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Abstract
We present a Gedankenexperiment that leads to a violation of detailed balance if 
quantum mechanical transition probabilities are treated in the usual way by apply-
ing Fermi’s “golden rule”. This Gedankenexperiment introduces a collection of 
two-level systems that absorb and emit radiation randomly through non-reciprocal 
coupling to a waveguide, as realized in specific chiral quantum optical systems. The 
non-reciprocal coupling is modeled by a hermitean Hamiltonian and is compatible 
with the time-reversal invariance of unitary quantum dynamics. Surprisingly, the 
combination of non-reciprocity with probabilistic radiation processes entails nega-
tive entropy production. Although the considered system appears to fulfill all con-
ditions for Markovian stochastic dynamics, such a dynamics violates the Clausius 
inequality, a formulation of the second law of thermodynamics. Several implications 
concerning the interpretation of the quantum mechanical formalism are discussed.

Keywords Second law of thermodynamics · Collapse process · Light-matter 
interaction · Golden rule · Interpretation of quantum mechanics

1 Introduction

The probabilistic nature of quantum physics is related to a process whose correct 
interpretation and mathematically sound formulation is still under debate, the so-
called collapse of the wave function [1]. The quantum mechanical collapse is of fun-
damental importance for our common-sense concept of macroscopic reality. In most 
cases, collapses are invoked in the context of measurements of quantum observables. 
But extending the applicability range of quantum mechanics beyond the microscopic 
realm prompts the question whether the discontinuous change of the wave function 
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during the measurement is a physical process or not. Schrödinger’s famous Gedank-
enexperiment involving a cat demonstrates drastically the consequences of the 
assumption that the collapse process is merely epistemic and thus concerns only the 
knowledge of the observer [2]. Schrödinger’s goal was to demonstrate that a paradox 
arises if the collapse is not considered as a microscopic process taking place inde-
pendently from the presence of an observer. To explain the absence of macroscopic 
superpositions without the assumption of a physical collapse, the “decoherence” 
interpretation considers not individual systems but the density matrix of an ensem-
ble which becomes mixed after tracing over unobserved environmental degrees of 
freedom [3–5]. Although this avoids the need for a “measurement apparatus”, the 
tracing operation is not physical but epistemic. Without a physical mechanism trig-
gering a real collapse event as assumed e.g. in [6], the decoherence interpretation is 
equivalent to the many-world hypothesis [7].

Already in Schrödinger’s cat example, the transition from unitary and determinis-
tic to probabilistic evolution is tied to a microscopic, unpredictable event, the decay 
of a radioactive nucleus. There are strong arguments from a fundamental perspec-
tive supporting the occurence of spatio-temporally localized events as objective and 
observer-independent equivalent of collapse processes [8].

These random events, called “quantum jumps” in the early debate between 
Schrödinger and Bohr [9], are generally thought to underlie the statistical character 
of the emission and absorption of light quanta by atoms. Einstein used arguments 
from the theory of classical gases to derive Planck’s formula by assuming detailed 
balance between the atoms and the radiation in thermal equilibrium. His derivation 
did not require a microscopic Hamiltonian [10]. Nevertheless, it is easy to derive 
the corresponding rate equations for the time-dependent occupancy ⟨n⟩(t) of a light 
mode with frequency Ω coupled resonantly to M two-level systems (TLS) within 
quantum mechanics. The transition probabilities follow from the microscopic inter-
action Hamiltonian by employing Fermi’s golden rule [11, 12], which tacitly incor-
porates the collapse event by replacing the unitary time evolution by a stochastic 
process.

The interaction Hamiltonian is well known [13, 14]:

where a, a† denote the annihilation/creation operators of the radiation mode and 
n = a†a . The Pauli lowering/raising operators �−

l
, �+

l
 describe the l-th two-level sys-

tem with HTLS = ℏΩ(
∑

l �
+
l
�−
l
− 1∕2) . The probabilities for a transition between the 

upper and lower state of a TLS accompanied by the emission or absorption of a 
photon with frequency Ω are computed with the golden rule (see “Derivation of the 
Rate Equations (2) and (3)”) to obtain the rate equations

(1)Hint = g

M∑

l=1

(
a�+

l
+ a†�−

l

)
,

(2)
d⟨n⟩
dt

= �
�
⟨m⟩(⟨n⟩ + 1) − (M − ⟨m⟩)⟨n⟩

�
,
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Here, ⟨m(t)⟩ denotes the time-dependent average number of excited TLS. The rate 
constants � , � ′ depend on the coupling g and the density of states of the radiation 
continuum around Ω (see below). These equations describe the irreversible change 
of average quantities and thus use the ensemble picture of statistical mechanics [15]. 
Nevertheless they account for the temporal behavior of a single system as well, 
because a typical trajectory will exhibit a fraction m(t)/M of excited TLS close to 
⟨m(t)⟩∕M for sufficiently large M [16–18].

It is crucial that the rate equations (2) and (3) satisfy the detailed balance condi-
tion, which implies that they lead from arbitrary initial values ⟨n⟩(0), ⟨m(0)⟩ to a 
unique steady state characterized by

We have the relations

for the probabilities Pg ( Pe ) for a TLS to be in its ground (excited) state and the 
probabilities for emission Pe→g and absorption Pg→e . Equation (4) can therefore be 
written as

which is the definition of detailed balance [15, 19]. Equation (4) entails Planck’s 
formula for thermal equilibrium between radiation and matter. If one considers (3) 
as an equation of motion for the probability Pe(t) , even a microscopic system con-
sisting of a single TLS will thermally equilibrate with the surrounding continuum of 
radiation.

This surprising result rests on the fact that the TLS does not interact with the 
light mode exactly on resonance only but with all modes in a frequency inter-
val of width Δ around Ω with a similar strength g [13, 14]. The energy uncer-
tainty ℏΔ allows for a radiation event occuring during a short time span �c ∼ Δ−1 , 
whereas the process itself is energy conserving (see [13], p. 419). The coupling 
to a continuum of modes leads therefore to real and irreversible microscopic 
processes, the emission or absorption of light quanta, although no macroscopic 
measurement apparatus is involved. Such a microscopic collapse process is tacitly 
assumed whenever the golden rule is employed. If, however, the TLS is embed-
ded into a cavity and coupled only to a single radiation mode, the collapse cannot 
take place; the system shows the Rabi oscillations of an unitarily evolving state 
instead, the TLS being entangled with the bosonic mode. To this case, the golden 
rule cannot be applied. Therefore, the golden rule cannot be taken as an approx-
imation to the full unitary time development given by solving the Schrödinger 
equation, although it corresponds formally to a perturbative computation of the 

(3)
d⟨m⟩
dt

= � �
�
(M − ⟨m⟩)⟨n⟩ − ⟨m⟩(⟨n⟩ + 1)

�
.

(4)⟨m⟩(⟨n⟩ + 1) = (M − ⟨m⟩)⟨n⟩.

(5)
Pe = ⟨m⟩∕M, Pg = (M − ⟨m⟩)∕M,

Pe→g = � �(⟨n⟩ + 1), Pg→e = � �⟨n⟩,

(6)PePe→g = PgPg→e
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unitary dynamics for short times [20]. The very concept of a transition rate 
implies that the deterministic evolution of the state vector is replaced with a prob-
abilistic description of events. The central element in the computation is the over-
lap ⟨�final�Hint��initial⟩ , which, according to the Born rule, determines the prob-
ability for the transition from ��initial⟩ to ��final⟩ . The Born rule is invoked here 
although the process is not a macroscopic measurement. The “macroscopic” ele-
ment is provided by the continuum of radiation modes. The presence of this con-
tinuum causes the necessity of a statistical description [13].

Within the decoherence interpretation, one would require that the continuum 
of radiation modes acts as an environment for the TLS, the “system”. The envi-
ronment is then traced out to yield the irreversible dynamics of the system alone. 
But if the system consists of the walls of a hohlraum, it excercises a strong influ-
ence on the “environment”, the enclosed radiation, such that they equilibrate 
together. Therefore, it is not possible to separate the environment from the sys-
tem to explain the microscopic collapse processes driving the compound system 
towards thermal equilibrium.

The rate equations neglect completely the coherences of the TLS. The irrel-
evance of the coherences follows naturally from the interpretation of the radia-
tion process as a collapse: each such event projects the TLS into their energy 
eigenbasis, just as a macroscopic measurement projects any quantum system into 
the basis entangled with the eigenbasis of the measurement device [21]. A mac-
roscopic measurement device is not needed here because both subsystems, the 
TLS and the radiative continuum, contain a macroscopic number of degrees of 
freedom. This alone seems to justify a statistical description as in classical gas 
theory, although the interaction Hamiltonian (1) has no classical limit. Indeed, 
in our case the Born rule replaces the assumption of “molecular chaos”, needed 
in Boltzmann’s derivation of the H-theorem [15, 19]. Therefore, it seems almost 
natural that the rate equations (2), (3) lead to thermal equilibrium from a non-
equilibrium initial state although the radiation and the collection of atoms are 
both treated as ideal gases. If ⟨m(0)⟩ and ⟨n⟩(0) correspond to equilibrium ensem-
bles with different temperatures at t = 0,

the rate equations derived from the quantum mechanical interaction Hamiltonian (1) 
together with the golden rule entail thermal equilibration according to Clausius’ for-
mulation of the second law of thermodynamics: the two gases exchange heat which 
flows from the hotter to the colder subsystem until a uniform temperature and maxi-
mum entropy of the compound system is reached [15, 19].

