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1. Motivation and introduction

In many experiments, notably in biology, ecology and psychology, several endpoints, potentially measured on different
scales, are recorded per subject. As an example, we consider a data set on the 2016 presidential elections in the USA
containing demographic data on counties from the US census. Suppose, for illustration purposes, that wewish to investigate
whether the states differ with respect to some demographic factors. In addition to unequal empirical covariance matrices
between groups, the analysis is complicated by their singularity.

The analysis of such multivariate data is typically based on classical MANOVA models assuming multivariate normality
and/or homogeneity of the covariance matrices; see, e.g., [1,12,13,18,23,32,41]. These assumptions, however, are often
not met in practice – as in the motivating example – and it is well known that the methods perform poorly when the
data are heterogeneous [21,37]. Furthermore, the test statistic should be invariant under scale transformations of the
components, since the endpoints may be measured on different scales. Thus, multivariate ANOVA-type test statistics (ATS)
as, e.g., proposed in [4] and studied in [14], are only applicable if all endpoints are measured on the same scale, i.e., for
repeated-measure designs.

Assuming non-singular covariancematrices and certainmoment conditions, scale invariance is typically accomplished by
resorting toWald-type test statistics (WTS). However, inference procedures based thereon require (extremely) large sample
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sizes to be accurate; see [21,34,38]. In particular, even the novel approaches of Konietschke et al. [21] and Smaga [34] tend
to be liberal for skewed distributions. Moreover, their procedures cannot be used to analyze our motivating data example
with possibly singular covariance matrices. Therefore, we follow a different approach by modifying the above mentioned
ANOVA-type statistic (MATS). It is motivated by the modified Dempster statistic proposed by Srivastava and Kubokawa [36]
for high-dimensional one-way MANOVA. This statistic is also invariant under changes in units of measurement for the null
hypotheses considered. However, until now, it has only been developed for a homoscedastic one-way setting assuming
non-singularity and a specific distributional structure that is motivated by multivariate normality.

It is the aim of the present paper to modify and extend the approach of Srivastava and Kubokawa [36] to factorial
MANOVA designs, incorporating general heteroscedastic models. In particular, we only postulate the existence of the group-
wise covariance matrices, which may even be singular. The small-sample behavior of our test statistic is enhanced through
bootstrap techniques as in [21]. Thereby, the novel MATS procedure enables us to relax the usual MANOVA assumptions in
several ways.While incorporating general heteroscedastic designs and allowing for potentially singular covariancematrices,
we postulate their existence solely through a distributional assumption, i.e., only finite second moments are required.
Moreover, we gain a procedure that is more robust against deviations from symmetry and homoscedasticity than the usual
WTS approaches.

So far, only few approaches have been investigatedwhich do not assumenormality or equal covariancematrices (or both).
Examples in the nonparametric framework include the permutation based nonparametric combination method [30,31] and
the rank-based tests presented in [5,6] for split plot designs and in [2,26] for MANOVA designs. However, these methods
are either not applicable for general MANOVA models or based on null hypotheses formulated in terms of distribution
functions. In contrast we wish to derive inference procedures (tests and confidence regions) for contrasts of mean vectors.
Here, beside all previously mentioned procedures, only methods for specific designs have been developed; see [10] for two-
sample problems, [39,40] for robust but homoscedastic one-wayMANOVA or [16] for a particular two-wayMANOVA. To our
knowledge, mean-based MANOVA procedures allowing for possibly singular covariance matrices have not been developed
so far.

The paper is organized as follows. In Section 2we describe the statisticalmodel and hypotheses. Furthermore, we propose
a new test statistic, which is applicable to singular covariance matrices and is invariant under scale transformations of the
data. In Section 3, we present three different resampling approacheswhich are then used for the derivation of statistical tests
as well as confidence regions and simultaneous confidence intervals for contrasts in Section 4. The different approaches
are compared in a large simulation study (Section 5), where we analyze different factorial designs with a wide variety of
distributions and covariance settings. The motivating data example is analyzed in Section 6 and we conclude with some
final remarks and discussion in Section 7. All proofs are deferred to the Online Supplement, where we also provide further
simulation results and the analysis of an additional data example.

2. Statistical model, hypotheses and test statistics

Throughout the paper, we will use the following notation. We denote by Id the d-dimensional unit matrix and by Jd the
d × d matrix of 1s, i.e., Jd = 1d1⊤

d , where 1d = (1, . . . , 1)⊤ is the d-dimensional column vector of 1s. Furthermore, let
Pd = Id − d−1Jd denote the d-dimensional centering matrix. By ⊕ and ⊗ we denote the direct sum and the Kronecker
product, respectively.

In order to cover different factorial designs of interest, we consider the general model

Xik = µi + ϵik

for treatment group i ∈ {1, . . . , a} and individual k ∈ {1, . . . , ni}, on which we measure d-variate observations. Here
µi = (µi1, . . . , µid)⊤ ∈ Rd for all i ∈ {1, . . . , a}. A factorial structure can be incorporated by splitting up indices; see, e.g., [21].
For fixed i ∈ {1, . . . , a}, the error terms ϵik are assumed to be independent and identically distributed d-dimensional random
vectors, for which the following conditions hold:

(1) E(ϵi1) = 0 for all i ∈ {1, . . . , a}.
(2) 0 < σ 2

is = var(Xiks) < ∞ for all i ∈ {1, . . . , a} and s ∈ {1, . . . , d}.
(3) cov(ϵi1) = Vi ≥ 0 for all i ∈ {1, . . . , a}.

Thus, we only assume the existence of second moments. For convenience, we aggregate the individual vectors into
X = (X⊤

11, . . . ,X
⊤
ana )

⊤ as well as µ = (µ⊤

1 , . . . ,µ⊤
a )

⊤. Denote by N = n1 + · · · + na the total sample size. In order to
derive asymptotic results in this framework, we will assume throughout the usual sample size condition, viz.

∀i∈{1,...,a} lim
N→∞

ni/N = κi > 0.

