
Computational Particle Mechanics (2021) 8:369–388
https://doi.org/10.1007/s40571-020-00337-2

A curing model for the numerical simulation within additive
manufacturing of soft polymers using peridynamics

Philipp Hartmann1 · Christian Weißenfels1 · Peter Wriggers1

Received: 19 December 2019 / Accepted: 4 May 2020 / Published online: 11 June 2020
© The Author(s) 2020

Abstract
Within this paper, the modelling and simulation of extrusion-based Additive Manufacturing (AM) processes of curing poly-
mers is presented. The challenge of the AM is the adjustment of processing parameters. This includes the application of laser
radiation to locally accelerate the curing in order to control the final geometry of the implant. Since complex multi-physical
coupling effects are hardly predictable by operator experience, numerical simulations are beneficial. When the underlying
physical effects of the AM processes are captured correctly within the simulations, a realistic representation of the process
is possible. To model the material behaviour during the process, a process-dependent large strain curing model is formu-
lated, considering the stress free curing behaviour of the material. State-of-the-art models are not able to model the fluid-like
behaviour of low cured polymers. This needs a formulation that takes into account finite deformations. Hence, the current
model is extended to finite plasticity using a process-dependent yield function. This allows the modelling of material spread-
ing in the fluid-like state by simultaneously reducing the accumulation of elastic stored energy, which would lead to an
unintentional and non-physical bounce-off behaviour otherwise. For the numerical simulations, an enhanced version of the
peridynamic correspondence formulation using fractional subfamilies with associated volume weighting factors is introduced
and implemented. Besides the specific laser modelling as a volumetric heat source, a local–non-local coupling of the aris-
ing thermo-chemo-mechanical coupled equations is introduced within the peridynamic framework. Within the simulations,
the applicability of the plasticity-based approach to model material spreading in the fluid-like state is presented. Finally,
the software for extrusion-based printing processes is developed and the complete thermo-chemo-mechanical coupled AM
process is simulated. It is shown that higher geometrical precision is obtainable in terms of a reduced material spreading
by the application of a laser radiation. The model constitutes the first step of the virtual implant development regarding the
optimisation possibilities during the AM process.

Keywords Peridynamics · Meshfree methods · Additive manufacturing · Local–non-local coupling · Multiphysics · Curing

1 Introduction

AM is a rising technology, increasingly used in industrial
applications. Particularly, selective laser beam melting and
filament extrusion are widely applied for the production of
prototypes, small batches or otherwise not producible pieces.
However, AM could also be applied for soft polymers to pro-
duce patient-specific implants, as shown in [29], where it is
the goal to improve the medical functionality of neuroim-
plants by patient specific manufacturing.
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This requires the processing of room temperature vulcan-
isation medical grade silicone. In the beginning, the material
can be characterised as a viscous fluid, which transforms to a
viscoelastic solid due to the building of crosslinks during cur-
ing. The challenge during the printing process is to predict the
material behaviour correctly that depend on the processing
parameters with emphasis on the material spreading during
the process. Important processing parameters are the nozzle
diameter, the extrusion velocity and the translational velocity
of the extruder. To control the material spreading, a high-
speed curing is further induced by the application of high
local temperatures using an infrared laser.

Since the thermo-chemo-mechanical coupled behaviour
during the printing process is not fully understood, simu-
lations should be performed to support the implant devel-
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opment, respectively, the optimisation of their production by
AM. In this paper, a large strainmaterialmodel applicable for
material spreading is developed. The aim is to reproduce the
phenomenological observation of a reduced material spread-
ing by the application of laser radiation.

To describe the material behaviour of the medical grade
silicone, a suitable material model has to be applied. Small
strain curing models considering a process-dependent vis-
coelastic approach are found among others in [1,8,17,33].
The key point of the formulations is to ensure the stress-
free curing behaviour, i.e. new crosslinks are formed in an
undeformed configuration and thus do not lead to additional
stresses in the predeformed configuration. Hereby the mate-
rial parameters within the formulations depend on an internal
chemical variable. An extension to small strain viscoplastic-
ity is exemplarily shown by [18], considering additionally
plastic deformations. In contrast to the small strain regiment,
large strain curing models are still rare. In [9], a hypoelas-
tic approach and in [10] its extension to viscoelasticity is
used, where a superimposed shrinkage function is applied for
the right Cauchy–Green tensor. In the formulation of [21],
the logarithmic Henky strain is additively decomposed into
a mechanical, thermal and chemical part and an exemplary
FE-simulation of a deep drawing process is presented. In
this paper, the main idea of the multiplicative decomposi-
tion of the deformation gradient into its mechanical, thermal
and chemical part, as firstly introduced by [19], is used. A
feasibility of this approach is shown by the associated imple-
mentation of [23]. A similar approach with the extension to
weakly compressible material can be found in [16]. In the
mentioned contributions, highly dynamic processes during
curing, like the underlying extrusion and subsequent mate-
rial spreading during the AM process, are not considered
and firstly investigated in this paper. Furthermore, the curing
models have only been applied in classical FEM implemen-
tations, which are not suitable for the simulation of extrusion
processes. This is why a suitable meshfree solution scheme
has to be applied.

Since multiple problems are tackled in this paper, it is
divided into five parts. Firstly, the multi-physical coupling
and the related formulation of a process-dependent, three-
dimensional, weakly compressible, large strain viscoelastic–
plastic curing model is presented. Afterwards, the numer-
ical stable enhanced peridynamic correspondence solution
scheme is introduced. In the third part, the AM-specific laser
is modelled as a volumetric heat source with the penetration
depth of the particle spacing and the classical peridynamic
bond-based approach for thermal diffusion is presented. In
the next step, the developed material model is applied within
the meshfree framework using a local–non-local coupling
and the applicability of the plasticity-based approach to
model material spreading is shown. At the end, the results
of first AM simulations are presented, whereby the complex

thermo-chemo-mechanical coupled behaviour is correctly
captured and a reduced material spreading during the AM
process is obtained by the application of laser radiation.

2 Multi-physical coupling

The simulation of the AM process requires the solution of
two fundamental continuum mechanical equations. On the
one hand, the balance of momentum has to be solved to
describe the deformation. On the other hand, the first law of
thermodynamics has to be formulated to simulate the tem-
perature evolution. With respect to the initial configuration,
the equations are given by

ρ0ü = DivP + ρ0b

ρ0Θ ṡ = Dint − DivQ + ρ0r .
(1)

Here, ρ0 denotes the volume in the reference configuration, u
the displacements, P the first Piola–Kirchhoff stresses, b the
body force, Dint the dissipation, Q the Cauchy heat flux and
s the entropy. In general, the stress and entropy are material
dependent and have to be determined using a suitable model.
In this case, the modelling of curing polymers requires the
consideration of an underlying exothermic chemical reaction
leading to the formation of crosslinks which solidifies the
material. Therefore, the chemical variable

α(t) = H(t)

H(∞)
∈ [0, 1] (2)

is introduced. It defines the fraction of accumulated released
heat at time t , H(t), divided by the total accumulated released
heat, H(∞), of the fully cured material. For the considered
stoichiometric curing reaction, the fraction is equivalent to
themass fractionof already curedmaterial, and this iswhy the
chemical variable is denoted as the degree of cure. Due to the
modelling of thermo-chemo-mechanical coupled behaviour
the stresses as well as the entropy depend on the deformation,
the temperature and the degree of cure.

2.1 Kinematics

To formulate a suitable large strain curing model for the AM
process, the idea of a multiplicative split of the deformation
gradient into a mechanical, a chemical and thermal part

F = FMFCFΘ (3)

is adopted from [19]. For the chemical as well as for the ther-
mal deformation gradient, isotropic volumetric approaches
are introduced

FC = J 1/3C 1, FΘ = J 1/3Θ 1, (4)
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where the volumetric change is governed by

JC = 1 + βcα with βc ≤ 0

JΘ = 1 + βΘ(Θ − Θ0) with βΘ ≥ 0.
(5)

Within the functions JC and JΘ Θ0 is the reference tem-
perature, βc the shrinkage and βΘ the thermal expansion
parameter. Thus, the effects of chemical shrinkage and
thermal expansion are induced by the related deformation
gradients. For the sake of simplicity, it is assumed that
the chemical shrinkage and the thermal expansion are not
directly coupled.

