B26) is not satisfied, we have in general

T l
k = T r

k eiθk , Rl
k = Rr

keiϑk . (B28)

The left and right transmission and reflection coefficients
differ by phase factors, which are allowed by the unitarity
of the S-matrix Ŝk . If the θk , ϑk do not vanish, it follows
jr (−xr, t ) �= − jl (xr, t ), i.e., the time-dependent currents are
not reciprocal.

Nevertheless, the total charge transported from the left to
the right over a sufficiently long time equals the total charge
flowing from the right to the left, so that the steady state
has reciprocal transport characteristics, in accordance with the
result Eq. (B12), which follows from Eq. (B6). The charge of
initial state ψl (x, 0) flowing through the point xr in the time
interval [0, T ] to the right is given by

Ql→r (xr, T ) =
∫ T

0
dt jl (xr, t ), (B29)

whereas the charge of state ψr (x, 0) flowing to the left through
point −xr reads

Qr→l (−xr, T ) = −
∫ T

0
dt jr (−xr, t ). (B30)
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FIG. 11. Sketch of the tight-binding implementation of device A.
The circles represent the system sites and the red sites correspond to
inelastic scattering centers. These centers mediate the coupling to the
environment.

The limit T → ∞ exists [0 � Q(x, T ) � e] because we
consider an open system without periodic boundary condi-
tions. Thus the electron may pass the point x and never
come back—otherwise Q(x,∞) would be either zero or
infinity. Reciprocity of the steady state corresponds to
Ql→r (xr,∞) = Qr→l (−xr,∞). Because

lim
T →∞

∫ T

0
dteitE/h̄ = πδ(E/h̄) + iP

(
h̄

E

)
, (B31)

where P denotes the principal part, we obtain

Ql→r (xr,∞) = eπ

N2

∫ ∞

0
dk[|Cl,k|2 − |A+

l,k|2] (B32)

and

Qr→l (−xr,∞) = eπ

N2

∫ ∞

0
dk[|Cr,k|2 − |A−

r,k|2]. (B33)

Using the identity T r∗
k Rl

k + T l
k Rr∗

k = 0, which follows from
the unitarity of Ŝk , one may show that the integrands of

FIG. 12. Layout of the devices sketched in Fig. 3 as modeled
numerically. The dots present the sites used in the tight-binding
model.

FIG. 13. Transmission probability histograms calculated as a
function of the decoherence rate � for the symmetric device as shown
in Figs. 3(d), 12(d), and the inset. Nine localization centers in the
center of the device mediate the coupling to the environment. The
central device has a length of 2.4 nm. The data of the two color maps
have been obtained from 2.9 × 105 trajectories. (a) The average over
both directions shows one single probability for small �, a broad
range of probabilities in the transition regime, and only Ptr = 0 or
Ptr = 1 in the classical limit of large �, comparable to Fig. 5(a).
(b) However, the difference plot shows the statistical noise only,
lacking any direction dependent features.

Eqs. (B32) and (B33) are the same. Therefore,

Ql→r (xr,∞) = Qr→l (−x,∞), (B34)

as anticipated.

APPENDIX C: NUMERICAL IMPLEMENTATION

1. Lindblad formalism

The numerical implementation starts with the tight-binding
Hamiltonian:

H0 = 4t

(∑
i∈�

c†
i ci

)
− t

( ∑
〈i, j〉∈�

c†
i c j + H.c.

)
, (C1)

where t denotes the hopping energy, 〈i, j〉 is a pair of neigh-
boring sites, and c†

i , ci are the creation and annihilation
operators on site i. In the following we confine ourselves
to the single-particle subspace. For t we take 1 eV, corre-
sponding to typical dwelling times of several fs in the device.
The lattice � defines the system geometry and size. The
following paragraphs refer to the systems used in Secs. II
and III. The implementation details of the minimized sys-
tem shown in Sec. IV can be found in Appendix C 3. The
leads are implemented as long lines. The systems contain up
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to 5065 sites to ensure that during the observation time tfin