Certainly, the rate equations do not correspond to the exact quantum dynam-
ics of the system, which is non-integrable in the quantum sense if the interaction 
(1) is generalized to a continuum of bosonic modes, rendering it equivalent to 
the spin-boson model [22]. To obtain the exact evolution equation for the density 
matrix of both the TLS and the radiative modes, one would have to solve the full 

(7)TTLS(0) =
ℏΩ

kB ln
�

M

⟨m(0)⟩ − 1
� , Trad(0) =

ℏΩ

kB ln
�

1

⟨n⟩(0) + 1
� ,



1513

1 3

Foundations of Physics (2020) 50:1509–1540 

many-body problem. The golden rule is then seen as a method to approximate 
the time-dependent expectation values ⟨n⟩(t) , ⟨m(t)⟩ , which is justified by a large 
body of experimental evidence, but not through an analytical proof of equiva-
lence between both approaches. It may even be that the golden rule provides a 
phenomenological description of microscopic collapse processes whose actual 
dynamics is not yet known. In this case, the full quantum mechanical calculation 
would not yield (2), (3), although they account correctly for the experimentally 
observed dynamics. The rate equations are derived from the interaction Hamilto-
nian (1) and the golden rule (see  “Derivation of the Rate Equations (2) and (3)” 
and “Derivation of the Rate Equations (17)–(19) for the Open System”), thereby 
demonstrating its applicability in the situation considered. This corroboration of 
the golden rule by experimental results is independent of any theoretical justifica-
tion of its validity.

The interaction Hamiltonian (1) satisfies the detailed balance condition which is 
crucial for the physically expected behavior. We shall demonstrate in the next sec-
tion that this condition does not follow from elementary principles like time reversal 
invariance or hermiticity as (1) seems to suggest. On the contrary, there are feasi-
ble experimental setups violating the detailed balance condition while satisfying all 
other prerequisites for the application of the golden rule. The consequence of this 
violation is a macroscopic disagreement with the second law of thermodynamics.

2  The Gedanken Experiment

In the Gedankenexperiment, we consider two identical cavities A and B supporting a 
quasi-continuous mode spectrum described by bosonic annihilation operators aAj , aBj 
and frequencies �j (Fig. 1). They are coupled bilinearly to the right- and left-moving 
modes a1k , a2k of an open-ended waveguide which form a quasi-continuum like the 
cavity modes [23]. The loss processes through the open ends of the waveguide are 

Fig. 1  Layout of the Gedankenexperiment. Two reservoirs A and B containing black-body radiation are 
coupled via a non-reciprocal, open waveguide to a collection of two-level systems (TLS) and to each 
other. The right-, respectively left-moving modes in channels 1 and 2 couple with different parameters g

1
 

and g
2
 to the two-level systems



1514 Foundations of Physics (2020) 50:1509–1540

1 3

caused formally by a heat bath at T = 0 , leading to a reduction of the system entropy 
through heat transport. This coupling to the outside world is one argument for the 
applicability of the golden rule, the second is the already discussed quasi-continuum 
of modes. Even if the full continuum of radiation modes in the cavities is treated 
as part of the “system”, which would then be subject to purely unitary time evolu-
tion, the waveguide would still couple to a decohering “environment”, justifying the 
statistical description even if one denies that real collapse events take place in the 
system itself. Here we study a model which is commonly used in quantum optics 
to describe unidirectional loss processes [24]. In this way, the generally accepted 
arguments substantiating irreversible evolution equations can be transferred to the 
present situation.

The modes a1k and a2k of the waveguide are coupled to a collection of M two-
level systems located at the center of the waveguide (see Fig. 1). The total Hamilto-
nian is given by

Hq denotes the Hamiltonian in cavity q for q = A,B,

The Hamiltonian of the waveguide reads

where the modes 1 and 2 belong to waves traveling to the right and to the left, 
respectively. For the TLS we have HTLS = (ℏΩ∕2)

∑M

l=1
�z

l
 , with the Pauli matrix 

�z . The coupling between the reservoirs and the modes 1 and 2 of the waveguide is 
bilinear,

Using the rotating wave approximation, the interaction with the TLS has the stand-
ard form [13, 14] which is equivalent to (1),

where �+
l
 denotes the raising operator of the lth TLS. We consider in the following 

the (time-dependent) average occupancy per mode j, ⟨nq⟩(t) for reservoir q = A,B in 
an energy interval around the TLS energy, Ω − Δ∕2 < 𝜔j < Ω + Δ∕2 , where Δ is 
much larger than the natural linewidth of spontaneous emission from an excited TLS 
into the waveguide. The occupancy does not depend on j if the couplings hjk , g(1,2)k , 
the density of states �q(ℏ�j) of the reservoirs and �1,2(ℏ�k) of the waveguide are 
constant in the frequency interval of width Δ around Ω.

(8)H = HA + HB + Hwg + HTLS + H1
int

+ H2
int
.

(9)Hq = ℏ
∑

j

�ja
†

qj
aqj.

(10)Hwg = ℏ
∑

k

�k

(
a
†

1k
a1k + a

†

2k
a2k

)
,

(11)H1
int

=
∑

q=A,B

∑

j,k

hjk

(
a
†

qj
[a1k + a2k] + h.c.

)
.

(12)H2
int

=

M∑

l=1

(
∑

k

g1ka1k + g2ka2k

)
�+
l
+ h.c.,
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It is crucial that g1k ≠ g2k , which specifies that the TLS couple with unequal 
strengths to the right- and left-moving photons in the waveguide. Such an unequal 
coupling is a hallmark of chiral quantum optics [25]. Although the interaction Ham-
iltonian (12) appears to break time-reversal invariance, as the time-reversal operator 
maps left-moving to right-moving modes, this is actually not the case because the 
effective interaction term (12) does not contain the polarization degree of freedom. 
The angular momentum selection rules for light-matter interaction lead naturally to 
a dependence of the coupling strength on the propagation direction in engineered 
geometries [26], especially if the spin-momentum locking of propagating modes in 
nanofibers is employed [27, 28]. The unwanted coupling to non-guided modes can 
be effectively eliminated, leading to large coupling differences |g1k − g2k| [29, 30].

We shall now study the temporal behavior of the two cavities, assuming at time 
t = 0 separate thermal equilibria in A, B and the TLS system, all at the same tem-
perature T. The probability ⟨m(0)⟩∕M for a TLS to be excited obeys the Boltzmann 
distribution

Considering the M TLS as independent classical objects, their Gibbs entropy is 
given by

with pe(t) = ⟨m(t)⟩∕M . This approach is justified by the quick relaxation of the two-
level systems by non-radiative processes, which decohere them on time scales much 
shorter than the time scale of spontaneous emission and quickly quench finite coher-
ences of the TLS [31]. This argument for a classical description of the TLS is inde-
pendent from the general justification of the golden rule via the mode continuum 
discussed above. Equation (14) provides an upper bound for the entropy of the TLS 
subsystem [32]. Analogously, the entropy of the compound system reads

where Sq denotes the v. Neumann entropy of the radiation in cavity q for q = A,B . 
The average occupation number ⟨nq(�)⟩ per mode at frequency � follows from the 
Bose distribution

Because the temperature depends on ⟨nq⟩ as described by (16), we can define effec-
tive temperatures Tq(t) by ⟨nq⟩(t) for each reservoir q under the assumption that the 
photons in each reservoir thermalize in the usual way quickly as a non-interacting 
Bose gas. Furthermore, we consider the case that ⟨n(1,2)k⟩(t) = 0 for the occupancy 
of the modes in the waveguide, i.e., the waveguide is populated through the suf-
ficiently weak coupling to the reservoirs and its modes appear only as intermedi-
ate states (see “Derivation of the Rate Equations (17)–(19) for the Open System”). 

(13)
⟨m(0)⟩
M

=
1

eℏΩ∕kBT + 1
.