The additional kinematics of the underlying mechan-
ics are explained in Fig. 1, where the consecutive split
of the deformation gradient (a) and a related rheological
model (b) are depicted. The rheological model consists
of a process-dependent Maxwell model, serially connected
with a process-dependent frictional element. The shear
modulus of the equilibrium spring depends on the degree
of cure and temperature to model the solidification and
temperature-dependent stiffness of the material. To model
process-dependent viscous behaviour, the relaxation times
of the individual Maxwell-branches are assumed to depend
on the degree of cure and on the temperature. To allow fluid-
like behaviour at the beginning of the process, the yield stress
σy is formulated with respect to the degree of cure. Up to the
gelation point α < αgel, the material is supposed to undergo
mainly plastic deformations so that fluid-like behaviour is
induced. From a micro-mechanical point of view, cf. [6],
these plastic deformations can be motivated by a sliding
of uncured polymer chains in the polymer melt. Thus, the
macro-mechanical deformation shows a plastic behaviour
until the gelation point is reached and the polymer chains
cannot move freely anymore. After the gelation point is
reached, the behaviour is solely characterised as viscoelas-
tic, i.e. σy(α ≥ αgel) = ∞. Consequently, the transition
from fluid to solid-like behaviour is achieved by an increas-
ing yield stresswhich reduces the rate of plastic deformations
to zero until the gelation point is reached as well as by an
increasing shear modulus.

In the consecutive split of the deformation gradient, the
resulting kinematics for the large strain model are depicted
in Fig. 1b and in Fig. 1a an associated rheological model is
depicted. As described in Eq. (3), the deformation gradient is
firstly decomposed into a mechanical, chemical and thermal
part. Due to the serial connection of the generalisedMaxwell
model with the frictional element, FM is decomposed into a
viscoelastic part Fve

M and a dissipative plastic part Fp
M.

The remaining viscoelastic deformation is now split in
two different ways related to the viscoelastic approach at
large strains and the consideration of weakly compressible
material. The first split is related to a volumetric isochoric
split Fve

M = Fve, vol
M F̄ve

M of the deformation within the equilib-

rium spring to model weakly compressible material. Thus,
both deformations share the elastic stored energy. The sec-
ond split belongs to the nMaxwell-branches. In each branch,
the viscoelastic deformation is split into an elastic Fve

Meli
and

an inelastic part Fve
Mini

, where the inelastic part is related to

the viscous deformation in the dashpot.

2.2 Evolution equations and process dependencies

For the underlying model, three different kinds of evolu-
tion equations have to be solved. The first one is related to
the degree of cure, cf. Eq. (2), for which different possibil-
ities exist to formulate associated evolution equations, cf.
[12]. Within this work, the dual Arrhenius approach of [11],
respectively, [28]

α̇(Θ) = [A1(Θ) + A2(Θ)αm](1 − α)n (6)

with

A1(Θ) = Ac1e
− B1

Θ and A2(Θ) = Ac2e
− B2

Θ (7)

is applied. Herein Ac1, B1, Ac1 and B2 are material parame-
ters influencing the curing kinematics.

The second evolution equation considers the rate of the
mechanical plastic deformation gradient Fp

M. Therefore, an
associated plasticity model using the von Mises yield crite-
rion

Φ =
√
3

2
‖τ ′

M‖ − σ y(α) with τ ′
M = τM − 1

3
tr(τM)1. (8)

Therein τM denotes the mechanical Kirchhoff stresses and
τ ′
M its deviatoric part. In the current configuration, it yields

for the associated flow rule

dp
M = λ̇n with n = ∂Φ

∂τM
, (9)

where dp
M is the mechanical plastic rate of the deformation

tensor. This evolution equation has to be solved ensuring
the classical Karush–Kuhn–Tucker conditions (λ ≥ 0, Φ ≥
0, λΦ = 0). In contrast to classical formulations, the yield
function depends on the degree of cure

σy(α) =
{

σ0 + (σgel − σ0)
α

αgel
if α ≤ αgel

∞ otherwise
(10)

and constitutes a new modelling approach of curing poly-
mers. The last evolution equation is related to the elastic-
inelastic split of the viscoelastic deformation gradient within
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Fig. 1 Kinematics of large strain curing model

each Maxwell-branch i . Within this paper, the formulation
of finite linear viscosity

Ċve
Mini

= 1

τ(α, Θ)

(
Cve
M − Cve

Mini

)
with τ(α, Θ) = τ = const. (11)

is applied. Initially, the process dependency of the viscosi-
ties is neglected, such that a constant relaxation time will be
applied for the simulations.

The degree of cure and temperature-dependent behaviour
of the shear modulus is expressed by two independent func-
tions

μ(t) = μ(Θ(t), α) = f μ
Θμα. (12)

The temperature-dependent part is modelled by

f μ
Θ =

(
Θ0

Θ(t)

)pμ
Θ

, (13)

where pμ
Θ is the exponent of the temperature dependency.

Furthermore, the shear modulus is modelled as a function of
cure via

μα(α) = pμ
α1

(1 − α) + pμ
α2

α (14)

to exhibit linear growth, cf. [8]. The parameters pμ
α1 and pμ

α2

represent the temperature-independent shear moduli for the
uncured and fully cured material.

2.3 Free energy function

Within the thermo-chemo-mechanical coupled framework,
the specific Helmholtz free energy is additively decomposed
into a mechanical and a thermo-chemical part

Ψ := ΨM + ΨΘC . (15)

Herein, referring to [15], the specific thermo-chemical free
energy function follows the experiment-based ansatz

ΨΘC (α,Θ) = hF0 + �hFSα −
(
1

2
aFΘ2 + 1

6
bFΘ3

)
(1 − α)

−
(
1

2
aSΘ2 + 1

6
bSΘ3

)
α. (16)

The parameters can be fitted by the means of DSC experi-
ments. The specific mechanical free energy is now deduced
from the one-dimensional rheological model. It is computed
by the equivalent specific free energy of the equilibrium
spring and the sum of specific free energies from the
Maxwell-branches

ΨM = ΨM∞ +
n∑

i=1

ΨMi . (17)

To model weakly compressible material behaviour, the equi-
librium part of the mechanical free energy is additively
decomposed by

ρ0ΨM∞ = ρ0ΨM iso∞ (C̄ve
M ,Θ) + ρ0ΨMvol∞ (JveM )

= 1

2

[
− fΘ

∫ t

−∞
μα(s)

(
d

ds
C̄ve−1
M (s)

)
ds

]
: C̄ve

M + Kw(JveM )

(18)

into its isochoric and volumetric part. The integral formu-
lation of the isochoric part is ascribed to a upper-convected
Maxwellmodel considering a time-dependent shearmodulus
by simultaneously neglecting the classical time-dependent
viscosity part. By this formulation, the stress-free curing
behaviour is ensured, i.e. no stresses are induced by an
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increasing stiffness when the deformation is kept constant.
For a detailed description of the derivation, the reader is

referred to [15]. Within Eq. (18) fΘ =
(

Θ0
Θ

)pΘ

denotes

a linear temperature function describing the temperature
influence on the shear modulus with respect to a reference
temperature, K is the bulkmodulus andw is the compressible
extension term, for which the ansatz of [5]

w(J veM ) = 1

4

(
J veM

2 − 1
)

− 1

2
ln J veM (19)

is used. Due to the definition as mechanical stored free
energy, they depend solely on mechanical kinematic quan-
tities or more precisely on kinematic quantities defined
in the thermo-chemical plastic intermediate configuration.
Even though C̄ve

M = C̄ve, the isochoric part is defined with
respect to themechanical intermediate configuration to allow
a derivation of stresses with respect to the mechanical con-
figuration later on. In contrast, the viscoelastic subscript
of the mechanical Jacobean is further neglected due to the
incompressibility of the plastic deformation gradient. The
still missing free energies of the Maxwell-branches are mod-
elled with the elastic part of the Neo-Hookean free energy
by

ρ0ΨMi (C
ve
Meli

) = μi

2

(
ICve

Meli
− 3

)
. (20)

2.4 Constitutive equations

Similar to [19], the Clausius–Duhem inequality is formu-
lated with respect to the thermo-chemo-mechanical split
(3), whereby more detailed information is provided in
the “Appendix”. The mechanical second Piola–Kirchhoff
stresses in the plastic intermediate configuration are intro-
duced as pull back of the Cauchy stresses in terms of the
viscoelastic mechanical deformation gradient by

S̃M = JMFve−1

M σFve−T

M . (21)

The stress S̃M is defined by the differentiation of the free
energy function with respect to the viscoelastic mechanical
right Cauchy–Green tensor

S̃M = 2ρ0
∂Ψ

∂Cve
M

. (22)

Anoverviewabout the underlying configurations, the stresses
in the different configurations and the required deforma-
tion gradients for pull-back and push-forward operations are
depicted in Fig. 2.