An estimator for µ is given by the vector of pooled group means X i· = (Xi1 + · · · + Xini )/ni for all i ∈ {1, . . . , a}, which we
denote by X · = (X

⊤

1·, . . . ,X
⊤

a·)
⊤. The covariance matrix of

√
N X · is given by

ΣN = cov(
√
N X ·) = diag (NVi/ni : 1 ≤ i ≤ a) ,
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where the group-specific covariance matrices Vi are estimated by the empirical covariance matrices

V̂i =
1

ni − 1

ni∑
k=1

(Xik − X i·)(Xik − X i·)⊤

resulting in Σ̂N = diag(NV̂i/ni : 1 ≤ i ≤ a).
In this semi-parametric framework, hypotheses are formulated in terms of the mean vector as H0 : Hµ = 0, where H

is a suitable contrast matrix, i.e., H1ad = 0. Note that we can use the unique projection matrix T = H⊤(HH⊤)+H , where
(HH⊤)+ denotes the Moore–Penrose inverse of HH⊤. One has T = T 2, T = T⊤, and Tµ = 0 ⇔ Hµ = 0; see, e.g., [7].

A commonly used test statistic for multivariate data is the Wald-type statistic (WTS)

TN = NX
⊤

·
T (T Σ̂NT )+TX ·, (1)

which requires the additional assumption

(3’) Vi > 0 for all i ∈ {1, . . . , a}.

It is easy to show that under H0 : Tµ = 0, the WTS has, as N → ∞, a χ2
f distribution with f = rank(T ) degrees of freedom

if the above conditions (1)–(3’) hold. However, large sample sizes are necessary to maintain a pre-assigned level α using
quantiles of the limiting χ2 distribution.

Konietschke et al. [21] proposed different resampling procedures in order to improve the small-sample behavior of
the WTS for multivariate data. Therein, a parametric bootstrap approach turned out to be the best when the underlying
distributions are not too skewed and/or too heteroscedastic. In these cases, all considered procedures were more or less
liberal. Moreover, assuming only (3) instead of (3’) for the WTS would generally not lead to a χ2

f limit distribution.
This is because of possible rank jumps between T Σ̂NT , TΣT and T . To see this, suppose that rank(TΣT ) = 2, while

rank(T ) = 4; this corresponds to Scenario S5 in the simulation studies below. If additionally

lim
N→∞

rank(T Σ̂NT ) = rank(TΣT ) = 2,

we have that the WTS follows, asymptotically, a χ2
g distribution under the null hypothesis, where g = rank(TΣT ) = 2. The

Wald-type test, however, compares TN to the quantile of a χ2
4 distribution. Thus, for a chosen significance level of α = 0.05

this results in a true asymptotic (N → ∞) type-I error of Pr(TN > χ2
4;0.95) ≈ 0.0087, i.e., a strictly conservative behavior

of the test. Here χ2
f ;1−α denotes the (1 − α)-quantile of the χ2

f distribution. Similarly, for α = 0.1 and α = 0.01 we obtain
asymptotically inflated type-I error rates of 0.02 and 0.0013 (both again conservative), respectively. Moreover, the situation
is even more complicated since limN→∞ rank(T Σ̂NT ) = rank(TΣT ) is neither verifiable in practice nor holds in general.

We tackle this problem here. In addition to relaxing the assumption (3’) on the unknown covariance matrices, we gain a
procedure that is more robust to deviations from symmetry and homoscedasticity. To this end, we consider a different test
statistic, namely a multivariate version of the ANOVA-type statistic (ATS) proposed by [4] for repeated measures designs,
which we obtain by erasing the Moore–Penrose term from (1), viz. Q̃N = NX

⊤

·
TX ·. In the special two-sample case where we

wish to test the null hypothesis H0 : µ1 − µ2 = 0, this is equivalent to the test statistic proposed by [13].
The drawback of the ATS for multivariate data is that it is not invariant under scale transformations of the components,

e.g., under change of units (cm ↦→ m or g ↦→ kg) in one or more components. We demonstrate this problem in a real data
analysis given in the Online Supplement, where we show that a simple unit change can completely alter the test decision of
the ATS. Thus, we consider a slightly modified version of the ATS, which we denote as MATS:

QN = NX
⊤

·
T (T D̂NT )+TX ·. (2)

Here, D̂N = diag(N/ni · σ̂ 2
is ) for all i ∈ {1, . . . , a} and s ∈ {1, . . . , d}, where σ̂ 2

is is the empirical variance of component
s in group i. The MATS is invariant under scale transformations of the data for null hypotheses of the form T = M ⊗ Id,
i.e., hypotheses as formulated in Section 4 of [21]. See the Online Supplement for a more detailed discussion of this topic. A
related test statistic has been proposed by Srivastava and Kubokawa [36] in the context of high-dimensional (d → ∞) data
for a special non-singular one-way MANOVA design. Here, we investigate in the classical multivariate case (with fixed d)
how its finite-sample performance can be enhanced considerably. We start by analyzing its asymptotic limit behavior.

Theorem1. Under Conditions (1)–(3) andunder H0 : Tµ = 0, the test statistic QN in (2)has asymptotically, as N → ∞, the same
distribution as aweighted sum of χ2

1 distributed random variables, where theweights λis are the eigenvalues of V = T (TDT )+TΣ
for D = diag(κ−1

i σ 2
is ) and Σ = diag(κ−1

i Vi), i.e.,

QN = NX
⊤

·
T (T D̂NT )+TX · ⇝ Z =

a∑
i=1

d∑
s=1

λisZis,

with Zis
iid
∼ χ2

1 and⇝ denoting convergence in distribution.
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Thus, we obtain an asymptotic level α benchmark test ϕN = 1(QN > c1−α) for H0 : Tµ = 0, where c1−α is the (1 − α)-
quantile of Z . However, the distribution of Z depends on the unknown variances σ 2

is with i ∈ {1, . . . , a} and s ∈ {1, . . . , d}
so that ϕN is infeasible for most practical situations. For this reason we consider different bootstrap approaches in order
to approximate the unknown limiting distribution and to derive adequate and asymptotically correct inference procedures
based on QN in (2). This will be explained in detail in the next section. Apart from statistical test decisions discussed in
Section 4.1, a central part of statistical analyses is the construction of confidence intervals, which allows for deeper insight
into the variability and the magnitude of effects. This univariate concept can be generalized to multivariate endpoints by
constructing multivariate confidence regions and simultaneous confidence intervals for contrasts h⊤µ for any contrast
vector h ∈ Rad of interest. Details on the derivation of such confidence regions for h⊤µ are given in Section 4.2.

