
S. Crafa and D. Gebler (Eds.): Combined Workshop on Expressiveness in
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2015)
EPTCS 190, 2015, pp. 61–75, doi:10.4204/EPTCS.190.5

c© Hatzel, Wagner, Peters & Nestmann
This work is licensed under the
Creative Commons Attribution License.

Encoding CSP into CCS ∗

Meike Hatzel
TU Berlin

Christoph Wagner
TU Berlin

Kirstin Peters†
TU Dresden

Uwe Nestmann
TU Berlin

We study encodings from CSP into asynchronous CCS with name passing and matching, so in fact,
the asynchronous π-calculus. By doing so, we discuss two different ways to map the multi-way
synchronisation mechanism of CSP into the two-way synchronisation mechanism of CCS. Both en-
codings satisfy the criteria of Gorla except for compositionality, as both use an additional top-level
context. Following the work of Parrow and Sjödin, the first encoding uses a centralised coordinator
and establishes a variant of weak bisimilarity between source terms and their translations. The sec-
ond encoding is decentralised, and thus more efficient, but ensures only a form of coupled similarity
between source terms and their translations.

1 Introduction

In the context of a scientific meeting on Expressiveness in Concurrency and Structural Operational Se-
mantics (SOS), likely very little needs to be said about the process algebras (or process calculi) CSP and
CCS. Too many papers have been written since their advent in the 70’s to be mentioned in our own pa-
per; it is instructive, though, and recommended to appreciate Jos Baeten’s historical overview [1], which
also places CSP and CCS in the context of other process algebras like ACP and the many extensions by
probabilities, time, mobility, etc. Here, we just select references that help to understand our motivation.
Differences. From the beginning, although CSP [8] and CCS [11] were intended to capture, describe
and analyse reactive and interactive concurrent systems, they were designed following rather different
philosophies. Tony Hoare described this nicely in his position paper [9] as follows: “A primary goal in the
original design of CCS was to discover and codify a minimal set of basic primitive agents and operators
. . . and a wide range of useful operators which have been studied subsequently are all definable in terms
of CCS primitives.” and “CSP was more interested in this broader range of useful operators, independent
of which of them might be selected as primitive.” So, at their heart, the two calculi use two different
synchronisation mechanisms, one (CCS) using binary, i.e., two-way, handshake via matching actions
and co-actions, the other (CSP) using multiway synchronisation governed by explicit synchronisation
sets that are typically attached to parallel composition. Another difference is the focus on Structural
Operational Semantics in CCS, and the definition of behavioural equivalences on top of this, while CSP
emphasised a trace-based denotational model, enhanced with failures, and the question on how to design
models such that they satisfy a given set of laws of equivalence.
Comparisons. From the early days, researchers were interested in more or less formal comparisons
between CSP and CCS. This was carried out by both Hoare [9] and Milner [12] themselves, where they
concentrate on the differences in the underlying design principles. But also other researchers joined the
game, but with different analysis tools and comparison criteria.

For example, Brookes [3] contributed a deep study on the relation between the underlying abstract
models, synchronisation trees for CCS and the failures model of CSP. Quite differently, Lanese and
Montanari [10] used the power to transform graphs as a measure for the expressiveness of the two calculi.

http://dx.doi.org/10.4204/EPTCS.190.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

62 Encoding CSP into CCS

Yet completely differently, Parrow and Sjödin [16, 21] tried to find an algorithm to implement—best
in a fully distributed fashion—the multiway synchronisation operator of CSP (and its variant LOTOS
[2]) using the supposedly simpler two-way synchronisation of CCS. They came up with two candi-
dates—a reasonably simple centralised synchroniser, and a considerably less simple distributed syn-
chroniser1—and proved that the two are not weakly bisimilar, but rather coupled similar, which is only
slightly weaker. Coupled simulation is a notion that Parrow and Sjödin invented for just this purpose,
but it has proved afterwards to be often just the right tool when analysing the correctness of distribution-
and divergence-sensitive encodings that involve partial commitments (whose only effect is to gradually
perform internal choices) [15].