(14)SM = −kBM
(
pe ln pe + (1 − pe) ln(1 − pe)

)
,

(15)Ssys = SA + SB + SM ,

(16)⟨nq(�)⟩(0) =
1

eℏ�∕kBT − 1
.
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Neglecting the waveguide, the system is thus composed of three subsystems, each in 
thermal equilibrium at any time t > 0 , with locally assigned time-dependent temper-
atures. The subsystems interact through random emission and absorption processes 
which do not lead to entanglement, because in each such process the wave function 
undergoes a collapse towards a product state. This description is in obvious accord 
with the derivation of Planck’s law given by Einstein [10]. Note that the compound 
system is not coupled to several thermal baths which have different temperatures. 
In such a case, a description with separate master equations for the subsystems is 
inconsistent if the interaction between subsystems is still treated quantum mechani-
cally. Using such a description, a violation of the second law has been deduced [33, 
34], which is only apparent and caused by the inconsistent computation [34]. Our 
system differs from those models because the system dynamics is not described by 
a unitary evolution as in [33, 34], but by a random process, with all subsystems cou-
pled to the same bath (the open waveguide).

The golden rule applied to the Hamiltonian (8) yields the rate equations for 
⟨nq⟩(Ω, t) and ⟨m(t)⟩,

The first terms on the right hand side of (17)–(19) describe the loss of photons 
through the open ends of the waveguide. These terms are of first order in |hjk|2 , resp. 
|g1k|2 , |g2k|2 . The following terms correspond to coherent processes of second order 
in the couplings. The effective rates �dec,0,1,2 and �̃�1r, �̃�1,2 used for the numerical solu-
tion of (17)–(19) shown in Figs. 2 and 3 belong to the strong coupling regime of 
the TLS and the waveguide with values accessible within a cavity QED framework 
[35]. The chiral nature of the coupling, g1k ≠ g2k , entails �1 ≠ �2 . In our example we 
have assumed �̃�2 = 𝛾2 = �̃�12 = 0 , i.e., channel 2 is not coupled to the TLS. One sees 
from (17)–(19) that the chiral coupling leads to a breakdown of the detailed balance 
condition in second-order processes because absorption is no longer balanced by 
stimulated and spontaneous emission. The radiation processes generate an effective 
transfer of photons from reservoir A to B on a time scale �char given by the strong 
coupling between channel 1 and the TLS, 𝜏char ∼ �̃�−1 = 0.1 𝜇 s. This corresponds to 
a difference in the local temperatures calculated via (16). Figure 2 shows the tem-
poral behavior of the temperatures of reservoirs A, B and the TLS for intermediate 
times.

(17)
d⟨nA⟩
dt

= −2�dec⟨nA⟩ + �0(−⟨nA⟩ + ⟨nB⟩) − �1(M − ⟨m⟩)⟨nA⟩

+ �2⟨m⟩(⟨nA⟩ + 1),

(18)
d⟨nB⟩
dt

= −2�dec⟨nB⟩ + �0(−⟨nB⟩ + ⟨nA⟩) − �2(M − ⟨m⟩)⟨nB⟩

+ �1⟨m⟩(⟨nB⟩ + 1),

(19)
d⟨m⟩
dt

= −[�̃�11(Ω) + �̃�12(Ω)]⟨m⟩ + �̃�1(Ω)
�
⟨nA⟩(M − ⟨m⟩) − (⟨nB⟩ + 1)⟨m⟩

�

+ �̃�2(Ω)
�
⟨nB⟩(M − ⟨m⟩) − (⟨nA⟩ + 1)⟨m⟩

�
.
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Although both reservoirs A and B loose photons through the open waveguide, 
the ratio between ⟨nA⟩ and ⟨nB⟩ attains a constant value for t → ∞ , which is 
depicted in Fig. 3. This figure reveals that the losses of reservoir B are character-
ized by a much larger time scale than the spontaneous population of B through 
reservoir A and the TLS.

3  Conflict with the Second Law of Thermodynamics

Due to the steady loss of photons, our system is always out of equilibrium and the 
only steady state solution of the Eqs. (17)–(19) corresponds to empty cavities and 
all TLS in their ground state. It is clear that the system entropy1 diminishes at any 

T
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K
)
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Fig. 2  Solutions of the rate equations (17)–(19) as function of time, starting from initial thermal equi-
librium. The effective temperatures of the reservoirs A and B deviate. The temperature drop of the 
TLS parallels that of A. Parameters used are �
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= �
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Fig. 3  The occupations of res-
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plotted on a logarithmic scale. 
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totically time-independent. The 
losses through the open wave-
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caused by the non-reciprocal 
interaction with the TLS
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1 For our purposes it plays no role whether the Boltzmann or the Gibbs/v.  Neumann entropy is 
employed, because all definitions coincide in equilibrium and we assume local thermal equilibrium for 
all three subsystems, the two cavities and the TLS, albeit with possibly differing local temperatures.
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time due to the outgoing heat flow. The question arises how to apply the second law 
of thermodynamics to this situation. The second law has been formulated in several 
versions (see, e.g., [36–38]). It is not the purpose of this paper to discuss these in 
detail. Three representative formulations provide exemplary definitions of the sec-
ond law [15, 19]: 

(1) The entropy of the universe always increases.
(2) The entropy of a completely isolated system stays either constant or increases.
(3) The entropy of a system thermally coupled to the environment satisfies Clausius’ 

inequality: ΔS ≥ ΔQ∕T .

Variant (1) is not subject to our Gedankenexperiment, because the entropy produc-
tion including the environment is formally infinite, as the external bath has zero tem-
perature. Variant (2) follows from variant (3) because the heat transfer ΔQ vanishes. 
Variant (3) applies to the present system: the heat transfer ΔQ is negative and there-
fore also ΔS may be negative. However, the second law in the form of Clausius’ ine-
quality forbids the case ΔS ≤ ΔQ∕T  : The local entropy production � in the system 
must be non-negative [19].

The change of system entropy Ssys(t) can be written as [39]

where the surface integral of the entropy current Jsys accounts for the heat transfer 
to the environment, characterized by the rates �dec and �̃�11, �̃�12 . We find for �(t) (see  
“Derivation of the Entropy Production (22)–(24)”)

with

with N = �̃�1∕𝛾1 = �̃�2∕𝛾2 . The three contributions result from the heat exchange 
between the three subsystems. Only �A,B is always non-negative, because it has the 
form (x − y)(ln(x) − ln(y)) characteristic for systems satisfying the detailed balance 
condition. Because �̃�1 ≠ �̃�2 , the two other contributions are not necessarily non-neg-
ative. Figure  4 shows �(t) calculated using the parameters of Fig.  2. The entropy 
production is negative for t < 0.75 𝜇 s. The time span during which the entropy is 

(20)
dSsys

dt
= −∫ do ⋅ Jsys + �,

(21)�(t) = �A,B(t) + �A,TLS(t) + �B,TLS(t),

(22)�A,B = kBN�0(⟨nB⟩ − ⟨nA⟩)
�
ln(⟨nB⟩[⟨nA⟩ + 1]) − ln(⟨nA⟩[⟨nB⟩ + 1])

�
,

(23)
𝜎A,TLS = kB

�
�̃�2⟨m⟩(⟨nA⟩ + 1) − �̃�1⟨nA⟩(M − ⟨m⟩)

��
ln(⟨m⟩[⟨nA⟩ + 1])

− ln([M − ⟨m⟩]⟨nA⟩)
�
,

(24)
𝜎B,TLS = kB

�
�̃�1⟨m⟩(⟨nB⟩ + 1) − �̃�2⟨nB⟩(M − ⟨m⟩)

��
ln(⟨m⟩[⟨nB⟩ + 1])

− ln([M − ⟨m⟩]⟨nB⟩)
�
,
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reduced beyond the loss to the environment is almost an order of magnitude longer 
than the characteristic time scale �char = 0.1 � s. The especially notable point is the 
entropy reduction which occurs although the dynamical evolution started with ther-
mal equilibrium between the subsystems.

During the exchange of heat with the other subsystems, each subsystem remains 
in local thermal equilibrium. In principle, the exchange of heat between subsystems 
gives only a lower bound to the entropy production for irreversible processes and the 
actual �(t) could be larger than the value given in (21), which contains the contribu-
tions from the mutual heat exchange. However, the entropy change in each subsys-
tem can be computed directly via the formulae (14) and (96), (97) as well. Doing so, 
one finds that no additional entropy production besides the mutual heat exchange 
occurs in the process described by the rate equations (17)–(19). This, obviously, 
is due to the fact that during this process each subsystem remains in local thermal 
equilibrium. It follows that the entropy change of the full system would even be neg-
ative if the initial entropy of the TLS subsystem was lower than the upper bound 
given in (14), because the entropy change is caused solely by mutual heat transfer 
between subsystems if the condition of local equilibrium is satisfied.

We conclude that the initial thermal equilibrium between reservoirs and the TLS 
is unstable and variant (3) of the second law is violated. This is true although the 
total entropy of the system plus the environment always increases. The second law, 
applied to the system alone, demands a non-negative local entropy production for 
any process driven by the coupling to the bath at T = 0 [19, 39]. Such processes may 
generate local temperature gradients between the reservoirs, but �(t) must always be 
larger or equal zero to satisfy Clausius’ inequality. The violation of this inequality 
in our Gedankenexperiment shows clearly that the chiral coupling between TLS and 
the waveguide generates radiation processes which are in conflict with thermody-
namics if they are treated statistically in the same way as black body radiation.