For the free energy at hand, the mechanical second Piola–
Kirchhoff stresses in the intermediate configuration are then

Fig. 2 Push-forward and pull-back operators for the introduced inter-
mediate configurations

obtainedwith respect to the viscoelastic kinematic quantities.
From the Clausius–Duhem inequality results, the relation-
ship

S̃M = 2

JC JΘ

[(
∂ρ0Ψ

iso
M∞

∂C̄ve
M

C̄ve
M

)
dev

Cve−1

M

+∂ρ0Ψ
vol
M∞

∂ JM

JM
2
Cve−1

M

+
n∑

i=1

Fve−1

Mini

∂ρ0ΨMi

∂Cve
Meli

: PTFve−T

Mini

]
, (23)

where PT = J
− 2

3
M (I − 1

3C
ve
M ⊗ Cve−1

M ) is a fourth-order pro-
jection tensor. The first Piola–Kirchhoff stresses required for
the simulation are then obtained by

P = Fve
M S̃MFve

MF−T . (24)

Besides the stress definition, the evaluation of the Clausius–
Duhem inequality leads to the entropy definition

s = JC JMtr(S)

3ρ0

∂ JΘ
∂Θ

− ∂Ψ iso
M∞

∂Θ
− ∂ΨΘC

∂Θ
(25)

and to the inequality

(
JΘ JMtr(S)

3

∂ JC
∂α

− ∂ρ0ΨΘC

∂α

)
α̇ ≥ 0. (26)

This inequality cannot be fulfilled a priori, but similar to
[15] it can be shown that the thermodynamic consistency is
ensured within the range of application.
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Utilising the first law of thermodynamics the energy equa-
tion is derived

c(α,Θ)Θ̇ =
(
JΘ JMtr(S)

3ρ0

∂ JC
∂α

− ∂ΨΘC

∂α

−Θ
JMtr(S)

3ρ0

∂ JΘ
∂Θ

∂ JC
∂α

+ ∂2ΨΘC

∂Θ∂α

)
α̇

+ Θ

⎛
⎜⎜⎜⎝

∂2Ψ iso
M∞

∂Θ∂Cve
M

: Ċve
M︸ ︷︷ ︸

Gough Joule

− JC JMtr(Ṡ)

3ρ0

∂ JΘ
∂Θ

⎞
⎟⎟⎟⎠

+ �M : Lp
M + 1

ρ0
κ�Θ + r ,

(27)

where the mechanical Mandel stress is defined by �M =
Cve
M S̃M and � is the Laplace operator resulting by the uteli-

sation of Fourier’s law of heat conduction with a constant
heat conductivity κ . Moreover, a process-dependent specific
heat capacity

c(α, Θ) = Θ
∂s

∂Θ
= −Θ

∂2ΨΘC

∂Θ2︸ ︷︷ ︸
cΘC

+ JC JMtr(S)

3ρ0

∂2 JΘ
∂Θ2︸ ︷︷ ︸
=0

− ∂2Ψ iso
M∞

∂Θ2︸ ︷︷ ︸
cM

(28)

is taken into account. In the following, the mechanical part
of the specific heat capacity will be neglected. Consequently,
the specific heat capacity is equal to the thermo-chemical part
cΘC .

3 Peridynamic framework

In the next step, a suitable numerical schemehas to be chosen.
Due to large deformations during the extrusion and the sub-
sequent material spreading, mesh-based solution schemes do
not appear to be optimal for the simulation of the AM pro-
cess. Hence, a meshfree solution scheme is advantageous,
and peridynamics, firstly introduced by [25], is selected. It
is based on non-local particle interactions over a specific
radius and is written in terms of an integro-differential equa-
tions over a familyHwithout spatial derivatives. As depicted
in Fig. 3, for a master particle I this family represents the
domain of influence and contains all neighbouring particles J
which distances are less equal than the horizon size δ. Refer-
ring to [20], a horizon size of 3‖�x‖,where‖�x‖ is the nodal
spacing, leads to accurate results. Since the framework of
peridynamics is of the Lagrangian type, particle interactions
do not change during the computation, but the individual
families are deforming. In general, deformations of bonds
ξ = X′ −X are considered, which are defined as the vectors
between an initial point XI and all points X within its fam-
ily HX. The resulting equation of motion for a state-based

Fig. 3 Family H of particle I with interacting neighbouring particles
J

model

ρ0(X)ü(X, t) =
∫
HX

T[X, t]〈X′ − X〉
−T[X′, t]〈X − X′〉dVX′ + ρ0(X)b(X, t)

(29)

is an integro-differential equation, in which the integral
term replaces the divergence of stresses of classical contin-
uum mechanics. It contains the so-called force vector state
T[X, t], that has to be determined by a constitutive model.

3.1 Correspondence formulation

In this work, an enhanced version of the correspondence
formulation is applied for the computation of force states.
The original correspondence formulation, firstly introduced
in [27], is based on the specific free energy function. Postulat-
ing the correspondence of virtual work of a peridynamic and
a related continuummechanical model leads to the definition
of

T = w〈ξ 〉P(F)K−1ξ (30)

for the force vector state. The correspondence formulation
includes the scalar state w〈ξ〉, which represents an weight-
ing influence function. By definition it has to be zero outside
the family, and it depends only on the magnitude of ξ . Fur-
thermore, it requires the inverse of the so-called shape tensor
K,

K =
∫
HX

w〈ξ 〉ξ ⊗ ξdVX′ , (31)

containing information about the particle distribution in the
initial configuration. Moreover, the non-local deformation
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gradient F is defined based on deformed bonds ζ by

F =
∫
HX

w〈ξ〉ζ ⊗ ξdVX′K−1. (32)

Due to the formulation with respect to the non-local defor-
mation gradient, an arbitrarymaterial model from continuum
mechanics can be applied within the correspondence formu-
lation.

Referring to [3,31], among others, the derived meshfree
correspondence framework is susceptible to instabilities sim-
ilar to the appearance of zero-energy-modes, especially in
regions of high gradients. The reason behind the instabilities
is the definition of the non-local deformation gradient. An
overview about different approaches to prevent the instabil-
ities is presented in [7]. A specific approach was introduced
in [4] and is further denoted as the enhanced correspondence
formulation. The basic idea is to divide the horizon into ns
subhorizons

H =
ns⋃
a=1

Ha (33)

and to compute the related non-local deformation gradient
Fa and shape tensor Ka for each subhorizon. As proposed
in [7], non-uniformly distributed free energies among the
subdivisions are taken into account, leading under preserving
linear and angular momentum to the force state

T =
ns∑
a=1

V a
sup

Vfam
wa〈ξ 〉Pa(Fa)K−1

a ξ (34)

of the related correspondence formulation. Here, the influ-
ence function wa is defined as

wa〈ξ 〉 = Ia〈ξ 〉w〈ξ 〉, (35)

where

Ia〈ξ〉 =
{
1 if X′ ∈ HXa

0 otherwise.
(36)

Within the formulation, the partial free energy of a subdo-
main is assumed to be directly related to its partial volume
Vsup = ∑nb

j=1 VJ , where nb is the number of particles in
the respective subdomain. Consequently, the volume of the
entire family is defined by Vfam = ∑ns

a=1 V
a
sup and a vol-

ume weighting is performed for the computation of the force
vector state.

As shown in [7], the application of the enhanced corre-
spondence formulation prevents the appearances of instabil-
ities in the deformation field but is not completely free of
non-physical behaviour.

3.1.1 Numerical treatment

Similar to [24,26], the meshfree discretised equation of
motion is obtained for the formulation at hand by

ρ0I üI =
∑

J∈HXI

(TI 〈ξ I J 〉 − TJ 〈ξ J I 〉)VJ + ρ0I bI

=
∑

J∈HXI

w I J

⎛
⎝

nsI∑
a=1

V a
sup

Vfam
IaPaK−1

a

+
nsJ∑
b=1

V b
sup

Vfam
IbPbK

−1
b

⎞
⎠ ξ I J VJ + ρ0I bI .

(37)

Due to themeshfree particle discretisation, kinematic bound-
aries cannot be directly imposed since the initial particle
positions are defined as centroids of volume elements.
Therefore, ghost layers of particles are used. For kinematic
boundaries, the number of layers is chosen to be proportional
to the horizon size and for a size of δ = m‖�x‖ m layers
are applied.

For the time integration of the equation of motion,
the Velocity–Stoermer–Verlet scheme is further used. This
results into the updates

x(t + �t) = x(t) + v(t)�t + 1

2
a(t)�t2

v(t + �t) = v(t) + a(t) + a(t + �t)

2
�t

(38)

for positions and velocities.

3.2 Non-local energy equation

In the local energy Eq. (27), the partial derivative of the diffu-
sion term κ�Θ is now replaced by a non-local counterpart.
Additionally, a process-specific laser radiation ismodelled as
volumetric heat source term r . In the following, the respec-
tive parts of the thermal effectswithin the energy equation are
derived separately. In the subsequent Section, the full energy
equation is then defined and discretised.

3.2.1 Thermal diffusion

In the derived energy Eq. (27), thermal diffusion is modelled
in terms of the Laplacian by cpΘ̇ = 1

ρ0
κ�Θ , representing a

partial differential equation. Motivated by a non-local peri-
dynamic approach, the Laplacian is replaced by an integral
equation as described by [2]. In the following, the formula-
tion introduced by [22] is applied. Based on the heat flow
scalar state h(X, t)〈X′ − X〉, the local thermal conduction
part is replaced by the non-local thermal diffusion term
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κ�Θ =
∫
HX

h[X, t]〈X′ − X〉 − h[X′, t]〈X − X′〉dVX′ .

