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Abstract. In this paper the first infinite series of translation nets with nonabelian translation groups and a large
number of parallel classes are constructed. For that purpose we investigate partial congruence partitions (PCPs)
with at least one normal component.

Two series correspond to partial congruence partitions containing one normal elementary abelian component.
The construction results by using some basic facts about the first cohomology group of the translation group
G regarded as an extension of the normal component which itself is a group of central translations.

The other series correspond to partial congruence partitions containing two normal nonabelian components.
The constructions are based on the well known automorphism method which leads to so-called splitting transla-
tion nets. By investigating the Suzuki groups Sz(g), the projective unitary groups PSU(3, ¢?) and the Ree groups
R(qg) as doubly transitive permutation groups, we obtain examples of nonabelian groups admitting a large number
of pairwise orthogonal fixed-point-free group automorphisms.

1. Large Translation Nets—An Introduction

Let s > 1 be an integer and G a group of order s2 Each set H := {H,, ..., H,} of
r = 3 subgroups of G satisfying

|H;| = sforalli =1, ..., rand (1.1)
HH; = Gforalli # j (1.2)

1s called a partial congruence partition in G of order s and degree r (for short an (s, r)-
PCP in G). The members of IH are called components. Because of (1.1) the property (1.2)
is equivalent to

H, N H =1foralli#j. (1.2a)

Partial congruence partitions are studied by many authors (see (Bailey and Jungnickel
1990; Frohardt 1987; Gluck 1989; Hachenberger 1991; Hachenberger and Jungnickel 1990;
Jungnickel 1981; Jungnickel 1989; Jungnickel 1989a; Sprague 1982)) because of their close
relation to translation nets.
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Given an (s, r)-PCP IH in G the incidence structure
N(H) := (G, {Hg : He H, g € G}, €) (1.3)

is a translation net of order s and degree r = 3, that is an affine I-design N with parameters
s and r together with a translation group G acting sharply transitively on the set of points
of N and fixing each of the r paraliel classes. Conversely every transiation net can be con-
structed in this way—hence the existence of an (s, 7)-PCP in G is equivalent to the existence
of an (s, r)-translation net with translation group G. In particular the number of components
is equal to the number of parallel classes (the degree) of the corresponding translation net.
(All definitions and more details can be found in (Beth, Jungnickel and Lenz 1986) and
(Jungnickel 1990). The latter is a survey on Latin squares, their geometries and their groups.)

It is well known that the degree r of a net is at most s + 1 with equality if and only
if the incidence structure is an uﬂziit‘:‘ pu:iiie o] f order s. Thus p s + 1} -translation nets
are called translation planes (see (Luneburg 1980)) for an extensive treatment of this topic).
Since translation planes have elementary abelian translation groups, the order s is a prime
power in this case.

The main problem in the area of partial congruence partitions is the determination of
the number

7" (@)}
L\xFj .

mavir <
ALl Il _—

(1.4)
or to find at least upper or lower bounds for this number. (G is any group of order s2)

Since any (s, r)-PCP in G induces a PCP with the same number r of components in
each Sylow subgroup of G, a fact which was first proved implicitly by Frohardt (1987),
we are mainly interested in the case, where G is a p-group for some prime number p. Note
that we have

T(G) = p" + 1, if G is elementary abelian of order p*". (1.5)
We are now going to summarize recent results on p-groups which show how far a transla-
tion net is from being a translation plane, provided that the translation group is not elementary

abelian.

TueoREM 1. Let G be a group of order p?*. If G is not elementary abelian, then

T(G) < p"“', ifn = 4; (1.6)
TG) <p" '+ 1,ifpisoddand n € {2,3} orifp = n = 2; (1.7)
T(G) = 4, if G is of order 64. (1.8)

(1.6) is proved in (Frohardt 1987) and (Hachenberger 1991) where the cases p = 2 and
p odd are handled respectively. (1.7) is proved in (Hachenberger 1991), (1.8) in (Sprague
1982) and (Gluck 1989).
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In the present paper, we complement these results by showing that there exist nonabelian
p-groups of order p*® which have a large number of mutually disjoint subgroups of order
p". We will explain the expression large in the following:

Some applications of a factorization lemma in (Hachenberger 1991) show that the number
r of components of a partial congruence partition in a group G is much smailier than the
bound in (1.6) provided that some assumptions on the structure of G or on the components
themselves are made. If for example G is abelian of order p*®, but not elementary abelian,
we have

n
T(G) < pl"2 + 1 (where ["/,] := max{k € IN: k < "/,}). (1.9)
This bound is for CAamp}e Shai’p when G = 7m2 X 7m2 and n = 2m. Therefore

(Z: X Z;)men is a series of groups containing partial congruence partitions with degree
7" + 1 = Y|G| + 1 which is best possible by (1.9). Until now no comparable result is
known in the nonabelian case. The only known examples for nonabelian p-groups with
T(G) = Y|G]| + 1 arise from the classification of the groups which satisfy equality in
(1.7) and (1.8) (see (Hachenberger 1991) and (Gluck 1989; Sprague 1982) respectively).
But these examples are sporadic in the sense that the groups have order at most pé—the
parameter n is 2 or 3 and therefore bounded. In Sections 3 and 4 we construct the first
series of PCPs in nonabelian groups which—comparing degrees—can compete with the
abelian example mentioned above. More precisely, we prove

TueoreM 2. There exist

(¢% g + 1)—PCPs with one normal elementary abelian component in a
certain nonabelian group of order g% where g is any odd prime power; (1.10)