The probably most recent comparison between CSP and CCS was provided by van Glabbeek [5].
As an example for his general framework to analyse the relative expressive power of calculi, he studied
the existence of syntactical translations from CSP into CCS, for which a common semantical domain is
provided via labelled transition systems (LTS) derived from respective sets of SOS rules. The comparison
is here carried out by checking whether a CSP term and its translation into CCS are distinguishable with
respect to a number of equivalences defined on top of the LTS. The concrete results are: (1) there is a
translation that is correct up to trace equivalence (and contains deadlocks), and (2) there is no translation
that is correct up to weak bisimilarity equivalence that also takes divergence into account.
Contribution. Given van Glabbeek’s negative result, and given Parrow and Sjödin’s algorithm, we
set out to check whether we can define a syntactical encoding from CSP into CCS—using Parrow and
Sjödin’s ideas—that is correct up to coupled similarity.2 We almost managed. In this paper, we report
on our current results along these lines: (1) Our encoding target is an asynchronous variant of CCS,
but enhanced with name-passing and matching, so it is in fact an asynchronous π-calculus; we kept
mentioning CCS in the title of this paper, as it clearly emphasises the origin and motivation of this work.
But, we could not do without name-passing. (2) We exhibit one encoding that is not distributability-
preserving (so, it represents a centralised solution), but is correct up to weak bisimilarity and does not
introduce divergence. This does not contradict van Glabbeek’s results, but suggests that van Glabbeek’s
framework implies some form of distributability-preservation. (3) We exhibit another encoding that is
distributability-preserving and divergence-reflecting, but is only correct up to coupled similarity.
Overview. We introduce the considered variants of CSP and CCS in § 2. There we also introduce
the criteria—that are (variants of) the criteria in [6] and [20]—modulo which we prove the quality of
the considered encodings. In § 3 we introduce the inner layer of our two encodings. It provides the
main machinery to encode synchronisations of CSP. We complete this encoding with an outer layer that
is either a centralised (§ 4) or a decentralised coordinator (§ 5). In § 6 we discuss the two encodings.
Missing proofs and some additional informations can be found in [7].

2 Technical Preliminaries

A process calculus (P, 7−→) consists of a setP of processes (syntax) and a reduction relation 7−→⊆P2

(semantics). LetN be the countably-infinite set of names. τ 6∈ N denotes an internal unobservable ac-
tion. We use a,b,x, . . . to range over names and P,Q, . . . to range over processes. We use α,β . . . to range
over N ∪{τ}. ã denotes a sequence of names. Let fn(P) and bn(P) denote the sets of free names and
bound names occurring in P, respectively. Their definitions are completely standard. We use σ ,σ ′,σ1, . . .

M. Hatzel, C. Wagner, K. Peters, U. Nestmann 63

to range over substitutions. A substitution is a mapping [x1/y1 , . . . ,xn/yn] from names to names. The appli-
cation of a substitution on a term P[x1/y1 , . . . ,xn/yn] is defined as the result of simultaneously replacing all
free occurrences of yi by xi for i∈{ 1, . . . ,n }. For all names inN \{ y1, . . . ,yn } the substitution behaves
as the identity mapping. The relation 7−→ as defined in the semantics below defines the reduction steps
processes can perform. We write P 7−→ P′ if (P,P′) ∈ 7−→ and call P′ a derivative of P. Let Z=⇒ denote
the reflexive and transitive closure of 7−→. P is divergent if it has an infinite sequence of steps P 7−→ω.
We use barbs or observables to distinguish between processes with different behaviours. We write P↓α
if P has a barb α, where the predicate ·↓· can be defined differently for each calculus. Moreover P has a
weak barb α, if P may reach a process with this barb, i.e., P⇓α , ∃P′. P Z=⇒ P′∧P′↓α .

As source calculus we use the following variant of CSP [8].

Definition 1. The processes PCSP are given by

P ::= P‖AP | DIV | STOP | P⊓P | P/b | f (P) | X | µX ·P | �∑i∈I ai → P

where X ∈ X is a process variable, A⊆ N , and I is a finite index set.

