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ACEseq is a computational tool for allele-specific copy number estimation in tumor genomes 28 

based on whole genome sequencing. In contrast to other tools it features GC-bias correction, 29 

unique replication timing-bias correction and integration of structural variant (SV) breakpoints 30 

for improved genome segmentation. ACEseq clearly outperforms widely used state-of-the art 31 

methods, provides a fully automated estimation of tumor cell content and ploidy, and 32 

additionally computes homologous recombination deficiency scores. 33 

 34 

Copy number aberrations (CNAs) play an important role in tumorigenesis and are often used 35 

to subgroup cancer entities. Whole genome sequencing (WGS) identifies CNAs at 36 

unprecedented resolution, but poses challenges to CNA calling algorithms such as non-37 

random errors and coverage biases1. Changing degrees of genomic complexity, tumor 38 

heterogeneity, varying tumor cell content (TCC) and aneuploidy are further challenges when 39 

analyzing tumor genomes. 40 

Many modern tools combine tumor/control coverage ratios with B-allele frequencies (BAF) of 41 

heterozygous SNPs2,3. Some tools correct for GC bias, a major source of noise in the 42 

coverage signal4, and allow for the incorporation of SV breakpoints to assist segmentation5. 43 

However, to the best of our knowledge, none of the available tools provides all of the above-44 

mentioned features. 45 

Here, we present ACEseq, a tool to estimate absolute allele-specific copy numbers on WGS 46 

data. ACEseq involves coverage bias correction, genome segmentation allowing the 47 

incorporation of previously known breakpoints, TCC and ploidy estimation, and absolute 48 

allele-specific copy number calculation to enable fully automated CNA calling on cancer WGS 49 

data without prior information requirements.  50 

The first step of ACEseq performs coverage bias correction, which significantly reduces noise 51 

levels (Figure 1). Noisy coverage profiles as depicted in Figure 1A cause over-segmentation 52 

and can mask CNAs. While GC bias correction greatly reduces noise, a remaining fluctuation 53 

of the signal is still observed in the shown sample (Figure 1B). This fluctuation can be 54 

attributed to replication timing coverage bias, which is particularly prominent in fast-replicating 55 

tumors6 (Supplementary Figure 1). Due to cells in S-phase these samples show a higher 56 

average coverage in early replicating regions than late replicating regions, as the fraction of 57 

cells with already replicated DNA at early loci is higher. Correction for replication timing bias 58 

further smoothens the coverage profile considerably, enabling more robust genome 59 

segmentation in the next step (Figure 1C). 60 
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During the coverage bias correction steps ACEseq records statistical parameters that carry 61 

technical and biological information about the sequenced samples. Both bias correction steps 62 

are based on loess curve fitting (Supplementary Methods). Slope and curvature of the fitted 63 

GC curve (Figure 1D) indicate the magnitude of the bias. Differences in GC bias between a 64 

tumor sample and its matched healthy control indicated by these quality metrics likely affect 65 

sensitivity and specificity of the variant calling procedures for mutation types like insertions 66 

and deletions (INDELs) and single nucleotide variants (SNVs) due to differences in coverage1. 67 

The full width half maximum (FWHM) captures the evenness of coverage (Figure 1E, 68 

Supplementary Methods). For the vast majority of analyzed samples the FWHM decreases 69 

drastically with GC bias correction (Figure 1F, øreduction=28%) and even further with additional 70 

replication-timing correction (Figure 1G, øreduction=6%). The FWHM after bias corrections 71 

indicates remaining coverage fluctuations and hence serves as direct quality parameter for 72 

CNA calling. Notably, it also helps to assess the quality of sequencing libraries, a feature that 73 

has been used routinely by the International Cancer Genome Consortium PanCancer 74 