(39)

For an applied bond-based approach, i.e. the heat flow scalar
state within a bond ξ only depends on the associated temper-
atures of X′ and X; the following mathematical definition

h(X, t)〈X′ − X〉 = − h(X′, t)〈X − X′〉 (40)

holds. Consequently, the non-local diffusion is formulated
with respect to the pairwise heat flow density function

f h(X,X′, t) = h(X, t)〈X′ − X〉 − h(X′, t)〈X − X′〉
= 2h(X, t)〈X′ − X〉. (41)

For its definition, the temperature scalar state is introduced
as

τ(X, t)〈X′ − X〉 = Θ(X′, t) − Θ(X, t). (42)

Postulating the peridynamic micro-potential

z = κm
τ 2

2||ξ || , (43)

where κm is the so-called thermal micro-conductivity, leads
then to the definition

f h(X,X′, t) = κm
τ(X,X′, t)

||ξ || (44)

for the pairwise heat flow density. Taking the peridynamic
thermal potential

Z(X, t) = 1

2

∫
HX

z(X′,X, t)dVX′ (45)

within a complete family into account and comparing the
result with its local counterpart leads to the relationship

κm = 6κ

δ4π
(46)

between the thermalmicro-conductivity and the thermal con-
ductivity k. It is obvious that for an incomplete support,
a correction is required since the potential is not complete
within the family. A common approach is to apply a linear
temperature field and to evaluate the peridynamic potential
(45) within each family HXI . The correction factors gI are
then defined by gI = Z∞

ZI
, where Z∞ is the potential of

a complete family. Within this work, a simpler yet equally
effective approach is formulated, considering only the inte-
grated volume over the family V̄ = ∫

HX
dVX′ and defining

the correction factors as gI = V̄max
V̄I

. This approach is reason-
able andmore intuitive since the computed correction factors
are directly approximated by volume fractions, which in turn
are directly related to the fractional thermal potential.

3.2.2 Laser radiation

A model for the laser radiation has to be introduced. Here, a
general laser modelling is used, that is not restricted to the
application within a peridynamic framework and could be
similarly applied within a different meshfree method.

In the present case, an intensity distribution similar to [32]
is used for the laser modelling as a volumetric heat source r .
The starting point of the formulation is the rate of absorbed
heat being equal to the effective, i.e. absorbed laser power
Pe
laser. Taking into account a radial intensity function Irad(r),

the radial dependent power per area

Pe
laser(r)

da
= Pe

laser Irad(r) (47)

is defined, whereby the intensity function Irad(r) has to sat-
isfy the normalisation constraint

∫ ∞

0
Irad(r) da =

∫ ra

ri

∫ 2πr

0
Irad(r) dφ dr

!= 1. (48)

With respect to the specific AM process a radial Gaussian
distribution within an annulus with inner radius ri and outer
radius ra is modelled. Thus, the expected value of the asso-
ciated normal distribution is μ = ri + ra−ri

2 . The standard
derivation is now defined with respect to the ±3σ -interval
which is supposed to lie within the inner and outer radii.
Thus, it yields 3σ = ra−ri

2 , respectively σ = ra−ri
6 . Con-

sequently, the Gaussian radial intensity distribution is given
by

Irad(r) = I0e
− (r−μ)2

2σ2 = I0e
− 18

(
r− ri

2 − ra
2

)2
(
ra
2 − ri

2 )2 , (49)

where the peak intensity I0 is obtained, using the normalisa-
tion constraint (48), by

I0 = 3
√
2

π3/2(ra − ri )(ra + ri ) erf
(

3√
2

) . (50)

The modelled normalised intensity distribution is illustrated
for the parameters ri = 1mm and ra = 3mm in Fig. 4. On
the left, the intensity is plotted in a Cartesian frame and on
the right over the radius.

Due to the fast decay of the intensity over the thickness,
cf. [30], the laser irradiation is modelled as a surface effect,
i.e. only particles on the surface are affected. Therefore, it is
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Fig. 4 Modelled radial intensity distribution for inner and outer radii of ri = 1mm and ra = 3mm

assumed that a constant intensity is observed within a pene-
tration depth being equal to the nodal spacing dpen = ‖�x‖.
This leads to the definition of the radial power per volume

Pe
laser(r)

dv
= Pe

laser Irad(r)Ipen, (51)

where the normalised intensity in the irradiation direction
is defined by Ipen = 1

dpen
. Consequently, it is possible to

model the laser impact as a volumetric heat source term. In
the energy Eq. (27), the volumetric heat source term resulting
from laser irradiation is defined by

r = 1

ρ0

Pe
laser Irad(r)

JI dpen
. (52)

Since only the upper layer is supposed to be irradiated, a
detection of surface particles is required. Therefore, a geo-
metrical algorithm is developed incorporating all particles
intersecting the beam area in the x–y plane. A particle is
defined as a surface particle if there is no other particle in the
projected x–y plane within the distance 0.5‖�x‖ having a
higher z-position than the considered particle.

4 Application of large strain curing
framework within Peridynamics

4.1 Local–non-local coupling

In the next step, the developed multi-physical large strain
curing model is applied within the enhanced correspondence
framework. Therefore, based on the local thermo-chemo-
mechanical split of the deformation gradient (3) and the
non-local nature of deformation gradients within Peridynam-
ics it has to be distinguished between local and non-local
tensors. This includes the definition of all multi-physical

quantities in the present approach. From the chemical point
of view, all related quantities are computed and stored at
particles characterising a local level. The same holds for all
thermal quantities. Thus, from the split of the non-local defor-
mation gradient

F = FMFCFΘ (53)

follows a local–non-local coupled computation of mechan-
ical deformation gradients. Additionally, due to the split
of families non-local sub-deformation gradients have to be
considered, where the chemical and thermal deformation
gradients are constant within a family. Consequently, all
mechanical related evolution equations have to be solved nsup
times per particle, while the evolution equation for the degree
of cure is only solved once and used for all subfamilies.

Within a time step, the degree of cure is updated first using
an Euler forward scheme. The viscoelastic–plastic formula-
tion requires a coupled solution for plastic as well as viscous
internal variables Therefore, referring to [13], the flow rule
is rewritten in terms of the mechanical plastic deformation
gradient

Ḟp
M = λ̇Fve−1

M nFve
MFp

M (54)

and the exponential map integrator is used for implicit time
integration. In this framework, the plastic evolution equation

Fn+1
M Fp−1,n+1

M︸ ︷︷ ︸
Fve,n+1
M

= exp�λnFve,n+1
M (55)

is solved in terms of the mechanical inverse plastic deforma-
tion gradient. Furthermore, the viscous evolution equations
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are approximated by an Euler backwards scheme

Cve,n+1
Mini

=
Cve,n

Mini
+ �t

τ n+1C
ve,n+1
M

1 + �t
τ n+1

. (56)

As a result, the nine components of the mechanical inverse
plastic deformation gradient, the plastic increment and six
components of the mechanical viscoelastic-inelastic right
Cauchy Green tensor for each Maxwell branch are taken
simultaneously into account for the implicit solution. There-
fore, the residual is formulated with respect to the implicit
formulated Eqs. (55), (56) and the yield function. Due to the
complexity of the associated model, the automatic code gen-
erator AceGen, cf. [14], is applied to compute the derivatives
of the residual with respect to all unknown parameters within
a Newton–Raphson algorithm.

Additionally, the energy equation has to be solved within
the developed framework. Therefore, the locally derived Eq.
(27) is reformulated under the negligence of the Gough Joule
effect, replacing the local diffusion part by its local counter-
part and adding the volumetric heat source term for the laser
radiation into

cΘC Θ̇I =
(

ϕ ĴMtr ˆ(σ )

3ρ0

∂g

∂α
− ∂ΨΘC

∂α
− ΘI

JMtr ˆ(σ )

3ρ0

∂ϕ

∂Θ

∂g

∂α
+ ∂2ΨΘC

∂Θ∂α

)
α̇

︸ ︷︷ ︸
curing

− g ĴMtr ˆ̇(σ )

3ρ0

∂ϕ

∂Θ︸ ︷︷ ︸
multi-physical split

+ ( ˆ�M : Lp
M)︸ ︷︷ ︸

plasticity

+ 1

ρ0

∑
J∈HxI

gI J κp
ΘJ − ΘI

||ξ I J ||
VJ

︸ ︷︷ ︸
diffusion

+ 1

Ĵρ0

Pe
laser Irad(r)

dpen︸ ︷︷ ︸
laser

.