Fig. 4  The total entropy produc-
tion �(t) within the system 
calculated for N�

0
= 1 MHz, 

�̃�
1
= 10 MHz, �̃�

2
= 0 . For 

these parameters, the entropy 
production is negative until 
t� ∼ 0.75 � s, when it turns posi-
tive and stays so. This behavior 
entails that for t < t′ the second 
law of thermodynamics is not 
satisfied. Note that t′ is appreci-
ably larger than �

char
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4  Discussion and Conclusions

In discussing the experiment we first note that it is based on phenomena taking place 
in the realm where the quantum world interfaces classical physics. The three sub-
systems are clearly macroscopic, but their interaction Hamiltonian (11, 12) is purely 
quantum mechanical and cannot be treated in a (semi-)classical approximation. A 
unique quantum feature of the interaction is given by the fact that the emission rate 
of the TLS depends on the occupation of the final states. In “Detailed Balance for a 
System with an Embedded Cavity”, we demonstrate that this counter-intuitive effect 
leads to the restoration of detailed balance in a cavity system without non-reciprocal 
elements. The non-unitary, probabilistic state development of the device can nei-
ther be achieved in classical Hamiltonian dynamics nor in the unitary pure quantum 
regime described by the Schrödinger equation. The collapse processes that link the 
classical world and the quantum regime [40] are the cause of the thermal imbal-
ance between the otherwise equivalent reservoirs A and B. Our Gedankenexperiment 
therefore reveals a clear conflict between thermodynamics and the probabilistic 
description of quantum phenomena on a macroscopic scale. The corresponding rate 
equations (17)–(19) do not satisfy the condition for detailed balance. Instead they 
predict a time-dependent state that violates the Clausius inequality, i.e. the original 
formulation of the second law of thermodynamics.

According to the quantum description of the statistical absorption and emission 
processes, the chirally coupled cavities are expected to develop unequal occupation 
numbers. This imbalance creates a temperature gradient between them, although no 
work is done on the system, which is coupled to the environment through the open 
waveguide only. This coupling to a heat bath at temperature zero leads to heat flow 
out of the system which is usually accompanied by a positive local entropy pro-
duction. But in our case the entropy production within the system is negative dur-
ing a well defined time interval. This interval is larger than the time characterizing 
the coupling between the subsystems. The violation of the second law is temporary. 
Because this violation is described by the rate equations, it is not caused by a sta-
tistical fluctuation. Such a fluctuation may occur in the stochastic evolution of the 
state vector of a single system, even when the initial state is typical [41], but cannot 
appear in the fully deterministic equations for averages.

The rate equations (17)–(19) have been derived under the assumption that the two 
channels of the waveguide are fed by A and B through the emission of wavepackets 
which in turn interact with the TLS in a causal fashion. The emission and absorption 
of single photons by the TLS are considered thus as probabilistic processes taking 
place within a finite time span, due to the quasi-continuum of modes available in the 
waveguide and the reservoirs. They therefore satisfy causality: It is not possible for 
a right-moving photon in channel 1 to be emitted by the TLS and be subsequently 
absorbed by reservoir A. The photons entering A are either generated by a fluctua-
tion in channel 1 of the open waveguide or arrive through channel 2. In the latter 
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case, they may come from the outside, from a TLS or from reservoir B. Pure scatter-
ing events at the TLS are neglected in this approximation because they are of higher 
order in the coupling constants. Their inclusion cannot restore the detailed balance 
broken by the chiral coupling.

Our reasoning is based on the assumption that the interaction of the TLS with 
the radiation continuum leads to real events [8] which must be described statisti-
cally, and are therefore caused by a collapse process. The physical mechanism of 
this “real” collapse plays no role in these considerations because no hypothesis 
beyond the golden rule enters the derivation of the rate equations. Of course, we 
have also assumed that the macroscopic nature of the radiation and the collection 
of TLS removes any detectable entanglement between the subsystems. It entails the 
statistical independence of the radiation processes and therefore Markovian dynam-
ics2. This assumption is corroborated by all available experimental evidence up to 
now. In case the second law of thermodynamics would be correct and therefore the 
presented statistical analysis wrong, the validity of the second law would be tanta-
mount to the actual realization of a macroscopic superposition of states in the cavity 
system, although it is coupled to an unobserved environment, the open ends of the 
waveguide.

Interestingly, the use of the golden rule can also be justified even in a completely 
isolated system. If the system is isolated, it could in principle be described by the 
full unitary dynamics, leading to a trivial reconciliation with the second law in its 
restricted form: the fine-grained Gibbs/v.  Neumann entropy does not change at 
all. However, also in this case an “environment” is present which consists of the 
infinitely many degrees of freedom of the photon gas, decohering the dynamics of 
the TLS, at least according to the opinion of the majority of physicists working in 
quantum optics [13]. The effective coarse-grained description of the closed system 
proceeds again via the golden rule (see “Derivation of the Rate Equations for the 
Closed System”). A similar temperature difference between A and B appears and 
a new steady state develops from initial thermal equilibrium for t → ∞ , having a 
lower entropy than the initial state, thus violating variant (2) of the second law. This 

Fig. 5  Temporal development of 
the total entropy for the closed 
variant of our system shown 
in the inset. The initial state 
at t = 0 (thermal equilibrium 
between all subsystems, includ-
ing the waveguide) maximizes 
the entropy. The stable steady 
state for long times has a lower 
entropy

2 A Markovian master equation yields transition probabilities in accord with the golden rule [42].
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is shown in Fig. 5. The temperature difference corresponds to a “sorting” between 
the reservoirs A and B in the closed system and resembles the action of a Maxwell 
demon [43]. No information is processed, stored or erased, neither in the TLS nor in 
the waveguide [44], therefore the usual arguments for positive entropy production 
based on information theory [45, 46] cannot be applied.

It has been argued that it is not possible to discern experimentally an interpre-
tation of quantum mechanics based on probabilistic dynamics and real collapse 
from the decoherence interpretation which replaces the physical collapse by an 
epistemic operation: the tracing over environmental degrees of freedom in the full 
density matrix at the final observation time tfin [47]. As mentioned in Sect. 1, it is 
not known whether the photon densities in the reservoirs at tfin , calculated with the 
tracing procedure, would differ from the results of “Derivation of the Rate Equa-
tions (17)–(19) for the Open System” based on the golden rule. If so, our proposed 
experiment, if performed with an isolated system, would allow to decide between 
interpretations based on real collapses and epistemic interpretations. Only the latter 
do not contradict the second law of thermodynamics, provided an actual solution of 
the full many-body problem would effectively restore the detailed balance condition 
in the statistical description. Such a solution would also be necessary to identify 
possible reasons for the breakdown of well-established tools like the golden rule or 
the Markov approximation in case the system shows the equilibrium state predicted 
by thermodynamics at all times. In any case, a difference between the full solution 
and the approximation by the golden rule would entail another mystery: why is the 
approximation valid for black-body radiation in arbitrary cavities (see “Detailed Bal-
ance for a System with an Embedded Cavity”) but not for chiral waveguides?

As a computation of the full quantum dynamics appears out of reach at present, 
the question can only be decided experimentally. A direct implementation of our 
model appears feasable with current technology [23, 25, 35].

In case that the experiment reported unequal distributions in A and B for the 
closed system, one would be forced to conclude that statistical processes such as 
spontaneous emission and absorption are able to reduce the total entropy for arbi-
trary large isolated systems and on average, not only for short times and small sys-
tems as expected from fluctuations [41]. Then the state of classical thermal equilib-
rium with maximal entropy is unstable and the system moves to steady states with a 
lower entropy. In this case, entropy-reducing processes would be expected to occur 
actually in nature, in structures differing greatly from our device3.

The contradictions presented are rooted in the still unresolved status of the meas-
urement problem of quantum physics: quantum mechanical probabilities can only 
be computed under the assumption that a collapse (either real or epistemic) takes 
place. These stochastic probabilities are formally encoded in the Born rule. To 

3 Collapse processes can be provided in principle by any inelastic process, be it scattering or (radioac-
tive) decay. The photon reservoirs could be replaced by any incoherent source of particles or energy, 
e.g., resistors with Johnson-Nyquist noise. Devices closely related to the presented chiral waveguide, 
but being based on coherence filters, have been presented in [48, 49]. A possible solid-state realization 
employing asymmetric quantum rings featuring inelastic scattering works similarly to our quantum-opti-
cal implementation and would pump electrons instead of photons [50, 51].
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our knowledge, neither the Born rule nor the golden rule have ever been used for 
a derivation of the second law of thermodynamics [16]. There have been attempts 
to deduce the second law from quantum mechanics by employing several “coarse-
graining” prescriptions. The proof of the H-theorem given by v. Neumann employs 
assumptions about the density matrix of pure states and macroscopic distinguish-
ability but excludes explicitly collapse or measurement processes from the quantum 
dynamics. In v.  Neumann’s approach the quantum dynamics stays always unitary 
[52, 53]. This may seem surprising, because the collapse processes underlying the 
golden rule are inherently irreversible, as noted first also by v. Neumann [21]. To our 
opinion, the intrinsic probabilistic features of quantum mechanics encoded in the 
Born rule add an elementary irreversible process to the dynamical laws of nature. 
This process, the non-unitary collapse of the wavefunction, appears during macro-
scopic measurements but also as microscopic event, thereby leading to the correct 
statistics of a photon gas interacting with matter. Therefore, we disagree with the 
position put forward in [54], that the irreversibility of the measurement is just due 
to the macroscopic nature of the apparatus and has essentially the same origin as the 
irreversible behavior of macroscopic variables in classical mechanics which obeys 
the second law of thermodynamics. We have shown that the presence of microscopic 
collapse processes may lead under certain circumstances to a conflict with this law.