(g% g* + 1)—PCPs with one normal elementary abelian component in a
certain nonabelian group of order ¢ where ¢ is any odd prime power;  (1.11)

(g% (g — 1) - ged(qg — 1, 2)"' + 2)—PCPs containing two normal non-
abelian components in a certain nonabelian group of order g% where g = p”
is a prime power and n is not a power of 2. (1.12)

(¢% g + )—PCPs containing two normal nonabelian components in a
certain nonabelian group of order g% where g is any prime power. (1.13)

We say that these PCPs have a large number of components. The corresponding transla-
tion nets and translation groups are as well called large.
If G is one of the groups in (1.10) (or (1.12) provided that g is a power of 2) then

T( > ‘\VI - + the hannd 1in (1 O If {2 is one of the orouns in (1.1 we even have

.l, LIV UL 11 \J. // i1 10 ViV VU1l ulw EL\JUPO i1l ‘\l A1), YW WYLl 11QAvY o
T(G) > V|G| |G| + 1 which is much better than what is possible in the abelian but not ele-
mentary abelian case. In (1.13) we have T(G) = Y1G| + 1 which is weaker than (1.9)
but nevertheless we call G large.
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All these series are constructed by using the fact that we have at least one normal com-
ponent. In Section 2 we will therefore make some general remarks on PCPs containing at
least one normal component. Many of the results in Section 2 are implicit in (Hachenberger
and Jungnickel 1990) but for the convenience of the reader and due to the fact that they
are crucial for our constructions in Sections 3 and 4 we will summarize them.

2. On Central Translations and Partial Congruence Partitions Containing at Least
One Normal Component

Let IH be an (s, r)-partial congruence partition (» = 3) in a group G of order s? and let
A € H be a normal subgroup of G. We say that A is a normal component in IH. Consider
the parallel class P, = {Aglg € G} corresponding to the component A in the net N(IH)
(see (1 .))) Then A fixes as a collineation group of N \1[1) EVery line of P 4 and acts regu-
larly on the points of each line in P,. Hence A consists of central translations of P4.
Therefore N(IH) is called P ,-transitive. In (Hachenberger and Jungnickel 1990) such types
of translation nets, called semi-splitting translation nets, are studied under a geometric
point of view and in relation to difference matrices. (All definitions above can be found
in (Hachenberger and Jungnickel 1990), but we will not use them here.)

If H is any component different from A4 in IH, then G is isomorphic to a semidirect prod-
uct S(4, H, 7), where 7 : H = Aut(A) denotes the corresponding representation of H as
an automorphism group of A (w(k) can be viewed as conjugation of A by h). For any com-
ponent U in IH — {4, H}, we define ¢;; : H = A in the following way: Let ¢y (h) be
the unique element in A4 such that & € Upy(h)~'. By (1.2.a) 4 is a complete class of
representatives of right cosets of U in G. Furthermore, each & in H lies in exactly one
coset of U. Hence ¢y 1s well-defined and a bijection between H and A. Moreover we have

= {hey(h)|h € H}. Because of the normality of 4 in G and the fact that different com-
ponents have only trivial intersection, the set ® := {oy|U € TH —{A4, H}} has the follow-

ing properties:
HU, V) : H— A, h = oy(h) ! ¢,(h) is bijective if and only if U # V, (2.1)
ﬁou(hlhz) = ¢U(h1)ﬂ(hz) tPU(hz) for all hl’ h2 in H. (22)

In (Hachenberger and Jungnickel 1990) & is called a system of pairwise orthogonal semi-
isomorphisms from H onto A. (In contrast to (Hachenberger and Jungnickel 1990) all groups
are written multiplicatively here.) Furthermore, it is proved there (see theorem 4.10) that
the converse as well is true, hence:

Let H and A be groups of order s and « : H — Aut(A) a representation of
H as an automorphism group of A. The existence of a system ¢ of pairwise
orthogonal semi-isomorphisms from H onto A is equivalent to the existence
of an (|H|, |®| + 2)-PCP in the semidirect product G = S(A, H, 7) contain-
ing the subgroups H and A as components. (2.3)
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ONSTRUCTIONS OF LARGE TRANSLATION NETS

If A is an abelian group, then mappings satisfying condition (2.2) are of certain interest
in algebra. They are called cocycles in this case and (2.2) is known as cocycle-condition
(see (Aschbacher 1986; Huppert 1967; Huppert and Blackburn 1982; Huppert and Blackburn
1983) as references for the results from group theory we use here). Cocycles are very im-
portant by studying the first cohomology group H(A, H) of the extension G of A by H
with respect to 7. In Section 3 we use some basic facts about the cohomology of groups
when among other things we are going to discuss how partial congruence partitions contain-
ing an abelian normal component 4 can be represented in terms of certain automorphisms
of G = S(4, H, n).

