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A B S T R A C T

Establishing innovative fulfillment options for online orders has become a key challenge for bricks-and-mortar
retailers. A mere focus on store sales is no longer affordable due to the competition by pure online players.
Retailers are continuously developing new approaches for online order fulfillment and last-mile logistics.
Further shortening lead times is becoming even more important in this context. One recently developed concept
is the omnichannel approach where existing structures are utilized and distribution centers (DCs) and local
stores are integrated into a holistic fulfillment concept. This concept is especially relevant when retailers are
providing fast delivery services (e.g., same-hour delivery). It resembles a multi-depot vehicle routing problem
where all facilities act as depots and orders are assigned based on processing and transportation costs as well
as available delivery capacity.

We address this new concept and present the novel problem for rapid integrated order fulfillment in grocery
retailing. We empirically identify decision-relevant costs for order processing in stores and develop an approach
for the evaluation of overall fulfillment costs. Our work considers the order assignment to heterogeneous depots
and vehicle routing for each depot depending on depot-specific fulfillment costs using a tailored cluster-first-
route-second heuristic. We show that integrated rapid order fulfillment can reduce costs by an average of 7.4%
compared to order fulfillment from DCs. However, as order processing costs in stores remain a significant cost
factor, DCs will always have some relevance and cannot entirely be replaced by delivery from stores. Our results
highlight the importance of modeling order processing costs in stores for actual order fulfillment decisions in
a heterogeneous network.
1. Introduction

Motivation. Bricks-and-mortar retailing has been the main source for
daily shopping of electronics, fashion, and groceries in the past. The
retail sector has become increasingly competitive over recent decades
due to new online retailers and offers (see e.g., Statista (2020)). As
ever more people shop online, the rise in the number of shipments
has increased exponentially. This growth has been accelerated fur-
ther by the COVID-19 pandemic and the switch to online formats.
However, the grocery retail sector is still characterized by relatively
low net profit margins of around 1-2% for Western Europe and the
US (Biery, 2017; Damodaran, 2020). This leads to increased cost pres-
sure for grocery retailers, especially for the distribution processes.
Distribution is a major cost factor for online and bricks-and-mortar
retailing (Kuhn and Sternbeck, 2013; Hübner et al., 2013). Improving
efficiency for last-mile logistics is therefore a continuous development
process. This is driven by factors such as technological change (e.g., de-
liveries with autonomous robots and drones), constraints in urban
logistics (e.g., restricted delivery time), further environmental aspects
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(e.g., electrical vehicles), or changing customer behavior (such as short
lead-time requirements and tighter time windows for attended home
delivery (Agatz et al., 2011; Klein et al., 2019)). New transportation
service providers and business models are popping up, offering last-
mile solutions for a wide variety of locations, delivery speed, time
windows, and service concepts. Many leading grocery retailers now
offer some form of same-day delivery services at least in their main
areas. Amazon Prime Now, Waitrose Rapid Delivery, Ocado Zoom, or
Walmart Express Delivery are services that provide one- to two-hour
deliveries, for instance. Customers who are increasingly getting used
to quick deliveries have created a demand for this type of fulfillment.
Grocery customers often expect fast deliveries as they generally wish to
consume the products at short notice, while they are prepared to wait
longer for items such as fashion.

One way for retailers to address the challenge of channel shifting
to online formats and rapid delivery services is to combine online
and bricks-and-mortar channels (Hübner et al., 2019). Fulfillment of
online orders is typically conducted via dedicated online distribution
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192-4376/© 2022 The Author(s). Published by Elsevier B.V. on behalf of Associati
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ejtl.2022.100082
Received 15 January 2021; Received in revised form 29 April 2022; Accepted 4 M
on of European Operational Research Societies (EURO). This is an open access

ay 2022

http://www.elsevier.com/locate/ejtl
http://www.elsevier.com/locate/ejtl
mailto:alexander.huebner@tum.de
https://doi.org/10.1016/j.ejtl.2022.100082
https://doi.org/10.1016/j.ejtl.2022.100082
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejtl.2022.100082&domain=pdf
http://creativecommons.org/licenses/by/4.0/


EURO Journal on Transportation and Logistics 11 (2022) 100082C. Dethlefs et al.
Fig. 1. Design of the grocery omnichannel retail network and customer locations: example.
centers (DCs) from which online retailers deliver products directly
to customers (Griffs et al., 2012; Wollenburg et al., 2018). However,
bricks-and-mortar retailers operate a dense network of stores across
cities and even rural areas, so they are located much closer to customers
than most of the DCs and hence may reduce lead time, giving them
a competitive advantage over pure online retailers like Amazon or
Ocado. Integrating both product flows is called omnichannel (OC)
retailing (Hübner et al., 2015, 2016b; Beck and Rygl, 2015). While
larger DCs allow the generation of economies of scale, stores are located
in customer proximity. Empirical literature has started discussing these
options mainly from a conceptual perspective over the last few years
(e.g., Ishfaq et al. (2016), Wollenburg et al. (2018)). A detailed cost
assessment and optimization approach that centers on the store as pick-
ing and shipment point is lacking. Assessing and modeling the actual
processing costs in stores is essential for the fulfillment decision and
the corresponding assignment of orders to stores and DCs. Literature
on modeling approaches has so far been focused either on a strategic
OC network design with stores or on operational fulfillment without
actual calculation of order-specific transportation and processing costs.

Research question and contribution. The role of stores in rapid online
fulfillment constitutes an open research area, despite the fact that retail
practice had developed innovative models in the past (Bell et al., 2017;
Ishfaq and Raja, 2018; Hübner et al., 2019; Hübner et al., 2022). This
raises the research question whether and when using stores additionally
to conventional DCs is beneficial for order fulfillment when rapid deliv-
eries are required. As we deal with a novel problem arising from retail
practice and without sufficient coverage in literature, our work con-
tributes to existing literature in the following ways. First, we identify
and collect decision-relevant costs empirically. Specifically, we analyze
basket- and location-specific order processing in stores in collaboration
with a leading European grocery retailer. Second, we incorporate the
identified and collected cost parameters for the order processing in OC
operations into a novel decision problem. This requires the assignment
of orders to picking locations (i.e., DCs and stores) and delivery tours
as well as the definition of the subsequent routing for attended home
delivery with respect to short-term delivery lead times. We introduce
a decision model that combines the location-assignment problem and
the multi-depot vehicle routing problem (MDVRP). A novel specialized
heuristic based on a cluster-first-route-second approach is developed for
the real-world application.

Structure. The remainder of this paper is structured as follows: Sec-
tion 2 provides the problem description, followed by an overview of
the relevant literature in Section 3. Section 4 summarizes an empirical
study for the cost data collection by means of a time and motion study.
The mathematical problem formulation and a specialized heuristic are
presented in Section 5. Section 6 discusses numerical experiments and
managerial insights. Lastly, Section 7 summarizes our findings.
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2. Problem description and fulfillment system

Rapid fulfillment of online orders is an innovative concept both in
practice and in academia. We will therefore first derive the structure
of the planning problem. This section accordingly defines the problem
setting, analyzes general pros and cons of different fulfillment options,
and derives decision-relevant costs.

In the application of rapid home delivery, customers submit their or-
ders online and choose a delivery time window. The orders of one time
window are then delivered on dedicated tours. The time window and
lead time can be as close as for the next hour. To fulfill the deliveries
within the short lead time, tours are not combined across time windows
and time windows are predetermined by customer orders. Each order
received needs to be assigned to one of the depots, while orders
cannot be split and assigned to different depots as customers expect
all products to arrive together (e.g., to cook a meal). The assignment
of orders to depots first requires an availability check to ensure that the
depots selected for a particular customer have all the products ordered
currently available. Instead of using only DCs, stores are also available
for picking and shipping. As we focus on the downstream processes
of OC order fulfillment, i.e., the supply of end customers from picking
locations, only locations with sufficient inventory are considered for
our short-term operational problem with rapid fulfillment. This also
means that inventory levels and replenishment cycles are given at this
stage and are not part of the decision problem. This differentiates
our assignment and vehicle routing problem (VRP) from inventory
routing problems (IRPs) (see general IRPs such as Campbell et al.
(1998), Campbell and Savelsbergh (2004) or Archetti et al. (2014) and
IRPs related to OC retailing Xu and Cao (2019) or Govindarajan et al.
(2020) as examples).

Fig. 1 illustrates an example of a network for OC fulfillment via DCs
and stores. There are four DCs (triangles) at the outskirts. Additionally,
multiple available city stores (diamonds) in the city center can be used
to supply customers (circles). Grocery retailers operate a range of dif-
ferent depots such as central DCs, regional DCs, or specific online DCs,
so-called dark stores (de Koster, 2003; Hübner et al., 2016a). Moreover,
local grocery retail stores such as hypermarkets, supermarkets, and
small city stores can be seen as additional warehouses. This local store
option can be attractive if customers are significantly closer to a store
than to a DC. Retailers reported that up to 10% of store sales can be
used for online fulfillment without any major impact on processes or
availability (Wollenburg et al., 2018).

DCs are organized to process large volumes. Their design is op-
timized with respect to efficient order picking and packing. Corre-
sponding order processing costs are comparatively low due to the
specialization on fast and efficient product flows (see e.g., de Koster
(2003), de Koster et al. (2007), Holzapfel et al. (2018)). Further,
these depots hold the largest product assortment and quantity as their

size allows the storage of a wide range of products. The fulfillment
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capacity, i.e., the number of products and orders that can be processed,
is high (Hübner et al., 2016a). The availability of products differs
between individual locations. However, the mere fact that more space
is available increases general product availability.

In contrast to large warehouses outside the city, deliveries from
stores have a shorter lead time and travel distance. They may be used
cost-efficiently even for small numbers of orders. However, stores are
designed for customer interaction and product presentation and not
for picking. Retailers have developed different setups over time to
organize in-store picking (Wollenburg et al., 2018). In-store picking
is realized either via backroom picking or in the sales area with
advantages and disadvantages on both sides. While backroom pick-
ing can be optimized for this purpose only, it requires major new
investments and often additional backroom space. Aisle-picking on the
contrary can be implemented quickly with no major investments and
store redesign but it interferes with the optimized design for customer
interaction. This results in more time-consuming picking processes in
the store. Aisle-picking is applied by our cooperation partner due to
existing space restrictions. Stores have less storage capacity compared
to DCs due to their limited size, both in the sales area as well as in
the backroom. Product variety is potentially lower and stock levels
vary due to stochastic demand and differing replenishment cycles.
Stores have a lower fulfillment capacity as the workforce is scarce
and primarily needed for other activities (refilling of shelves, customer
service, and working at the checkout). Hence, for both DCs and stores,
all order assignments are based on capacity constraints that limit the
number of orders per DC and store. Also, each DC and store requires a
specific minimum order number for efficient operations and to ensure
a predefined minimum utilization.