3. Bootstrap procedures

The first bootstrap procedure we consider is a parametric bootstrap approach as proposed by Konietschke et al. [21] for
the WTS. The second is a wild bootstrap approach, which has already been successfully applied in the context of repeated
measures or clustered data; see, e.g., [8,9,15]. The third procedure is a group-wise, nonparametric bootstrap approach. All
of these bootstrap approaches are based on the test statistic QN in (2). Note that the procedures derived in the following
can also be used for multiple testing problems, either by applying the closed testing principle [28,35] or in the context of
simultaneous contrast tests [17,19].

3.1. A parametric bootstrap approach

This asymptotic model-based bootstrap approach has successfully been used in univariate one- and two-way factorial
designs [22,43] and has recently been applied to Wald-type statistics for general MANOVA in [21,34] under the additional
assumption that fourth moments are finite. The approach is as follows. Given the data, we generate a parametric bootstrap
sample as

∀i∈{1,...,a} X∗

i1, . . . ,X
∗

ini

iid
∼ N (0, V̂i).

The idea behind this method is to obtain an accurate finite-sample approximation by mimicking the covariance structure
given in the observed data. This is achieved by calculating Q ∗

N from the bootstrap variables X∗

i1, . . . ,X
∗

ini
, i.e.,

Q ∗

N = N(X
∗

·
)⊤T (T D̂∗

NT )
+TX

∗

·
. (3)

We then obtain a parametric bootstrap test by comparing the original test statistic QN with the conditional (1− α)-quantile
c∗

1−α of its bootstrap version Q ∗

N .

Theorem 2. The conditional distribution of Q ∗

N weakly approximates the null distribution of QN in probability for any parameter
µ ∈ Rad and µ0 with Tµ0 = 0, i.e.,

sup
x∈R

|Prµ(Q ∗

N ≤ x|X) − Prµ0 (QN ≤ x)|
Pr
→ 0,

where Prµ(QN ≤ x) and Prµ(Q ∗

N ≤ x|X) denote the unconditional and conditional distribution of QN and Q ∗

N , respectively, if µ is
the true underlying mean vector.

3.2. A wild bootstrap approach

Another resampling approach, which is based on multiplying the fixed data with random weights, is the so-called wild
bootstrap procedure. To this end, letWik denote iid random variables, independent of X , with E(Wik) = 0, var(Wik) = 1 and
supi,kE(W 4

ik) < ∞. We obtain a bootstrap sample as

∀i∈{1,...,a} ∀k∈{1,...,ni} X⋆
ik = Wik(Xik − X i·).

Note that there are different choices for the random weights Wik, e.g., Rademacher distributed random variables [11] or
weights satisfying different moment conditions; see, e.g., [3,25,27,42]. The choice of the weights typically depends on
the situation. In our simulation studies, we have investigated the performance of different weights such as Rademacher
distributed as well as N (0, 1) distributed weights; see [24] for this specific choice. The results were quite similar and
therefore Section 5 includes only those that pertain to standard normal weights.

Based on the bootstrap variablesX⋆
ik, we can computeQ ⋆

N in the sameway as described forQ ∗

N in (3) above. Awild bootstrap
test is finally obtained by comparing QN to the conditional (1 − α)-quantile of its wild bootstrap version Q ⋆

N .

Theorem 3. The conditional distribution of Q ⋆
N weakly approximates the null distribution of QN in probability for any parameter

µ ∈ Rad and µ0 with Tµ0 = 0, i.e.,

sup
x∈R

|Prµ(Q ⋆
N ≤ x|X) − Prµ0 (QN ≤ x)|

Pr
→ 0.
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3.3. A nonparametric bootstrap approach

The third approach we consider is the nonparametric bootstrap. Here, for each group i ∈ {1, . . . , a}, we randomly draw
ni independent selections X†

ik with replacement from the ith sample {Xi1, . . . ,Xini}. The bootstrap test statistic Q †
N is then

computed in the same way as described above, i.e., by recalculating QN with X†
ik for all i ∈ {1, . . . , a} and k ∈ {1, . . . , ni}.

Finally, a nonparametric bootstrap test is obtained by comparing the original test statisticQN to the empirical (1−α)-quantile
of Q †

N . The asymptotic validity of this method is guaranteed by the following result.

Theorem 4. The conditional distribution of Q †
N weakly approximates the null distribution of QN in probability for any parameter

µ ∈ Rad and µ0 with Tµ0 = 0, i.e.,

sup
x∈R

|Prµ(Q
†
N ≤ x|X) − Prµ0 (QN ≤ x)|

Pr
→ 0.

4. Statistical applications

We now want to base statistical inference on the modified test statistic in (2) using the bootstrap approaches described
above. A thorough statistical analysis should ideally consist of two parts. First, statistical tests give insight into significant
effects of the different factors as well as possible interactions. We therefore consider important properties of statistical tests
based on the bootstrap approaches in Section 4.1. Second, it is helpful to construct confidence regions for the unknown
parameters of interest in order to gain a more detailed insight into the nature of the estimates. The derivation of such
confidence regions is discussed in Section 4.2.

4.1. Statistical tests

In this section, we analyze the statistical properties of the bootstrap procedures described above. For ease of notation,
we will only state the results for the parametric bootstrap procedure, i.e., we consider the test statistic Q ∗

N based on X∗

ik
throughout. Note, however, that the results are also valid for the wild and the nonparametric bootstrap procedure, i.e., the
test statistics Q ⋆

N and Q †
N .

As mentioned above, a bootstrap test ϕ∗
= 1(QN > c∗

1−α) is obtained by comparing the original test statistic QN to the
(1 − α)-quantile c∗

1−α of its bootstrap version. In particular, p-values are numerically computed as follows:

(1) Given the data X , compute the MATS QN for the null hypothesis of interest.
(2) Bootstrap the data with either of the bootstrap approaches described above and compute the corresponding test

statistic Q ∗,1
N .

(3) Repeat step (2) a large number of times, e.g., B = 10,000 times, and obtain values Q ∗,1
N , . . . ,Q ∗,B

N .
(4) Calculate the p-value based on the empirical distribution of Q ∗,1

N , . . . ,Q ∗,B
N as

p-value =
1
B

B∑
b=1

1(QN ≤ Q ∗,b
N ).