Analysis of Whole Genomes (ICGC PCAWG) community7. Experimental proof for the 75 

reliability of the slope from the loess curve fitted for replication-timing correction (Figure 1H) 76 

as estimator of the tumor proliferation rate could be demonstrated with KI-67 estimates, 77 

where we could show a significant correlation (n=147 germinal center derived B-cell 78 

lymphomas, p-value < 0.01, Figure 1I). 79 

We often observed extremely noisy coverage profiles in matched controls from projects 80 

outside the ICGC MMML-Seq, possibly due to wrong handling of blood samples, preventing 81 

accurate copy number calls based on tumor/control ratios. For such samples ACEseq offers 82 

an option to replace the coverage signal from the matched control with an independent 83 

control whilst still maintaining the BAFs of the matched control. This control replacement 84 

option enables full analysis of these sample pairs including reliable discrimination between 85 

runs of homozygosity (ROH) in the germline and somatic loss of heterozygosity (LOH). 86 

Furthermore ACEseq can be run without matched control enlarging the spectrum of samples 87 

that can be processed.  88 

Parallel to coverage correction SNPs are haplotype-phased to increase the sensitivity of 89 

allelic imbalance detection. Subsequently, ACEseq segments the genome based on changes 90 

in the BAF and tumor/control coverage ratio. Previously known breakpoints from SV calling 91 

algorithms such as DELLY8 or SOPHIA (manuscript in preparation) can be incorporated. 92 
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Resulting raw genomic segments are clustered and merged when indicated to reduce 93 

oversegmentation (Supplementary Figure 2, Supplementary Methods).  94 

Final segments are used for TCC, ploidy and copy number estimation. The final copy number 95 

data are visualized for inspection and validation of the analysis (Supplementary Figure 4). 96 

Additionally, genomic measures well known to be significantly associated with homologous 97 

recombination (HR) defects are computed: the homologous recombination deficiency (HRD)-, 98 

the large scale transition (LST)9- and the telomeric allelic imbalances (TAI)10-score. A 99 

connection between these parameters and treatment response to platinum containing 100 

neoadjuvants and poly-ADP-ribose polymerase (PARP) inhibition has been recently 101 

indicated11–14.  102 

To evaluate ACEseq’s performance we compared it to ABSOLUTE3 (SNP array) as well as 103 

TITAN15 and THetA16 (WGS) using 11 B-cell lymphoma samples from the ICGC MMML-seq 104 

project17 selected based on the  availability of SNP array data from germline DNA. First, we 105 

compared ploidy and TCC predictions of the tools (Supplementary Table 1). Fluorescence in 106 

situ hybridization (FISH) analyses were taken as gold standard for ploidy estimations. Here, 107 

ACEseq, TITAN and ABSOLUTE showed very similar concordance with FISH based ploidy 108 

assessments.  Since no gold standard for TCC was available, a comparison with an 109 

orthogonal method was used: the median mutant allele frequencies (MAF) from somatic 110 

SNVs in diploid balanced regions (Supplementary Methods). While this measure can be 111 

affected by the presence of subclonal SNVs, it can be considered as a lower boundary for the 112 

true TCC. We observed that ACEseq was able to predict the TCC with highest accuracy 113 

compared to the other tools based on the number of samples deviating less than 10% from 114 

MAF-based estimates (Supplementary Table 1).  115 

Next we compared fractions of the genome with copy number gain and loss (Figure 2). Most 116 

tools reported similar fractions of gains and losses with the exception of THetA. THetA 117 

deviated strongly from the other methods in several samples, probably due to strong 118 

differences in TCC estimations. TITAN and ABSOLUTE only deviated from the ACEseq 119 

results in one sample each. A further investigation of these revealed that sample 4121361 120 

was estimated at much higher TCC by ABSOLUTE, which requires a larger change in 121 

coverage for a segment to be called as gain. The other sample (4112512), called with higher 122 

fraction of gains by TITAN, was strongly affected by replication timing bias. Though ploidy and 123 

TCC were estimated at similar levels, the concordance of allelic as well as total copy number 124 

level was very low (Supplementary Table 2). TITAN and THetA showed a considerably higher 125 
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number of segments than ACEseq (factor 2-5x higher) for this particular sample, suggesting 126 

that replication timing-dependent coverage bias led to oversegmentation. Resulting small 127 

segments, reflecting peaks and valleys of the noisy raw coverage track, would then be 128 

assigned to different copy number states. Titan and THetA increased the fraction of amplified 129 

genome from less than 3 % as determined by ACEseq and ABSOLUTE to 29% and 42%, 130 

respectively. No indications for this reported increased fraction were found in the raw 131 

coverage data (Figure 1A). Furthermore, the sample’s karyotype (46,X,-132 

X,del(3)(p14p24),t(8;14)(q24;q32),+del(12)(q15)[10]/46,XX[1]), matched the ACEseq copy 133 

number predictions, demonstrating better estimates by ACEseq. Only ABSOLUTE showed 134 

results similar to ACEseq for this sample, though its TCC estimation was 68% below the 135 