Customers need to be at home to receive orders, especially when
frozen or cooled products are delivered. This drives the need to apply
time windows for attended home delivery (see e.g., Agatz et al. (2011),
Hübner et al. (2016b), Klein et al. (2019), Köhler et al. (2020)).
This inherent complexity in the routing with time windows is further
impeded by short-term delivery requirements. Furthermore, as delivery
time is limited, vehicles can only reach a limited number of customers
within that time frame such that route length is also limited. Stores
have a clear advantage with the customer proximity and allow deliver-
ies with shorter lead time and within very short time windows. The
different locations operate their own delivery fleet and the number
and type of vehicle used vary, ranging from regular trucks to delivery
bikes. Typically, one depot operates a homogeneous number of vehicles
consistent with the characteristics of the depot. For instance, trucks are
used at DCs to distribute larger volumes and to cover longer distances,
while smaller delivery modalities may be used at small stores for
individual deliveries in the neighborhood (see e.g., Deliveroo (2020)).
The vehicles employed differ in size, capacity, driving technology, in-
vestment cost, and flexibility. Moreover, the fleet size available varies.
Formally, the problem presented can be described as a MDVRP where
all orders are assigned to heterogeneous depots and subsequently to
vehicle routes. The MDVRP is a well-known extension of the classic
VRP (see e.g., Laporte et al. (1988), Cordeau et al. (1997), Polacek
et al. (2004), Vidal et al. (2012)). Our problem at hand represents
an MDVRP with time-constrained delivery (see Montoya-Torres et al.
(2015)). Also, vehicles are homogeneous per depot but heterogeneous
between depots, and both depots and vehicles are limited in capacity.
All depots and vehicles have different costs based on their specific
characteristics, which means that the assignment of orders to depots
does not solely depend on routing costs.

Table 1 summarizes the general impact of the assignment of or-
ders to different depots on order processing and transportation. The
assignment decisions depend on order processing costs (i.e., depot-
specific costs such as picking and packing costs) and transportation
costs (i.e., vehicle-specific costs such as fuel and vehicle costs). Large
warehouses such as DCs are characterized by low order processing costs
3

and high capacity, while transportation costs from these warehouses in
Table 1
Overview of general tendency of order processing and transportation costs by fulfillment
type.

Order processing Transportation

Depot type Cost Capacity Vehicle type Cost Capacity
(examples) (per order) (examples) (per km)

Central DC ∙ ∙ ∙ ∙ Large truck ∙ ∙ ∙ ∙ ∙ ∙
Regional DC ∙ ∙ ∙ ∙ Small truck ∙ ∙ ∙ ∙ ∙ ∙
Online DC/DSa ∙∙ ∙∙ Van ∙∙ ∙∙
Large stores ∙ ∙ ∙ ∙ Car ∙ ∙
City stores ∙ ∙ ∙ ∙ Scooter ∙ ∙

∙ ∙ ∙ high, ∙∙ medium, ∙ low.
aDark store (DS).

trucks are higher due to long distances to customers. Order processing
in small city stores on the other hand is costly and characterized by
lower capacity in stores and delivery vehicles. Yet, due to their prox-
imity to customers, order distribution is faster and potentially cheaper.
The cost-efficiency of a depot depends on the number of orders per time
window and the location of customers. It is not beneficial to supply a
small number of customers from a remote DC, but this may become
profitable for a larger group of customers that can be combined in one
tour. On the other hand, small order volumes of distinct customers may
be supplied via stores, while larger volumes cannot be processed there
due to capacity limitations.

The elaboration on the context of the planning problem and fulfill-
ment system applied serves now for a structured and focused literature
review that follows in the next section.

3. Related literature on omnichannel fulfillment concepts

Our review of literature focuses on contributions that examine OC
fulfillment concepts related to the integration of different depot types
into a holistic OC online order fulfillment system. There is a small, but
growing body of related literature that can be structured along three
areas: (1) strategic network design, (2) operational fulfillment decision,
and (3) order processing from stores. Table 2 summarizes the related
literature.

(1) Strategic network design in OC retailing. Aksen and Altinkemer
(2008) decide on which bricks-and-mortar (BM) store should be trans-
formed into a bricks-and-clicks (BC) store to fulfill online orders. It
considers fixed store-related operating costs as well as delivery costs
to customers. They did not use DCs and costs are not depending on
customer orders. Bretthauer et al. (2010) consider both store and DC
fulfillment and derive managerial decisions on what level of online
vs. offline sales lead to different cost-reducing shares of store and DC
usage. Ishfaq and Raja (2018) evaluate different fulfillment options,
including DCs and retail stores, and discuss when a particular option is
most cost-efficient. Arslan et al. (2021) develop a two-stage stochastic
program to allocate expected demand to fulfillment locations consider-
ing customer-deliveries from DCs and stores. Common across all these
papers is that transportation costs are modeled as direct shipment
costs to customers without including actual vehicle routing decisions.
Janjevic et al. (2021) develop a multi-dimensional decision model to
evaluate a distribution network consisting of order pick-up points for
customers and home-deliveries. For transportation, different routing
options are approximated without determining specifying customer
sequences.

(2) Operational fulfillment decision in OC retailing. The following con-
tributions focus on operational problems, which is also the focus of
our work. The use of multiple depots is evaluated by Mahar et al.
(2009), who discuss whether monitoring online demand and sharing
information on store inventory can generate benefits. They focus on

dynamic assignment policies for inventory to determine the assignment
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Table 2
Related literature on omnichannel fulfillment concepts.

Contribution Problem scope Depotd Costs Characteristics

Proba Assb VRPc DC St Depe Trf Depotg Vehicleg Orderh Rapidi

Aksen and Altinkemer (2008) ST ✓ ✓ ✓ ✓ Hom Hom (✓)
Bretthauer et al. (2010) ST ✓ ✓ ✓ (✓) (✓) Hom Hom
Ishfaq and Raja (2018) ST ✓ ✓ ✓ ✓ (✓) Het Hom
Arslan et al. (2021) ST ✓ ✓ ✓ ✓ (✓) Het n.V. ✓

Janjevic et al. (2021) ST ✓ (✓) ✓ ✓ (✓) Het Het

Mahar et al. (2009) OP ✓ ✓ ✓ (✓) Hom Hom
Mahar and Wright (2009) OP ✓ ✓ (✓) Hom Hom
Mahar et al. (2012) OP ✓ ✓ Hom n.V.
Acimovic and Graves (2015) OP ✓ ✓ (✓) Hom n.V.
Ni et al. (2019) OP ✓ ✓ (✓) Het Het (✓)
Bayram and Cesaret (2021) OP ✓ ✓ ✓ (✓) (✓) Het n.V.

Difrancesco et al. (2021) OP ✓ ✓ (✓) ✓ Hom Hom ✓

This paper OP ✓ ✓ ✓ ✓ ✓ ✓ Het Het ✓ ✓

aProblem: strategic network design/depot setup for fulfillment (ST) or operational assignment/fulfillment decision (OP).
bAssignment of customer orders to depots.
c✓ Truck routing part of the decision problem; (✓) if solved indirectly, e.g., without specific stop sequence.
dDC and/or Store as fulfillment location.
eDepot: ✓ order-specific processing costs at stores (e.g., picking, packing, loading); (✓) if not order-specific.
fTransportation: ✓costs to customers calculated based on actual routing; (✓) approximated with distance-based measures (no
tour building).
gHeterogeneous ‘‘Het’’ depots/vehicles if characteristics differ per type or homogeneous ‘‘Hom’’ depots/vehicles if they are
equal, ‘‘n.V.’’ if no vehicles are modeled.
hBasket- or product-specific order picking or delivery considerations (e.g., to obtain product/category-specific picking costs).

iRapid deliveries with maximum route duration constraint.
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f online orders to locations. A similar approach is taken by Mahar
nd Wright (2009) who develop policies for selecting stores for online
ulfillment based on expected demand. These stores face both in-store
nd online demand while online orders can be collected over time and
ssigned to cost-minimizing stores. In a further study, Mahar et al.
2012) develop a dynamic policy to decide which stores should be
ffered to individual customers as pickup locations. Their focus is on
alancing inventory levels and protecting stores with low inventories
ia dynamic location selection. Acimovic and Graves (2015) provide
nsights into the fulfillment options of an online retailer serving online
ustomers from DCs only (i.e., not considering stores as fulfillment
ption). Ni et al. (2019) evaluate how fulfillment from stores can be
ombined with crowdshipping to allow same-day deliveries to cus-
omers. Bayram and Cesaret (2021) analyze a setting with stochastic
emand and dynamic fulfillment decisions. Expected online orders can
e fulfilled from stores or DCs.

3) Order processing from stores. Difrancesco et al. (2021) apply a
imulation to design picking, sorting, and packing processes within a
on-food store. They determine the picking time and batching of orders,
umber of pickers, and complement this with delivery routing. The
roblem is simulated for a single store, and thus does not cover an
ssignment decision for orders to stores.

ummary. Table 2 highlights the current literature on OC order ful-
illment concepts. The first part shows publications that focus on the
trategic network design and setup of depots for fulfillment. The deci-
ions are mostly based on fixed setup, operating, and inventory costs,
s well as expected demand and not actual orders. As such, the actual
ulfillment costs of specific orders are unknown. Transportation costs
re approximated as direct costs for the travel distance from the depot
o the customer without solving a VRP. The contributions with an
perational problem focus (second part) are either based on a single
ocation (e.g., Difrancesco et al. (2021)) or approximate distribution
osts as direct costs (e.g., Mahar et al. (2009), Ni et al. (2019)). To
ate, no OC fulfillment model has integrated a VRP into the operational
ssignment problem with multiple depot types and cost elements.
owever, as customers are supplied via delivery tours and last mile
osts are usually high, it is essential to include routing for a realistic
valuation of overall fulfillment costs. In addition, the application to
4

r

apid delivery services requires route length restrictions. The current
odels do not factor in location-, product-, and order-specific costs

e.g., basket with items from one category only vs. basket with multiple
ategories). Lastly, existing contributions are centered around a homo-
eneous set of vehicles across depots or do not consider vehicles at all.
owever, the diversity of shipping locations (e.g., small mom-and-pop

tore with delivery bikes vs. hypermarket with vans) goes along with
epot-specific means of transportation.

This paper fills these gaps by empirically collecting and modeling
ocation-based picking, packing, and handling costs dependent on the
ocation selected for each order in a first step. Second, we combine
he order-assignment problem with an MDVRP that considers heteroge-
eous vehicle fleets, assigns customers to tours and determines routes
or last-mile deliveries. Finally, we apply minimum and maximum
evels for each picking location. Each location can only serve a limited
umber of customers per time window as otherwise rapid deliveries are
ot possible. All picking locations require a minimum order quantity to
e activated. We hereby acknowledge the concern that the handling of
ow order volumes would not be efficient for retailers.

. A time and motion study on order processing in stores

The assignment of orders to locations highly depends on the costs
o process orders at stores. As fulfillment from stores is a new area,
he picking systems and its associated costs need to be explored. We
nvestigate this in the following by means of an empirical study within
etail stores. We consider in-store picking in the customer area as we
im to introduce a solution with relatively simple implementation effort
nd minor changes to the current store design.

ethodology. While processes in DCs for home delivery are usually
ell-known and quantified due to established working steps (see e.g.,
e Koster (2003), Boysen et al. (2019), Boysen et al. (2021)), a num-
er of aspects, such as the specification of order processing, process
lows, as well as times and costs, have not been studied for fulfillment
rom bricks-and-mortar stores. Empirical literature on store processes
erves as a starting point for defining the process steps for in-store

eplenishment (e.g., Kotzab and Teller (2005), Kuhn and Sternbeck
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Fig. 2. Overview of related in-store order fulfillment processes.
(2013)), but does not investigate the costs affected by in-store pick-
ing. To close this gap and to identify and to collect cost structures
and data, we conducted a time and motion study and accompanied
store pickers during their regular work at a large European grocery
retailer. Following the examples of van Zelst et al. (2009), Reiner
et al. (2013) and Hübner and Schaal (2017), we used the methods-
time measurement concept in accordance with Maynard et al. (1948)
and the advancements of Barnes (1949) and Niebel (1988) to identify
processes and subprocesses and the most efficient way of executing
them by professionals. Following Barnes (1949), the study breakdown
was conducted in as granular a manner as possible to accurately
differentiate between constant and variable elements. Potential process
improvements were detected and evaluated using process mapping
that also allowed the calculation of standardized times for the tasks
involved. The observation days and times were selected such that they
did not interfere with any abnormal sales periods and demand changes
(e.g., with major stock-outs). As factors such as store layout, store size,
staff capabilities, and day and time of picking can influence the data, we
conducted observation in three different hypermarkets of a similar size
and layout on all weekdays and for various pickers. The picking jobs
included customer carts and all available product categories, including
fresh, cooled and frozen products, drinks, and non-food items. We
obtained data on a total of 198 picking jobs with different order sizes
between 1 and 30 items.