Theorems 2–4 imply that the corresponding tests asymptotically keep the pre-assigned levelα under the null hypothesis and
are consistent for any fixed alternative Tµ ̸= 0, i.e., Eµ(ϕ∗) → α 1(Tµ = 0) + 1(Tµ ̸= 0). Moreover, for local alternatives
H1 : Tµ = N−1/2Tν with ν ∈ Rad, the bootstrap tests have the same asymptotic power as ϕN = 1(QN > c1−α), where c1−α is
the (1−α)-quantile of Z given in Theorem 1. In particular, the asymptotic relative efficiency of the bootstrap tests compared
to ϕN is 1 in this situation.

4.2. Confidence regions and confidence intervals for contrasts

In order to conduct a thorough statistical analysis, interpretation of the results should not be based on p-values alone. In
addition, it is helpful to construct confidence regions for the unknown parameter. The concept of a confidence region is the
same as that of a confidence interval in the univariate setting. We want to construct a multivariate region, which is likely to
contain the true, but unknown parameter of interest.

The aim of this section is to derive multivariate confidence regions and simultaneous confidence intervals for contrasts
h⊤µ for any contrast vector h of interest. Such contrasts include, e.g., the difference in means µ1 − µ2 in two-sample
problems, Dunnett’s many-to-one comparisons, Tukey’s all-pairwise comparisons, andmanymore; see, e.g., [19] for specific
examples. In this section, we will base the derivation of confidence regions on the bootstrap approximations given in
Section 3, i.e., we will use one of the bootstrap quantiles. Again, we only formulate the results for c∗

1−α .
For the derivation of a confidence region, first note that the results from Section 4.1 imply that the null hypothesis

H0 : Hµ = Hµ0 for a vector of contrasts Hµ0, H = (h1|· · ·|hq)⊤ ∈ Rq×ad, µ0 ∈ Rad, is rejected at asymptotic level α,
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if N(HX · −Hµ0)⊤(HD̂NH⊤)+(HX · −Hµ0) is larger than the bootstrap quantile c∗

1−α . Thus, a confidence region for the vector
of contrasts Hµ is determined by the set of all Hµ such that

N(HX · − Hµ)⊤(HD̂NH⊤)+(HX · − Hµ) ≤ c∗

1−α.

A confidence ellipsoid is now obtained based on the eigenvalues λ̂s and eigenvectors ês of HD̂NH⊤. As in [20], the direction
and lengths of its axes are determined by going (̂λs c∗

1−α/N)1/2 units along the eigenvectors ês ofHD̂NH⊤. In other words, the
axes of the ellipsoid are given, for all s ∈ {1, . . . , d}, by

HX · ± (̂λs c∗

1−α/N)1/2 ês. (4)

Note that this approach is similar to the construction of confidence intervals in the univariate case, where we exploit the
one-to-one relationship between CIs and tests. While we can compute (4) for arbitrary dimension d, we cannot display the
joint confidence region graphically for d ≥ 4. In the two-sample case with d = 2 endpoints, however, the ellipse can be
plotted.

Beginning at the centerHX · the axes of the ellipsoid are given by±(̂λs c∗

1−α/N)1/2 t̂es for s ∈ {1, 2}. That is, the confidence
ellipse extends (̂λs · c∗

1−α/N)1/2 units along the estimated eigenvector ês for s ∈ {1, 2}. Therefore, we get a graphical
representation of the relation between the group-mean differences µ11 − µ21 and µ12 − µ22 of the first and second
components; see Section 10 and Figure 3 in the Online Supplement for an example.

Concerning the derivation of multiple contrast tests and simultaneous confidence intervals for contrasts, we consider the
family of hypotheses

Ω = {H0 : h⊤

ℓ µ = 0with hℓ ̸= 0, ℓ = 1, . . . , q}.

As shown in Sections 2–3, a test statistic for testing the null hypothesis H0 : Hµ = 0 is given by QN in (2). Consequently,
working with a single contrast hℓ as contrast matrix leads to the test statistic

Q ℓ
N = N(h⊤

ℓ X ·)⊤(h⊤

ℓ D̂Nhℓ)−1(h⊤

ℓ X ·) = N
(
∑a

i=1
∑d

s=1 hℓ,isX i·s)2∑a
i=1
∑d

s=1 h
2
ℓ,isσ̂

2
is

for the null hypotheses Hℓ
0 : ∀ℓ∈{1,...,q} h⊤

ℓ µ = 0. Here, hℓ = (hℓ,11, . . . , hℓ,ad)⊤. To obtain a single critical value with one
of the bootstrap methods we may, e.g., consider the usual maximum or sum statistics. We exemplify the idea for the latter.
Thus, let

SN ≡ N(HX•)⊤ diag{(h⊤

ℓ D̂Nhℓ)−1
: ℓ = 1, . . ., q} HX• =

q∑
ℓ=1

Q ℓ
N

and denote by q∗

1−α the conditional (1 − α)-quantile of its corresponding bootstrap version S∗

N . From the proofs of
Theorems 2–4 given in the Online Supplement, it follows that, for any of the three bootstrapmethods described in Section 3,
σ̂ ∗

is is a consistent estimate of σis for all i ∈ {1, . . . , a} and s ∈ {1, . . . , d}, and that
√
NHX

∗

•
asymptotically mimics the

distribution of
√
NH(X• − µ). Thus, the continuous mapping theorem implies Pr(SN ≤ q∗

1−α) → 1 − α as N → ∞ and
therefore

Pr
q⋂

ℓ=1

{Q ℓ
N ≤ q∗

1−α}

)
≤ Pr

q∑
ℓ=1

Q ℓ
N ≤ q∗

1−α

)
→ 1 − α, as N → ∞.

This implies, that simultaneous 100 × (1 − α)% confidence intervals for contrasts h⊤

1 µ, . . . , h⊤
q µ are given by

h⊤

ℓ X · ±

√
q∗

1−α · h⊤

ℓ D̂Nhℓ/N.

In the Online Supplement, we also explain that the bootstrap idea also works for the usual maximum statistic.