(57)

With the exception of temperature, the subscript I has been
omitted for the individual terms in Eq. (57) above. It is clear
that all quantities have to be evaluated with respect to parti-
cle I on the basis of the meshfree discretisation. Moreover,
the distinct origins of the resulting energy equation are indi-
cated with an under-brace. Due to nodal integration and the
subdomain decomposition, nsup stresses are defined on nodal
level. This is why averaged mechanical quantities, denoted
by a hat, computed with the volume weighting factors

Vsup
Vfam

are used. The averaged mechanical quantities are defined by

Â =
ns∑
a=1

V a
sup

Vfam
Aa, respectively Â =

ns∑
a=1

V a
sup

Vfam
Aa . (58)

Fig. 5 Discretised cylinder for spreading simulations

4.2 Simulation of material spreading

This section deals with the investigation of the material
spreading behaviour of a horizontally orientated cylinder
with diameter and length 0.25mm subjected to gravitational
force. As depicted in Fig. 5, the cylinder is discretised with
6640 particles, whereby the cylinder is subjected to a stick
contact constraint at z = 0. Consequently, particles which
z-position comes below z = 0 are perpendicular projected to
the printing plate at z = 0 and are treated as fixed boundary
particles. An initial density of ρ0 = 1100 kg

m3 is used for the
simulations.

4.2.1 Evolution of energies

At first, a classical Neo-Hookeanmodel is comparedwith the
developed large strain curing model without process depen-
dencies and not considering the stress free curing behaviour.
Thus, the model is reduced to a viscoelastic–plastic mate-
rial model with a Neo-Hookean equilibrium free energy
within the Maxwell model. The simulations are performed
with a Young’s modulus of E = 15 Pa and a Poisson’s
ratio of ν = 0.499. To neglect the viscous influence within
the viscoelastic–plastic approach, only a single Maxwell-
element is taken into account and the related shear modulus
μ1 = 0.05 Pa and viscosity η1 = 0.035Pas are chosen.
Additionally, a constant yield stress of σy = 0.25 Pa is
selected. Further, due to the small domain and the contact
constraint a time step of �t = 10−7 s is used.

In the subfigures of Fig. 6, the resulting shapes (a, b) and
normalised energies (c, d) are depicted for the Neo-Hookean
and the viscoelastic–plastic approaches. Utilising the Neo-
Hookean approach leads after the simulated time of 0.02 s
almost to the initial cylinder (a), while the viscoelastic–
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(a) (b)

(c) (d)

Fig. 6 Normalised energy and shape comparison between a Neo-Hookean and a viscoelastic–plastic approach for the simulation of a cylinder
under gravity loading

plastic approach leads to a spreading of the cylinder with
a maximum height of 0.074mm (b).

For the further evaluation, the evolution of the total, the
potential, the elastic stored and the kinematic energy, is con-
sidered. In case of the Neo-Hookean approach, the total
energy of the system remains constant overall, whereby
minor non-physical oscillations are observable. It is assumed
that these are neither related to the material model nor to
the enhanced peridynamic correspondence formulation but
to the application of the stick contact constraint. Since a sim-
ple penalty approach is utilised and the equation of motion is
solved in an explicit manner, such deviations in total energy
are to be expected. Since the deviations only have a minor
influence on the global solution and do not lead to a steady
increase or decrease in energy, they are acceptable.

Furthermore, the individual energies of the system are
closely connected. Based on the gravitational force and
the application of a nearly incompressible material model,
the cylinder is compressed in the z-direction and associ-

ated deformations in the x-direction and the y-direction are
induced. Thus, the potential energy of the system transforms
into kinematic and elastic stored energy until the cylinder
is not compressed any more. At this point, the kinematic
energy is zero, the elastic stored energy is at its maximum,
and the potential energy is at itsminimum.Thus, the potential
energy is purely transformed into elastic stored energy.After-
wards, the behaviour reverses and the elastic stored energy
transforms back into potential energy. This typical dynamic
behaviour of elastic materials is known as bounce-off and
repeats such that the oscillation of the potential energy has
a phase-shift of π compared to the oscillation of the elastic
stored energy. As a consequence, it is not possible to induce
a physically meaningful dynamic spreading behaviour using
the Neo-Hookean approach.

In contrast, the desired dissipative spreading behaviour
is induced by the utilisation of the viscoelastic–plastic
approach. As illustrated in Fig. 6d, the total energy of the
system is reduced until an almost steady state is reached
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Table 1 Material paremeters for isothermal material spreading simu-
lations

Parameter pμ
α1 pμ

α2 μ1 σ0 σgel η pΘ K

Value 5.0 613.7425 5.0 0.4 1.2 3.5 0.1 20,000

Unit Pa Pa Pa Pa Pa Pa S – Pa

at t = 0.013 s. Equivalent to the Neo-Hookean approach,
the potential energy of the system is reduced by the grav-
itational load, whereby the induced deformation is mainly
plastic and hence has a dissipative character. Consequently,
only a small fraction is transformed into elastic stored energy
which is smaller by a magnitude than the potential and
kinematic energy and is thus not visible in the plot. Further-
more, a monotonic decrease of potential energy is at hand
before an almost unnoticeable oscillation of potential, elas-
tic stored and kinematic energy takes place, being related
to the bounce-off behaviour of the remaining elastic stored
energy. In summary, the application of the viscoelastic–
plastic approach together with the introduction of plastic
deformations allows the simulation of spreading of softmate-
rials.

4.2.2 Isothermal temperatures

Within the next simulations, the process-dependent mate-
rial parameters are applied for the thermo-chemo-mechanical
coupled viscoelastic–plastic large strain curing model. The
simulations are oriented on a printing approach and consider
the spreading kinematics during curing which depends on
temperature. Therefore, the curing of the horizontally orien-
tated cylinder under gravity loading is simulated for different
isothermal temperatures and a time step size of�t = 10−7 s.
The applied temperatures are Θ = 20, 50 and 100 ◦C. For
a better comparison, the shrinkage and thermal expansion
parameters βC and βΘ are set to zero. Furthermore, a degree
of cure and temperature-dependent shearmodulus is used and
the gelation point is set toαgel = 0.1. The other appliedmate-
rial parameters are related to the process-dependent material
functions and are depicted in Table 1.

Note that the utilisation of a constant compression modu-
lus by simultaneously applying an increasing shear modulus
automatically leads to a decrease in Poisson’s ratio. This is
why a high compression modulus is selected for the simula-
tions. At the reference temperature, the applied parameters
lead to a starting Poisson’s ratio of ν(α = 0) = 0.4999 and
to a maximal Poisson’s ratio of ν(α = 1) = 0.4851. Further-
more, the parameters of evolution Eq. (6) related to curing
are shown in Table 2.

They are selected such that fast curing takes place and the
model characteristics are verifiable without acknowledging
the exact material behaviour. The target is only to show a

Table 2 Material parameters for the evolution equation of the degree
of cure

Parameter Ac1 Ac2 B1 B2 m n

Value 60,000.0 18,000.0 25.0 30.5 2.7 1.6

Unit – – K K – –

temperature-dependent spreading behaviour without captur-
ing extensive material spreading. For the thermo-chemical
free energy function (16), the parameters of Table 3 are
applied.

In the subfigures of Fig. 7, the deformed cylinders in
the final time step at t = 0.02 s are depicted for the three
mentioned isothermal temperatures. With an increasing tem-
perature from 20 (a) to 50 (b) to 100 ◦C (c) the spreading
of the initial cylinder decreases, i.e. smaller deformations
in all directions are observable. Since a higher temperature
is associated with a faster curing, the material stiffens and
transforms faster to a solid.

To quantify the spreading effect, the potential energy
of the cylinder and its evolution over time is taken as
the initial measurement. This measurement is directly cou-
pled with the final height of the cylinder. The results for
the three different isothermal temperatures are depicted in
Fig. 8. Here, the potential energy is normalised to allow a
better comparison between the different isothermal temper-
atures.

In alignment with the results of Fig. 7, the highest
decrease in potential energy is observed for the lowest tem-
perature of 20 ◦C, where 76.93% of the potential energy
remains after a time of t = 0.006 s. For a temperature
of 50 ◦C the minimum potential energy is obtained in a
reduced time of t = 0.0056 s and accounts for 79.38%
of the initial value. An even shorter time and increase in
the remaining potential energy is obtained for an isother-
mal temperature of 100 ◦C for which a minimum potential
energy of 86.41% in t = 0.0044 s is reached. Furthermore,
after reaching their minima the potential energies oscillate
over time, whereby the period length decreases from low
to high temperature and the magnitudes seem to be slightly
damped.