Overview of processes and activities. Fig. 2 summarizes the in-store order
fulfillment processes, from the receipt of a customer order to the actual
picking process in the store to packing and loading steps until the order
can be shipped by the vehicle.

Our study investigated accordingly process times for picking, pack-
ing, and loading. Orders for store picking cannot usually be batched due
to limited backroom space for additional sorting, significantly different
customer orders, and short lead-time requirements. Furthermore, stores
try to limit the disturbance of in-store customers to a minimum, which
is easier for single order picking than for batch order picking as the
latter requires larger picking trolleys. Hence, the picking process is
carried out for a single order once an order is scheduled. The picker
starts with an order list that contains all products and is sorted based on
category and shelf locations. The picker defines a picking route based
on the categories that are included such that all the products can be
collected. After the picking, the picker returns to the backroom where
orders are packed into standardized transportation boxes. The boxes
are then brought to a dedicated handover point, where drivers pick
up the orders for delivery. While the overall processing in stores is
5

similar to DCs (i.e., picking, packing, and loading), the difference in
the detailed handling steps and times may be significant and therefore
result in different process times. The main reason is that stores are
designed for product presentation and customer interaction and not
for efficient picking like in DCs. Differences arise from customer inter-
actions (e.g., waiting time to approach shelves), missing opportunities
to allocate products in zones (e.g., high runner zone), inability to au-
tomate processes, or simple technological support (e.g., picker cannot
be equipped with major technologies as the picking should not disturb
customers). Because fulfillment from stores is only possible if the total
online volume is less than 10% of total store volume (Wollenburg
et al., 2018) and the market share of rapid deliveries may be in this
range, only costs that occur in stores are decision-relevant. In this
case, products are delivered to stores and replenished in-store with
same delivery patterns even if no additional online orders needed to
be handled.

Observed activities and structures. In the following, we will derive the
structural properties of the in-store processes and the cost dependencies
obtained. This builds the foundation for the general decision model
and is required, as store picking models are not yet available. The data
instances, process times, and costs collected will be illustrated later in
the case study section. We first provide an overview of the notation
used for the description of the study. Afterwards, we detail the cost
parameters identified and their calculation.

Notation. We denote the set of customers as 𝐶, 𝑖 ∈ 𝐶, the set of
stores as 𝐷, 𝑑 ∈ 𝐷, and the set of products as 𝑃 , 𝑝 ∈ 𝑃 . This is required
as the order processing costs are order-, store- and product-specific.
In addition, we define timing and cost parameters that are connected
with order-related parameters and that have been identified during the
study. Table 3 summarizes all sets and parameters used.

Process steps. Three key process steps have been identified in
the time and motion study. These steps, further referred to as picking
time, packing time, and loading time, add up to the overall order pro-
cessing time. We explain each step below and define the calculation
of the corresponding cost parameters as input for the decision model
(Section 5). Table 4 provides an overview of the cost parameters and
their calculation.

Picking time 𝑡pick𝑖𝑑 describes the process time associated with the
picking of products of a customer order 𝑖 from shelves of the store 𝑑.
The picking process consists of three steps: (i) receiving order, creating
packing list, and setting up, (ii) searching and picking products, and
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Table 3
Notation for empirical time and motion study.
Sets

𝐶 Set of customers, with 𝐶 = {𝑑 + 1,… , 𝑛}
𝐷 Set of stores, with 𝐷 = {1,… , 𝑑}
𝑃 Set of products

Timing parameters

𝑡pick𝑖𝑑 Picking time for order by customer 𝑖, 𝑖 ∈ 𝐶 in store 𝑑, 𝑑 ∈ 𝐷
𝑡setup𝑖𝑑 Setup time for order by customer 𝑖, 𝑖 ∈ 𝐶, in store 𝑑, 𝑑 ∈ 𝐷
𝑡pick𝑝𝑖𝑑 Picking time for product 𝑝, 𝑝 ∈ 𝑃 , ordered by customer 𝑖, 𝑖 ∈ 𝐶 in

store 𝑑, 𝑑 ∈ 𝐷
𝑡walk𝑖𝑑 Walking time between shelves for order by customer 𝑖, 𝑖 ∈ 𝐶, in

store 𝑑, 𝑑 ∈ 𝐷
𝑡pack𝑝𝑑 Packing time for product 𝑝, 𝑝 ∈ 𝑃 in store 𝑑, 𝑑 ∈ 𝐷
𝑡pack𝑖𝑑 Packing time for order by customer 𝑖, 𝑖 ∈ 𝐶 in store 𝑑, 𝑑 ∈ 𝐷
𝑡load𝑖𝑑 Vehicle loading time for order by customer 𝑖, 𝑖 ∈ 𝐶 in store 𝑑, 𝑑 ∈ 𝐷
𝑡process𝑖𝑑 Order processing time for customer 𝑖, 𝑖 ∈ 𝐶, in store 𝑑, 𝑑 ∈ 𝐷

Order-related parameters

𝜇𝑖 Degression factor, respecting the composition of an order by
customer 𝑖, 𝑖 ∈ 𝐶,

𝑞𝑝𝑖 Order quantity of product 𝑝, 𝑝 ∈ 𝑃 , ordered by customer 𝑖, 𝑖 ∈ 𝐶

Cost parameters

𝑐pick𝑖𝑑 Cost of picking one order placed by customer 𝑖, 𝑖 ∈ 𝐶, in
store 𝑑, 𝑑 ∈ 𝐷

𝑐pack𝑖𝑑 Cost of packing one order placed by customer 𝑖, 𝑖 ∈ 𝐶, in
store 𝑑, 𝑑 ∈ 𝐷

𝑐load𝑖𝑑 Fixed operations cost per order placed by customer 𝑖, 𝑖 ∈ 𝐶, in
store 𝑑, 𝑑 ∈ 𝐷

𝑐process𝑖𝑑 Order processing costs for customer 𝑖, 𝑖 ∈ 𝐶, in store 𝑑, 𝑑 ∈ 𝐷
𝑤𝑑 Labor costs of a worker at location 𝑑, 𝑑 ∈ 𝐷

(iii) moving between categories. The (i) setup time is a fixed pro-
cess time per order as each order is picked individually. The setup
time is store- and order-specific and comprises preparation work and
moving from the backroom to sales area. It is denoted by 𝑡setup𝑖𝑑 . The
main factor for total picking time is (ii) the search process for each
individual product after the picker has moved to a shelf. The search
time increases with dense categories (e.g., many products with only one
facing) and hence depends on the number of products per category in
a store. Each product is uniquely allocated to one category. As such,
we obtained a picking time 𝑡pick𝑝𝑖𝑑 per product 𝑝 and store 𝑑 which is
iven based on the store characteristics (i.e., depending on category
ize and density). Based on our empirical data collection, we have seen
hat the search time per product slightly decreases with a growing
umber of products from a category within one order. This can be
xpressed by a degression factor 𝜇𝑖 that respects the composition of
customer order. (iii) Moving between category locations constitutes

he walk between different shelves. This is determined by the number
f different categories per order and the distances between categories
ithin a store, and summarized as 𝑡walk𝑖𝑑 . As a result, picking time differs

or each customer order and store and therefore each order is associated
ith specific picking costs. It can be calculated using the following
quation: 𝑡pick𝑖𝑑 = 𝑡setup𝑖𝑑 +

∑

𝑝∈𝑃 𝑡pick𝑝𝑖𝑑 ⋅𝜇𝑖+ 𝑡𝑤𝑎𝑙𝑘
𝑖𝑑 . The picking time translates

into picking costs by multiplying it with an hourly cost rate 𝑤𝑑 of a
icker in store 𝑑: 𝑐pick𝑖𝑑 = 𝑤𝑑 ⋅ 𝑡pick𝑖𝑑 After the picking is completed, the
icker moves to the packing point. This process time is already part of
he packing time. Packing time is indicated by 𝑡pack𝑖𝑑 . Grocery retailers
se standard boxes for packaging, as also identified in our empirical
tudy. A single order fits into these standard boxes and the packaging
ffort therefore only depends on the order size and store-specific pro-
esses. Hence, the packing time 𝑡pack𝑖𝑑 required for customer order 𝑖 at
tore 𝑑 can be defined by product quantity per order ∑

𝑝∈𝑃 𝑞𝑝𝑖 and a
equired packing time per product and store 𝑡pack𝑝𝑑 . The latter expresses
he packaging processes needed due to product dimensions, product
equirements (e.g., frozen), and store characteristics. The total packing
ime is calculated by 𝑡pack𝑖𝑑 =

∑

𝑝∈𝑃 𝑞𝑝𝑖 ⋅ 𝑡
pack
𝑝𝑑 and also translates into

pack pack load
6

acking costs as follows: 𝑐𝑖𝑑 = 𝑤𝑑 ⋅ 𝑡𝑖𝑑 . Loading time 𝑡𝑖𝑑 describes all d
osts associated with the handling of one order, i.e., transporting the
rder 𝑖 within the store 𝑑 from a packing station and loading it onto
he respective vehicle. In contrast to the other two factors, loading time
nly occurs once per customer order and independent of the number of
roducts. The associated loading costs are therefore order-dependent
nd calculated by 𝑐load𝑖𝑑 = 𝑤𝑑 ⋅ 𝑡load𝑖𝑑 .

To summarize, our observations have shown that it is mainly the
rder size as well as the number of products and categories per order
hat determine the total order processing time. Further, due to the store
ayout and store processes, the picking process times are determined
y the corresponding store. This results in a specific processing time
er customer order 𝑖 and store 𝑑. The total time can be expressed
s order processing time. It includes all the process times for picking,
acking, and loading. The order processing time 𝑡process𝑖𝑑 of a given
rder 𝑖 in store 𝑑 is then denoted by 𝑡process𝑖𝑑 = 𝑡pick𝑖𝑑 + 𝑡pack𝑖𝑑 + 𝑡load𝑖𝑑 .
pplying an hourly cost rate 𝑤𝑑 of a picker in store 𝑑 results in the
ssociated order processing costs as 𝑐process𝑖𝑑 = 𝑐pick𝑖𝑑 + 𝑐pack𝑖𝑑 + 𝑐load𝑖𝑑 =

𝑑 ⋅(𝑡
pick
𝑖𝑑 +𝑡pack𝑖𝑑 +𝑡load𝑖𝑑 ) = 𝑤𝑑 ⋅𝑡

process
𝑖𝑑 . The model is based on the identified

rder processing costs and the related interdependencies, and will be
eveloped in the next section. Order processing costs are defined as the
um of product-dependent processing costs (for picking and packing)
nd order-dependent processing costs (for loading). These costs are
urther evaluated in the numerical analysis.