In conclusion, transition rates of quantum systems are commonly calculated with 
great success by using Fermi’s golden rule. This approach is widely accepted, as the 
golden rule directly results from the Born rule. Here, we have introduced practically 
realizable, open and closed quantum systems of coupled cavities and determined 
their behavior by applying the golden rule. The predicted behavior of both systems 
violates the second law of thermodynamics. We therefore conclude that 

(1) the statistical description of quantum mechanical transitions given by the golden 
rule is incorrect or

(2) the second law of thermodynamics is not universally valid.
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Appendix

Derivation of the Rate Equations (2) and (3)

The simple, albeit nonlinearly coupled rate equations (2), (3) underlie Einstein’s 
famous derivation of Planck’s law for black-body radiation [10]. In this section, we 
describe the approximations and statistical assumptions leading to the closed system 
of Eqs. (2), (3).

We begin by describing the quantum state of a single system within the statistical 
ensemble. A collection of M two-level systems with energy splitting ℏΩ interacts with 
radiation modes aj , characterized by their frequencies in the range [Ω − Δ∕2,Ω + Δ∕2] 
and additional parameters such as momentum and polarization, summarized in the 
index j. The full many-body quantum state �Ψ(t)⟩ at time t is then described as

where the sl = 0, 1 correspond to the ground and excited state �gl⟩ and �el⟩ of the l-th 
TLS and nj is the number of photons in mode j. While the states {Ψ} form a com-
plete basis in the full Hilbert space, we assume that at any time the system can be 
described by exactly one of these states, i.e. we neglect the coherence of each TLS 
and coherent superpositions between several TLS. We also consider the radiation 
field as thermal, namely each state being diagonal in the eigenbasis of the non-inter-
acting Hamiltonian

The interaction between the TLS and the radiation via the Hamiltonian (1) is 
incorporated as a stochastic process using the golden rule. It gives the probabili-
ties to transition from state �Ψ(t)⟩ to states �Ψ�(t + �t)⟩ (emission) or �Ψ��(t + �t)⟩ 
(absorption),

The rate �−1
em

 for the emission process of a single TLS depends on the occupation nj 
of the mode j actually involved. However, as the process couples the TLS to a con-
tinuum of radiation degrees of freedom, the total probablility is given by the average 

(25)�Ψ(t)⟩ = �s1,… sM;{nj}⟩,

(26)H0 =
ℏΩ

2

M∑

l=1

�z

l
+ ℏ

∑

j

�ja
†

j
aj.

(27)�s1,… , 1l,… sM;{nj}⟩ → �s1,… , 0l,… sM;{nj≠k}, nk + 1⟩,

(28)�s1,… , 0l� ,… sM;{nj}⟩ → �s1,… , 1l� ,… sM;{nj≠k}, nk − 1⟩.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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n̄ of the occupations of all modes in the interval [Ω − Δ∕2,Ω + Δ∕2] belonging to 
the state �Ψ(t)⟩ as 𝜏−1

em
= 𝛾 �(n̄(t) + 1) (see [13] and  “Derivation of the Rate Equations 

(17)–(19) for the Open System”). As we don’t know into which mode the emission 
occurs, we can simplify the description of �Ψ(t)⟩ given in (25) as

which already is a form of coarse-graining procedure applied to the microstate (25). 
The next and crucial approximation is the assumption that the radiation processes 
of the several TLS are independent, although the coupling to the radiation field 
introduces statistical correlations between them. The approximation is justified by 
the fact that we have a continuum of radiation modes which do not interact among 
themselves. This implies that each individual radiation process can be considered as 
independent from all others; the chance of two TLS to interact with exactly the same 
microscopic field mode j within observation time is vanishingly small. Thus we con-
sider the joint probability Pe

l
(t, n̄) for the l-th TLS to be in the excited state and the 

average mode occupation to be n̄ . This probability satisfies the master equation [19]

where Pg

l
(t, n̄) = P(n̄, t) − Pe

l
(t, n̄) is the probablility that the l-th TLS is in its ground 

state. This relation is a consequence of the factorization property

which follows from the same argument as the statistical independence of the TLS, 
i.e. the presence of macroscopically many different modes of the radiation field in 
the frequency interval [Ω − Δ,Ω + Δ] , rendering the average occupation n̄ statisti-
cally independent from the state of a single TLS. Summing (30) over n̄ , we obtain

Noting that Pe
l
(t) = ⟨m(t)⟩∕M , we obtain Eq.  (3) for the ensemble average of the 

number m(t) of excited TLS. The corresponding rate equation (2) for the average 
photon number follows directly from the conservation of the total excitation number

but contains a different rate constant � to account for the continuous density of states 
around the resonance frequency, � = � �∕N  (see Eq. (70) in  “Derivation of the Rate 
Equations (17)–(19) for the Open System”). The state vector (25) satisfies a much 
more complicated master equation then (32) and its stochastic evolution shows devi-
ations of the actual value m(t) from its average ⟨m(t)⟩ computed via (2), (3). But 
one may argue that a typical state will have a time evolution which deviates only 
slightly from its mean value for all times, �mtypical(t) − ⟨m(t)⟩�∕M → 0 for M → ∞ 

(29)Ψ(t) = �s1,… sM;n̄⟩,

(30)
dPe

l
(t, n̄)

dt
= −𝛾 �Pe

l
(t, n̄)(n̄ + 1) + 𝛾 �P

g

l
(t, n̄)n̄,

(31)Pe
l
(t, n̄) = Pe

l
(t)P(n̄, t),

(32)
dPe

l
(t)

dt
= −� �Pe

l
(t)(⟨n⟩(t) + 1) + � �(1 − Pe

l
(t))⟨n⟩(t).

(33)Nexc =

M∑

l=1

sl +
∑

j

nj,
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[16, 53]. This statement can be shown analytically for simple stochastic models like 
the Ehrenfest model [17] and also in purely deterministic toy models, e.g. the Kac 
ring model [55]. Moreover there is ample numerical evidence for such a behavior of 
typical states in more realistic models [18].

In our case, the ultimate justification of (2), (3) rests on the fact that they lead to 
Planck’s law for black-body radiation, one of the cornerstones of modern physics. It 
would be hard to argue that these equations are incorrect but in perfect agreement 
with all experiments due to some unknown cancellation of errors.

Derivation of the Rate Equations (17)–(19) for the Open System

We begin with the computation of the loss rate of photons with frequency �j from 
reservoir A via channel 1 of the open waveguide (see Fig. 1). In the coupling Hamil-
tonian, (11), the process is of first order. The initial state reads

for a certain configuration of occupations {nA} for modes j′ in A with j′ ≠ j . Here, 
nAj is the occupation number of mode j. Similarly, {nB} denotes a configuration in 
reservoir B. Further, {s} is the configuration of excited ( sl = e ) or ground states 
( sl = g ) of the M TLS, l = 1,…M . The waveguide channels 1 and 2 are not occu-
pied in �in.

The initial state is connected via the term h∗
jk
a
†

1k
aAj to the final state

The S-matrix element reads then

with Efin − Ein = ℏ(�k − �j) . The interaction is assumed to take place over a time 
interval t0 . The corresponding regularized �-function is (see [13])

We have

and, according to standard reasoning [13], the transition rate is given by

where h̄ is the value of hjk for �j = �k , which is assumed to be constant in the inter-
val [Ω − Δ∕2,Ω + Δ∕2] . Averaging over all modes j with frequency � , we obtain 
�−1
dec

(�) = �dec(�)⟨nA⟩(�) with

(34)��in⟩ = �{nA}nAj, {nB}, {01}01k, {02}, {s}⟩,

(35)��fin⟩ = �{nA}nAj − 1, {nB}, {01}11k, {02}, {s}⟩.

(36)S
t0
fi
= −2�i�t0(Efin − Ein)⟨�fin�H1

int
��in⟩

(37)�t0 (E) =
1

�

sin(Et0∕2ℏ)

E
.