ACEseq and the MAF-based estimate.  136 

For a more detailed comparison we calculated the overall concordance of copy number calls 137 

for both total and allele-specific copy numbers (Supplementary Table 2). Strikingly, the 138 

highest concordance was observed between ACEseq and ABSOLUTE (average agreement 139 

Ø=0.96) emphasizing the robustness of the copy number calls as these methods use a 140 

different, independent data basis with WGS and SNP arrays, respectively. The concordance 141 

of ACEseq with the WGS-based methods was much smaller (average agreement: THetA 142 

Ø=0.45, TITAN Ø=0.84), though it increases to 0.91 for TITAN upon removal of the fast 143 

replicating sample 4112512 further confirming ACEseq copy number calls. Results from 144 

THetA differed substantially from ACEseq in 7 out of 11 samples, in which THetA reported 145 

much higher fractions of the genome as gained or lost. Again this is probably related to the 146 

strongly deviating TCC estimates and over-segmentation. 147 

Overall, these results demonstrate the good performance of ACEseq in fully automated TCC 148 

and ploidy as well as allele-specific copy number estimation. ACEseq clearly benefits from its 149 

unprecedented integration of many and partially new features into a single tool. Even though 150 

ABSOLUTE and TITAN performed on a similar level for many of the samples they bear 151 

several shortcomings. ABSOLUTE always offered multiple TCC/ploidy solutions, reaching up 152 

to more than 40 possible solutions for one sample. The desired solution had to be extracted 153 

manually from an R-object and required further manual interaction. TITAN resulted in very 154 

good TCC estimation with the downside that the ploidy needs to be set in advance. Testing 155 

different ploidies requires multiple runs per sample. Additionally a strong replication timing 156 

bias caused problems for TITAN leading to over-segmentation and subsequently larger 157 

fractions of segments assigned as a gain or loss.  158 
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In conclusion, ACEseq provides a novel analysis platform for fully automated CNA calling on 159 

cancer WGS data without the requirement of prior information or any necessity for manual 160 

interference. By integrating GC and replication timing bias correction it improves 161 

segmentation and CNA calling performance compared to other tools. Importantly, it further 162 

provides quantitative metrics, which have been widely used for automatized quality control in 163 

large-scale pan cancer WGS projects. ACEseq is comprehensively documented under 164 

aceseq.readthedocs.io and freely available at https://github.com/eilslabs/ACEseqWorkflow.   165 
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Figure 1. GC- and replication-timing bias correction and QC. Coverage profile for 10 kb 
windows before correction (A), after GC-bias correction (B), and after GC- and replication 
timing-bias correction (C). D: GC-bias correction curve fitted to the raw data shown in A, to 
firstly identify the main copy number state windows (red points) before a second curve is fitted 
used for correction of the bias. E: GC-corrected coverage distribution used for FWHM 
estimation.  Comparison of FWHM estimates prior to and after GC bias (F) and replication-
timing bias (G) correction for 219 lymphoma samples.  H: Replication-timing bias correction 
curve estimating the replication speed. I: Comparison of KI-67 and estimated replication-
timing slope. Sample 4112512 shown in panel A-E & H and is marked by a red triangle in F, 
G & I. RT: replication timing; Cov: coverage; FWHM: full width half maximum. 
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Figure 2: Comparison of gained (A) and lost (B) fraction of the genome for 11 B-cell 
lymphoma samples. The fraction called by ACEseq is compared to the other three callers. 
Two samples that deviate strongly for ABSOLUTE and TITAN are marked with the sample ID. 
TITAN: blue, THetA: black, ABSOLUTE: red. 
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