P‖AQ is the parallel composition of P and Q, where P and Q can proceed independently except for
actions a ∈ A, on which they have to synchronise. DIV describes divergence. STOP denotes inaction.
Internal choice P⊓Q reduces to either P or Q within a single internal step. Concealment P/b hides an
action b and masks it as τ. Renaming f (P) for some f :N → N extended by f (τ) = τ behaves as P,
where a is replaced by f (a) for all a ∈ N . Recursion µX ·P describes a process behaving like P with
every occurrence of X being replaced by µX ·P. External choice �∑i∈I ai → Pi offers a selection of one
of the action prefixes ai → · followed by the corresponding continuation Pi, so it may perform any ai and
then behave like Pi. Note that we enforce action prefixes to be syntactically part of an external choice
construct. As usual, we use M �N to denote binary external choice.

The CSP semantics is given by the following rules, using labelled steps α
−→ to define 7−→:

64 Encoding CSP into CCS

P | Q is the parallel composition of P and Q, where P and Q can either proceed independently or
synchronise on matching channels names. (νc̃)P restricts the visibility of actions using names in c̃ to P.
c

M. Hatzel, C. Wagner, K. Peters, U. Nestmann 65

refer to CSP terms as source terms PS and to CCS terms as target terms PT. Encodings often translate
single source steps into a sequence or pomset of target steps. We call such a sequence or pomset a simu-
lation of the corresponding source term step. Moreover, we assume for each encoding the existence of a
so-called renaming policy ϕ, i.e., a mapping of names from the source into vectors of target term names.

To analyse the quality of encodings and to rule out trivial or meaningless encodings, Gorla [6] provide
a general framework comprising five quality criteria, which have afterwards been used in many papers.
In addition to our above-mentioned definition of process calculus, whough, Gorla requires the target
calculus to be equipped with a notion of behavioural equivalence ≍ on target terms. Its purpose is to
describe the ‘abstract’ behaviour of a target process, where ‘abstract’ refers to an observer at the source
level. In [6], the equivalence ≍ is often defined as a barbed equivalence (cf. [13]) or can be derived
directly from the reduction semantics, and it typically is a congruence, at least with respect to parallel
composition. Bisimilarity and coupled similarity are such relations on CCS terms. The criteria are:
(1) Compositionality: The translation of an operator op is the same for all occurrences of that oper-

ator in a term, i.e., it can be captured by a context Cop such that enc(op(x1, . . . ,xn,S1, . . . ,Sm)) =
C N
op (x1, . . . ,xn,enc(S1) , . . . ,enc(Sm)) for fn(S1)∪ . . .∪ fn(Sm) = N.

(2) Name Invariance: The encoding does not depend on particular names, i.e., for every S and σ , it holds
that enc(σ (S)) ≡ σ ′ (enc(S)) if σ is injective and enc(σ (S)) ≍ σ ′ (enc(S)) otherwise, where σ ′ is
such that ϕ(σ (n)) = σ ′ (ϕ(n)) for every n ∈ N .

(3) Operational Correspondence: Every computation of a source term can be simulated by its transla-
tion, i.e., S Z=⇒S S′ implies enc(S) Z=⇒T≍ enc(S′) (completeness), and every computation of a target
term corresponds to some computation of the corresponding source term (soundness, compare to
Section 5).

(4) Divergence Reflection: The encoding does not introduce divergence, i.e., enc(S) 7−→ω
T implies S 7−→ω

S .
(5) Success Sensitiveness: A source term and its encoding answer the tests for success in exactly the

same way, i.e., S⇓X iff enc(S)⇓X.
Our encodings will satisfy all of these criteria except for compositionality, because both encodings

consists of two layers. [20] shows that the above criteria do not ensure that an encoding preserves distri-
bution and proposes an additional criterion for the preservation of distributability.

Definition 5 (Preservation of Distributability). An encoding enc(·) preserves distributability if for every
S and for all terms S1, . . . ,Sn that are distributable within S there are some T1, . . . ,Tn that are distributable
within enc(S) such that Ti ≍ enc(Si) for all 1≤ i≤ n.