5. Simulations

The procedures described in Section 3 are valid for large sample sizes. In order to investigate their behavior for small
samples, we have conducted various simulations. In the simulation studies, the behavior of the proposed approaches was
compared to a parametric bootstrap approach for the WTS as in [21] since this turned out to perform better than other
resampling versions of the WTS and Wilk’s Λ. For comparison, we also included the asymptotic χ2 approximation of the
WTS. All simulations were conducted using R Version 3.3.1 [33] each with nsim = 5000 simulation and nboot = 5000
bootstrap runs. We investigated a one- and a two-factorial design.
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5.1. One-way layout

For the one-way layout, data were generated as in [21]. We considered a = 2 treatment groups and d ∈ {4, 8} endpoints
as well as the following covariance settings:

Setting 1: V1 = Id + 0.5(Jd − Id) = V2,

Setting 2: V1 = ((0.6)|r−s|)dr,s=1 = V2,

Setting 3: V1 = Id + 0.5(Jd − Id) and V2 = Id 3 + 0.5(Jd − Id),
Setting 4: V1 = ((0.6)|r−s|)dr,s=1 and V2 = ((0.6)|r−s|)dr,s=1 + Id 2.

Setting 1 represents a compound symmetry structure, while Setting 2 is an autoregressive covariance structure. Both
settings 1 and 2 represent homoscedastic scenarios while Settings 3 and 4 display two scenarios with unequal covariance
structures. Data were generated, for each i ∈ {1, . . . , a} and k ∈ {1, . . . , ni}, by

Xik = µi + V 1/2
i ϵik,

where V 1/2
i denotes the square root of the matrix Vi, i.e., Vi = V 1/2

i · V 1/2
i . The mean vectors µi were set to 0 in both groups.

The iid random errors ϵik = (ϵik1, . . . , ϵikd)⊤ with mean E(ϵik) = 0d and cov(ϵik) = Id×d were generated by simulating
independent standardized components

iks =
Yiks − E(Yiks)
√
var(Yiks)

for various distributions of Yiks. In particular, we simulated normal, χ2
3 , lognormal, t3 and double-exponential (or Laplace)

distributed random variables. We investigated balanced as well as unbalanced designs with sample size vectors n(1)
=

(10, 10)⊤, n(2)
= (20, 20)⊤, n(3)

= (10, 20)⊤ and n(4)
= (20, 10)⊤, respectively. A major criterion concerning the accuracy of

the procedures is their behavior in situations where increasing variances (Settings 3–4 above) are combined with increasing
sample sizes (n(3), positive pairing) or decreasing sample sizes (n(4), negative pairing).

In this setting, we tested the null hypothesis Hµ

0 : {(Pa ⊗ Id)µ = 0} = {µ1 = µ2}, i.e., no treatment effect. The resulting
type-I error rates (nominal level α = 5%) for d = 4 and d = 8 endpoints are displayed in Table 1 (normal distribution)
and Table 2 (χ2

3 distribution), respectively. Further simulation results for lognormal, t3 and Laplace distributed errors for the
parametric bootstrap of WTS and MATS can be found in Tables 7–9 in the Online Supplement.

As already noticed by [21], the WTS with the χ2 approximation is far too liberal, reaching type-I error rates of more
than 50% in some scenarios (e.g., for d = 8 with negative pairing, i.e., covariance setting S3 and n = (20, 10)⊤). Even in
the scenarios with only d = 4 dimensions and n = (20, 20)⊤, the error rates are around 9% instead of 5%. The parametric
bootstrap of the WTS greatly improves this behavior for all situations. However, it still shows a rather liberal behavior with
type-I error rates of around 10% in some situations, e.g., d = 8 dimensions with S3 or S4 and n = (20, 10)⊤ in Tables 1 and 2.

Thewild bootstrap of theMATS shows a rather liberal behavior across all scenarios and can therefore not be recommended
in practice. In contrast, both the parametric and the nonparametric bootstrap of the MATS show a very accurate type-I error
rate control. The nonparametric bootstrap is often slightly more conservative than the parametric bootstrap and thus works
better in situations with negative pairing, especially for the χ2

3 distribution, i.e., for S3 and S4 with n = (20, 10)⊤ and d = 4
or d = 8 dimensions in Table 2. In most other scenarios, however, the parametric bootstrap yields slightly better results. The
improvement of the parametric bootstrap MATS over WTS (PBS) and nonparametric bootstrap MATS is most pronounced
for large d, i.e., in situations where d is close to min(n1, n2).

However, in situations with negative pairing and skewed distributions (see Table 2 as well as Table 7 in the Online
Supplement), the parametric bootstrap MATS shows a slightly liberal behavior. For t3 and Laplace distributed errors
and negative pairing, in contrast, the parametric bootstrap MATS is slightly conservative, see Tables 8–9 in the Online
Supplement, respectively.

Surprisingly, the resampling approaches based on the MATS improve with growing d in most settings, i.e., when the
number of endpoints is closer to the sample size. The WTS approach, in contrast, gets worse in these scenarios. This might
be an interesting approach for future research in high-dimensional settings such as in [29].

As a result, we find that the MATS with the parametric bootstrap approximation is the best procedure in most scenarios.
Especially, it is less conservative than the nonparametric bootstrap approximation and less liberal than the WTS equipped
with the parametric bootstrap approach over all simulation settings. Only in situations with negative pairing and skewed
distributions, the new procedure shows a slightly liberal behavior.

5.1.1. Singular covariance matrix
In order to analyze the behavior of the discussed methods in designs involving singular covariance matrices, we

considered the one-way layout described above with a = 2 groups and d ∈ {4, 8} observations involving the following
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Table 1
Type-I error rates in % (nominal level α = 5%) for the WTS with χ2 approximation and parametric bootstrap (PBS) and the MATS with wild bootstrap
(wild), parametric bootstrap (PBS) and nonparametric bootstrap (NPBS) in the one-way layout for the normal distribution.

d Cov n WTS (χ2) WTS (PBS) MATS (wild) MATS (PBS) MATS (NPBS)

d = 4

S1

(10, 10) 15.2 4.5 6.9 5.2 4.4
(10, 20) 14.5 5.9 6.9 5.1 4.5
(20, 10) 14.0 5.6 7.2 5.3 4.8
(20, 20) 9.5 5.3 6.0 5.1 5.1

S2

(10, 10) 15.2 4.5 7.0 5.0 4.5
(10, 20) 14.5 5.8 6.9 5.0 4.5
(20, 10) 14.0 5.6 7.3 5.5 4.9
(20, 20) 9.5 5.4 6.3 5.2 5.0

S3

(10, 10) 18.3 5.5 7.3 4.8 3.6
(10, 20) 10.9 4.7 6.4 4.8 4.4
(20, 10) 21.4 6.6 7.8 4.8 3.4
(20, 20) 11.2 5.7 6.3 5.1 4.6