The observed oscillations are related to the bounce-off
effect of the material. Even though most of the energy
is dissipated by plastic deformations during the spread-
ing, elastic energy is still stored to a certain extent. The
higher the temperature, the shorter is the period length
of the oscillations because of a smaller spreading veloc-
ity. Moreover, the damping in the oscillations is associated
with the increasing stiffness and by that with increasing
stresses during the deformations within the oscillations. An
explanation for the slight damping effect are then addi-
tional plastic deformations due to a higher von Mises
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Table 3 Fitted material parameters for the definition of thermo-chemical quantities based on DSC experiment for acrylic bone cement, cf. [15],
whereby bF and bS have been adjusted

Parameter �hFS aF bF aS bS

Value − 80.95 4.5729 × 10−3 − 1.718 × 10−6 4.1210 × 10−3 − 1.9205 × 10−6

Unit J
g

J
g K2

J
g K3

J
g K2

J
g K3

(a) (b) (c)

Fig. 7 Cylinder spreading for three different isothermal temperatures in the final time step at t = 0.02 s

Fig. 8 Evolutionof normalisedpotential energies over time for different
isothermal temperatures

stress leading to additional energy dissipation. This only
takes place if the increase in von Mises stress is higher
than the increase of the process-dependent yield stress dur-
ing the oscillations. Thus, it depends on the modelling
functions for the shear modulus as well as for the yield
stress.

Altogether, the developed material model and its appli-
cation within the enhanced peridynamic correspondence
formulation is suitable to exhibit the required spreading
dynamics of uncured material as well as reduced spreading
at higher temperatures. Consequently, the developed mate-
rial model is applicable for the desired simulation of the AM
process.

5 Simulation of AM processes

5.1 Software development

In comparison with classical computations in solid mechan-
ics, the simulation of the underlying AM process is related to
an extrusion process. Thus, the initial configuration is defined
by the material inside the extruder. In order to accelerate
the computation, an automatic material addition inside the
extruder is implemented instead of modelling the whole dis-
penser. It is based on the discretisation algorithm developed
for the initial material at the beginning of the computation.
Due to the circular shape of the nozzle, a circle with its diam-
eter is discretised and then extruded in a third dimension to
generate the initial three-dimensional discretisation, further
denoted as initial cylinder.

This cylinder is then extruded and as soon as half of it
passes the nozzle the initial cylinder is duplicated and put
on top of the initial one with a consecutive particle numera-
tion. The initial particle positions of the added cylinder are
not defined by their actual position while adding but under
the appearance that they have already been initialised in the
beginning of the computation. Due to the non-locality of
the model, this would usually require an additional family
search and the computation of related subshape tensors in
the transition zone of 2δ. The need for this is prevented by
the special discretisation, respectively, by the duplication of
the two-dimensional discretisation into the third dimension.
The required information of family memberships, associated
bond vectors and related subshape tensors is obtained for
each particle in the transition zone by a perpendicular projec-
tion of the individual particles in the extrusion direction and
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Fig. 9 Illustration of the initial body for the simulation of AM pro-
cesses, whereby particles inside the nozzle are depicted in blue, the
printing plate in black, the nozzle in light red and the remaining parti-
cles are colour coded with respect to their normalised distance to the
z-position of the nozzle

using the information of the first particlewhich has a compact
support in the extrusion direction. Since the discretisation is
layer-based, it is sufficient to store the particle numbers of
two specific layers from which the required information can
be extracted.

5.2 Isothermal processes

This section deals with the application of the developed peri-
dynamic framework for the simulation of the AM process.
Isothermal extrusion processes are considered at first apply-
ing the developed large strain curing model. The simulations
are based on the same initial body, which is depicted in Fig. 9.

Since the z-position of the nozzle does not vary, the nor-
malised colour scale remains constant during the simulations,
and therefore, the scale in the following figures is omitted.
When referring to the scale the phrase ‘normalised distance
to the printing plate’ is used to indicate the z-position of the
extruded material.

The initial body is generated by a duplication of an ini-
tial cylinder and an applied bending, such that one end of
the initial body is parallel and the other end perpendicular to
the printing plate. Moreover, a stick contact boundary con-
dition is applied as soon as a particle reaches the printing
plate. Additionally, the displacement of the most left layer
of particles is constrained in the x-direction and a kinematic
extruder boundary condition is applied, i.e. the motion of
particles inside the nozzle is determined by the horizontal
extruder movement speed vm and the extrusion velocity ve.
As soon as a particle leaves the extruder, its boundary con-
dition is removed and its deformation is determined by the
equation of motion.

In the following, a fixed translational velocity of vm =
0.01 m

s in the x-direction is applied and the extrusion veloc-
ity is varied from ve = − 0.0025 m

s to ve = − 0.005 m
s and to

ve = − 0.01 m
s . In all cases, a total time of t = 0.5 s is simu-

lated with a time step of�t = 0.5×10−7 s. Furthermore, an
automaticmaterial addition inside the extruder is formulated.
As soon as the amount ofmaterial inside the extruder is below
a predefined threshold, new material is automatically added.

The diameter of the nozzle and thus the diameter of the
initial cylinder equals the cylinder diameter of the previous
simulations and amounts to 0.25mm. Furthermore, the dis-
tance between the nozzle and the extrusion plate is chosen to
be 1.5 times the discretised cylinder diameter plus the particle
spacing. For the discretisation with 332 particles per layer,
the distance is dpn = 0.3375mm, whereby the total number
of initial particles is 13,280. From a peridynamic point of
view, a horizon of δ = 3‖�x‖ is used for all simulations and
a constant influence function of w〈ξ 〉 = 1 is applied.

For the large strain curing model, the material parame-
ters of the previous section are applied, cf. Sect. 4.2. An
exception is the application of nonzero chemical shrinkage,
βC = − 0.03, and thermal expansion, βΘ = 10−5 1

K , param-
eters to include the full thermo-chemo-mechanical coupling
of the material model. As a model parameter for the thermal
diffusion, a constant thermal conductivity of κ = 0.27 W

m Kis
applied.

In Figure 10a–c, the final shapes using the distinct
extrusion velocities are depicted. To evaluate the results, a
quantitative comparison of the final shapes between the dis-
tinct extrusion speeds is performed and illustrated in Fig. 10d.
Therefore, the deformed diameters of the initially circular
particle layers are considered, whereby the two particles with
the largest distance in the y-direction are taken as a reference
in each layer. As a measurement, the ratio of their distance in
thefinal time step to their initial distance,which is equal to the
discretised cylinder diameter, is used. Consequently, values
higher than 1 are related to an increased diameter and thus to
a certain extent, to material spreading in the y-direction. On
the other hand, values smaller than 1 are related to a decreased
diameter and thus to a certain extent, to material necking.

For the intermediate extrusion speed of ve = − 0.005 m
s ,

the ratio assumes a value of 1.096 at the minimum x-position
and remains then almost constant before approaching the
nozzle, whereby a maximum value of 1.108 is reached. Con-
sequently, a slight spreading of the extruded material occurs.

For the fast extrusion speed of ve = − 0.01 m
s the ratio is

1.810 at theminimum x-position and takes amaximum value
of 1.824. Up to x = 0.2773mm the ratio remains above 1.7
before dropping to 1 near the nozzle. This result confirms that
doubling the extrusion velocity has a high influence of the
deposited material. In the present case, an extensive material
spreading is perceived since the diameter of the initially cir-
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(a) (b)

(c) (d)

Fig. 10 Final shapes of 3D-printed material for different extrusion velocities and quantitative comparison of initial to final diameters across the
extruded material

cular body in the y-direction increases by a factor of up to
1.824.

The application of the slow extrusion speed of ve =
− 0.0025 m

s leads to the inverted result. At the minimum x-
position, the ratio has a minimum value of 0.7362 before
the ratio monotonically increases up to the nozzle. Thus,
the previously described necking is quantitatively captured.
However, contrary to the intermediate and the fast extrusion
speed no plateau of approximately constant ratios is observ-
able. It is assumed that the already-extruded material has
not reached its equilibrium state and that a plateau would
be reached for the ratios after a longer simulation time. The
reason for this assumption is that up to the considered simu-
lation time only a small fraction of the extruded material has
reached the printing plate. Thus, the material is still under
tension in the x-direction leading to an additional necking
over time.

In summary, the simulations of the AM process reveal
a high dependency of the manufactured shapes and of the
dynamics during the AM process from the extrusion veloc-
ity. This supports the initial statement that the results of the
considered AM process are highly dependent on operator
experience in terms of choosing proper printing parameters.
Within this work, only the extrusion speed is varied. How-
ever, the distance from the nozzle to the printing plate and the
translational velocity are crucial parameters aswell. Together
with the laser radiation, their combination in close connec-
tion with the resulting impact of gravity is the crucial point
when it comes to the optimisation of extrusion-based AM
processes.