(38)⟨�fin�H1
int
��in⟩ = h∗

jk

√
nAj,

(39)𝜏−1
dec

(𝜔j) =
1

t0

∑

k

4𝜋2|hkj|2
t0

2𝜋�
𝛿t0 (Efin − Ein) =

2𝜋

�
|h̄|2nAj𝜌1(�𝜔j),
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assuming �1 = �2 = �wg . Adding the contribution of the decay into channel 2, the 
master equation for ⟨nA⟩(�) describing the loss process reads

A similar expression holds for reservoir B with the same rate constant �dec.
The TLS couple to the channels via spontaneous emission. The corresponding 

first-order process leads to

with �̃�1r(𝜔) = 2𝜋ḡ2
r
(𝜔)𝜌wg(�𝜔)∕� for r = 1, 2 (see below).

We compute now the coherent transfer of a photon from reservoir A to B through 
the chiral waveguide, which is of second order in the coupling |h̄|2 . As this process 
concerns a wavepacket of finite width and takes place in a finite time interval, only the 
right-moving channel 1 is relevant, i.e., the coupling Hamiltonian is

We denote the initial state as

The transition from A to B occurs via the intermediate states

towards the final state

involving the operators

The S-matrix Sfi connecting initial and final states reads

and Ein − Eim = ℏ(�j − �k) . The matrix elements Vfk and Vki are

(40)𝛾dec(𝜔) =
2𝜋

�
|h̄|2𝜌wg(�𝜔),

(41)
d⟨nA⟩(�)

dt
= −2�dec(�)⟨nA⟩(�) +…

(42)
d⟨m⟩
dt

= −(�̃�11(Ω) + �̃�12(Ω))⟨m⟩ +… ,

(43)H1
int

=
∑

q=A,B

∑

j,k

hjk

(
a
†

qj
a1k + h.c.

)
.

(44)��in⟩ = �{nA}nAj, {nB}nBl, {01}01k, {02}, {s}⟩.

(45)��im⟩ = �{nA}nAj − 1, {nB}nBl, {01}11k, {02}, {s}⟩

(46)��fin⟩ = �{nA}nAj − 1, {nB}nBl + 1, {01}01k, {02}, {s}⟩,

(47)h∗
jk
a
†

1k
aAj, hlka

†

Bl
a1k.

(48)S
t0
fi
= −2�i�t0 (Efin − Ein) lim

�→0+

∑

k

VfkVki

Ein − Eim + i�
,

(49)Vfk = ⟨�fin�hlka†Bla1k��im⟩, Vki = ⟨�im�h∗jka
†

1k
aAj��in⟩.
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We find

and obtain for the transition rate out of state ��in⟩,

We denote with ⟨nB⟩(�) the average occupation number per mode in reservoir B at 
frequency � . It follows that

If we average over all modes j in A with frequency � , the transition rate from A to B 
at � reads

Similarly, the transition from B to A, proceeding via channel 2, is

Finally, the master equation for reservoir A characterizing direct transitions between 
A and B through the waveguide is given by

where we have assumed identical densities of states in A and B, �A = �B = � . The 
rate �0(�) is defined as

The ratio of second and first order contributions follows as

Next, we consider the absorption of radiation from reservoir A by the l-th TLS. The 
initial state is

The absorption of a wavepacket of finite spatial extension can only proceed via 
channel 1. The intermediate states read then

(50)S
t0
fi
≈ −2𝜋2𝛿t0 (�(𝜔l − 𝜔j))|h̄|2𝜌wg(�𝜔j)

√
nAj(nBl + 1),

(51)𝜏−1
jA→B

=
1

t0

∑

l

|St0
fi
|2 =

∑

l

2𝜋3

�
𝛿t0 (�(𝜔l − 𝜔j))|h̄|4𝜌2wg(�𝜔j)nAj(nBl + 1).

(52)𝜏−1
jA→B

=
2𝜋3

�
�h̄�4𝜌2

wg
(�𝜔j)𝜌B(�𝜔j)nAj(⟨nB⟩(𝜔j) + 1).

(53)
1

𝜏A→B(𝜔)
=

2𝜋3

�
�h̄�4𝜌2

wg
(�𝜔)𝜌B(�𝜔)⟨nA⟩(𝜔)(⟨nB⟩(𝜔) + 1).

(54)
1

𝜏B→A(𝜔)
=

2𝜋3

�
�h̄�4𝜌2

wg
(�𝜔)𝜌A(�𝜔)⟨nB⟩(𝜔)(⟨nA⟩(𝜔) + 1).

(55)
d⟨nA⟩(�)

dt
= −

1

�A→B(�)
+

1

�B→A(�)
= �0(�)(⟨nB⟩(�) − ⟨nA⟩(�)),

(56)𝛾0(𝜔) =
2𝜋3

�
|h̄|4𝜌2

wg
(�𝜔)𝜌(�𝜔).

(57)
𝛾0(𝜔)

𝛾dec(𝜔)
= 𝜋2|h̄|2𝜌wg(�𝜔)𝜌(�𝜔).

(58)��in⟩ = �{nA}nAj, {nB}, {01}01k, {02}, {s}gl⟩.
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and the final state is obtained by absorption of the photon in channel 1 by the TLS,

For the S-matrix element we have

where ḡ1 is the value of g1k for �k = �j . The corresponding term in the master equa-
tion for ⟨m⟩ , the average number of excited TLS, is obtained by summing over all 
initial states, which leads to the expression

In an anlogous manner, the radiation from reservoir B is absorbed via channel 2 by 
the TLS,

On the other hand, the emission from the TLS towards reservoir A must proceed via 
the left-moving channel 2. The initial state is now

the intermediate state

and the final state

A calculation completely analogous to the one for absorption above leads to the fol-
lowing term in the master equation for ⟨m⟩ , this time summing over final modes in 
reservoir A,

In this expression, the term proportional to ⟨nA⟩ is associated with stimulated emis-
sion from the TLS. It is noteworthy that the stimulated emission of the TLS is not 
caused by photons that have been emitted by A and then impinge on the TLS to cre-
ate photons in the same mode. Here, in contrast, the stimulated emission of the TLS 
is induced by photons that are received by A after having been emitted by the TLS. 
This counterintuitive effect, which is solely due to the Bose statistics and therefore 
only possible in quantum physics, restores detailed balance for the case of a cavity 

(59)��im⟩ = �{nA}nAj − 1, {nB}, {01}11k, {02}, {s}gl⟩

(60)��fin⟩ = �{nA}nAj − 1, {nB}, {01}01k, {02}, {s}el⟩.

(61)S
t0
fi
= −2𝜋2h̄ḡ1𝛿

t0 (�Ω − �𝜔j)𝜌wg(�𝜔j)
√
nAj,

(62)
d⟨m⟩
dt

= −
2𝜋3

�
(M − ⟨m⟩)h̄2ḡ2

1
𝜌2
wg
(�Ω)𝜌(�Ω)⟨nA⟩(Ω) +…

(63)
d⟨m⟩
dt

= −
2𝜋3

�
(M − ⟨m⟩)h̄2ḡ2

2
𝜌2
wg
(�Ω)𝜌(�Ω)⟨nB⟩(Ω) +…

(64)��in⟩ = �{nA}nAj, {nB}, {01}, {02}02k, {s}el⟩,

(65)��im⟩ = �{nA}nAj, {nB}, {01}, {02}12k, {s}gl⟩,

(66)��fin⟩ = �{nA}nAj + 1, {nB}, {01}, {02}02k, {s}gl⟩.

(67)
d⟨m⟩
dt

=
2𝜋3

�
⟨m⟩h̄2ḡ2

2
𝜌2
wg
(�Ω)𝜌(�Ω)(⟨nA⟩(Ω) + 1) +…
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embedded in another one, in accord with Kirchhoff’s law on black body radiation 
(see “Detailed Balance for a System with an Embedded Cavity”).

With the definition

for r = 1, 2 we obtain the master equation for ⟨m⟩,

which is Eq. (19) in the main text. To compute the terms corresponding to the 
absorption and emission processes in the rate equations for ⟨nA⟩ and ⟨nB⟩ , we note 
that the rates �̃�r contain a summation over initial, respectively final modes in the 
reservoirs. The coefficients �r describing the temporal change in the average occupa-
tion number per mode, ⟨nq⟩ , are therefore �̃�r divided by the number of modes in the 
relevant frequency interval. Thus,

Together with (41) and (55), it follows for � = Ω,

which are Eqs. (17) and (18).