the wave packets do not return back into the device. Gaus-
sian wave packets with σ 2

x = 3a and 8a and k0 = π/(3a),
where a = 0.3 nm is the lattice constant of �, serve as
initial wave functions for the devices A, B, D, and C, respec-
tively. We start from the density matrix of a pure state ρe(0) =
|φ〉〈φ| where |φ〉 is either a right-moving wave packet placed
in the left port L, |φL

k0
〉, or a left-moving packet, |φR

−k0
〉, located

in the right port R. ρe(t ) is then numerically evolved with
the Lindblad equation (1) to compute the quantities PL→R

and PR→L as a function of �. For devices A, B, and D we
have used nine different scattering centers located at the sites
indicated in Fig. 11 with the same coupling γr = �. For device
C we regard the entire lower interferometer arm as a scattering
center. In this case, there is only one projection operator onto
the subspace spanned by all sites in the lower interferom-
eter arm. The layout of the devices is further illustrated in
Fig. 12.

2. Monte Carlo wave functions

As in Eq. (B18), we calculate the time-dependent prob-
ability currents at sites rL = (−25, 0) and rR = (25, 0) to
obtain the total transmitted and reflected charges as in
Eqs. (B29) and (B30). The time is discretized in steps of
width �t = min{2.6 × 10−17 s, τc/20} to obtain an adequate
temporal resolution in the time integrals of the currents and
the dynamical collapse events.

The collapse events are computed in the following way: A
collapse occurs with probability pc per unit time, the rate con-

stant of the corresponding Poisson process is then 1/τc = pc,
where τc is the average time between collapses occurring at
times tc, j and tc, j+1. The rate constant 1/τc is proportional to
the coupling between the electron and the localized degree
of freedom with which it interacts inelastically. The inelastic
event itself is treated like a measurement process: The electron
with wave function ψ (tc, j ) becomes localized (positive mea-
surement result) and acquires one of the wave functions ψ i

loc
at time tc, j + ε with probability pi = |〈ψ (tc, j )|ψ i

loc〉|2. The
index i runs over the inelastic scattering centers as depicted
in Fig. 11.

In the case of a negative measurement result, the state
at tc, j + ε is the projection of ψ (tc, j ) onto the orthogonal
complement ψ⊥

loc of the sum of all ψ i
loc. This happens with

probability 1 − ∑
i pi. From the time tc, j + ε onwards, the

state develops according to the time-dependent Schrödinger
equation until the next collapse event at time tc, j+1, where the
wave function changes again discontinuously.

For Figs. 5 and 13 we use the following collapse sce-
nario: ψ i

loc = |r〉, r being one of the nine lattice points
{(0, 0), (±1, 0), (0,±1), (±1,±1), (±1,∓1)}. In the case of
a negative measurement, the wave function is projected onto
the orthogonal complement of the span of all nine |r〉.

We demonstrate now that averaging over the stochastic tra-
jectories |ψl (t )〉 obtained in this way yields the same result for
the reduced density matrix ρe(t ) as computed via the Lindblad
equation (1). First, we consider the case of a single scattering
center at site r. Let us assume that for the lth trajectory the
wave function at time t is |ψl (t )〉. At time t + δt , the wave
function reads then

|ψl (t + δt )〉 =
⎧⎨
⎩

(
1 − i δt

h̄ H0
)|ψl (t )〉 with probability 1 − δt pc,

|r〉 with probability δt pc|〈ψl (t )|r〉|2,
|r⊥〉 with probability δt pc(1 − |〈ψl (t )|r〉|2).

(C2)

This entails the following mixed density matrix ρl at time t +
δt belonging to the lth trajectory up to time t [neglecting terms
of order (δt )2],

ρl (t + δt )

= (1 − δt pc)|ψl (t )〉〈ψl (t )| − δt
i

h̄
[H0, |ψl (t )〉〈ψl (t )|]

+ δt pcP̂r|ψl (t )〉〈ψl (t )|P̂r

+ δt pc(1 − P̂r)|ψl (t )〉〈ψl (t )|(1 − P̂r), (C3)

which yields the following equation for the derivative of ρl (t )
at time t ,

dρl (t ′)
dt ′

∣∣∣∣
t

= − i

h̄
[H0, ρl (t )] + pc(2P̂rρl (t )P̂r − P̂rρl (t ) − ρl (t )P̂r).