Here, because of the choice of the source and the target language, an encoding preserves distributability
if for each sequence of distributable source term steps their simulations are pairwise distributable. In both
languages two alternative steps of a term are in conflict with each other if—for CSP—they reduce the
same action-prefix or—for CCS—they either reduce the same input using two outputs or they reduce the
same output using two [replicated] inputs. Two alternative steps that are not in conflict are distributable.

3 Translating the CSP Synchronisation Mechanism

CSP and CCS—or the π-calculus—differ fundamentally in their communication and synchronisation
mechanisms. In CSP there is only a single kind of action c→ ·, where c is a name. Synchronisation is
implemented by the parallel operator ·‖A· that in CSP is augmented with a set of names A containing the
names that need to be synchronised at this point. By nesting parallel operators arbitrarily many actions
on the same name can be synchronised. In CCS there are two different kinds of actions: inputs c

66 Encoding CSP into CCS

outputs

M. Hatzel, C. Wagner, K. Peters, U. Nestmann 67

68 Encoding CSP into CCS

TP‖AQU ,
(νa′,(ϕ(A)) .2,(ϕ(A)) .3)(

(νa)(TPU | ∗a

M. Hatzel, C. Wagner, K. Peters, U. Nestmann 69

may result from underlying parallel operators, sums with similar summands, and junk left over
from already simulated source term steps. For each left announcement a fresh instance of s is
generated and restricted. The names s and s′ are used to transfer right announcements to the
respective next left announcement, where s′ is used to bridge over the restriction on s. This way
each right announcement will eventually be transferred to each left announcement on the same
name. Note that this kind of forwarding is not done concurrently but in the source language a term
P‖AQ also cannot perform two steps on the same name c ∈ A concurrently. After combining a left
and a right announcement on the same source term name a fresh set of auxiliary variables r, l, r′
is generated and a corresponding announcement is transmitted. The term Sim reacts to requests
regarding this announcement and is used to simulate a step on the synchronised action.

Step 4: The term Sim

If a request reaches Sim it starts questioning the left and the right side. First the left side is
requested to compute the current value of the lock of the action. Only if ⊤ is returned, the right
side is requested to compute its lock as well. This avoids deadlocks that would result from blindly
requesting the computation of locks in the decentralised encoding. If the locks of both sides are
still valid the fresh lock l returns ⊤ else⊥ is returned. For each case Sim ensures that subsequently
requests will obtain an answer by looping with

70 Encoding CSP into CCS

JPK , (νa,once)(TPU |

M. Hatzel, C. Wagner, K. Peters, U. Nestmann 71

⊤. Moreover the encoding of internal choice and divergence introduces simulation steps, namely all
steps on variants of the channels m, d, and ϕ′(X). All remaining steps of the centralised encoding are
auxiliary.
Definition 10 (Auxiliary and Simulation Steps). A step T 7−→T T ′ such that ∃S ∈ PS. JSK Z=⇒T T is
called a simulation step, denoted by T 7→

7−→ T ′, if T 7−→ T ′ is a step on the outermost channel a and the
computation of the value of the received lock l will return ⊤ or it is a step on a variant of m, d, or ϕ′(X).

Else the step T 7−→T T ′ is called an auxiliary step, denoted by T �
7−→ T ′.

Let �
Z=⇒ denote the reflexive and transitive closure of �

7−→ and let 7→
Z=⇒,

�
Z=⇒

7→
7−→

�
Z=⇒. Auxiliary steps do

not change the state modulo
�
≈.

Lemma 11. T �
7−→ T ′ implies T

�
≈ T ′ for all target terms T,T ′.

By distinguishing auxiliary and simulation steps, we can prove a condition stronger than operational
correspondence, namely that each source term step is simulated by exactly one simulation step.
Lemma 12. For all S,S′, it holds S 7−→S S′ iff ∃T. JSK 7→

Z=⇒ T ∧ JS′K
�
≈ T .

This direct correspondence between source term steps and the points of no return of their translation
allows us to prove a variant of operational correspondence that is significantly stricter than the variant
proposed in [6].
Definition 13 (Operational Correspondence).
An encoding enc(·) :PS → PT is operationally corresponding w.r.t.