If H as well is a normal subgroup of G, then 7 is the trivial representation of H on Aut(A).
Since r = 3 it is not difficult to see that H is isomorphic to A and therefore G 1s isomor-
phic to A X A. The set ¢ of semi-isomorphisms then is a set of automorphisms of 4. Assume
that besides 4 X 1 and 1 X A the diagonal {(a, a) : a € A} as well is a member of H,
which is equivalent to the fact that the identity is in ¢, then <I> becomes a set of pairwise
orthogonal fixed-point-free group automorphisms of A. (Note that two fixed-point-free auto-
morphisms ¢ and n of 4 are called orthogonal, if ¢ 'n is also fixed-point-free. We con-
sider the identity as well as fixed-point-free.) As in (Bailey and Jungnickel 1990) we define

f(A) := maximal number of pairwise orthogonal fixed-point-free group
automorphisms of 4 containing the identity. (2.4)

Translation nets constructed with this automorphism method are called splitting translation
nets in (Bailey and Jungnickel 1990). By (2.3) it is clear that

T(A X A) = fA) + 2. (2.5)

We mention that we do not know any example where equality does nor hold in (2.5).
However, if IH contains at least three normal components, it is not difficult to show that
G is abelian (see (Sprague 1982)), hence all components are normal and we have always
equality in (2.5). The abelian case is completely solved by Bailey and Jungnickel (1990):

THEOREM 3. Let A be an abelian p-group of the form Z 'Z" X ... xZ", where m, # 0.
Then f(4) + 2 = T(A X Ay = p™ + 1, where m = mm{m li = 1 ,a, m; # 0}.

If A is as in Theorem 3 then a maximal set of mutually orthogonal fixed-point-free auto-
morphisms of A can directly be constructed by using a method developed by Jungnickel
(1989a) together with a direct product construction, a basic recursive method (see for ex-
ample (Jungnickel 1990)).

As the abelian case is completely solved, we give examples of nonabelian groups with
a large number of pairwise orthogonal fixed-point-free group automorphisms in Section 4
and prove (1.12) and (1.13). The series in (1.12) with g even and (1.13) are examples, where

f(A) is indeed as large as possible—there exists always a characteristic subgroup C of A

of order f(A4) + 1. (It is easy to see that f(4) < |S| ~ 1, where S is any characteristic
section of A—see again (Bailey and Jungnickel 1990).)
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3. Partial Congruence Partitions Containing One Normal Abelian Component

In this section we summarize some basic facts about the cohomology of groups (see
(Aschbacher 1986, § 17)) and use them later to show how partial congruence partitions
in a group G containing one normal abelian component A can be described in terms of
certain sets of automorphisms of G which fix A4 and ¢/, elementwise.

Tat A it aals Alat — « IJ 1 ini
Let A be a finite abelian group and let 7 : H — Aut(A) be a representation of the finite

group H as an automorphism group of A. Again let G := S(4, H, 7) be the corresponding
semidirect product of A by H with respect to 7. We write G multiplicatively and as usually
assume that 4 and H are subgroups of G and that 7 is the conjugation of 4 by elements
of H. Let I'(H, A) be the set of cocycles from H into A, that is (as in (2.2)) the set of
mappings v : H — A satisfying the cocycle condition

~(hihy) = y(h) y(hy) forall by, h, in H. (3.1)
I'(H, A) is an abelian group with respect to pointwise multiplication:
(6v)(h) := 6(h) y(h), for all 6, v € I'(H, A) and all h € H. (3.2)
There is a one-to-one correspondence between I'(H, A) and the set C of
complements of A in G;
C={S,:vy€T(H, A}, where S, := {hy(h) : h € H}. (3.3)
The mapping

A T(H, A) » Au(G)

Y= A, : G+~ G, ha ~» hy(ha 3.4)

is a monomorphism from I'(H, A) into Aut(G) (note that every element g in G can uniquely
be written as ha with h € H and a € A). Moreover the image of I'(H, 4) under A consists
exactly of the automorphisms of G which fix A and %/, elementwise:

UH, A) := AT(H, A) = {¢ € Aut(G): ¢(a) = a for all a in A4,
@(hA) = hA for all h in H}. (3.5)

Because of (3.3) U(H, A) acts regularly on the set of complements of 4 in
G—each complement of A in G is of the form ¢(H) where ¢ € U(H, A). (3.6)

Since ¢(hA) = hA for all h € H and all ¢ € U(H, A), we see that ¢(h) = ha for some
a in A. Therefore ¢(h) = ha € H N ¢(H) if and only if ¢(h) = h. We have:

For every ¢ € U(H, A) the intersection ¢(H) N H is exactly the set of
elements in H fixed by . 3.7
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By applying these results to 1 artial congruence partitions, observing that [¢(H) N y(H)|
= |n7! H) N H| for all automorphisms ¢ and 5 of G and using (2.3) we obtain the
following correspondence:

Let G be a group of order s2 A a normal abelian subgroup of G of order s
and H a complement of A in G. An (s, r)-PCP IH in G containing H and A
as components exists if and only if there exists a subset & of U(H, A) of
cardinality r — 1 satisfying the following properties: (3.8)

The identity of G is an element of &; (3.8.a)
n '@(H) N H = 1 for any two different automorphisms ¢ and  in . (3.8.b)

N a

The DPCP correspondine to & ig the set TH(d) = |
x LI O + AL \x / - l

LIk L 1 \v‘\lll\/\)y A4 lllé w -

Note that (3.8.b) is equivalent to

c dY L) f42
A x, t‘ Ja

e(H) N n(H) = 1 for any two different automorphisms ¢ and n in ®.) (3.8.c)

Before discussing some examples and proving (1.10) and (1.11), we mention thatif ¢ : 4 ~
Aut(G) is the conjugation of G by elements of A, then c(A4) is a subgroup of U(H, A) (note
that A is assumed to be abelian). The first cohomology group H!(H, A) of the extension
G of A by H with respect to 7 is defined as the factor group Y“#/_ . There is a one-to-
one correspondence between H!(H, A) and the set of conjugacy classes of complements
of A in G (see again (Aschbacher 1986, § 17)).

CONSTRUCTION 1. (¢% g + 1)-PCPs in certain nonabelian groups of order g4 where g is
any odd prime power.