S4

(10, 10) 18.3 5.6 7.5 4.8 3.9
(10, 20) 11.0 5.2 6.1 4.6 4.3
(20, 10) 21.0 6.7 7.9 4.7 3.2
(20, 20) 10.9 5.7 6.2 5.0 4.7

d = 8

S1

(10, 10) 38.6 4.7 7.7 5.1 4.3
(10, 20) 31.0 6.2 6.9 5.0 4.2
(20, 10) 32.1 6.1 6.6 4.6 4
(20, 20) 17.0 4.9 5.8 4.8 4.8

S2

(10, 10) 38.6 4.5 7.9 4.3 3.4
(10, 20) 31.0 6.3 7.4 4.3 3.6
(20, 10) 32.1 6.1 7.0 4.1 3.4
(20, 20) 17.0 4.7 6.2 4.8 4.5

S3

(10, 10) 50.1 6.6 7.9 4.2 2.8
(10, 20) 21.8 4.1 6.3 4.4 4.1
(20, 10) 55.0 10.3 8.5 3.6 2.2
(20, 20) 21.9 5.4 6.1 4.0 3.6

S4

(10, 10) 48.9 6.3 7.8 3.6 2.4
(10, 20) 21.9 4.2 6.3 3.8 3.4
(20, 10) 54.1 10.4 8.4 3.5 2.0
(20, 20) 21.8 5.2 6.0 3.9 3.6

covariance settings (displayed for d = 4):

Setting 5: V1 =

⎛⎜⎜⎝
1 1/2 1 1

1/2 1 1/2 1/2
1 1/2 1 1
1 1/2 1 1

⎞⎟⎟⎠ , V2 = V1 + 0.5 Jd

Setting 6: V1 =

⎛⎜⎜⎝
1 0.6 0.36 0.18
0.6 1 0.6 0.3
0.36 0.6 1 0.5
0.18 0.3 0.5 0.25

⎞⎟⎟⎠ , V2 = V1 + 0.5 Jd

Setting 7: V1 =

⎛⎜⎜⎝
1 0 0 0
0

√
2 0 0

0 0 2 1
0 0 1 0.5

⎞⎟⎟⎠ , V2 = V1 + 0.5 Jd

Setting 6 is based on an AR(0.6) covariance matrix (see Setting 2 above), where the last row and column have been
replaced by half the row/column before, respectively. Setting 7 is based on Ṽ1 = diag(2s/2) for all s ∈ {0, . . . , d − 1}, where
the last row and column have been replaced by half the row/column before. We have considered the same sample size
vectors as above.

The results are displayed in Tables 3–4. The parametric bootstrap of the MATS again yields the best results in almost
all scenarios. The wild bootstrap, in contrast, is again rather liberal. For the χ2 approximation of the WTS, the results are in
concordancewith the theoretical reflectionsmentioned in Section 2. Covariance setting S5 corresponds to the case,where the
rank of T and TΣT differs and as calculated above, the χ2 approximation becomes very conservative here. In Settings S6–S7,
in contrast, there is no rank jump despite the singular covariance matrices and the χ2 approximation shows its usual liberal
behavior.
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Table 2
Type-I error rates in % (nominal level α = 5%) for the WTS with χ2 approximation and parametric bootstrap (PBS) and the MATS with wild bootstrap
(wild), parametric bootstrap (PBS) and nonparametric bootstrap (NPBS) in the one-way layout for the χ2

3 -distribution.

d Cov n WTS (χ2) WTS (PBS) MATS (wild) MATS (PBS) MATS (NPBS)

d = 4

S1

(10, 10) 15.3 4.0 7.1 4.8 3.4
(10, 20) 13.9 5.5 7.3 5.6 4.6
(20, 10) 14.6 5.7 7.7 5.9 4.6
(20, 20) 8.9 4.7 6.3 5.5 5.0

S2

(10, 10) 15.3 4.1 7.1 4.5 3.2
(10, 20) 13.9 5.6 7.5 5.5 4.5
(20, 10) 14.6 5.8 7.7 5.5 4.5
(20, 20) 8.9 4.7 6.3 5.3 4.7

S3

(10, 10) 20.6 7.1 9.5 6.1 3.8
(10, 20) 11.2 4.8 6.9 4.8 3.7
(20, 10) 26.2 10.9 12.3 8.9 5.6
(20, 20) 12.8 6.6 7.6 6.0 4.7

S4

(10, 10) 21.2 7.2 9.6 6.2 3.8
(10, 20) 11.1 5.0 6.9 4.7 3.4
(20, 10) 26.5 10.7 12.7 8.9 5.6
(20, 20) 12.9 6.7 7.7 6.2 4.7

d = 8

S1

(10, 10) 39.3 3.8 7.7 4.9 3.4
(10, 20) 32.3 5.5 7.6 5.9 4.7
(20, 10) 33.4 6.3 7.2 5.1 4.2
(20, 20) 16.9 4.5 5.9 4.9 4.6

S2

(10, 10) 39.3 3.8 8.1 4.3 2.7
(10, 20) 32.3 5.5 8.6 5.2 4.0
(20, 10) 33.4 6.3 7.6 4.9 3.9
(20, 20) 16.9 4.5 6.2 4.5 4.0

S3

(10, 10) 53.1 6.8 10.2 5.5 3.1
(10, 20) 23.4 4.8 6.8 4.6 3.5
(20, 10) 59.9 13.9 13.7 8.1 4.6
(20, 20) 24.8 6.9 7.9 5.7 4.1

S4

(10, 10) 52.5 6.3 11.0 5.3 2.6
(10, 20) 24.3 4.5 7.1 4.1 2.8
(20, 10) 59.0 13.6 14.8 8.4 4.5
(20, 20) 24.3 6.9 7.7 5.7 4.0

Since the rank of TΣT is not known in practice, the WTS should not be used for data with possibly singular covariance
matrices. It turns out, however, that the parametric bootstrap of the WTS is relatively robust against singular covariance
matrices. Its behavior is comparable to the scenarios above with non-singular covariance matrices. It is, however, rather
liberal for n = (20, 10)⊤, especially with the χ2

3 distribution; see Table 4. This behavior is improved by the parametric
bootstrap MATS, e.g., for d = 8 and S7, the WTS (PBS) leads to a type-I error of 9%, whereas the MATS (PBS) is at 5.1%. The
nonparametric bootstrap, in contrast, sometimes leads to strictly conservative test decisions. This is especially apparent for
d = 8 and covariance setting S7 in Tables 3–4.