�
≈⊆ P2

T if it is:
Complete: ∀S,S′. S Z=⇒S S′ implies ∃T. JSK Z=⇒T T ∧ JS′K

�
≈ T

Sound: ∀S,T. JSK Z=⇒T T implies ∃S′. S Z=⇒S S′∧ JS′K
�
≈ T

The ‘if’-part of Lemma 12 implies operational completeness w.r.t.
�
≈ and the ‘only-if’-part contains the

main argument for operational soundness w.r.t.
�
≈. Hence J·K is operationally corresponding w.r.t. to

�
≈.

Theorem 1. The encoding J·K is operationally corresponding w.r.t. to
�
≈.

To obtain divergence reflection we show that there is no infinite sequence of only auxiliary steps.
Then divergence reflection follows from the combination of this fact and Lemma 12.
Theorem 2. The encoding J·K reflects divergence.

The encoding function ensures that JSK has an unguarded occurrence of X iff S has such an un-
guarded occurrence. Operational correspondence ensures that S and JSK also answer the question for the
reachability of X in the same way.
Theorem 3. The encoding J·K is success sensitive.

In a similar way we can prove that a source term reaches a barb iff its translation reaches the respec-
tive translated barb.
Theorem 4. For all S,c, it holds S⇓c iff JSK⇓TcU.

As proved in [18], Theorem 1, the fact that
�
≈ is success sensitive and respects (translated) barbs,

Theorem 3, and Theorem 4 imply that for all S it holds S and JSK are (success sensitive, (translated)
barb respecting, weak, reduction) bisimilar, i.e., S

�
≈ JSK. Bisimilarity is a strong relation between source

terms and their translation. On the other hand, because of efficiency, distributability preserving encodings
are more interesting. Because of once the encoding J·K obviously does not preserve distributability.
As discussed in [16] bisimulation often forbids distributed encodings. Instead they propose coupled
simulation as a relation that still provides a strong connection between source terms and their translations
but is more flexible. Following the approach in [16] we consider a decentralised coordinator next.

72 Encoding CSP into CCS

LPM , (νa)(TPU | ∗a

M. Hatzel, C. Wagner, K. Peters, U. Nestmann 73

two locks; one for each side of the parallel operator. The simulations of the step on o and p need both of
these locks, whereas to simulate the step on q only a positive instantiation of the right lock needs to be
consumed. By consuming the positive instantiation of the left lock in an attempt to simulate the step on
o, the simulation of the step on p is ruled out, but the simulation of the step on q is still possible. Since
either the simulation of the step on o or the simulation of the step on q succeeds, the simulation of the
step on p is not only blocked but ruled out. But the consumption of the instantiation of the left lock does
not unambiguously decide between the remaining two simulations. The intermediate state that results
from consuming the instantiation of the left lock and represents a partial commitment is visualised in the
right graph above by the state PC1.

Partial commitments forbid a 1-to-1 mapping between the states of a source term and its translations
by a bisimulation. But, as shown in [16], partial commitments do not forbid to relate source terms and
their translations by coupled similarity.

Whether the consumption of a positive instantiation of a lock is an auxiliary step—does not change
the state of the term modulo

�
≈—, is a partial commitment, or unambiguously marks a simulation of a

single source term step depends on the surrounding term, i.e., cannot be determined without the context.
For simplicity we consider all steps that reduce a positive instantiation of a lock as simulation steps. Also
steps on variants of the channelsm, d, and ϕ′(X) are simulation steps, because they unambiguously mark
a simulation of a single source term step. All remaining steps of the decentralised encoding are auxiliary.
Definition 14 (Auxiliary and Simulation Steps). A step T 7−→T T ′ such that ∃S ∈ PS. LSM Z=⇒T T is
called a simulation step, denoted by T 7→

7−→ T ′, if T 7−→ T ′ reduces a positive instantiation of a lock or is
a step on a variant of m, d, or ϕ′(X).

Else the step T 7−→T T ′ is called an auxiliary step, denoted by T �
7−→ T ′.