Derivation of the Entropy Production (22)–(24)

As no work is done during the irreversible process, we can write for the heat flow 
out of the system within our approximation

because the coherences of the TLS are not important and the waveguide contains 
no photons on average. We consider in the following only quantities (entropy and 
energy) corresponding to the interval [ℏ(Ω − Δ∕2),ℏ(Ω + Δ∕2)] because other 

(68)�̃�r(Ω) =
2𝜋3

�
h̄2ḡ2

r
𝜌2
wg
(�Ω)𝜌(�Ω)

(69)
d⟨m⟩
dt

= −[�̃�11(Ω) + �̃�12(Ω)]⟨m⟩ + �̃�1(Ω)
�
⟨nA⟩(M − ⟨m⟩) − (⟨nB⟩ + 1)⟨m⟩

�

+ �̃�2(Ω)
�
⟨nB⟩(M − ⟨m⟩) − (⟨nA⟩ + 1)⟨m⟩

�
,

(70)N = �∫
Ω+Δ∕2

Ω−Δ∕2

d𝜔𝜌(�𝜔), 𝛾r = �̃�r∕N.

(71)
d⟨nA⟩
dt

= −2�dec⟨nA⟩ + �0(−⟨nA⟩ + ⟨nB⟩) − �1(M − ⟨m⟩)⟨nA⟩

+ �2⟨m⟩(⟨nA⟩ + 1),

(72)
d⟨nB⟩
dt

= −2�dec⟨nB⟩ + �0(−⟨nB⟩ + ⟨nA⟩) − �2(M − ⟨m⟩)⟨nB⟩

+ �1⟨m⟩(⟨nB⟩ + 1),

(73)Qext = −
d

dt

�
⟨HA⟩ + ⟨HB⟩ + ⟨HTLS⟩

�
> 0,
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photon modes do not interact with the TLS. The heat transferred to the environment 
per unit time reads for each subsystem (see (17)–(19))

The corresponding entropy change of the system is given by

with

The entropy of the system is always reduced due to the vanishing temperature of 
the bath. Although the entropy production of system plus bath is thus formally posi-
tive and infinite, the actual entropy loss of the system stays finite and is of course 
compatible with the second law which mandates that the local entropy production 
within the system must be non-negative. In our case, the local entropy production 
is induced by the heat exchange between the three subsystems. The heat change of 
reservoir A due to the interaction with reservoir B reads

It follows for the entropy production due to this process

(74)Qext
q

= 2�ΩN𝛾dec⟨nq⟩, Qext
TLS

= �Ω(�̃�11 + �̃�12)⟨m⟩.

(75)−∫ do ⋅ Jsys = −

(
∑

q=A,B

Qext
q

Tq
+

Qext
TLS

TTLS

)
,

(76)T−1
q

=
kB

ℏΩ
ln

�⟨nq⟩ + 1

⟨nq⟩

�
, T−1

TLS
=

kB

ℏΩ
ln

�
M − ⟨m⟩

⟨m⟩

�
.

(77)QA
A,B

= −QB
A,B

= ℏΩN�0(⟨nB⟩ − ⟨nA⟩).

Fig. 6  The system obtained by 
closing the open waveguide of 
the system shown in Fig. 1 of 
the main text. The occupation 
numbers of the chiral channels 
1 and 2 do not vanish due to 
equilibration with the reservoirs 
A and B 

channel 1

channel 2

a1k

a2k

g2

g1

B
aBj

A
aAj

TLS
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which is Eq. (22). The Eqs. (23), (24) for the heat exchange between the reservoirs 
and the TLS are deduced correspondingly. Alternatively, one may compute the 
entropy change in each subsystem directly with the expressions (14) for the TLS 
entropy and (96) for the entropy of the radiation modes. This shows that the entropy 
change of each subsystem is not accompanied by additional entropy production but 
is solely due to heat transfer between subsystems, a consequence of the local ther-
mal equilibrium in A, B and the TLS.

Derivation of the Rate Equations for the Closed System

This chapter discusses a variant of the open system characterized in  “Derivation of 
the Rate Equations (17)–(19) for the Open System”. In this variant, which is a closed 
system, the waveguide satisfies periodic boundary conditions, corresponding to a 
loop of length L, where L is much larger than the distance between the reservoirs A 
and B, see Fig. 6. We show that a description assuming real absorption and emission 
processes fulfills the detailed balance condition to first order in the coupling. Second 
order processes analogous to those described in Eqs. (58)–(67) break the detailed 
balance condition for the case that coherent absorption and emission is only possible 
along the short path between the reservoirs and the TLS, while dephasing occurs for 
wave packets emitted by a TLS and traveling the long way around the loop before 
reaching one of the reservoirs. The latter case is already accounted for by the first-
order terms describing the equilibration between the reservoirs/TLS and the wave-
guide. Of course, if the dynamics of the closed system is considered to be unitary, 
corresponding to completely coherent evolution, the entropy does not change. This 
situation could be approximated by treating all second order processes as coherent, 
including those on the long path between the TLS and the cavities. Then the detailed 
balance condition would be satisfied, leading to stabilization of the state with maxi-
mal entropy. However, if the coherence is restricted to processes occurring along the 
short path, the ensuing steady state does not have maximum entropy.

In the closed system, the occupancy of the waveguide can no longer be assumed 
to be zero, as the photons cannot escape towards infinity. We describe the occupancy 
in channel q by ⟨nq⟩ for q = 1, 2 . The Hamiltonian is given in Eqs. (8)–(12). The 
exchange of photons between cavity A and channel 1 of the waveguide proceeds via 
a first-order process analogous to that given in Eqs. (34) and (35), but the matrix ele-
ment reads now (suppressing the frequency arguments),

This gives for the transition rate from mode j in A to channel 1 of the waveguide

and for the reverse process,

(78)�A,B = ℏΩN�0(⟨nB⟩ − ⟨nA⟩)(T−1
A

− T−1
B
),

(79)⟨�fin�H1
int
��in⟩ = h∗

jk

�
nAj(n1 + 1).

(80)�−1
A→1

= �decnAj(⟨n1⟩ + 1),
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where in this case a sum over initial states has to be performed to obtain the rate of 
emission into the fixed mode j of A. The terms in the master equation for ⟨nA⟩ are 
thus

and for ⟨n1⟩

with the rate constant � �
dec

= (�∕�wg)�dec . Analogous expressions are obtained for 
B and channel 2. Another first-order process couples the TLS and the waveguide 
modes. We find for this contribution to the rate equation for ⟨m⟩

with �̃�1r = 2𝜋g2
r
𝜌wg∕� (compare Eq. (42)). The corresponding terms in the rate 

equations for ⟨nr⟩ are

and

All these first-order terms satisfy the detailed balance condition. They lead naturally 
to thermal equilibration between the reservoirs and the waveguide. For the second-
order terms, we have first the process described by Eq. (69),

which depends also on the occupation numbers ⟨nr⟩ of the waveguide. This term 
is accompanied by corresponding terms in the rate equations for the reservoirs. It 
does not satisfy detailed balance because we have only considered the short path 
between the reservoirs and the TLS (the only available one in the open system). 
Including also the long path around the circular waveguide would again reinstate the 
detailed balance condition. We assume that this second process is not coherent due 
to dephasing of the photon while traveling along the loop. Such a dephasing may, for 
example, be caused by scattering processes induced in the long section of the loop. 
The second order term given in Eq. (55) is modified in the closed system as follows,

(81)�−1
1→A

= �dec⟨n1⟩(nAj + 1),

(82)
d⟨nA⟩
dt

= �dec(⟨n1⟩ − ⟨nA⟩) +… ,

(83)
d⟨n1⟩
dt

= � �
dec

(⟨nA⟩ − ⟨n1⟩) +… ,

(84)
d⟨m⟩
dt

=
�

r=1,2

�̃�1r[(M − ⟨m⟩)⟨nr⟩ − ⟨m⟩(⟨nr⟩ + 1)] +… ,

(85)
d⟨nr⟩
dt

= �1r[⟨m⟩(⟨nr⟩ + 1) − (M − ⟨m⟩)⟨nr⟩] +… ,

(86)𝛾1r = �̃�1r∕N
�, N

� = �∫
Ω+Δ∕2

Ω−Δ∕2

d𝜔𝜌wg(�𝜔).