Let ¢ be an odd prime power and let GF(g) denote the Galois field of order g with char-
acteristic p. We define a multiplication on the set G of 4-tupels over GF(g):

(ay, by, ¢\, d\) @y, by, 3, dy) := (a; + ay, by + by, ¢, + ¢, — ayby, dy + dy). (3.9)

It is not difficult to show that G together with this multiplication becomes a group.
Furthermore

(a, b, c,d) ' = (—a, —b, —c — ab, —d) and (3.10)

[(ay, by, ¢y, dy), @z, by, 3, dy)] = (0, 0, a;b, — ayb,, 0).
(As usually [x, y] denotes the commutator of x and y.) (3.11)

We summarize some facts about the structure of G and skip the details since they all
can easily be verified by using (3.9), (3.10) and (3.11).

G is nonabelian of order g* and exponent p. The center and the derived subgroup of
Gare Z(G) = {(0,0,c,d):c,d € GF(q)} and G’ = {(0, 0, ¢, 0) : ¢ € GF(q)} respec-
tively. Since G’ = Z(G), G is nilpotent of class two.
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We define a multiplication of elements of G by elements of GF(g):
* . GF(q) X G » G,

(A, (a, b, ¢, d)) = [ hNa, \b, \¢ — [;\] ab, N\d ],

...... ~—1

o~
(%)
—_—
[\
p—

AN 1\
AA — 1).

For the sake of simplicity we write A(a, b, ¢, d) instead of *(\, (a, b, ¢, d)). As G is
of class 2, the commutator mapping

[1:GXGwm G,y ~x,yl=x"1ylay
is “bilinear’” and skew-symmetric with respect to *, that is
[M)(pz), ¥1 = (Nx, yD(ulz, ¥D),

[x, A (2)] = (A[x, yD(ulx, z]) and

[y, x] = (=[x, y] = [x, y] ' hold for all x, y, z in G and all \, x in GF(g).
(3.13)

LetE, :=(1,0,0,0), E,:=(,1,0,0), £5:=(,0,1,0) and E, := (0,0, 0, 1). Then
(a, b, ¢, d) = (aE\)(bE,)(cE;3)(dEy). (3.14)

Hence, similar to the 4-dimensional vector space V(4, g) over GF(q), we can think of
G as a group consisting of all “linear combinations” of E;, E,, E; and E,, though * does
of course not satisfy the axioms of a scalar multiplication.

Now let 4 := {(a, 0, ¢, 0) : a, c € GF(q)} = {(aE\)(cE5) : a, ¢ € GF(q)} and H :=
{(0,b,0,d) :b,d € GF(q)} = {(bE,)(dE,) : b, d € GF(q)}. Both A and H are elementary
abelian subgroups of G which additionally are invariant under the multiplication with ele-
ments of GF(g). They have order ¢? and trivial intersection. Since G’ < A we see that
A is a normal subgroup of G and G is isomorphic to a semidirect product of H with A.
As above let U(H, A) be the group of automorphisms of G fixing 4 and ©/, elementwise.

We are now going to construct a subgroup of U(H, A):

If r € U(H, A), then ET = E,, E, = E; and E, E’, are of the form («E))E,(v,E;) =
(o, 1, vy, 0) and (v,E3)E, = (0, O, ,, 1) respectively for some «, v;, v, € GF(q). The
restriction that £ has no E)-coordinate follows from the observation that E, lies in H N
Z(G) and that therefore E;'E", has to be an element of 4 N Z(G) = G"

We choose therefore «, v, and vy, in GF(q) arbitrarily, define 7 := 7(«, 7y, v,) on the
set {E,, E,, E;, E,} in the above manner and extend 7 to an automorphism in U(H, A)
by defining
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(a, b, ¢, d) 1= (aE))(bE)(cEY)(dEY). (3.15)
More precisely, we obtain:
Let «, v, v, € GF(gq). The mapping

T(as Yi» 72) . G = G,

(a, b, ¢, d) ~ [a + ab, b, v,b — a[lz)j + ¢ + 7v,d, d]

is an element of U(H, A). (3.16)
Moreover,
T, . 1_.._“. PO ,‘1.‘1:-_ il
i:= 11 {, Yi> Y2) i &, Y1, Y2 € Ur\q); is an elemen tary aoc€iian suo-

group of order g3 of U(H, A) with respect to 7(c, v, v,) 7(B, 6, §,) :=
7(a + B, vy + 6;, y» + 6,). Furthermore every 7 in T respects multipli-
cation by scalars, i.e., (A\g)” = Ng") for all g € G and all N € GF(g). (3.17)

In view of (3.8) we want to find a subset ® of 7, as large as possible satisfying (3.8.a)
and (3.8.b). We therefore have to examine when 7 € T has a fixed point in H. The equation
0, b, 0, d)'*M7) = (0, b, 0, d) leads to the system

ab = 0,

If we choose now for example
= {r(\, 0, N) : \ € GF(g)}, (3.19)

then 7(A, O, A) has a nontrivial fixed-point in A if and only if A = 0. As ® is a subgroup
of T the conditions (3.8.a) and (3.8.b) are satisfied automatically and we obtain:

{H™ON .\ € GF(¢g)} U {4} is a (¢%, ¢ + D-PCP in G. (3.20)
This proves (1.10).