Again let �
Z=⇒ denote the reflexive and transitive closure of �

7−→ and let 7→
Z=⇒,

�
Z=⇒

7→
7−→

�
Z=⇒. Since aux-

iliary steps do not introduce partial commitments, they do not change the state modulo
�
≈. The proof of

this lemma is very similar to the centralised case.

Lemma 15. T �
7−→ T ′ implies T

�
≈ T ′ for all target terms T,T ′.

In contrast to the centralised encoding, the simulation of a source term step in the decentralised
encoding can require more than a single simulation step and a single simulation step not unambiguously
refers to the simulation of a particular source term step. The partial commitments described above forbid
operational correspondence, but the weaker variant proposed in [6] is satisfied. We call this variant weak
operational correspondence.
Definition 16 (Weak Operational Correspondence).
An encoding enc(·) :PS → PT is weakly operationally corresponding w.r.t.

�
≈cs ⊆ P2

T if it is:
Complete: ∀S,S′. S Z=⇒S S′ implies ∃T. LSM Z=⇒T T ∧ LS′M

�
≈cs T

Weakly Sound: ∀S,T. LSM Z=⇒T T implies ∃S′,T ′. S Z=⇒S S′∧T Z=⇒T T ′∧ LS′M
�
≈cs T ′

The only difference to operational correspondence is the weaker variant of soundness that allows for
T to be an intermediate state that does not need to be related to a source term directly. Instead there has
to be a way from T to some T ′ such that T ′ is related to a source term.

Theorem 5. The encoding L·M is weakly operational corresponding w.r.t. to
�
≈.

As in the encoding J·K, there is no infinite sequence of only auxiliary steps in LSM. Moreover each
simulation of a source term requires only finitely many simulation steps (to consume the respective
positive instantiations of locks). Thus L·M reflects divergence.

74 Encoding CSP into CCS

Theorem 6. The encoding L·M reflects divergence.

The encoding function ensures that LSM has an unguarded occurrence ofX iff S has such an unguarded
occurrence. Operational correspondence again ensures that S and LSM also answer the question for the
reachability of X in the same way.

Theorem 7. The encoding L·M is success sensitive.

Similarly, a source term reaches a barb iff its translation reaches the respective translated barb.

Theorem 8. For all S,c, it holds S⇓c iff LSM⇓TcU.

Weak operational correspondence does not suffice to establish a bisimulation between source terms
and their translations. But, as proved in [18], Theorem 5, the fact that

�
≈ is success sensitive and respects

(translated) observables, Theorem 7, and Theorem 8 imply that ∀S. S and JSK are (success sensitive,
(translated) barbs respecting, weak, reduction) coupled similar, i.e., S

�
≈cs LSM.

It remains to show, that L·M indeed preserves distributability. Therefore we prove that all blocking
parts of the encoding L·M refer to simulations of conflicting source term steps.

Theorem 9. The encoding L·M preserves distributability.

6 Conclusions

We introduced two encodings from CSP into asynchronous CCS with name passing and matching. As in
[16] we had to encode the multiway synchronisation mechanism of CSP into binary communications and,
similarly to [16], we did so first using a centralised controller that was then modified into a decentralised
controller. By doing so we were able to transfer the observations of [16] to the present case:
1. The centralised solution allows to prove a stronger connection between source terms and their
translations, namely by bisimilarity. Our decentralised solution does not relate source terms and
their translations that strongly and we doubt that any decentralised solution can do so.

2. Nonetheless, decentralised solutions are possible as presented by the second encoding and they
still relate source terms and their translations in an interesting way, namely by coupled similarity.

Thus as in [16] we observed a trade-off between centralised but bisimilar solutions on the one-hand side
and decentralised but only coupled similar solutions on the other side.

More technically we showed here instead a trade-off between centralised but operationally corre-
sponding solutions on the one-hand side and weakly operationally corresponding but decentralised solu-
tions on the other side. The mutual connection between operational correspondence and bisimilarity as
well as between weak operational correspondence and coupled similarity is proved in [18].