. Model and solution approach

This section introduces the mathematical formulation of the MDVRP
ariant and presents the solution approach developed. As we deal with
hort lead times, we denote the application case as Rapid Integrated
rder Fulfillment (RIOF). In combination, our proposed model reads
s MDVRP with rapid integrated order fulfillment (MDVRP_RIOF).

.1. Model formulation

The notation of the sets, parameters, and decision variables used
or the formulation of the MDVRP_RIOF is summarized in Table 5. The
odel selects shipping locations among the set of stores and DCs. We
ill use depots as the general term for stores and DCs. All customers 𝐶
nd depot locations 𝐷 are summarized in the location set 𝑁 (i.e., 𝐶 ∪
= 𝑁).

ost parameters. The core of the assignment of orders to depots and the
outing is the consideration of (i) the order processing costs for each
ocation and (ii) the associated transportation costs:

(i) Order processing costs 𝑐process𝑖𝑑 occur when a depot 𝑑, 𝑑 ∈ 𝐷 is
used to fulfill an order of customer 𝑖, 𝑖 ∈ 𝐶. As order data is used
as input to our model, the picking, packing, and loading times
for each order are obtained in a preprocessing step for both the
stores and DCs.

(ii) Transportation cost 𝑐transp𝑖𝑗𝑣 describe all costs of a vehicle 𝑣 driving
from a location 𝑖 to location 𝑗, 𝑖, 𝑗 ∈ 𝑁 . This includes poten-
tial energy/fuel costs, personnel costs, and usage costs for the
transportation mean.

All of this cost information is known prior to the optimization.
ence, the two cost parameters 𝑐process𝑖𝑑 and 𝑐transp𝑖𝑗𝑣 are precalculated and
sed as model input. Based on these cost factors determined, we now
ormulate the MDVRP_RIOF for the assignment of customer orders to
epots and the respective vehicle routes.
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Table 4
Overview of cost parameters identified.
Cost parameter and calculation

𝑡pick𝑖𝑑 = 𝑡setup𝑖𝑑 +
∑

𝑝∈𝑃
𝑡pick𝑝𝑖𝑑 ⋅𝜇𝑖+𝑡𝑤𝑎𝑙𝑘

𝑖𝑑 Time required to pick all products of one customer order in one store

𝑡pack𝑖𝑑 =
∑

𝑝∈𝑃
𝑞𝑝𝑖 ⋅ 𝑡

pack
𝑝𝑑 Time required to pack all products of one customer order into a delivery box

𝑡process𝑖𝑑 = 𝑡pick𝑖𝑑 + 𝑡pack𝑖𝑑 + 𝑡load𝑖𝑑 Time required to process one customer order in a store

𝑐pick𝑖𝑑 = 𝑤𝑑 ⋅ 𝑡pick𝑖𝑑 Costs for picking all products of one order into the picking basket
𝑐pack𝑖𝑑 = 𝑤𝑑 ⋅ 𝑡pack𝑖𝑑 Costs for packing all products of one order into the delivery box
𝑐load𝑖𝑑 = 𝑤𝑑 ⋅ 𝑡load𝑖𝑑 Costs for bringing the order from a packing station to the vehicle pick-up point and loading it onto the vehicle

𝑐process𝑖𝑑 = 𝑐pick𝑖𝑑 + 𝑐pack𝑖𝑑 + 𝑐load𝑖𝑑

= 𝑤𝑑 ⋅ (𝑡
pick
𝑖𝑑 + 𝑡pack𝑖𝑑 + 𝑡load𝑖𝑑 )

= 𝑤𝑑 ⋅ 𝑡process𝑖𝑑

Total costs for processing one customer order in a store including picking, packing, and loading
s

𝑗

Table 5
Notation.
Sets

𝐷 Set of depots, with 𝐷 = {1,… , 𝑑}
𝐶 Set of customers, with 𝐶 = {𝑑 + 1,… , 𝑛}
𝑁 Set of all locations, with 𝑁 = 𝐶 ∪𝐷
𝑃 Set of products
𝑉 (𝑉𝑑 ) Set of vehicles (available at depot 𝑑, with 𝑉𝑑 ⊆ 𝑉 )

Parameters

𝑐process𝑖𝑑 Order processing costs for customer 𝑖, 𝑖 ∈ 𝐶, in depot 𝑑, 𝑑 ∈ 𝐷
𝑐transp𝑖𝑗𝑣 Transportation costs from location 𝑖 to 𝑗, 𝑖, 𝑗 ∈ 𝑁, with vehicle 𝑣
𝑞𝑝𝑖 Order quantity of product 𝑝, 𝑝 ∈ 𝑃 , ordered by customer 𝑖, 𝑖 ∈ 𝐶
𝐵𝑑 (𝐸𝑑 ) Maximum (minimum) number of customer orders that can be

fulfilled at depot 𝑑, 𝑑 ∈ 𝐷
𝐿𝑣 Maximum number of customers reachable in given time frame by

vehicle 𝑣, 𝑣 ∈ 𝑉
𝑄𝑣 Maximum number of customer orders loadable on vehicle 𝑣, 𝑣 ∈ 𝑉
𝑆𝑝𝑑 Supply of product 𝑝, 𝑝 ∈ 𝑃 available in depot 𝑑, 𝑑 ∈ 𝐷

Decision variables

𝑎𝑑 Binary variable, indicating whether depot 𝑑, 𝑑 ∈ 𝐷, is active
𝑥𝑖𝑑 Binary variable, indicating whether customer 𝑖, 𝑖 ∈ 𝐶 is assigned to

depot 𝑑, 𝑑 ∈ 𝐷
𝑦𝑖𝑗𝑣 Binary variable, indicating whether vehicle 𝑣, 𝑣 ∈ 𝑉 , travels from

location 𝑖 to 𝑗, 𝑖, 𝑗 ∈ 𝑁

Problem sets. For an undirected, weighted graph 𝐺 = (𝑁,𝐸) we define
a set of vertices 𝑁 = {1,… , 𝑛}, comprising the set of depot loca-
ions 𝐷 (𝐷 = {1,… , 𝑑}, 𝑑 ≥ 1) and the set of customer locations 𝐶 (𝐶 =
{𝑑 + 1,… , 𝑛}, 𝑛 ≥ 𝑑 + 1), i.e., 𝐷 ∪ 𝐶 = 𝑁 . This implies a total number
of 𝑑 depots and 𝑛 − 𝑑 customers. The connection between different
ocations is represented by the set of edges 𝐸 = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑁}. Let 𝑉
𝑉 = {1,… , 𝑣}, 𝑣 ≥ 1) be the set of vehicles in the distribution network
nd 𝑉𝑑 , 𝑉𝑑 ⊆ 𝑉 , 𝑑 ∈ 𝐷, the subset of homogeneous vehicles available
or transportation at depot 𝑑. This means that the vehicle types between
epots may differ, i.e., the set of all vehicles 𝑉 is heterogeneous.

Model parameters. At each depot, a homogeneous fleet of vehicles
with a given capacity for loadable customer orders 𝑄𝑣, 𝑣 ∈ 𝑉 is
available. The model considers a specific lead time in which all orders
are given and need to be processed. For each vehicle we therefore
additionally define a limited route size 𝐿𝑣, 𝑣 ∈ 𝑉 , i.e., a maximum
number of customers the vehicle can serve within the given delivery
time. We assume that all routes satisfy the triangle inequality, each
tour starts and ends at the same depot, and that the total number of
vehicles available 𝑣 is sufficiently large to fulfill the total demand. The
rder quantity 𝑞𝑝𝑖 indicates the quantity of product 𝑝, 𝑝 ∈ 𝑃 , ordered

by customer 𝑖 (
∑

𝑝∈𝑃 𝑞𝑝𝑖 > 0). Parameter 𝑆𝑝𝑑 defines the supply of
each product 𝑝 in depot 𝑑 that is available to fulfill demands from
different orders. We assume that the inventory allocation problem is
solved prior to our downstream order assignment and VRP. Hence,
available product supply does not depend on the incoming online
orders. Additionally, we exclude depots with missing products already
in the preprocessing. We further assume that the total product supply
7

across depots is sufficient to fulfill all customer orders. Each depot has
a maximum number of orders 𝐵𝑑 , 𝑑 ∈ 𝐷, that can be processed and
a minimum number of orders 𝐸𝑑 that need to be assigned to a depot
if the depot is used for order fulfillment. The minimum order number
ensures efficient use of capacities. The maximum order number on the
other hand reflects the time capacity of workers in a given time frame.

Decision variables. Two decision variables are applied. The binary vari-
able 𝑥𝑖𝑑 indicates whether customer order 𝑖 is assigned to depot 𝑑
(1), or not (0). Binary variable 𝑦𝑖𝑗𝑣 indicates whether vehicle 𝑣 travels
from location 𝑖 to 𝑗. Finally, auxiliary variable 𝑎𝑑 determines whether
a depot 𝑑 is used for the supply of customers. The MDVRP_RIOF is
formulated as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 TC =
∑

𝑖∈𝐶

∑

𝑑∈𝐷
𝑐process𝑖𝑑 ⋅ 𝑥𝑖𝑑 +

∑

𝑖∈𝑁

∑

𝑗∈𝑁,𝑗≠𝑖

∑

𝑣∈𝑉
𝑐transp𝑖𝑗𝑣 ⋅ 𝑦𝑖𝑗𝑣 (1)