We finally show that no PCP IH in G containing 4 can have more than ¢ + 1 compo-
nents and that therefore the choice of ® above is best possible:

Every other component in IH — {4} is isomorphic to “/,, hence elementary abelian
of order ¢? (since G’ < A and exp(G) = p). An application of a factorization lemma in
(Hachenberger 1991) now shows that each component of IH meets Z(G) in a subgroup of
order g and since Z(G) has order g? these intersections build a PCP in Z(G) with the same
number of components. As Z(G) is elementary abelian we have T(Z(G)) = g + 1 by (1.5),

hence |H| < g + 1.
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CONSTRUCTION 2. (g3 g*> + 1)-PCPs in certain nonabelian groups of order g% where g
is any odd prime power.

Again let ¢ be an odd prime power and let GF(q) denote the Galois field of order g
with characteristic p. Now we define a multiplication on the set G of 6-tupels over GF(gq)
and proceed in a similar way as in Construction 1.

(a,, by, ci, X1, Y1, 20@2, bay Cay X3, Yo, 23) 1=

(@, + a,, by + by, ¢, + ¢3, X, + x5 — asby,

Vi + Vo = axey, 71 + 2 — byoy). (3.21)
Again, together with this multiplication G becomes a group.

(a b, c,x,v.2) ' = (—a, —b, —c, —x — ab, —y — ac, —z — bc). (3.22)

[(@1, by ¢y X1, Y1, 21)s (@2, By, €2y Xa, Y2, )] =

0, 0, 0, a,b, — ayb,, a,c, — a,c, b,c, — bycy). (3.23)

Some facts about G: G is nonabelian of order g% exponent p and class 2. G is a special

group with Z(G) = G' = ®(G) = {(0,0,0, x, ¥, 2) : x, ¥, z € GF(q)} (as usually &(G)

denotes the Frattini subgroup of G).
We again define a multiplication of elements of G by elements of GF(g):

Na, b, c,x,y,2):=

[Aa, Nb, Ac, \x — [;\] ab, \y — [;\j ac, \z — [;j bc]. (3.24)

Again, [*,*]: G X G - G, (x, y) = [x, y] is “bilinear’” and skew—symmetric with respect
to (3.24)
Let £, :=(1,0,0,0,0,0), ..., Eg:=(0,0,0, 0,0, 1), then

(a, b, ¢, x, y, 2) = (@E\NbE,)(CE)XEL)(YEs)(2Es). (3.25)

Let H:= {(a, b,0,x,0,0): a, b, x € GF(q)} = {(aE\)(bE,)(xE,) : a, b, x € GF(q)}
and 4 := {(0,0,¢,0,% 2 :c ¥ z€GF(@} = {(cE;)(YEs)(ZEs) : ¢, y, 2 € GF(q)}.

By using the commutator-formula (3.23) we see that A is elementary abelian of order
g? and normal in G. H is special of order ¢ with Z(H) = H N Z(G) = {(0,0, 0, x, 0, 0) :
x € GF(g)}. Furthermore, A and H are invariant under multiplication with scalars from
GF(q) and have trivial intersection.
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We are now going to determine a subgroup of U(H, A) as in Construction 1.

If 7 € U(H, A), then E7, E7 are of the form E,(y, E5)(n, Es) ({1 Ee) = (1, 0, ¥4, 0, 71, §1)
and E, (72 E3) (2 Es) (5 Ee) = (0, 1, 7,4, 0, 15, §) respectively. Since E, is the commutator
of E, and E,, E}, = [ET, E]] = (0, 0,0, 1, v,, —v1). E3, E5 and E¢ are elements of A4
and therefore fixed by 7.

Choosing vy, 11, {1, V2, M2, 2 arbitrarily in GF(q) and defining 7 := 7(y,, 11, {15 V2>

rrrrr RN

72, () on {E,, ..., E¢} as above, we extend 7 to an automorphism in U(H, A):

(@, b, ¢, x, y, 2)" = (@ET)GENCEDNEYE)REY)

=la,b,c+va+ vb,x,y+ ma+ n,b — v, [;] + X,

Moreover, similar to (3.17)

T:= {T(‘Yl’ T’I’ §-19 72’ 772a .?2) . 719 '71, g‘ls 72’ 7’29 g'z E GF((])} iS an ele'
mentary abelian subgroup of order g% of U(H, A) and each 7 in T respects

scalar multiplication. (3.27)

Here the determination of a large subset ® of T satisfying (3.8.a) and (3.8.b) is more
involved. Let 7 € T. The condition (a, b, 0, x, 0, 0)" = (a, b, 0, x, 0, 0) leads to a system
of equations which is more difficult to solve. This is due to the fact that H is nonabelian.

Y4 + v,b =0
_A)'ll ng + ')"2)6 + ‘:"la + rzb = 0
b
—-v(x + ab) — v, [2] + Ga + &HLb = 0. (3.28)

As E’; depends only on the parameters y, and v,, the largest subset & of T satisfying
(3.8.a) and (3.8.b) can have cardinality at most g2 Therefore each (g3 r)-PCP in G contain-
ino A can have at mnct 22 4+ 1 raomnonente Wa will chnaw that cuich a chnaire Af @ 1c indead
llls L5 WEALE LA TV WAL L1IUOC q [ i \/U.ll‘.llu.l..l\l‘.lm. FTYOW Y L4LL JLAIVYY UIUL JUVIL O VIAIVIVWS UL X 10 1INV
possible for every odd prime power g:

Let g be fixed now. We choose d € GF(q) such that the polynomial * — r — d is ir-
reducible in the ring GF(g)[#] of polynomials over GF(g) (observe that such a d does always

exist since 1 — 3 — ¢ is not surjective on GF(q)).
Define &, := {7, € T: i, j € GF(q)}, where
7= 1(—j, 0, =27G + j), i, —27'dj, 0). (3.29)

tYJ
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Then ®, is a subgroup of order g2 of T. In order to prove that &, satisfies (3.8.a) and
(3.8.b) it suffices to show that (3.28) has only the trivial solution (a, b, x) = (0, 0, 0) for
all 7; ; different from 79p. Let therefore (i, j) be different from (0, 0). Then (3.28) has the
form

ib —ja =

. . /-a-\ ~1

ix -J[—L2J+2 db 1= 0

. b -1 - -1

i [— [2]—2 al+jx+ab — 2""a) = 0. (3.30)

It is easy to see, that (3.30) has only the trivial solution, if i = 0 orj = 0. Let therefore

i and j be different from O and set 7 := /. We obtain
tb —a =0
@+ [‘2’] —27'db = 0
B
t[— LZJ — 2 1+x+ab-2""a=0. (3.31)

Using the first two equations, the parameters a and x can be expressed in terms of b
and ¢ only. After some simplifications the third equation then yields

b —t—d)=0. (3.32)

As 2 — t — d is assumed to be irreducible in GF(g)[#] we obtain b = 0 and therefore
a =x = 0 by (3.3]).
We have proved that &, satisfies (3.8.a) and (3.8.b) and therefore (1.11):

{r(H) : 7 € ®;} U {4} isa (¢*, ¢* + 1)-PCP in G. (3.33)

We close this section with some remarks. As above let p be an odd prime number. In
(Hachenberger 1991) it is proved that the only nonabelian p-groups of odd order satisfying
equality in (1.7) are G, := {a, b | @’ = b”* =1, [a, b] = a”), G, := { a, b, x, y |
exp(G,) = p, Z(G,) := {x, ¥), [a, b] = x) and the (unique) special group of order pf,
exponent p with center of order p* which we denote by G;. Furthermore PCPs with the
largest possible number of components are given for each of these groups in (Hachenberger
1991). If g = p in Constructions 1 and 2, we obtain groups isomorphic to G, and G; respec-
tively. Therefore our series above are generalizations of these two particular examples. If
one also wants to generalize the metacyclic example G,, one has to examine the groups

Gn) := (a, b | " = P = 1,[a, b] =a"y, n=1.
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Since (G (n)) is of order pz”“z, G (n) has exactly p + 1 maximal subgroups. By (1.2)
different components lie in different maximal subgroups. Therefore we have T(G(n)) <
p + 1. Hence a generalization of the metacyclic example does not lead to a serics of large
translation nets. Using a construction based on the ideas outlined in this section, one can
show that indeed T(G(n)) = p + 1 for all integers n = 1.

In particular our constructions show that there exist nonabelian groups of order p® and
p'? containing (p4 p? + 1)- and (p% p* + 1)-PCPs respectively. Furthermore in most of
the known examples the sizes of maximal PCPs (that are PCPs which cannot be enlarged
by adding a further component) are of the form pF + 1. The bound (1.6) is therefore rea-
sonably good in these smaller cases. It would be nice to know whether there exist nonabelian
groups of order p'° containing (p°, p> + 1)-PCPs. However, Construction 2 shows that the
required calculations can become very involved.

Of course the methods explained in this section can be used for constructions of PCPs
in 2-groups, too. But as nonabelian 2-groups have exponent at least 4 it is not clear how
to build series from small examples. We remark that the pair (H, A) = (EA4), EA4))
does not give (4, 3)-PCPs and (D,, EA(8)) and (Qg, EA(8)) do not lead to PCPs with more
than 3 components (the latter follows also from results on groups of 64 in (Gluck 1989
and Sprague 1982)). (Here D, and Q3 denote the dihedral and the quaternion group of
order 8 respectively.) In view of our results nonabelian p-groups of class 2 and exponent
p seem to be very interesting (note that necessarily p is odd then).

If A is nonabelian the set I'(H, A) of semi-isomorphisms from H to A is no longer a
group. Hence one does not have such a nice characterization of I'(H, A4) as in (3.5). The
direct construction of semi-isomorphisms as well as the search for systems of pairwise
orthogonal semi-isomorphisms therefore seems to be more difficult (observe that in our
éxamples the orthogonality could be proved very easily as the corresponding sets of automor-
phisms formed subgroups of U(H, A)).

4. Nonabelian Groups with a Large Number of Pairwise Orthogonal Fixed-Point-Free
Group Automorphisms

In this section we give among other things examples of nonabelian p-groups A which admit
as many pairwise orthogonal fixed-point-free group automorphisms as possible. As men-
tioned in Section 2 this leads to so-called splitting translation nets with translation group
A X A, where the number r of parallel classes is equal to f(4) + 2 (see (2.4) for the
definition of f(A)).

We first discuss examples of nonabelian p-groups where f(4) = \/m — land f(A) =
W — 1. In order to give an idea, where one can find examples of groups with a large
number of pairwise orthogonal fixed-point-free automorphisms, we start with some remarks
on permutation groups. All results from group theory we need in this section can be found
in (Huppert 1967; Huppert and Blackburn 1982; Huppert and Blackburn 1983).