Both encodings make strict use of the renaming policy and translate into closed terms. Hence the
criterion name invariance is trivially satisfied in both cases. Moreover we showed that both encodings
are success-sensitive, reflect divergence, and even respect barbs w.r.t. to the standard source term (CSP)
barbs and a notion of translated barbs on the target. The centralised encoding J·K additionally satisfies a
variant of operational correspondence that is stricter than the variant proposed in [6]. The decentralised
encoding L·M satisfies weak operational correspondence as proposed in [6] and distributability preser-
vation as proposed in [20]. Thus both encodings satisfy all of the criteria proposed in [6] except for
compositionality. However in both cases the inner part is obviously compositional and the outer part
only adds a fixed context.

M. Hatzel, C. Wagner, K. Peters, U. Nestmann 75

References
[1] J. C. M. Baeten (2005): A Brief History of Process Algebra. Theor. Comput. Sci. 335(2-3), pp. 131–146,

doi:10.1016/j.tcs.2004.07.036.
[2] E. Brinksma (1985): A tutorial on LOTOS. In: Proc. of PSTV, pp. 171–194.
[3] S. D. Brookes (1983): On the Relationship of CCS and CSP. In: Proc. of ICALP, LNCS 154, pp. 83–96,

doi:10.1007/BFb0036899.
[4] H. Evrard & F. Lang (2015): Automatic Distributed Code Generation from Formal Models of Asynchronous

Concurrent Processes. In: Proc. of PDP, IEEE, pp. 459–466, doi:10.1109/PDP.2015.96.
[5] R. van Glabbeek (2012): Musings on Encodings and Expressiveness. In: Proc. of EXPRESS/SOS, EPTCS 89,

pp. 81–98, doi:10.4204/EPTCS.89.7.
[6] D. Gorla (2010): Towards a Unified Approach to Encodability and Separation Results for Process Calculi.

Information and Computation 208(9), pp. 1031–1053, doi:10.1016/j.ic.2010.05.002.
[7] M. Hatzel, C. Wagner, K. Peters & U. Nestmann (2015): Encoding CSP into CCS (Extended Version). Tech-

nical Report. Available at http://arxiv.org/abs/1508.01127.
[8] C. A. R. Hoare (1978): Communicating Sequential Processes. Communications of the ACM 21(8), pp.

666–677, doi:10.1145/359576.359585.
[9] C. A. R. Hoare (2006): Why ever CSP? Electronic Notes in Theoretical Computer Science 162(0), pp.

209–215, doi:10.1016/j.entcs.2006.01.031.
[10] I. Lanese & U. Montanari (2006): Hoare vs Milner: Comparing Synchronizations in a Graphical

Framework With Mobility. Electronic Notes in Theoretical Computer Science 154(2), pp. 55 – 72,
doi:10.1016/j.entcs.2005.03.032.

[11] R. Milner (1980): A calculus of communicating systems. Springer, doi:10.1007/3-540-10235-3.
[12] R. Milner (1986): Process Constructors and Interpretations (Invited Paper). In: IFIP Congress, pp. 507–514.
[13] R. Milner & D. Sangiorgi (1992): Barbed Bisimulation. In: Proc. of ICALP, LNCS 623, pp. 685–695,

doi:10.1007/3-540-55719-9

http://dx.doi.org/10.1016/j.tcs.2004.07.036
http://dx.doi.org/10.1007/BFb0036899
http://dx.doi.org/10.1109/PDP.2015.96
http://dx.doi.org/10.4204/EPTCS.89.7
http://dx.doi.org/10.1016/j.ic.2010.05.002
http://arxiv.org/abs/1508.01127
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1016/j.entcs.2006.01.031
http://dx.doi.org/10.1016/j.entcs.2005.03.032
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/3-540-55719-9_114
http://dx.doi.org/10.1006/inco.2000.2868
http://dx.doi.org/10.1007/bfb0084813
http://dx.doi.org/10.4204/EPTCS.190.4
http://dx.doi.org/10.1007/978-3-642-28729-9_14
http://dx.doi.org/10.1007/978-3-642-37036-6_18

	1 Introduction
	2 Technical Preliminaries
	3 Translating the CSP Synchronisation Mechanism
	4 The Centralised Encoding
	5 The Decentralised Encoding
	6 Conclusions