(C4)

The average over all trajectories ρ(t ) = N−1 ∑
l ρl (t ) there-

fore satisfies the same differential equation for all times, from
which we obtain the Lindblad equation (1) for a single scat-

tering center with the identification pc = 1/τc = γr/2. The
generalization to several scattering centers is straightforward.

The presented stochastic unraveling of the Lindblad equa-
tion is not unique. Another stochastic process, equivalent to
Eq. (1), considers only positive measurements, the “quantum
jump” projects the wave function with probability pc always
onto one of the ψ i

loc, but never onto ψ⊥
loc. To account for null

measurements, the deterministic evolution of |ψl (t )〉 between
collapse events proceeds not with the Hermitian Hamiltonian
H0 but with the non-Hermitian operator H = H0 − ipcP̂r. For
this, an additional normalization of |ψl (t )〉 during the evolu-
tion is required because H does not conserve the norm of the
wave function [12]. The corresponding master equation for
ρ(t ) reads then

dρ

dt
= − i

h̄
(Hρ − ρH†) + 2pcP̂rρP̂r, (C5)

which is again Eq. (1) [14].
The accuracy of the calculations of the unitary dynamics

in our numerical implementation is limited by the finite size
of the leads, which sets an upper bound to the observation
time tfin due to recurrence of the waves after they have been
reflected by the lead ends. In our case, tfin = 1.58 ps.
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The statistical accuracy of the collapse dynamics obviously
increases with the number of sampled trajectories. In the cal-
culations, a minute fraction of trajectories had to be discarded
because accumulation of numerical discretization errors led to
division-by-zero errors or minute negative probabilities. For
Fig. 5, 6.4 × 106 trajectories were used for each transmission
map, 448 trajectories were discarded. The same discretization
errors cause the calculated total probability of all trajectories
to deviate from 1. On average, the probability conservation
violation equals 5 × 10−4. For 99 % of the trajectories it is
better than 1 × 10−2, the largest violation being 0.1. A third
systematic error concerns the fact that at t0 the wave function
is not completely zero inside the device, such that QA(t0) +
QB(t0) �= 1, where QA, QB are the charges in the contacts.
Less than 1 × 10−2 of the trajectories leave a residual charge
QA(t0) + QB(t0) − 1 > 1 × 10−3 (all numbers referring to the
calculations shown in Fig. 5).

Figure 13 shows, analogous to Fig. 5, the transmission
probability histograms of the symmetric device shown in Figs.
3d and 12d. No sorting is observed.

3. Minimized model used to calculate steady states

The calculations of steady states in Sec. IV were done
using the smaller tight-binding system sketched in Fig. 6. The
Hamiltonian of this system is given by

H0 =
(∑

i∈�

[2t + V (i)]c†
i ci

)
− t

( ∑
〈i, j〉∈�

c†
i c j + H.c.

)
,

(C6)

where the tight-binding lattice � is given by
� = {|1〉, |2〉, . . . , |9〉}, 〈i, j〉 are again the pairs of
neighboring sites. Sites that are connected by solid lines in
Fig. 6 are of course neighbors. In the ring configuration used
to demonstrate the existence of persistent currents, the sites
at the left and right ends of the chain are nearest neighbors
as well. The c†

i and ci are the creation and annihilation
operators on site i and V (i) is the electric potential at site i.
The asymmetric potential barrier used for the calculations
shown in the main text is given by

Vasym(i) =

⎧⎪⎨
⎪⎩

3t if i = 4,

2t if i = 5,

t if i = 6,

0 else.