ubject to
∑

𝑑∈𝐷
𝑥𝑖𝑑 = 1 ∀𝑖 ∈ 𝐶

(2)
∑

𝑖∈𝐶
𝑥𝑖𝑑 ⋅ 𝑞𝑝𝑖 ≤ 𝑆𝑝𝑑 ∀𝑝 ∈ 𝑃 ; 𝑑 ∈ 𝐷

(3)
∑

𝑖∈𝐶
𝑥𝑖𝑑 ≤ min(𝐵𝑑 , 𝑄𝑣 ⋅ |𝑉𝑑 |, 𝐿𝑣 ⋅ |𝑉𝑑 |) ∀𝑑 ∈ 𝐷

(4)
∑

𝑖∈𝐶
𝑥𝑖𝑑 ≤ |𝐶| ⋅ 𝑎𝑑 ∀𝑑 ∈ 𝐷

(5)
∑

𝑖∈𝐶
𝑥𝑖𝑑 ≥ 𝐸𝑑 ⋅ 𝑎𝑑 ∀𝑑 ∈ 𝐷

(6)
∑

𝑗∈𝑁
𝑦𝑖𝑗𝑣 =

∑

𝑗∈𝑁
𝑦𝑗𝑖𝑣 ∀𝑖 ∈ 𝑁 ; 𝑣 ∈ 𝑉

(7)
∑

∈𝑁

∑

𝑣∈𝑉𝑑

𝑦𝑖𝑗𝑣 = 𝑥𝑖𝑑 ∀𝑑 ∈ 𝐷; 𝑖 ∈ 𝐶

(8)
𝑦𝑑𝑗𝑣 ≤ 𝑥𝑗𝑑 ∀𝑑 ∈ 𝐷; 𝑣 ∈ 𝑉 ; 𝑗 ∈ 𝐶

(9)
∑

𝑖∈𝐶

∑

𝑗∈𝑁
𝑦𝑖𝑗𝑣 ≤ min(𝑄𝑣, 𝐿𝑣) ∀𝑣 ∈ 𝑉

(10)
∑

𝑖∈𝑆

∑

𝑗∈𝑆
𝑦𝑖𝑗𝑣 ≤ |𝑆| − 1 ∀𝑆 ⊆ 𝐶, 2 ≤ |𝑆| ≤ ⌊|𝐶|∕2⌋, 𝑣 ∈ 𝑉

(11)
𝑥𝑖𝑑 ∈ {0, 1} ∀𝑖 ∈ 𝐶; 𝑑 ∈ 𝐷

(12)
𝑦𝑖𝑗𝑣 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑁 ; 𝑣 ∈ 𝑉

(13)
𝑎𝑑 ∈ {0, 1} ∀𝑑 ∈ 𝐷

(14)
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Fig. 3. Process map of the solution approach.
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The objective function (1) minimizes the total costs (TC) across all
epots, vehicles and customers. The first term calculates the total order
rocessing costs. The costs depend on which customer order is fulfilled
hrough which depot. The second term describes the transportation
osts, which depend on the assignment of customers to depots and
he corresponding routing decision. Constraints (2) to (3) ensure that
very customer is assigned to exactly one depot and that the number
f products ordered by the assigned set of customers cannot exceed the
vailable supply of the corresponding depot. Constraints (4) limit the
umber of orders assigned to one depot to the minimum of the depot
apacity, the total capacity across all vehicles available at the respective
epot, or the total capacity with respect to route size. Constraints (5)
nsure that a depot is set to active if at least one customer is assigned to
t. Constraints (6) ensure that the minimum order number is respected
or an active depot. Constraints (7) guarantee that vehicles that deliver
o a customer also have to leave the customer, while (8) ensure that
ustomers that are assigned to a depot are also on a route served by
vehicle from this depot. Constraints (9) define that if a customer

s not assigned to a depot, they cannot be supplied from there. Con-
traints (10) ensure that the vehicle capacity and the route size limit
re respected. Constraints (11) avoid subtours and ensure that all routes
re connected. Lastly, the variable domains are defined by (12) to (14).

.2. Solution approach

Our problem belongs to the class of NP-hard problems as it com-
ines two NP-hard problems: a knapsack problem (i.e., the customer-
epot assignment, see Kellerer et al. (2004)) and a variant of an MDVRP
see e.g., Toth and Vigo (2014)). Furthermore, as orders have a very
hort lead-time (e.g., with less than one hour), computation time is a
ottleneck. We therefore propose a cluster-first-route-second heuristic
hat is able to solve the problem for our application in a setting with
ext hour deliveries efficiently. Cluster-first-route-second is a well-
nown solution approach that has successfully been used in different
pplications (see e.g., Gillett and Miller (1974), Fisher and Jaikumar
1981), Robert and Markham (1995)). Fig. 3 provides an overview of
he three-step approach proposed. The essential idea is to quickly find
feasible and effective assignment of customers to depots based on an

pproximation of routing costs (in Steps 1 and 2) in order to enable the
earch for a cost minimal solution of the vehicle routing (in Step 3). We
etail the single steps in the following.
8

Step 1 initializes the solution algorithm by precalculating cost el-
ements based on retailer cost parameters and customer order infor-
mation. It calculates order processing costs for all assignment options
and summarizes direct distances between all customers and depots in
a distance matrix. Step 2 assigns customers to depots. We generate
different assignments with various approximations for the tour costs
through approaches 2A - 2D. These deliver a pool of potential solutions
for customer-depot assignments. In Step 2.2, all these solutions are eval-
uated with the well-known Savings algorithm (see Clarke and Wright
(1964)) to obtain an estimate for tour costs for each solution. The
solution with the total lowest costs is selected and further optimized
by solving the VRP for each depot individually.

Step 1: Initialization. The initialization starts with limiting the set of
depots for each customer order to depots that are in the required
proximity and have the products available. Furthermore, the order
processing costs 𝑐process𝑖𝑑 are obtained for each customer order 𝑖 and
depot 𝑑. To obtain an initial and feasible customer-depot assignment in
the next step (see Step 2), direct two-way tours between each customer 𝑖
and every depot 𝑑 are assumed. We therefore generate a distance matrix
𝐴 = (𝑠𝑖𝑗 )𝑖,𝑗∈𝑁 containing direct distances between all customers and
epots. This way, we take into account the proximity of customers and
epots as well as customer distances that are used in subsequent steps.
his approach resembles the use of a distance-based cost matrix for
n initial transportation cost approximation (see e.g., Salhi and Sari
1997), Sternbeck and Kuhn (2014)).

tep 2: Solving the assignment problem. Step 2 solves the assignment
problem as a subproblem. We apply four different approaches to esti-
mate the routing costs (Step 2.1) and ultimately select the assignment
with the lowest total costs (Step 2.2). The first approach (Approach 2 A)
of Step 2.1 assigns each customer to the depot with the lowest total
costs consisting of the actual order processing costs and assuming direct
customer tour costs. Approach 2B first updates the initial distance
matrix based on customer neighbors to approximate tours and then
assigns customers to depots. Approaches 2C and 2D successively expand
the clusters of approaches 2A and 2B by creating and assessing pairs
of clusters. Finally, Step 2.2 evaluates the pool of assignment options
obtained and selects the one with lowest total costs.

Step 2.1: Generating assignment solutions

Approach 2A: Basic customer assignment. The distance matrix 𝐴 gener-

ated in Step 1 is used to calculate the associated transportation cost
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and solve the assignment MIP. The transportation costs 𝑐transp𝑖𝑑 result
from the direct distance 𝑠𝑖𝑑 between depots and customers and the
costs per distance unit and represent a reduced version of 𝑐transp𝑖𝑗𝑣 . We
use the precalculated 𝑐process𝑖𝑑 and 𝑐transp𝑖𝑑 as input parameters to solve
the assignment MIP consisting of objective function (15) and capacity
constraints (2) to (6).

TC =
∑

𝑖∈𝐶

∑

𝑑∈𝐷
(𝑐process𝑖𝑑 + 2 ⋅ 𝑐transp𝑖𝑑 ) ⋅ 𝑥𝑖𝑑 (15)

The solution consists of a set of clusters 𝐾 where each cluster 𝑘, 𝑘 ∈ 𝐾
contains one depot 𝑑 and the assigned customers 𝑖. Each depot 𝑑 and
each customer 𝑖 can only be assigned to one cluster.

Approach 2B: Customer assignment with neighborhood consideration. The
second approach aims at an enhanced customer assignment by updating
distance matrix 𝐴 prior to solving the MIP. This is done to take
the neighborhood of each customer into account that could allow to
obtain savings on travel distances. To update the distance matrix, the
neighborhood 𝑁𝐵(𝑖) of each customer 𝑖 is considered. Customers 𝑗 are
identified as neighbors in 𝑁𝐵(𝑖) of customer 𝑖, with 𝑁𝐵(𝑖) ⊆ 𝐶, if
they are within a defined radius 𝑟, 𝑟 ∈ 𝑅. If at least two neighboring
customers in 𝑁𝐵(𝑖) exist with the same closest depot 𝑑∗, we update
the distance of customer 𝑖 to the other depot 𝑑∗. For this purpose, we
alculate the additional travel distance to include customer 𝑖 on a tour
ith the closest customers 𝑎 and 𝑏 (𝑎, 𝑏 ∈ 𝑁𝐵(𝑖)) and depot 𝑑∗. The
dditional distance 𝛥𝑖𝑑∗ is calculated accordingly with 𝛥𝑖𝑑∗ = 𝑠𝑖𝑎 + 𝑠𝑖𝑏 −
𝑎𝑏, where the legs 𝑠𝑖𝑎 (between 𝑎 and 𝑖) and 𝑠𝑖𝑏 (between 𝑏 and 𝑖) need
o be traveled additionally and the leg 𝑠𝑎𝑏 is not necessary anymore.
his distance 𝛥𝑖𝑑∗ can be seen as the virtual distance from customer 𝑖

to depot 𝑑∗ because of neighborhood consideration. The direct distance
𝑠𝑖𝑑∗ is updated with the new distance 𝛥𝑖𝑑∗ if the new distance is smaller
than the original one (i.e., 𝛥𝑖𝑑∗ ≤ 𝑠𝑖𝑑∗ ). These calculations are done
for every depot 𝑑 with two or more customers in the neighborhood of
customer 𝑖 and depot 𝑑 as their nearest transportation costs 𝑐transp𝑖𝑑 are
then calculated as indicated in Approach 2 A using the updated distance
matrix. The complete update procedure is outlined in Algorithm 1. The
assignment MIP (objective function (15) and constraints (2) to (6)) is
solved afterward with the updated transportation costs 𝑐transp𝑖𝑑 . Solving
the MIP with updated distances may give a better approximation of the
tour costs as it takes into account the proximity of other customers. This
process is executed for all 𝑟 ∈ 𝑅, such that we obtain |𝑅| solutions that
are passed over to Step 2.2.

Approach 2C: Pairwise cluster aggregation (1). Approach 2C completes
a gradual extension of the previously generated assignments from Ap-
proach 2A by merging clusters that result in lower average distances. It
considers all depots to which at least one customer 𝑖 has been assigned
and builds on the initial set of clusters 𝑘, 𝑘 ∈ 𝐾 (𝓁) obtained from the
customer-depot assignments of Approach 2A, denoted with iteration
𝓁 = 0. This computation is done for every pairwise combination of
known clusters 𝑘, 𝑘 ∈ 𝐾 (𝓁), so that we obtain ∑

|𝐾(𝓁)
|−1

𝑖=1 𝑖 new candidates
at each iteration 𝓁. It aims at adding additional customers into a
larger cluster and selecting the best depot for this aggregated cluster.
To obtain a new candidate cluster, two clusters 𝑘𝑥, 𝑘𝑦 ∈ 𝐾 (𝓁) are
selected and merged into a new cluster 𝑘𝑥𝑦. This new cluster contains
two potential depots (𝑑𝑥 and 𝑑𝑦). We calculate for each of these two
depots the average distances between the depot (e.g., 𝑑𝑥) and the new
customers (e.g., customers currently assigned to depot 𝑑𝑦) added to
the original cluster. We then select the depot with the lowest average
distances to the new customers as the new depot for the merged cluster.
If the average distance lies below a given maximum distance 𝑚,𝑚 ∈ 𝑀 ,
and the capacity constraints (2) to (6) are not exceeded, the pair is
added to the list of candidates. After all potential pairs are evaluated,
the candidate cluster among the list of candidates with the lowest
average distance to the new customers is selected and we obtain a new
9

Algorithm 1 Updated distance matrix (𝑟, 𝑟 ∈ 𝑅)
1: Input: Set of depots D, set of customers C, radius r, distance matrix

𝐴 = (𝑠𝑖𝑗 )𝑖,𝑗∈𝑁
2: Initiate list CD of closest depots, with CD = ∅
3: for 𝑖 ∈ 𝐶 do
4: for 𝑗 ∈ 𝐶∖{𝑖} do
5: if 𝑠𝑖𝑗 ≤ 𝑟 then
6: Add 𝑗 to 𝑁𝐵(𝑖)
7: Select closest depot of 𝑗
8: Add closest depot to list CD
9: end if

10: end for
11: for 𝑑 ∈ 𝐷 do
12: 𝑑∗ ← 𝑑
13: if count of 𝑑∗ in CD ≥ 2 then
14: 𝑎, 𝑏 ← 𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ∈ 𝑁𝐵(𝑖), i.e., 𝑠𝑖𝑎, 𝑠𝑖𝑏 ≤ 𝑠𝑖𝑐∀𝑐 ∈ 𝑁𝐵(𝑖) and

closest depot 𝑑∗

15: Calculate distance 𝛥𝑖𝑑∗ = 𝑠𝑖𝑎 + 𝑠𝑖𝑏 − 𝑠𝑎𝑏
16: if 𝛥𝑖𝑑∗ ≤ 𝑠𝑖𝑑∗ then
17: 𝑠𝑖𝑑∗ ← 𝛥𝑖𝑑∗

18: end if
19: end if
20: end for
21: Set CD = ∅
22: end for

cluster 𝑘𝑥𝑦. The list of clusters 𝐾 (𝓁) is then updated by including the
new cluster and removing the paired clusters. The pairwise clustering is
repeated within the next iteration 𝓁+1 for the new set of clusters 𝐾 (𝓁+1)

as average distances within a new cluster combination change. The
maximum distance 𝑚 acts as a limiting factor and stops the aggregation
process when the average minimum distance for all clusters lies above
this value. When reaching the stop criteria, the set of clusters 𝐾 is
created and the assignments are saved. Algorithm 2 summarizes the
pairwise cluster aggregation. Approach 2C is repeated for |𝑀| different
values of the maximum distance. All solutions are ultimately handed
over to Step 2.2.