5.2. Two-way layout

We have investigated the behavior of the methods in a setting with two crossed factors A and B, which is again adapted
from [21]. In particular, we simulated 2× 2 designswith covariancematrices similar to the one-way layout above. A detailed
description of the simulation settings as well as the results for the main and interaction effects are deferred to the Online
Supplement. Here we only summarize our findings. Since the total sample size N is larger in this scenario, the asymptotic
results come into play and therefore all methods lead to more accurate results than in the one-way layout. Nevertheless
we find a similar behavior as in the one-way layout. Again, the MATS and the WTS with the parametric bootstrap approach
control the type-I error very accurately, whereas the nonparametric bootstrap approach leads to slightly more conservative
results. Both the WTS with χ2 approximation and the wild bootstrap MATS cannot be recommended due to their liberal
behavior. In situations with negative pairing (covariance setting 10 and 11 with sample size vector n(3)), the parametric
bootstrap MATS improves the slightly liberal behavior of the WTS; see e.g., Table 10 for the normal distribution, where the
WTS (PBS) leads to a type-I error of 6.1% while the MATS (PBS) is at 4.9%.

5.3. Power

We have investigated the empirical power of the proposed methods to detect a fixed alternative in the simulation
scenarios above. Data were simulated as described in Section 5.1 but now with µ1 = 0 and µ2 = (δ, . . . , δ)⊤ for varying
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Table 3
Type-I error rates in % (nominal level α = 5%) for theWTSwith χ2 approximation and parametric bootstrap (PBS) and theMATSwithwild bootstrap (wild),
parametric bootstrap (PBS) and nonparametric bootstrap (NPBS) in the one-way layout with singular covariance matrices for the normal distribution.

d Cov n WTS (χ2) WTS (PBS) MATS (wild) MATS (PBS) MATS (NPBS)

d = 4

S5

(10, 10) 3.1 5.1 5.9 4.8 4.4
(10, 20) 2.6 5.1 5.7 4.9 4.6
(20, 10) 2.7 5.3 6.6 5.3 4.7
(20, 20) 1.7 4.8 5.6 5.2 5.0

S6

(10, 10) 16.7 5.3 7.1 5.0 4.6
(10, 20) 12.4 5.1 6.0 4.7 4.3
(20, 10) 17.1 6.1 7.1 5.3 4.6
(20, 20) 10.2 5.5 6.0 5.2 5.1

S7

(10, 10) 16.6 5.2 7.3 4.7 4.0
(10, 20) 12.3 5.8 6.6 4.6 4.2
(20, 10) 16.3 5.7 6.9 4.5 4.0
(20, 20) 9.4 4.8 5.9 4.8 4.8

d = 8

S5

(10, 10) 2.8 4.5 6.2 5.0 4.7
(10, 20) 2.3 4.9 5.5 4.9 4.7
(20, 10) 2.6 4.4 5.6 4.7 4.3
(20, 20) 1.5 4.6 5.5 4.9 4.8

S6

(10, 10) 39.5 4.4 8.2 5.0 4.2
(10, 20) 28.8 5.4 6.6 4.6 4.2
(20, 10) 35.7 7.0 7.5 4.8 4.0
(20, 20) 17.3 4.7 6.1 4.8 4.5

S7

(10, 10) 38.8 4.2 7.4 4.0 2.9
(10, 20) 27.4 5.2 6.6 3.6 3.0
(20, 10) 36.3 6.3 7.4 3.8 3.2
(20, 20) 17.3 5.1 5.9 4.2 4.0

Table 4
Type-I error rates in % (nominal level α = 5%) for the WTS with χ2-approximation and parametric bootstrap (PBS) and the MATS with wild bootstrap
(wild), parametric bootstrap (PBS) and nonparametric bootstrap (NPBS) in the one-way layout with singular covariance matrices for the χ2

3 distribution.

d Cov n WTS (χ2) WTS (PBS) MATS (wild) MATS (PBS) MATS (NPBS)

d = 4

S5

(10, 10) 2.7 4.2 6.7 5.4 4.5
(10, 20) 1.9 4.8 5.9 4.9 4.5
(20, 10) 3.5 6.5 7.3 5.9 5.2
(20, 20) 1.7 4.9 6.2 5.7 5.5

S6

(10, 10) 19.7 7.1 7.4 5.2 4.1
(10, 20) 14.6 7.1 6.4 5.0 4.3
(20, 10) 20.1 8.5 8.1 6.4 5.4
(20, 20) 11.4 6.3 6.5 5.7 5.3

S7

(10, 10) 19.4 7.0 7.1 4.1 3.1
(10, 20) 14.5 6.7 6.4 4.2 3.4
(20, 10) 20.3 8.7 8.3 6.1 4.5
(20, 20) 11.7 6.4 6.1 5.1 4.5

d = 8

S5

(10, 10) 2.4 4.7 6.1 5.1 4.6
(10, 20) 2.6 5.3 6.1 5.3 5.0
(20, 10) 3.0 5.6 6.0 5.1 4.6
(20, 20) 1.2 4.5 5.9 5.3 5.1

S6

(10, 10) 43.1 5.4 8.2 5.1 3.9
(10, 20) 30.7 6.6 7.3 5.2 4.2
(20, 10) 39.2 8.7 8.3 5.6 4.5
(20, 20) 19.3 5.6 6.8 5.1 4.7

S7

(10, 10) 42.4 5.5 7.5 3.3 1.7
(10, 20) 31.1 6.3 7.1 4.0 2.4
(20, 10) 39.5 9.0 9.2 5.1 3.4
(20, 20) 18.7 5.3 5.1 3.2 2.6

shifts δ ∈ {0, 0.5, 1, 1.5, 2, 3}. Due to the liberality of the classical Wald-type test and the wild bootstrapped MATS, we only
considered the WTS with parametric bootstrap as well as the parametric and nonparametric bootstrap of the MATS. The
results for selected scenarios are displayed in Figs. 1–2. The plots show that both resampling versions of the MATS have a
higher power for detecting the fixed alternative than the WTS. The parametric bootstrap of the MATS has a slightly higher
power than the nonparametric bootstrap, a behavior that is more pronounced for the χ2 distribution (Fig. 1). Moreover, the
power analysis shows a clear advantage of applying the parametric bootstrap approach to the MATS over its application
to the WTS. For example, in the scenario with normally distributed data, d = 8 dimensions, covariance setting S4 and
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Fig. 1. Empirical power results for the WTS with parametric bootstrap as well as the MATS with parametric (PBS) and nonparametric (NPBS) bootstrap for
χ2
3 distributed data with d = 4 dimensions and sample sizes n = (10, 10)⊤ .