T at fMNha o $ gearIee ndiemes O 3 fmAtetmat b bt aan vaenzzam e o Kraalida oad PR |
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subgroup A which acts sharply transitively on 2, then G is isomorphic to a semidirect prod-
uct of G, with A, where G, denotes a stabilizer of a point w of . Moreovcr the action
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of G, as an automorphism group on A4 (the conjugation of A4 by elements of G,) is equiva-
lent to the action of G, on Q (see (Huppert 1967, Chap. II, 2.2)).
We are interested in the following situation:

Assume that G, has a proper subgroup U which contains all automorphisms which
fix an element of 4 — {1}. Then each set of representatives of left cosets of U in
G, containing 1 is a set of pairwise orthogonal fixed-point-free group automorphisms
of A. In particular, by (2.5), we obtain

TA X A) = f(A) +2=|G,:U| + 2. 4.1)

An investigation of the Suzuki groups Sz(g), the projective unitary groups PSU(3, ¢?)
and the Ree groups R(g) as doubly transitive permutation groups leads to examples where
the above situation occurs and where A is always a nonabelian p-group.

Example 1. (2*", 2" + 1)—splitting translation nets with nonabelian translation groups of
order 2*", where n = 3 is any odd integer.

Let m > 0 be an integer, g := = 2?"*! and K := GF(q) the Galois field of order g. Let
T: K~ K, x+~ " be the unique automorphism of K satisfying x™ = x? for every
x in K. Consider the set

= {pPw} U {pr, : x, y € K} of points of the 3-dimensional projec-
tive space IP(3, K) over K, where p, , := {(xy + x"x2 + y", y, x, 1))
and p,, := (1, 0, 0, 0)). 4.2)

The subgroup G := Sz(q) of GL(4, K) which induces the group of collineations of
IP(3, K) leaving Q invariant is called the Suzuki group over GF(q). (Sz(2*™*1),-, is a

series of finite simple grouns discovered bv Suzuki (1962). We list some well known proper-

Shiad Wi it SLAPAY SAUMES WASWUTVA U aPnia il \ AV A vre 2200 SR WAL AW

ties of G (see (Huppert and Blackburn 1983, Chap. IX, § 3) for details; we refer the reader
as well to (Luneburg 1965; 1980), where the geometry of the Suzuki groups is studied
extensively).

G acts as a Zassenhaus group on Q, hence G is doubly transitive, has no regular normal
subgroup and only the identity fixes more than 2 elements of Q. Therefore the stabilizer
G, of the point p,, is a Frobenius group on  := Q — {p,} (see (Huppert 1967, Chap.
V, § 8) for the definitions and more details about Frobenius groups). The Frobenius kernel
A of G, consists of the following collineations of IP(3, K) (represented as matrices over
K):

= {s(a, b) : a, b € K}, where

( 1 0 0 01

‘ 1 0 0 (A 2y

sla, i = Z ar 1 BE 4.3)
aa™ + ab + b” aa™ + b a 1
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The group H of diagonal matrices of the form
AN 2= diag\ 2, N AT AT for A € K (4.4)

is a Frobenius complement of A in G,,. Hence the whole group H acts fixed-point-freely

- A nenAd sxin
I1 A dlild wt U

@)

T(A X A = |H +2 =gq + 1. 4.5)

A is a nonabelian special group of order g2 = 2*"** with center of order g. Since f(4)
< f(Z(A)) < q — 1 the set H of pairwise orthogonal fixed-point-free group automor-
phisms above is as large as possible. Therefore f(4) = ¢ — 1 and we obtain a series of
(g% g + 1)-PCPs in nonabelian groups of order ¢g* where ¢ = 8 is any odd power of 2.

Example 2. (g% q + 1)—splitting translation nets with nonabelian translation groups of
order ¢°

Let p be a prime and g := p™ any power of p, m = 1. Let K := GF(q? and K, :=
GF(q) be the Galois fields of order g2 and g respectively. Let 7 : K — K, x ~ x be the
unique involution in the automorphism group of K and let IP(2, K) be the classical projec-
tive plane over K. Then 7 induces a polarity on IP(2, K) and the set Q of absolute points
in IP(2, K) with respect to 7 has cardinality g*> + 1. The projective unitary group G :=
PSU (3, g?) acts as a permutation group on Q and has the following properties (see (Huppert
1967, Chap. II, § 8) for details).

If ¢ > 2, then G is a simple group. In all cases G acts doubly transitively on Q. The
point stabilizer G, of a point w in Q has a regular normal subgroup A4 (of order g%). As
a matrix group A has the form

A:={u(a,b):a,beK, b+ b + ad = 0},

1 a b

where u(a, b) :=| 0 1 —a’ |. 4.6)
0 0 1

H:= {h(\) : N € K}, where A(\) = diag(A\™", N}, \) 4.7

is cyclic of order g2 — 1 and acts as an automorphism group on A.

The action of H on A can be described by
hON) " 'u(a, b) RN = u(N¥ " a, N7 1p). (4.8)

Assume that #(\) fixes an element u(a, b) different from u(0, 0) in A. Then A*? 7 'a = a
and N?7'b = b. If b = 0 then a # 0 hence N9~ = 1. Therefore the order of A divides
ged(g> — 1,2 — 1) = ged(q + 1, 2g — 1). If b # 0 then \9*! = 1 and the order of
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A divides g + 1, too. Therefore A lies in any case in the unique subgroup U of order g + 1
of H. Conversely it is clear that #(\) fixes a nonidentity element of A if X\ is a (¢ + Dst
root of unity in K. As mentioned in (4.1), each set of representatives of left cosets of U
in H containing A(l) is a set of pairwise orthogonal fixed-point-free group automorphisms
of A. We therefore have

TAX A =fA)+2=H:U +2=qg9+1
and obtain a (g3 g + 1)-PCP in A X A by using the automorphism method.

This proves (1.13) since A4 is nonabelian. We remark that A4 is a special group with center
of order g. As in Example 1, we have f(4) = f(Z(A)) = g — 1, hence the sets of pairwise
orthogonal fixed-point-free group automorphisms above are again as large as possible.