In general, it is possible to capture the high influence
of applied printing parameters, in terms of varying only
one parameter, within the designed, peridynamic-based AM
framework and the application of the developed large strain
curing model within.
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Fig. 11 Temperature distribution as a consequence of laser radiation and thermal diffusion during the AM process

Fig. 12 Comparison of final shapes of 3D-printed material using the fast extrusion velocity with and without laser radiation

5.3 Fully multi-physical coupled extrusion process

In the last example, a fully thermo-chemo-mechanical cou-
pledAMprocess including laser radiation is considered.Here
the goal is to show that the material spreading is reduced in
termsof an applied laser radiation.Therefore, a laser power of
Plaser = 1.5W with an absorbed fraction of 0.99 is applied.
The laser speed vp is further defined by the translational
velocity of the extruder, and the laser centre is identical with
the geometrical centre of the nozzle during the entire simula-
tion. For the inner and outer radii of the laser ri = 0.25mm
and ra = 0.35mm are chosen, such that the initial particles
are not irradiated. Moreover, the fast extrusion velocity of
ve = − 0.01 m

s is applied.
Before the impact of the laser radiation on the dynamics

is investigated, a short explanation about its influence on
the temperature distribution during the AM process is given.
For this purpose, the temperature distributions after half of
the simulation time at t = 0.025 s and at the final time at
t = 0.05 s are plotted in the subfigures of Fig. 11. By a

progressing nozzle movement, the mechanically linked laser
moves with the same velocity, such that the extrudedmaterial
is continuously irradiated by the trailing edge of the laser.
Thus, thermal energy is transferred into the body and the
temperature of the irradiated surface particles increases.

At t = 0.025 s, cf. Fig. 11a, a portion of the extrudedmate-
rial has already been irradiated and the highest temperature of
Θ = 200.46 ◦C is obtained at the intensity peak of the laser.
Moreover, the temperature of the previously irradiated parti-
cles has decreased due to thermal diffusion.With progressing
time, more material is extruded and the temperature diffuses
further for the initially extruded particles. This is seen from
Fig. 11b, where the temperature distribution at the final time
of t = 0.05 s is depicted. Again the highest temperature
coincideswith the current position of the intensity peak of the
laser and takes a value ofΘ = 208.32 ◦C.Altogether, a mov-
ing temperature profile is obtained during the AM process
due to the moving laser. Consequently, the thermo-chemo-
mechanical coupled behaviour is continuously induced for
newly extrudedmaterial. Hence, the temperature is increased
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Fig. 13 Comparison of ratios of final to initial diameters with and with-
out laser radiation using the fast extrusion velocity

due to high-speed laser radiation and the curing is acceler-
ated. Due to that the material stiffens faster and as a result
the spreading is reduced. In the next step, the final shapes
with and without laser radiation are compared to investigate
the impact of the applied laser radiation during the AM. The
normalised distances to the printing plate of the final shape
for the simulation with laser radiation is depicted in Fig. 12a
and the result without laser radiation in Fig. 12b. On the
basis of the shape and the colour scale, it can be clearly seen
that the distances to the printing plate for the extruded mate-
rial are larger when the laser treatment is applied. Thus, the
deformation in the z-direction and by that the spreading is
reduced.

To quantify the effect the ratio of final to initial diameter is
again used as measurement. In Fig. 13, the ratios are plotted
against the associated averaged x-positions of the individ-
ual particle layers for the simulation with a laser (red) and
without a laser (black). By the application of laser radiation,
the ratio is reduced from 1.810 to 1.242 at the minimum x-
position and themaximum ratio reduces from 1.824 to 1.315.
Thus, a decrease in 56.8% in material spreading is obtained
at the minimum x-position and themaximum obtained diam-
eter is decreased by 50.9%.

In conclusion, the postulated effect of a reduced material
spreading during the AMprocess as a consequence of a high-
speed IR laser radiation is captured within the performed
simulation. For this very reason, a successful proof of concept
for the simulation of a laser-induced high speed curing with
a resulting reduction of material spreading is achieved. Con-
sequently, the framework is well-suited for the simulation of
the AM process for RTV medical grade silicones. However,
one has to properly fit the developed material model as soon
as sophisticated experimental data is available.

6 Conclusion

In this paper, the formulationof a large strain curingmodel for
silicones inhibiting viscoelastic–plastic behaviour is shown.
Moreover, the successful coupling of the local curing model
within the non-local framework of Peridynamics is devel-
oped.

It is shown that inclusion of process-dependent plastic-
ity within the curing model allows to represent a material
spreading within simulations. In addition, a reduced spread-
ing of a horizontally orientated cylinder by the application
of higher isothermal temperatures is demonstrated. Thus,
the thermo-chemo-mechanical coupled material behaviour
is successfully captured.

At the end, the developed framework has been applied
for the simulation of isothermal AM processes and finally
for the fully thermo-chemo-mechanical coupled problem
including a high-speed laser curing. Here, the ultimate goal
was to represent the reduced material spreading during
the AM process as a consequence of laser radiation. This
phenomenological observation is captured correctly in the
simulation, such that a successful proof of concept has been
performed.

When it comes to high-fidelity simulations, it is an
absolute requirement to exploit the full power ofmore sophis-
ticated AM process simulations later on. Possible extensions
are the consideration of surface tension effects, modelling
the dynamics inside the nozzle and a virtual material devel-
opment. In [30], the impact of surface wetting on the droplet
spreading of medical grade silicones is investigated. It turns
out that the interfacial tension between the surface and the
silicone can be increased or reduced by the application of
specific substrates. Here, the contact angle of the droplet and
by that the shape of the finally cured material is directly
influenced. Simulations could help to optimise the wetting
influence, such that derivations in the final shape of the
additive manufactured body with respect to the virtually gen-
erated shape are minimised. A separate topic on its own is
the simulation of dynamic extrusion effects inside the noz-
zle. It is desirable to capture the dynamics including friction
and adhesion effects between the uncured material and the
nozzle wall since the extrusion is only possible up to a min-
imal diameter of the nozzle. A prediction of these effects
with respect to the nozzle size and material parameters will
help to understand and optimise the extrusion process further.
Moreover, the processabilty of the material in a pre-cured
state could be virtually tested with the goal to print the mate-
rial in a less fluid like state which would reduce the material
spreading.
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Appendix

The mechanical second Piola–Kirchoff stress tensor

SM = JMF−1
M σF−T

M (59)

is defined by a pull-back of the Cauchy stresses with the
mechanical deformation gradient and lives in the thermo-
chemical intermediate configuration. With this the second
Piola–Kirchhoff stresses are given by

S = JC JΘF−1
Θ F−1

C SMF−T
C F−T

Θ . (60)

From the split of the deformation gradient (3) follows the
Green–Lagrange strain tensor

E = 1

2

(
FT

ΘFT
CF

T
MFMFCFΘ − 1

)
(61)

with the definition of the mechanical right Cauchy–Green
tensor and the mechanical Green–Lagrange tensor

CM = FT
MFM, EM = 1

2
(CM. − 1) , (62)

The rate of the Green–Lagrange strain tensor is defined by

Ė = 1

2

(
ḞTΘFTCCMFCFΘ + FTΘ ḞTCCMFCFΘ + FTΘFTC ĊMFCFΘ

+ FTΘFTCCMḞCFΘ + FTΘFTCCMFC ḞΘ

)
.

(63)

Further, the chemical and thermal velocity gradients are
defined by

LΘ =ḞΘF−1
Θ =

(
∂ϕ

∂Θ
Θ̇ + ∂ϕ

∂α
α̇

)
1

1

3ϕ
1 = 1

3ϕ

∂ϕ

∂Θ
Θ̇1

LC =ḞCF
−1
C =

(
∂g

∂Θ
Θ̇ + ∂g

∂α
α̇

)
1

1

3g
1 = 1

3g

∂g

∂α
α̇1.

(64)

Taking the definition of the stress power Pint = S : Ė and
inserting (60) and (63) for the respective terms leads after
reshaping to

S : Ė = gϕ

⎛
⎜⎜⎝SM : ĖM︸ ︷︷ ︸
mechanical

+CMSM : (FCLΘF−1
C )︸ ︷︷ ︸

thermal

+CMSM : LC︸ ︷︷ ︸
chemichal

⎞
⎟⎟⎠ . (65)

Thus, an additive split of the stress power into a mechani-
cal, thermal and chemical part arises. Further, the rate of the
mechanical Green–Lagrange tensor is replaced by the rate of
the right Cauchy–Green tensor, ĖM = 1

2 ĊM, and the follow-
ing chemical stress power

CMSM : LC = tr
(
(FT

MFM)
(
JMF−1

M σF−T
M

) 1
3g

∂g

∂α
α̇
)

= JMtr(σ )

3g

∂g

∂α
α̇ (66)

and thermal stress power

CMSM : (FCLΘF−1
C )

= tr
(
(FT

MFM)
(
JMF−1

M σF−T
M

)
FC

(
1

3ϕ

∂ϕ

∂Θ
Θ̇1
)
F−1
C

)

= JMtr(σ )

3ϕ

∂ϕ

∂Θ
Θ̇,

(67)

are used. Consequently, the Clausius–Duhem inequality is
rewritten in the form

−ρ0Ψ̇ + gϕ

(
1

2
SM : ĊM + JMtr(σ )

3g

∂g

∂α
α̇ + JMtr(σ )

3ϕ

∂ϕ

∂Θ
Θ̇

)
︸ ︷︷ ︸

Pint

−ρ0sΘ̇ − 1

Θ
Q · GradΘ ≥ 0. (68)
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Now, defining the Clausius–Duhem inequality with respect
to the mechanical second Piola–Kirchhoff stresses in their
plastic intermediate configuration S̃M leads to

(
gϕ

2
S̃M −

[(
∂ρ0Ψ

iso
M∞

∂C̄ve
M

C̄ve
M

)

dev

Cve−1

M

+ ∂ρ0Ψ
vol
M∞

∂ JveM

JveM
2

Cve−1

M +
n∑

i=1

Fve−1

Mini

∂ρ0ΨMi

∂Cve
Meli

: PTFve−T

Mini

⎤
⎦
⎞
⎠ : Ċve

M

+ ρ0

(
−s + gJMtr(σ )

3ρ0

∂ϕ

∂Θ
− ∂Ψ iso

M∞
∂Θ

− ∂ΨΘC

∂Θ

)
Θ̇

+
(

ϕ JMtr(σ )

3

∂g

∂α
− ∂ρ0ΨΘC

∂α

)
α̇

−
n∑

i=1

2ρ0
∂ΨMi

∂CMve
eli

: CMve
eli

Lve
Mini

︸ ︷︷ ︸
≈0

+ �M : Lp
M

− 1

Θ
Q · GradΘ ≥ 0.