(C7)

The symmetric potential barrier used in Fig. 14 is given by

Vsym(i) =
{

2t if 4 � i � 6,

0 else. (C8)

The two wave packet states used for the jump operators are
given by

|ψr(±p)〉 = 1√
6

(
0, 0, 0, e±i π

3 , 2, e∓i π
3 , 0, 0, 0

)T
. (C9)

The electrical current J associated with a density operator ρ

is calculated using the velocity operator v̂,

J = −entr(v̂ρ), (C10)

FIG. 14. Plots of the time evolution of charges in the open sys-
tem as shown in Fig. 6, but with fully symmetric (solid lines) and
slightly asymmetric (dashed and dotted lines) potential barriers. The
dashed line corresponds to a barrier similar to Eq. (C7) but with the
potentials 1.999t , 2t , 2.001t at sites |4〉, |5〉, |6〉. The dotted line cor-
responds to potentials 1.99t , 2t , 2.01t at sites |4〉, |5〉, |6〉. (a) While
no charge separation occurs in the fully symmetric open system,
charge separation starts to occur with increasing barrier asymmetry.
(b) No persistent current is flowing in the fully symmetric shorted
system. Again, with increasing barrier asymmetry, persistent currents
occur. The calculational method used is completely identical with the
one used in Fig. 7, the only difference being the symmetry of the
barrier. Some of the blue QL curves are not visible because they fully
overlap with the corresponding green QR curves.

FIG. 15. Plots showing the time evolution of charges in the de-
vice with longitudinal asymmetry [Fig. 3(a)] as calculated using
Eq. (3). The upper panel shows the total charge QL in the left lead, in
the right lead QR, and within the central device QC . The bottom panel
shows the charge difference between the left and right leads, which
is zero for large and small times. For intermediate times, however,
the difference is finite, revealing a transient charge separation.
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FIG. 16. Plots showing the time evolution of charges and cur-
rents in the open nine-site chain with additional jump operators that
are specifically chosen to drive the system towards the state given
by the thermal density matrix (see Appendix C 3). The rate γ of the
wave-packet generating jump operators and the rate γth of the addi-
tional thermalizing jump operators are given by γ = 1.5 × 1015 Hz
and γth = 3 × 1014 Hz, respectively. The steady-state charge imbal-
ance indicates that the novel steady state persists even in the presence
of thermalizing processes. The dashed lines show the case without
the additional jump operators, which is the same data as shown in
Fig. 7(a).

v̂ = − i

h̄
[x̂, H], (C11)

with the elementary charge e and the 1D carrier density n and
the position operator x̂. The density is chosen such that the
chain contains one carrier n = 1/(9a) = 3.7 × 106 /cm with
the lattice constant a = 0.3 nm.

The thermal relaxation processes mentioned in the last
paragraph of Sec. IV are implemented by additional jump

operators B̂i j = |Ej〉〈Ei|, where |Ei〉 is the eigenstate of the
Hamiltonian H0 with energy Ei. The corresponding rates
are given by γi j = γth exp(−Ej/kT ). The resulting Lindblad
equation reads

dρe

dt
= − i

h̄
[H0, ρe] +

∑
r

γrD[Âr](ρe) +
∑
i, j

γi jD[B̂i j](ρe).

(C12)

Figure 16 shows the temporal behavior of the charge imbal-
ance for the chain with the thermalizing jump operators. The
initial state ρe(0) is the unique steady state of Eq. (C12) with-
out the impurity dissipators D[Âr](·). It is clear that the novel
steady state persists even with these relaxation processes.

APPENDIX D: FURTHER FIGURES

Figures 12, 13, and 14 further illustrate the time evolution
of the electron waves in several devices. Figure 14 illustrates
that the time evolution of the open and closed chains (Fig.
6) for various degrees of asymmetry. As shown by the figure,
the device asymmetry is mandatory for charge separation or
persistent currents to occur. Figure 15 illustrates for the case
of a device with longitudinal asymmetry that a hermitean
jump-operator does not generate a charge-separated steady-
state. Figure 16 shows that a charge-separated steady state
is generated by the open 9-site chaineven if additional jump
operators that drive the system to thermal equilibrium are
present in the Lindblad master equation.
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