Approach 2D: Pairwise cluster aggregation (2). This approach extends
the |𝑅| assignments from Approach 2B by merging clusters and gen-
erating another pool of clustering options. The aggregation process is
the same as described for Approach 2C and outlined in Algorithm 2. For
each assignment, it also generates |𝑀| cluster aggregation options. As
this approach uses all 𝑟 ∈ 𝑅 assignments from Approach 2B, the total
number of assignments that are passed over to Step 2.2 is |𝑅| × |𝑀|.

Step 2.2: Evaluating and selecting customer-depot assignment. This step
evaluates all customer-depot assignments from approaches 2A - 2D.
The first assignment (Approach 2 A) generates one assignment, the
neighborhood consideration (Approach 2B) delivers |𝑅| different as-
signments, the first pairwise cluster aggregation (Approach 2C) adds
additional |𝑀| assignments, and the second pairwise cluster aggre-
gation (Approach 2D) passes over another |𝑅| × |𝑀| assignments. In
this way, we obtain a pool of different assignment options (namely,
1+ |𝑅|+ |𝑀|+(|𝑅|× |𝑀|)) for customers to depots. This step now eval-
uates all these options by calculating the transportation costs of each
assignment solution with the Savings algorithm developed by Clarke
and Wright (1964). The algorithm is known to provide fast and effective
solutions for different VRP variants. Finally, out of all evaluations, the
assignment solution with the minimal total costs with respect to order
processing and transportation is selected.

Step 3: Solving vehicle routing. The final step is solving the VRP of the
chosen customer-depot assignment. This means that for each depot
we need to determine the actual customer assignment to tours and
the routing. The subproblem is limited to one decision variable 𝑦 ,
𝑖𝑗𝑣
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Algorithm 2 Pairwise cluster aggregation (𝑚,𝑚 ∈ 𝑀)
1: Input: Set of customer-depot assignment clusters 𝐾; maximum distance m

2: Set iteration 𝓁 = 0 (𝐾 (𝓁) = 𝐾)
3: Initiate list of cluster pairs 𝐶𝑃 and candidate list 𝑂
4: Initiate NewCandidates = true
5: while NewCandidates = true do
6: Create all pairwise cluster combinations (𝑘𝑥, 𝑘𝑦), with 𝑘𝑥, 𝑘𝑦 ∈ 𝐾 (𝓁) and

add all pairs to 𝐶𝑃
7: for Pairs (𝑘𝑥, 𝑘𝑦) in 𝐶𝑃 do
8: if (𝑘𝑥, 𝑘𝑦) fulfills capacity criterion then
9: Select depot 𝑑𝑥 of first cluster 𝑘𝑥

10: Calculate average distance 𝑠𝑦 from all customer of cluster 𝑘𝑦 to
depot 𝑑𝑥

11: Select depot 𝑑𝑦 of second cluster 𝑘𝑦
12: Calculate average distance 𝑠𝑥 from all customers of cluster 𝑘𝑥 to

depot 𝑑𝑦
3: if 𝑠𝑥𝑦 = 𝑚𝑖𝑛(𝑠𝑥, 𝑠𝑦) < 𝑚 then
4: Create new cluster 𝑘𝑥𝑦 = 𝑘𝑥 ∪ 𝑘𝑦 with the minimum distance

depot found
5: Add 𝑘𝑥𝑦 to list of cluster candidates 𝑂
6: end if
7: end if
8: end for
9: if 𝑂 not empty then
0: Select cluster pair �̂� with lowest 𝑠𝑥𝑦 across all cluster candidates

𝑘𝑥𝑦 ∈ 𝑂
1: Set 𝐾 (𝓁+1) = 𝐾 (𝓁), 𝐶𝐷 = ∅, 𝑂 = ∅
2: Add �̂� to 𝐾 (𝓁+1) and remove old clusters 𝑘𝑥 and 𝑘𝑦 from 𝐾 (𝓁+1)

3: Set 𝓁 = 𝓁 + 1
4: else
5: NewCandidates = false
6: end if
7: end while

representing the route from node 𝑖 to node 𝑗 using vehicle 𝑣. The
objective function is the same as for the original MIP with the exception
that assignment variable 𝑥𝑖𝑑 is now an input parameter (according to
the best assignment evaluated by Step 2.2) and not a decision variable.
Due to reduced complexity by cluster-first, the resulting VRP can be
solved optimally using a solver as our problem needs to deal with a
limited number of customers during the short order cycle and hence a
limited number of customers per depot.

6. Numerical results

This section analyzes the efficiency of the heuristic and the impact
of integrated order fulfillment. After providing details on the test in-
stances in Section 6.1, we first assess the effectiveness of the heuristics
compared to the exact solution for small instance sizes, followed by a
runtime analysis (see Section 6.2). Section 6.3 evaluates the benefits of
integrated online order fulfillment across different settings. Section 6.4
examines the impact of order processing and transportation costs on
the order fulfillment decisions. Section 6.5 summarizes the numerical
insights.

6.1. Setting and data generation process

Test data. We generate a number of different data sets to generalize our
findings. Location data for customers and retailer locations is generated
based on a large city with a population of approximately 1.5 million
and an area of around 400𝑘𝑚2. Both customer and depot locations
are derived from geospatial location information using OpenStreetMap
(2020). A random subset is selected to form each example. Customers
and stores are assumed to be evenly distributed over the area with
DCs located at the edges of the area. Customer order data has been
10
modeled based on actual order information from our empirical analysis
with a European grocery retailer. The number of units ordered per
product (𝑞𝑝𝑖) follows a normal distribution. The total customer basked
size ∑

𝑝∈𝑃 𝑞𝑝𝑖, 𝑖 ∈ 𝐶 is limited by a maximum value. The overall setting
and customer data is summarized in Table 6.

Table 6
Setting and customer data.
Region data

Population million 1.5
Area km2 400

Customer data

Total basket size (max) products 50
Total basket size (min) products 1
Total basket size (mean) 𝜇 30
Units of product 𝑝 per order (𝑞𝑝𝑖)  (𝜇, 𝜎2) 𝜇 = 3, 𝜎2 = 4

For the retailer, we consider two depot types: the first type (𝐷l) rep-
resents a large depot, i.e., a DC, while the second type (𝐷s) represents
a small depot, i.e., a city store (𝐷l ∪𝐷s = 𝐷). We define a fixed ratio of
DCs to stores (if not stated otherwise for individual experiments) and
a maximum order capacity per depot (𝐵𝑑) for a specific time window.
A minimum order number 𝐸𝑑 ensures efficiency for depots once used.
The vehicle fleet available depends on the number of depots in each
scenario. It is homogeneous per depot and can be heterogeneous for
different depot types. We assume a maximum tour length of one hour
for each vehicle tour, meaning every customer order has to be delivered
within one hour after the vehicle starts at the depot. The vehicles
can only serve a maximum number of customers 𝐿𝑣 within this time
window and have a maximum capacity for customer orders 𝑄𝑣. In this
setting, the maximum tour length is the limiting factor for all vehicles.
This can change in other settings, for example with larger time windows
or faster delivery speed that increase the values for 𝐿𝑣 or with smaller
vehicles leading to smaller values of 𝑄𝑣. The available inventory (𝑆𝑝𝑑)
per product depends on the depot type and varies for each depot.

Order processing costs consist of product-dependent (𝑡pick𝑖𝑑 and 𝑡pack𝑖𝑑 )
and order-dependent processing times (𝑡load𝑖𝑑 ), and the associated wage
costs per depot 𝑤𝑑 . In the empirical study we analyzed processing times
for all three parameters in stores. The parameters evaluated during the
study were also discussed with the retailer and adjusted for special
effects (e.g., customer density, store design). The obtained costs are
order- and depot-specific and are subject to confidentiality agreements
with the retailer. As such, we can only illustrate the cost figures in
an aggregated and exemplary way. Transportation costs are derived
from standard cost figures for vehicles, salaries, and fuel prices and
are calculated per kilometer. The depot and cost data is illustrated
in Table 7.

Algorithmic parameter and test bed. The radius 𝑟 is either defined as a
multiple of the distance 𝑑𝑖𝑠𝑖 from one customer 𝑖 to its second-closest
depot (𝑟1 − 𝑟4) or as a share of the network density 𝑁𝐷 (𝑟5), i.e., the
density of customers within the network. The maximum distance 𝑚 is
either defined as a share of the maximum depot distance 𝑀𝐷𝐷 in the
network (𝑚1−𝑚3) or as a share of the network density 𝑁𝐷 (𝑚4−𝑚5). The
values are shown in Table 8. These settings have shown the best results
in preliminary tests. Our approach has been implemented in Python
3.6.5, using Gurobi 8.1.1. as solver. Our tests were run on an Intel(R)
Core(TM) i7-7600U CPU @ 2.80 GHz.

6.2. Effectiveness of heuristics

Comparison with exact approach. We first assess the performance of our
heuristic by comparing it to an exact solution using Gurobi as solver.
The MDVRP_RIOF can only be solved with a MIP solver for instances
with up to 25 customers in reasonable time. We consider six differently
sized settings and 15 instances per setting, resulting in 75 test instances.
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Table 7
Depot and cost data.
Depot data

Depot types Large depot (𝐷l) Small depot (𝐷s)
Representation DC City store
Ratio of total 20% 80%
Max order capacity 𝐵𝑑 orders 30 10
Max vehicle capacity 𝑄𝑣 orders 10 5
Max customer orders per tour 𝐿𝑣 orders 5 3
Min order number 𝐸𝑑 orders 3 2
Inventory (max) 𝑆𝑝𝑑 products 1000 500
Inventory (min) 𝑆𝑝𝑑 products 200 0

Cost data

Product-dependent processing costs 𝑐process𝑖𝑑 (1) Euro 0.08 0.11
Order-dependent processing costs 𝑐process𝑖𝑑 (2) Euro 0.03 0.04
Transportation costs 𝑐transp𝑖𝑑 Euro 1.07 1.02
w
c
o
t
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r
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Table 8
Used parameter settings for 𝑟 and 𝑚.
Radius (𝑟) Maximum distance (m)

𝑟1 = 1.5 ⋅ 𝑑𝑖𝑠𝑖 𝑚1 = 0.2 ⋅𝑀𝐷𝐷
𝑟2 = 1.25 ⋅ 𝑑𝑖𝑠𝑖 𝑚2 = 0.1 ⋅𝑀𝐷𝐷
𝑟3 = 1 ⋅ 𝑑𝑖𝑠𝑖 𝑚3 = 0.6 ⋅𝑀𝐷𝐷
𝑟4 = 0.5 ⋅ 𝑑𝑖𝑠𝑖 𝑚4 = 0.2 ⋅𝑁𝐷
𝑟5 = 0.5 ⋅𝑁𝐷 𝑚5 = 0.1 ⋅𝑁𝐷

Each test setting consists of five retail depots (one large, four small).
The maximum order capacity (𝐵𝑑) is limited to 15 (𝐵𝑑 = 15, 𝑑 ∈ 𝐷l) and
0 (𝐵𝑑 = 10, 𝑑 ∈ 𝐷s). The vehicle fleet comprises 10 vehicles, where all
epots operate two vehicles.