If g is odd, then A is of exponent p. If g is even, then Z(A4) — {u(0, 0)} is exactly the
set of involutions of 4 and H permutes this set cyclically. If in addition ¢ > 2 then A has
more than one involution and satisfies therefore the properties of a so-called Suzuki 2-group
(see (Higman 1963; Huppert and Blackburn 1982, Chap. VII, § 6, 7) for more details about
Suzuki 2-groups). We mention that the groups 4 in Example 1 are likewise Suzuki 2-groups.
Suzuki 2-groups are special 2-groups and their centers consist exactly of the elements of
order at most 2. They are classified by Higman (1963). There exist four families, three
of which contain nonabelian groups of order #*> with center of order ¢, where # are certain
powers of 2 (see (Higman 1963) for details). All such groups lead to (3 ¢ + 1)-PCPs by
using the automorphism method. In the next example, which proves (1.12), we are going
to study a family of matrix groups which are a generalization of the fourth family of Suzuki
2-groups in (Higman 1963) (we also consider matrices over fields of odd characteristic).

Example 3. (g% (g — 1) * gcd(q — 1, 2)7! + 2)—splitting translation nets with nonabelian
translation groups of order ¢* where ¢ = p” is a prime power and 7 is not a power of 2.

Let p be a prime and n > 1 an integer which is not a power of 2. Let F := GF(q)
be the Galois field of order g := p" and 7 # id any automorphism of F of odd order.

Let k denote the order of 7. Assume that xx” = 1 for some x in F*. Then x = x" =
xY = x7! and therefore x> = 1, hence x € {1, —1}.

(1 a bw
A(n, 7) := {u(a, b) : a, b € F}, where u(a, b) := tO i a 4.9)
0 0 1

is a group of order ¢? and center Z(A(n, 7)) = {u(0, b) : b € F} of order gq.

Let H:= {h(\) : A € F'} where A(\) := diag(1, N\, A\7). Then H acts as an automo:-
phism group on A(n, 7):

u(a, bYM 1= h(\) 'u(a, bH)h(\) = u(ha, AN\"b). (4.10)
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If h(\) has a fixed point u(a, b) different from u(0, 0) in A(n, 7), then A\a = a and
M’b=b.1fb =0thena # Oand N\ = 1;if b # O then A\\" = 1 and A € (—1) by
the remark above. As H is isomorphic to F*, a further application of (4.1) shows

T(A(n, 7) X A(n, 7)) = f(An, 7)) + 2 = (@ — 1) * ged2, g — H)7' + 2

and this proves (1.12).

Note that f(A(n, 7)) = q — 1, if q is even. Furthermore in this case A(n, 7) is one of
the Suzuki 2-groups of the fourth family in (Higman 1963) and the number of mutually
orthogonal fixed-point-free group automorphisms again is as large as possible.

We are now giving a final example for situation (4.1). The Ree groups, a further series
of finite simple groups (discovered by Ree in (1961)), as well lead to splitting translation
nets with a remarkably large number of parallel classes.

Example 4. (g% Y2(q + 3))—splitting translation nets with nonabelian translation groups
of order g% where g > 3 is any odd power of 3.

Let n = 1 be an integer and ¢ = 32"*!. The Ree group R(g) is a simple group of order
(¢> + 1) ¢*(qg — 1) which is doubly transitively of degree g* + 1 (see (Huppert and Blackburn
1983, Chap. XI, § 13) for details). The stabilizer of a point has a regular normal subgroup
A which is isomorphic to the group of all triples (x, y, z) over GF(g) with multiplication

X1, yis 2)X25 Y2, 25) =

e+ x3, y1 F Y2+ XXy, 2 2 — Xy, oy, — xXx), 4.11)

n+1 .
where 7 : GF(q‘) -~ GF \q} X X3 . The buugluup A is nonabelian of order q‘3 with
center of order q. Let H be the stabilizer of two points. H is cyclic of order ¢ — 1. If

= {h(\) : X € GF(q)"}, the action of H on A can be described by
&, y, ' = (\x, >\1+3"+1y, )\2+3"+‘Z). 4.12)

Assume that #(N) has a fixed point (x, y, z) different from (0, 0, 0). If z # 0 then the order
of A divides ged(2 + 3"*!, 32"*1 — 1) = 1, hence A = 1. (Observe that 1 = (=3"*! + 2)
(3™ +2) + 3% — 1)) If y # 0 then the order of \ divides gcd(3"™" + 1, 32"*! — 1)
= 2, hence A = 1 or A = —1 (observe that {(0, y, 0) : y € GF(q)} is fixed if A\ = —1).
If x # 0 then A = 1. Therefore any automorphism in H fixing a nontrivial element of A
lies in {h(1), A(—1)}, the unique subgroup of order 2 in H. Using once more (4.1), we obtain

TAX A) = f(A) +2 = | H: ((-1D)| +2 =Yg+ 3)
and therefore the desired series of (¢ Y2(g + 3))-splitting translation nets with nonabelian

translation groups of order g& The best known upper bound for f(4) which is |Z(4)| — 1 =
g — 1 1s not met in this example.



236 D. HACHENBERGER

We finally remark that similar to the Suzuki groups and the projective unitary groups
in Example 1 and 2 the geomeiry of the Ree groups was studied exiensively (see for exam-
ple (Luneburg 1966) and (Tits 1960). (Luneburg 1967) is a survey about group theoretic
methods in geometry in general.
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