(87)
d⟨m⟩
dt

= �̃�1(⟨n1⟩ + 1)
�
⟨nA⟩(M − ⟨m⟩) − (⟨nB⟩ + 1)⟨m⟩

�

+ �̃�2(⟨n2⟩ + 1)
�
⟨nB⟩(M − ⟨m⟩) − (⟨nA⟩ + 1)⟨m⟩

�
+… ,
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together with an equivalent term for ⟨nB⟩ . Another term of second order in |h̄|2 cou-
ples the two channels of the waveguide via a reservoir. For channel 1 it reads

with 𝛾3 = 2𝜋3|h̄|4𝜌2𝜌wg∕� . Finally, there is a term connecting the channels via an 
intermediate excitation of the TLS, proportional to g2

1
g2
2
 . This term can be neglected 

if one of the chiral couplings gr is close to zero, as we have assumed in the numeri-
cal evaluation. Collecting all the terms, we obtain the rate equations for the photon 
occupation numbers,

The average number of excited TLS is determined by

To compute the total entropy of the system, we note first that

(88)
d⟨nA⟩
dt

= �0
�
(⟨n2⟩ + 1)(⟨nA⟩ + 1)⟨nB⟩ − (⟨n1⟩ + 1)(⟨nB⟩ + 1)⟨nA⟩

�
+… ,

(89)
d⟨n1⟩
dt

= �3(⟨nA⟩ + ⟨nB⟩ + 2)(⟨n2⟩ − ⟨n1⟩) +… ,

(90)

d⟨nA⟩
dt

= �dec(⟨n1⟩ + ⟨n2⟩ − 2⟨nA⟩) − �1(M − ⟨m⟩)⟨nA⟩(⟨n1⟩ + 1)

+ �2⟨m⟩(⟨nA⟩ + 1)(⟨n2⟩ + 1) + �0
�
(⟨n2⟩ + 1)(⟨nA⟩ + 1)⟨nB⟩

− (⟨n1⟩ + 1)(⟨nB⟩ + 1)⟨nA⟩
�
,

(91)

d⟨nB⟩
dt

= �dec(⟨n1⟩ + ⟨n2⟩ − 2⟨nB⟩) − �2(M − ⟨m⟩)⟨nB⟩(⟨n2⟩ + 1)

+ �1⟨m⟩(⟨nB⟩ + 1)(⟨n1⟩ + 1) + �0
�
(⟨n1⟩ + 1)(⟨nB⟩ + 1)⟨nA⟩

− (⟨n2⟩ + 1)(⟨nA⟩ + 1)⟨nB⟩
�
,

(92)
d⟨n1⟩
dt

= � �
dec

(⟨nA⟩ + ⟨nB⟩ − 2⟨n1⟩) − �11
�
(M − ⟨m⟩)⟨n1⟩ − ⟨m⟩(⟨n1⟩ + 1)

�

+ �3(⟨nA⟩ + ⟨nB⟩ + 2)(⟨n2⟩ − ⟨n1⟩),

(93)
d⟨n2⟩
dt

= � �
dec

(⟨nA⟩ + ⟨nB⟩ − 2⟨n2⟩) − �12
�
(M − ⟨m⟩)⟨n2⟩ − ⟨m⟩(⟨n2⟩ + 1)

�

+ �3(⟨nA⟩ + ⟨nB⟩ + 2)(⟨n1⟩ − ⟨n2⟩).

(94)

d⟨m⟩
dt

=
�

r=1,2

�̃�1r[(M − ⟨m⟩)⟨nr⟩ − ⟨m⟩(⟨nr⟩ + 1)]

− ⟨m⟩
�
�̃�1(⟨nB⟩ + 1)(⟨n1⟩ + 1) + �̃�2(⟨nA⟩ + 1)(⟨n2⟩ + 1)

�

+ (M − ⟨m⟩)
�
�̃�1⟨nA⟩(⟨n1⟩ + 1) + �̃�2⟨nB⟩(⟨n2⟩ + 1)

�
.
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is the entropy of the TLS, as given by Eq. (14). The entropy Srad(�) of the radiation 
per mode in the reservoirs and the waveguide depends only on ⟨nq(�)⟩ and reads

for l = A,B, 1, 2 . Because the temperature depends on ⟨nl⟩ as described by Eq. (16) 
in the main text, the entropy is only a function of ⟨nl⟩ . The effective entropies and 
temperatures in the reservoirs and the waveguide are computed under the assump-
tion that the photons in each reservoir/channel thermalize in the usual way quickly 
as an ideal Bose gas. We approximate the total entropy by the sum of the entropies 
of the subsystems, as is justified for large ⟨nq⟩ and M. The total entropy is then given 
by

with

(95)SM = −kBM
(
pe ln pe + (1 − pe) ln(1 − pe)

)
,

(96)Sl
rad
(�) =

ℏ�

T
⟨nl(�)⟩ + kB ln(1 + ⟨nl(�)⟩),

(97)S(t) = SM(t) + ∫
Ω+Δ∕2

Ω−Δ∕2

d�[�(�)SR(�, t) + �wg(�)S
wg(�, t)],

Fig. 7  Solutions of the rate 
equations (90)–(94) as function 
of time, starting from initial 
thermal equilibrium. Panel a 
displays ⟨nA⟩(t) , ⟨nB⟩(t) and 
panel b ⟨n

1
⟩(t) , ⟨n

2
⟩(t) . The 

average occupations ⟨nq⟩(t) 
per mode reach a novel steady 
state with ⟨nA⟩ ≠ ⟨nB⟩ . The 
photon densities in reservoir 
A and channel 1 fall to zero, 
whereas channel 2 stays 
occupied and reservoir B is 
populated. The displayed time 
interval corresponds to the time 
scale set by the coupling to 
the TLS. Parameters used are 
�
dec

= � �
dec

= �
0
= �

3
= 10 kHz, 

�̃�
1
= �̃�

11
= 10 MHz, 

�
1
= �

11
= 100 kHz, 

�̃�
2
= �̃�

12
= 𝛾

2
= 𝛾

12
= 0 and 

N = N
� = 100 , ℏΩ∕kBT(0) = 1
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For constant densities of states � and �wg , we may write

(98)SR = SA
rad

+ SB
rad
, Swg = S1

rad
+ S2

rad
.

(99)S(t) = SM(t) +NSR(Ω, t) +N
�Swg(Ω, t).

Fig. 8  The asymptotic temporal 
behavior of reservoir B (panel 
a) and the inert channel 2 (panel 
b). The occupation in A and 
channel 1 is almost zero. The 
novel steady state has unequal 
occupations in all photonic 
subsystems and therefore lower 
entropy than the initial state. 
The parameters used are the 
ones of Fig. 7
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Fig. 9  The cavity system. The 
small cavity A exchanges radia-
tion with the surrounding closed 
cavity C. The collection M of 
two-level systems interacts with 
the radiation modes of C 
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The temporal evolution of the closed system, starting with thermal equilibrium, is 
depicted in Fig. 7 for the same parameters as in the open system. The non-reciprocal 
interaction with the TLS empties reservoir A and the active (coupled) channel 1, 
while the occupation of reservoir B rises. The inert channel 2 is unaffected on this 
short timescales. It interacts via the weak couplings � ′

dec
 and �3 with B, which mani-

fests only on much longer timescales, as depicted in Fig. 8. This separation of time-
scales has the same origin in the closed and the open system.

Detailed Balance for a System with an Embedded Cavity

We shall now demonstrate that the term in (67) corresponding to radiation stimu-
lated by the receiving reservoir leads to the detailed balance condition in case a 
cavity is embedded into another one. Here, detailed balance is also obtained in 
the second-order terms, in contrast to the chiral system treated in the previous 
section. We consider a closed cavity C with adiabatic walls. Inside of C there is a 
smaller cavity A which is coupled to C through a small opening. Besides A, a col-
lection of M two-level systems is located in C (Fig. 9).

The Hamiltonian of this system is given as

where

for q = A,C . The interaction between A and C is given by

and C interacts with M as

The rate equations are computed as above, but now the exchange between A and C is 
given by terms of first order in the coupling hjk,

with � �
4
= (�A∕�C)�4 , (compare Eq. (83)). The interaction between the TLS and C 

leads to the terms

(100)H = HA + HC + HTLS + H1
int

+ H2
int
,

(101)Hq = ℏ
∑

j

�qja
†

qj
aqj, HTLS =

ℏΩ

2

M∑

l=1

�z

l

(102)H1
int

=
∑

j,k

hjka
†

Aj
aCk + h.c.,

(103)H2
int

=

M∑

l=1

∑

k

gkaCk�
+
l
+ h.c.

(104)
d⟨nA⟩
dt

= �4
�
−⟨nA⟩(⟨nC⟩ + 1) + ⟨nC⟩(⟨nA⟩ + 1)

�
+… ,

(105)
d⟨nC⟩
dt

= � �
4

�
−⟨nC⟩(⟨nA⟩ + 1) + ⟨nA⟩(⟨nC⟩ + 1)

�
+…



1538 Foundations of Physics (2020) 50:1509–1540

1 3

which are of first order in gk and correspond to standard black-body radiation. 
Besides these first-order terms, there are also terms of second order in the couplings 
hjk and gk , describing the interaction of the small cavity A with the TLS via inter-
mediate states belonging to C. However, in contrast to the second-order terms dis-
cussed in  “Derivation of the Rate Equations for the Closed System”, these second-
order terms are compatible with detailed balance. The corresponding terms in the 
rate equation for A read

As above, the term for stimulated emission, �6(⟨nC⟩ + 1)2⟨nA⟩⟨m⟩ , is not related to 
radiation emerging from cavity A into C which would have the wrong direction (see 
Fig. 9), but comes from the occupation of A-modes in the final state. The rate equa-
tions for A and C are therefore

These equations fulfill the detailed balance condition and lead to thermal equilib-
rium between A, C and M. The result is consistent with Kirchhoff’s law, which states 
that the interior of a thermally isolated hohlraum has no influence on the final steady 
state of the contained radiation. This radiation exhibits the black-body spectrum 
found by M. Planck.
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