(69)

The remaining unknown entropy rate to define the dissipation
is obtained with consideration of the entropy definition (25)
by

ṡ = JMtr(σ )

3ρ0

∂ϕ

∂Θ

∂g

∂α
α̇ + g J̇Mtr(σ )

3ρ0

∂ϕ

∂Θ︸ ︷︷ ︸
≈0

+ gJMtr ˙(σ )

3ρ0

∂ϕ

∂Θ

+ gJMtr(σ )

3ρ0

∂2ϕ

∂Θ2︸ ︷︷ ︸
=0

Θ̇

− ∂2Ψ iso
M∞

∂Θ∂Cve
M

: Ċve
M − ∂2Ψ iso

M∞
∂Θ2 Θ̇ − ∂2ΨΘC

∂Θ∂α
α̇ − ∂2ΨΘC

∂Θ2 Θ̇.

(70)

References

1. André M, Wriggers P (2005) Thermo-mechanical behaviour of
rubber materials during vulcanization. Int J Solids Struct 42(16–
17):4758–4778

2. Bobaru F, DuangpanyaM (2010) The peridynamic formulation for
transient heat conduction. Int J HeatMass Transf 53(19–20):4047–
4059

3. Bobaru F, Foster JT, Geubelle PH, Silling SA (2016) Handbook of
peridynamic modeling. CRC Press, London

4. Chowdhury SR, Roy P, Roy D, Reddy JN (2019) A modified
peridynamics correspondence principle: removal of zero-energy
deformation and other implications. Comput Methods Appl Mech
Eng 346:530–549

5. Ciarlet PG (1988) Mathematical elasticity: three dimensional elas-
ticity. North-Holland, Amsterdam

6. Doi M, Edwards SF (1988) The theory of polymer dynamics.
International series of monographs on physics. Clarendon Press,
London, ISBN 9780198520337. https://books.google.fr/books?
id=dMzGyWs3GKcC

7. Hartmann P, Weißenfels C, Wriggers P (2020) Application of
enhanced peridynamic correspondence formulation for three-
dimensional simulations at large strains. In: Wriggers P, Allix O,
Weißenfels C (eds) Lecture notes in applied and computational
mechanics: virtual design and validation. Springer, Berlin

8. Hossain M, Steinmann P (2014) Degree of cure-dependent mod-
elling for polymer curing processes at small-strain. Part I: consis-
tent reformulation. Comput Mech 53(4):777–787

9. Hossain M, Possart G, Steinmann P (2009) A finite strain frame-
work for the simulation of polymer curing. Part I: elasticity.Comput
Mech 44(5):621–630

10. Hossain M, Possart G, Steinmann P (2010) A finite strain frame-
work for the simulation of polymer curing. Part II. Viscoelasticity
and shrinkage. Comput Mech 46(3):363–375

11. KamalMR,Sourour S (1973)Kinetics and thermal characterization
of thermoset cure. Polym Eng Sci 13(1):59–64

12. Kiasat MS (2000) Curing shrinkage and residual stresses in vis-
coelastic thermosetting resins and composites. Dissertation in TU
Delft, The Netherlands

13. Korelc J, Stupkiewicz S (2014) Closed-form matrix exponential
and its application in finite-strain plasticity. Int J Numer Methods
Eng 98(13):960–987

14. Korelc J,Wriggers P (2016) Automation of finite elementmethods.
Springer, Berlin

15. Landgraf R (2015) Modellierung und Simulation der Aushär-
tung polymerer Werkstoffe Dissertation in Technische Universität
Chemnitz, Germany

16. Landgraf R, RudolphM, Scherzer R, Ihlemann J (2014)Modelling
and simulation of adhesive curing processes in bonded piezo metal
composites. Comput Mech 54(2):547–565

17. Liebl C, JohlitzM, Yagimli B, Lion A (2012) Simulation of curing-
induced viscoplastic deformation: a new approach considering
chemo-thermomechanical coupling. Arch Appl Mech 82:1–12

18. Liebl C, Johlitz M, Yagimli B, Lion A (2012) Three-dimensional
chemo-thermomechanically coupled simulation of curing adhe-
sives including viscoplasticity and chemical shrinkage. Comput
Mech 49(5):603–615

19. LionA, Höfer P (2007) On the phenomenological representation of
curing phenomena in continuummechanics. ArchMech 59(1):59–
89

20. Madenci E, Oterkus E (2016) Peridynamic theory and its applica-
tions. Springer, Berlin

21. Mahnken R (2013) Thermodynamic consistent modeling of poly-
mer curing coupled to visco-elasticity at large strains. Int J Solids
Struct 50(13):2003–2021

22. Oterkus S, Madenci E, Agwai A (2014) Peridynamic thermal dif-
fusion. J Comput Phys 265:71–96

23. Retka J,Höfer P (2007)NumerischeSimulation aushärtenderKleb-
stoffe. Beiträge zur Materialtheorie (1/07)

24. Seleson P (2014) Improved one-point quadrature algorithms for
two-dimensional peridynamic models based on analytical calcula-
tions. Comput Methods Appl Mech Eng 282:184–217

25. Silling SA (2000) Reformulation of elasticity theory for disconti-
nuities and long-range forces. J Mech Phys Solids 48(1):175–209

26. Silling SA, Askari E (2005) A meshfree method based on the
peridynamic model of solid mechanics. Comput Struct 83(17–
18):1526–1535

27. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridy-
namic states and constitutive modeling. J Elast 88(2):151–184

28. Sourour S, Kamal MR (1976) Differential scanning calorimetry of
epoxy cure: isothermal cure kinetics. Thermochim Acta 14(1):41–
59

29. Stieghorst J, Entwicklung eines additiven Fertigungsverfahrens für
Silikonkautschuke zurHerstellung von flexiblenNeuroimplantaten
in der M. PhD thesis

123

https://books.google.fr/books?id=dMzGyWs3GKcC
https://books.google.fr/books?id=dMzGyWs3GKcC


388 Computational Particle Mechanics (2021) 8:369–388

30. Stieghorst J, Majaura D, Wevering H, Doll T (2016) Toward 3D
printing of medical implants reduced lateral droplet spreading of
silicone rubber under intense IR curing.ACSApplMater Interfaces
8(12):8239–8246

31. Tupek MR (2014) Extension of the peridynamic theory of solids
for the simulation of materials under extreme loadings. PhD thesis,
Massachusetts Institute of Technology

32. Wessels H, Weißenfels C, Wriggers P (2018) Metal particle fusion
analysis for additive manufacturing using the stabilized optimal
transportationmeshfreemethod. ComputMethods ApplMech Eng
339:91–114

33. Yagimli B, LionA (2011) Experimental investigations andmaterial
modelling of curing processes under small deformations. ZAMM
J Appl Math Mech/Z Angew Math Mech 91(5):342–359

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	A curing model for the numerical simulation within additive manufacturing of soft polymers using peridynamics
	Abstract
	1 Introduction
	2 Multi-physical coupling
	2.1 Kinematics
	2.2 Evolution equations and process dependencies
	2.3 Free energy function
	2.4 Constitutive equations

	3 Peridynamic framework
	3.1 Correspondence formulation
	3.1.1 Numerical treatment

	3.2 Non-local energy equation
	3.2.1 Thermal diffusion
	3.2.2 Laser radiation


	4 Application of large strain curing framework within Peridynamics
	4.1 Local–non-local coupling
	4.2 Simulation of material spreading
	4.2.1 Evolution of energies
	4.2.2 Isothermal temperatures


	5 Simulation of AM processes
	5.1 Software development
	5.2 Isothermal processes
	5.3 Fully multi-physical coupled extrusion process

	6 Conclusion
	Acknowledgements
	Appendix
	References