As we consider an operational planning problem with rapid deliv-
ries, fast and applicable solutions are required. For example, each
ptimization has to be conducted at intervals of one hour, based on
he size of the delivery time windows. Table 9 shows the average
untime results and the average cost delta for all test settings. Our
euristic achieves a solution quality of between 94.06% to 99.13% for
nstances that could be solved to optimality. In these small examples,
he suboptimal assignment of one customer may already contribute to
uch performance gaps. The total costs of the heuristic are between
.55% and 7.07% above the best Gurobi solution after termination at
h for instances where an optimal solution could not be found within

his time by Gurobi. Further, the heuristic provides results within less
han 4 s, while an exact solution quickly extends beyond one hour of
omputation time. This shows that our heuristic is able to efficiently
rovide applicable results in the required time.

untime analysis. This section analyzes the runtime behavior for in-
reasing problem sizes. We consider instances with up to 100 customers
nd 25 depots (5 large, 20 small), each instance with 55 vehicles
vailable, three per DC, two per store. Ten test instances are applied
or each setting.

Fig. 4 shows that the increase in runtime is mainly driven by
he number of customers and the corresponding number of customers
ssigned to a single depot (Fig. 4a). The latter has a major impact on
omputational effort of the individual VRPs per depot (Fig. 4c). The
ore customers are assigned to a depot, the harder it is to solve the

espective routing problem. The runtimes of the assignment problems
n the other hand show only a slight increase, with an increasing
umber of customers (Fig. 4d). The correlation of customers per depot
nd runtime becomes clearer when looking at the individual results per
nstance. Fig. 4b shows how individual networks require significantly
ore runtime, which correlates with a higher customer-depot ratio.
his effect particularly appears in the event that networks are designed
eterogeneously, i.e., more customers are assigned to the same depots.
t becomes obvious that the exact solution of the VRP in Step 3 of
ur heuristics is the bottleneck. However, in most cases in practice
11
e need to deal with fewer than 10 customers per depot and order
ycle. Because of this, it is still possible to rely on the exact solution
f the VRP and spend computation time on it. Also, it is fair to assume
hat individual VRPs cannot increase due to capacity constraints and
ur suggested algorithm can solve practically relevant problems in the
equired computation time.

.3. Analysis of order fulfillment options

dvantage of integrated fulfillment concepts. This analysis assesses the
mpact of a RIOF compared to a fulfillment concept by only DCs or
nly stores, respectively. We therefore compare our approach, i.e., the
imultaneous use of DCs and stores for order fulfillment, with two
etwork settings in which only one depot type is available. For the
nalysis we apply the network of 25 depots and 55 vehicles [𝑑 = 25, 𝑣 =

55] posited in the previous analysis as the basis. In the DC only scenario,
five DCs and 15 vehicles [𝑑 = 5, 𝑣 = 15] are available, while in the
Store only scenario, 20 stores and 40 vehicles [𝑑 = 20, 𝑣 = 40] are
available. We assume that each DC holds three vehicles ready while
city stores only have two vehicles on hand. Customer demands can be
fully satisfied with the available vehicle capacity in all scenarios and
no limitations on solution quality can be expected.

Table 10 shows that RIOF achieves the lowest costs for all customer
sizes. Compared to fulfillment using only one depot type, average
savings of 7.4% (vs. DC only) and 4.3% (vs. Store only) can be achieved.
The results also show that the savings potential increases with increas-
ing problem sizes. Furthermore, fulfillment from stores only performs
slightly better than DC only for small instances (up to 30 customers),

hile fulfillment by DC only is beneficial compared to Store only for
larger instances. The key reason is the higher capacity that large depots
and their vehicles have. The more customers to be served, the better
depots and vehicles can be leveraged according to their maximum order
capacity. In other words, adding one additional customer to a tour that
is served by a DC might not require an additional vehicle. In contrast,
small vehicles used by stores might not be able to add the order of
an additional customer, so new vehicles have to be activated or an
order has to be assigned to a different store. To summarize, a mix of
depot types, and with this the RIOF approach is most beneficial for all
settings. If only one depot type is used, the given customer demand
needs to be taken into account to decide on the best option. In the
following we analyze three additional scenarios to examine the impact
of different network designs.

Inventory deployment. Subsequent to available fulfillment options, we
evaluate the inventory deployment within the network. This enables us
to asses the impact of a centralized and decentralized inventory policy
on fulfillment costs and decisions. We consider the largest instances
with 50 customers and decrease inventory levels for stores step by
step to simulate a more centralized inventory deployment. We use the
inventory setting shown in Table 7 as base scenario (100%), in which
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Table 9
Comparison of heuristic approach vs. exact solution (3 h/10,800 s runtime)

Instances solved to optimality Instances not solved to optimalitya

C Inst. Average runtimeb Cost deltac Inst. Average runtimeb O-Gapd Cost deltae

Heuristic Gurobi in % of Gurobi Heuristic Gurobi Gurobi in % of Gurobi

5 15 0.17 0.2 0.87% 0 – – – –
10 15 0.43 36.72 5.94% 0 – – – –
15 11 0.49 1,717.77 4.47% 4 0.66 10,800 9.11% 7.07%
20 1 0.70 1,820.68 1.11% 14 3.56 10,800 15.97% 4.88%
25 0 – – – 15 2.51 10,800 24.53% 3.55%

aGurobi terminated after a maximum of 10,800 s.
bAverage runtime across all instances in seconds.
cAverage percentage cost delta compared to optimal solution obtained by Gurobi (indicating 100%).
dAverage gap to lower bound.

eAverage percentage cost delta compared to Gurobi solution after 10,800 s (indicating 100%).
Fig. 4a. Runtime and runtime ratio.

Fig. 4b. Single runtime results.

e assume sufficient inventory levels at both DC and stores to fulfill
he complete customer demand. Table 11 summarizes the results of a
tepwise centralization of inventory. It shows that reducing available
nventory at stores leads to a linear cost increase by up to 16.8% (100%
s. 10%). Moreover, the number of DCs used almost doubles and only
fifth of stores are still in use. The average number of customers per
C consequently increases while the number per store is quite stable
ue to the capacity restrictions (min/max customer assignment) given.

Looking at a more decentralized inventory deployment we can
tate that decreasing inventory at DCs leads to minor cost impacts.
or instance, reducing DC capacity from 100% (see Table 7) to 5%
eads to an increase of 1.3% in total cost. It is reasonable to assume
igher inventory levels at DCs in the event that they are used for order
12
Fig. 4c. VRP runtime share.

Fig. 4d. Heuristic steps runtime share.

fulfillment due to available capacities. The decision on a decentralized
approach relates to a setting where only stores are used for fulfillment.

Remote DCs. We further analyze a network setting where large DCs
are used for order fulfillment that are located farther away from cities
in a 5 - 10 km section outside the customer area. For this setting we
again assume a route size (𝐿𝑣) of five customers for DCs and three
customers for stores. This corresponds to a setting where customers
can be served faster or more time is available for deliveries. In the
second test setting (see below), we will further relax route capacities
to simulate an extended delivery time-span.

Fig. 5 shows the cost development for this scenario. If DCs are
located more remotely, the RIOF and the Store only approach become
more beneficial and result in similar solutions with a delta below
1.0%, as it is almost only stores that are used for order fulfillment
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Table 10
Objective value comparison for RIOF vs. one-depot type scenarios.

Network setting Customers Average RIOF savings

10 20 30 40 50

RIOF 86.64 153.27 215.54 271.75 327.06 –
DC only +14.39% +6.52% +6.38% +6.79% +7.62% −7.43%
Store only 0% +2.67% +4.59% +6.95% +8.20% −4.25%

Gray cells indicating cost optimum; RIOF values showing absolute costs, DC and Store only values showing
relative values compared to RIOF value (positive = higher costs, negative = lower costs)
Fig. 5. Remote DCs with smaller route size.

in the RIOF setting. The use of DCs becomes unattractive due to the
greater distances to the city center together with the limited number of
customers that can be served by one vehicle due to the given delivery
time restrictions. As the number of customers that can be served per
DC vehicle is limited to five, the greater distance to customers cannot
be compensated by larger tours. This results in a cost difference of up
to 31%.

Customer capacity. In this alternative setting we again use remote DCs
but further soften up the delivery time restrictions by increasing the
maximum number of customers that can be served on a tour. We
increase the maximum number of customers per route (𝐿𝑣) from five
to ten for DCs and from three to five for stores. Results in Fig. 6 show
that DCs become more attractive the more customers they can serve,
decreasing the cost delta to the RIOF approach to around 9%. However,
the order fulfillment primarily from stores remains the most attractive
option as both the RIOF and Store only solutions result in lower total
costs (0.3% cost delta RIOF vs. Store only).

6.4. Analysis of order fulfillment costs

In our concluding tests we analyze the impact of the ratio of
processing and transportation costs on order fulfillment decisions. We
use our basic scenario with 𝑑 = 25 and 𝑣 = 55 for 100 customers for

Table 11
Impact of a centralized inventory deployment.

Store inventory level for OCa

100% 50% 25% 10%

Change in total costs – 5.46% 11.12% 16.82%
DCs used (avg.) 2.8 2.6 3.4 4.2
Stores used (avg.) 11.6 10.8 8.2 2.6
Customers per DC (avg.) 4.34 6.47 7.68 10.7
Customers per Store (avg.) 3.34 3.39 3.11 2.25

a100% indicating inventory levels as outlined in Table 7.
13
Fig. 6. Remote DCs with larger route size.

the cost analysis. We use the cost categories outlined in Section 4 to
evaluate costs on a granular level. Namely, we differentiate between
product-dependent processing costs (𝑃𝐷𝑃𝐶), order-dependent process-
ing costs (𝑂𝐷𝑃𝐶), and transportation costs (𝑇𝐶) via a comparison of
their average values across depot types. We vary the cost ratios and
determine their impact on fulfillment decisions. Table 12 shows an
overview of the experiments conducted. Please note that we only report
the type of sensitivity analysis that indicated a significant impact. For
example, the variation of 𝑂𝐷𝑃𝐶s in DCs vs. stores did not show a major
impact on the solution structure (below 1% change of DC/store share)
when altering cost ratios between +100% on the higher and a 1:1 ratio
on the lower end. Similarly, the variation of average 𝑃𝐷𝑃𝐶 vs. average
𝑂𝐷𝑃𝐶 also had a minor impact on the solution structure of below 1%.

6.4.1. DC vs. store costs
In the first experiments we analyze the impact of changing cost

ratios between stores and DCs, i.e., the ratio of product- and order-
dependent as well as transportation costs of DCs vs. stores.

Impact of product-dependent processing costs. The first experiment an-
alyzes the ratio of product-dependent processing costs (𝑃𝐷𝑃𝐶𝐷𝐶 vs.
𝑃𝐷𝑃𝐶𝑆𝑡𝑜𝑟𝑒). It illustrates changing picking and/or packing costs in
DCs vs. stores, e.g., different employee wages, changing store design
that leads to different picking times, or modified orders with higher
search time in stores. The baseline cost ratio (1:1.41), obtained from
our case study is altered so that both values converge and diverge
from each other. Extreme ratios are defined as 1:1 (−29%) and 1:2.81
(+100%). Table 13 shows that product-dependent processing costs
have a significant impact on the fulfillment decisions. Starting from
the baseline scenario, a 50% increase in product-dependent processing
costs in stores leads to 23% fewer customers being served by stores and
50% more customers being served by DCs. A 100% increase results in
a 58% increase in DC fulfillment. Equivalent cost values (1:1) in DCs
and stores trigger a 31% decrease in DCs and 14% more stores being
used.
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Table 12
Overview of experiments.

Experiment Comparison Section

DC vs. store costs Impact of product-dependent processing costs 𝑃𝐷𝑃𝐶𝐷𝐶 vs. 𝑃𝐷𝑃𝐶𝑆𝑡𝑜𝑟𝑒 Section 6.4.1Impact of transportation costs 𝑇𝐶𝐷𝐶 vs. 𝑇𝐶𝑆𝑡𝑜𝑟𝑒

Average category costs Ratio of product-dependent processing costs and transportation costs ∅𝑃𝐷𝑃𝐶 vs. ∅𝑇𝐶 Section 6.4.2Ratio of order-dependent processing costs and transportation costs ∅𝑂𝐷𝑃𝐶 vs. ∅𝑇𝐶
Table 13
Impact of product-dependent processing costs on depot assignment.

Normalized cost ratio Average share of orders assigned to

DC vs. Store DCs Stores

−29% (1:1) 21.6% 78.4%
−14% (1:1.2) 28.7% 71.3%
base (1:1.41) 31.2% 68.8%
+50% (1:2.11) 46.8% 53.2%
+100% (1:2.81) 49.3% 50.7%

Average based on 10 instances.

Table 14
Impact of transportation costs on depot assignment.

Normalized cost ratio Average share of orders assigned to

DC vs. Store DCs Stores

+1423% (16:1) 22.7% 77.3%
+662% (8:1) 24.9% 75.1%
+281% (4:1) 24.4% 75.6%
+90% (2:1) 30.6% 69.4%
+43% (1.5:1) 35.2% 64.8%

+5% (1:1) 31.3% 68.7%
+2% (1:0.98) 31.4% 68.6%
base (1:0.95) 31.2% 68.8%
−33% (1:0.63) 33.4% 66.6%
−50% (1:0.48) 29.3% 70.7%

Average based on 10 instances.

mpact of transportation costs. For a comparison of transportation cost
mpact between DCs and stores (𝑇𝐶𝐷𝐶 vs. 𝑇𝐶𝑆𝑡𝑜𝑟𝑒) we define a ratio

range of 1:0.48 (min) to 1:1 (max) with the base cost ratio of 1:0.95.
In doing so we simulate a change in transportation costs caused, for
example, by higher or lower wages, changed fuel or vehicle costs.
At first glance, transportation costs have a low impact on the DC vs.
store share (see Table 14). A 50% decrease in transportation costs
of stores only increases their share by 3%. This soft effect is due to
the network design. DCs are close enough to the customers so that
their cost advantage in terms of order processing costs outweighs the
transportation cost effect. This shows that the presence of DCs with
lower order processing costs in close proximity to customers will always
imply an assignment to these from a cost perspective. Extreme changes
relating to DCs, namely the increase of transportation costs for DCs
while keeping store transportation costs at the base level, affect the
assignment as expected: the share of DCs decreases while more stores
are used for order fulfillment.

6.4.2. Average category costs
In the following experiments we analyze how changing cost ratios

between product-dependent, order-dependent, and transportation costs
impact depot assignment.

Relation of product-dependent processing costs and transportation costs.
While the experiments described previously concern internal effects
leading to cost changes in either DCs or stores, external effects can
also occur, leading to general cost changes. Examples include a federal
change in minimum wages or higher fuel prices. First, we compare aver-
age product-dependent processing costs with the average transportation
costs (∅𝑃𝐷𝑃𝐶 vs. ∅𝑇𝐶). In our basic scenario the ratio is set at 1:11.
14
Table 15
Impact of product-dependent processing costs vs. transportation
costs on depot assignment.

Normalized cost ratio Average share of orders assigned to

Product vs. Transport DCs Stores

−91% (1:1) 66.3% 33.7%
−45% (1:6) 32.1% 67.9%
base (1:11) 31.2% 68.8%
+50% (1:16) 33.7% 66.3%
+100% (1:22) 33.7% 66.3%

Average based on 10 instances.

Table 16
Impact of order-dependent processing costs vs. transportation costs on
depot assignment.

Normalized cost ratio Average share of orders assigned to

Order vs. Transport DCs Stores

−97% (1:1) 75% 25%
−48% (1:15) 33% 67%
base (1:30) 31.2% 68.8%
+50% (1:45) 33.7% 66.3%
+100% (1:60) 33.7% 66.3%

Average based on 10 instances.

The corresponding results are given in Table 15. A 91% decrease in
average transportation costs causes a doubling (112% increase) of the
share of DCs being used for order fulfillment. In contrast, a 100%
increase in transportation costs only leads to minor changes in the share
of depot types. In fact, small changes of 2 - 3% are explained by the
different network constellations and do not necessarily depend on the
altered costs. It emerges that due to short-term delivery requirements,
a certain share of DCs will always be part of the assignment pool as
proximity between customers and depots plays a major role. As long as
DCs are at some comparable distance to customers, these will be chosen
provided handling capacity and product supply are available.

Ratio of order-dependent processing costs and transportation costs. Sub-
sequent to the comparison of product-dependent costs, we compare
order-dependent processing costs with the average transportation costs
(∅𝑂𝐷𝑃𝐶 vs. ∅𝑇𝐶). Starting from the baseline cost ratio (1:30), the
ratio is altered between 1:1 (min) and 1:60 (max). The results indicate
similar effects to those of the previous experiment (see Table 16). It
becomes obvious that lowering transportation costs compared to order-
dependent processing costs leads to a major shift towards DCs being
used. A contrary adjustment to higher transportation costs keeps the
number of DCs at a similar level, showing that a certain share of DCs
is still kept in the network due to the proximity to some customers at
the city border.

6.5. Summary of results and managerial insights

The analyzes conducted show that our approach works efficiently
for rapid fulfillment problems, solving the MDVRP_RIOF in short time,
and that an RIOF approach is beneficial for OC retailers. In detail, we
can state the following key insights for OC fulfillment:
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• RIOF is beneficial. The integration of retail stores into an online
fulfillment system for rapid deliveries is beneficial from a cost
perspective. Cost savings amount to an average of 7% compared
to networks with the exclusive use of DCs and of 4% for networks
with stores only.

• Inventory deployment affects fulfillment options. The inventory de-
ployment policy impacts potential cost savings and the advan-
tages of RIOF. A more centralized inventory deployment limits
the use of stores for order fulfillment and results in lower cost sav-
ings. Sufficient inventory at stores is essential for their successful
integration in online order fulfillment.

• Network density impacts saving potential. The savings potential of an
RIOF approach depends on the underlying network structure and
available depot types. If DCs in customer proximity are available,
it is more likely that both DCs and local stores will be used for
RIOF and therefore the savings potential of an integrated solution
increases. In contrast, if larger depots such as DCs are located far
away from cities, the RIOF solution is almost reduced to a pure
store fulfillment concept.

• Number of customers is a central aspect of the fulfillment decision.
The number of orders from different customers within the given
planning period has a major impact on the fulfillment decision. If
the overall demand is relatively low, i.e., fewer customers need to
be served, it is more beneficial to use stores for RIOF. DCs become
more attractive for RIOF if the number of customers increases
and the capacity of large delivery vehicles can be used more
efficiently.

• Store benefit is driven by order processing costs. The decision as
to whether to use stores for RIOF depends on the given store
structure and corresponding processing costs. Unless stores have
significantly higher order processing costs of more than twice the
cost in large depots, delivery from stores is beneficial due to the
distance advantage.

. Conclusion

This paper evaluates when RIOF is beneficial for OC retailers. We
re the first to apply the combined assignment and vehicle routing
roblem. Our model can be seen as an efficient tool for retailers to
ntegrate their stores into an online channel and derive the optimal
ulfillment design and schedule. We identify decision-relevant costs for
ifferent types of depot for online order fulfillment and specifically
ighlight the cost differences between depots. We use an empirical
tudy to quantify store-specific costs that are systematically used within
ur optimization approach. We solve the problem using multi-step
euristics. Fulfillment from DCs or stores mainly depends on the DC lo-
ations and cost structures between DCs and stores. For instance, RIOF
rom DCs is only attractive if they are situated in customer proximity
nd a certain order volume is assured. In summary, a combination of
Cs and stores for RIOF helps to establish a cost-efficient customer

upply compared to a fulfillment concept using only stores or DCs.
Our approach may be extended to multiple periods to include differ-

nt time windows and their selection procedure. This extension would
llow to accept not only orders for rapid deliveries but also those for
ater deliveries that can be combined to optimize available vehicle and
epot capacities but also balance the product inventory levels between
ifferent locations. The availability and selection of time windows is
losely connected to pricing decisions for these time windows. Fur-
her, we assume predetermined inventory levels at stores. Defining the
ptimal inventory per store with respect to online demand and replen-
shment cycles may be a valuable extension of our model. Additionally,
he inventory in stores is subject to unexpected demand or shrinkage
nd fast-changing product availability as a result. A stochastic com-
onent to map changing store inventory could extend the fulfillment
odel. We address an operational problem and each depot is available
15

or order fulfillment. With respect to strategic decisions it needs to be
evaluated which depots should generally be available for fulfillment to
define an efficient network structure. This is needed to bundle demands
and improve the routing. If the store processing times are acceptable,
fulfillment from stores becomes more attractive as was the case for
grocery retailing. Other application areas may reveal a preference for
significantly different networks, processing costs and order structures.
Finally, we would like to note that the solution approach developed is
a first starting point to address this complex problem. Other heuristic
advances to simultaneously tackle the assignment and routing decisions
could further improve our findings.

Besides the potential cost savings, we would like to highlight that
RIOF implies further impacts on the fulfillment of customer demands
and related decisions. First of all, it potentially reduces waste as using
additional depots leverages excess inventory [see e.g., Riesenegger and
Hübner (2022)]. Grocery retailers can define the available supply for
the online channel as excess store inventory that would otherwise have
to be discarded in the near future. Second, the flexible integration of
retail stores allows retailers to avoid inventory peaks. They can make
more products available for RIOF once new deliveries from DCs are
expected and lower the amount of online stock when inventory needs
to be held for in-store customers.
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