Fig. 2. Empirical power results for the WTS with parametric bootstrap as well as the MATS with parametric (PBS) and nonparametric (NPBS) bootstrap for
normally distributed data with d = 8 dimensions and sample sizes n = (10, 20)⊤ .

n = (10, 20)⊤ observations (Fig. 2), the parametric bootstrap MATS has twice as much power as its WTS version in case of
δ = 0.5 (34.4% as compared to 16.7%). Similar differences can also be observed in some of the other settings.

6. Application: analysis of the data example

As a data example, we consider seven demographic factors of US citizens in 43 states. Our aim is to investigate whether
these factors differ between the states. The full data set ‘county_facts.csv’ is available from kaggle (www.kaggle.com/

http://www.kaggle.com/joelwilson/2012-2016-presidential-elections
http://www.kaggle.com/joelwilson/2012-2016-presidential-elections
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Table 5
Descriptive statistics of the data example: Reported are the sample sizes and the 7-dimensional mean vectors for each of the 43 states.

State n PST045214 SEX255214 RHI125214 RHI225214 RHI325214 RHI425214 RHI525214

AK 29 25404.55 45.73 52.51 1.92 31.89 5.68 0.55
AL 67 72378.76 51.26 68.26 28.66 0.80 0.73 0.11
AR 75 39551.59 50.54 80.41 16.13 0.89 0.78 0.10
AZ 15 448765.60 49.63 78.99 2.33 14.76 1.45 0.20
CA 58 669008.62 49.52 81.59 3.57 3.16 7.50 0.39
CO 64 83685.41 48.05 92.62 1.81 2.06 1.30 0.12
FL 67 296914.88 48.60 80.61 15.00 0.73 1.70 0.10
GA 159 63505.30 50.31 68.19 28.36 0.49 1.30 0.12
IA 99 31385.11 50.15 95.69 1.43 0.46 1.13 0.08
ID 44 37146.91 49.26 94.36 0.58 2.03 0.82 0.16
IL 102 126280.20 49.93 91.67 5.30 0.35 1.23 0.03
IN 92 71704.95 50.20 94.42 2.85 0.36 0.99 0.04
KS 105 27657.34 49.74 93.64 2.11 1.23 0.91 0.08
KY 120 36778.81 50.25 93.87 3.86 0.29 0.57 0.06
LA 64 72651.19 49.95 64.63 32.08 0.84 0.94 0.05
MD 24 249016.96 50.88 73.14 20.58 0.44 3.41 0.10
ME 16 83130.56 50.89 95.67 0.98 0.87 0.89 0.02
MI 83 119396.11 49.67 91.18 4.05 1.69 1.03 0.03
MN 87 62726.13 49.88 92.93 1.59 2.24 1.47 0.06
MO 115 52726.86 50.11 93.08 3.71 0.62 0.74 0.12
MS 82 36513.16 51.01 56.48 41.21 0.68 0.57 0.04
MT 56 18278.20 49.16 88.81 0.41 8.00 0.48 0.05
NC 100 99439.64 50.82 74.15 20.80 1.93 1.26 0.10
ND 53 13952.49 48.69 90.26 0.79 6.79 0.59 0.04
NE 93 20231.22 49.82 95.43 0.93 1.73 0.59 0.07
NJ 21 425627.38 51.06 76.97 13.19 0.56 7.16 0.10
NM 33 63199.15 49.37 86.02 1.83 8.70 1.11 0.14
NV 17 167005.82 47.41 87.34 2.88 4.27 2.26 0.31
NY 62 318487.53 50.22 87.43 6.98 0.70 2.90 0.06
OH 88 131751.85 50.38 92.70 4.33 0.28 0.97 0.02
OK 77 50364.30 49.84 78.41 3.78 11.18 0.86 0.14
OR 36 110284.42 50.04 91.49 0.89 2.48 1.77 0.30
PA 67 190853.87 50.03 91.99 4.86 0.27 1.46 0.03
SC 46 105053.96 50.93 60.75 36.10 0.64 0.93 0.09
SD 66 12926.89 49.48 82.51 0.78 14.02 0.63 0.04
TN 95 68940.55 50.46 89.75 7.50 0.45 0.73 0.05
TX 254 106129.76 49.20 89.24 6.82 1.17 1.16 0.08
UT 29 101479.38 49.12 92.88 0.66 3.30 1.04 0.36
VA 134 62136.49 50.25 75.67 18.84 0.51 2.09 0.07
WA 39 181064.87 49.85 88.87 1.61 3.01 2.79 0.34
WI 72 79966.17 49.64 92.55 1.71 2.96 1.31 0.04
WV 55 33642.29 50.12 95.57 2.38 0.25 0.49 0.01
WY 23 25397.96 49.04 94.04 1.17 2.13 0.83 0.10

joelwilson/2012-2016-presidential-elections). In order to have sufficient sample sizes for the analysis and to avoid a high-
dimensional setting, we exclude all states with less than 15 counties. In particular, we removed Connecticut, Delaware,
Hawaii, Massachusetts, New Hampshire, Rhode Island and Vermont.

We consider the following demographic factors: the population estimate for 2014 (PST045214), the percentage of female
citizens in 2014 (SEX255214) as well as the percentage of white (RHI125214), black or African American (RHI225214),
American Indian and Alaska native (RHI325214), Asian (RHI425214) and native Hawaiian and other Pacific islanders
(RHI525214) citizens in 2014. This results in a one-way layout with a = 43 levels of the factor ‘state’ and d = 7 dimensions.
The sample sizes and mean values for the different states can be found in Table 5. As an example, Fig. 3 displays boxplots for
the percentage of white citizens across the different states.

We now want to analyze, whether there is a significant difference in the multivariate means for the different states. The
null hypothesis of interest thus isH0 : {(P43⊗I7)µ = 0}. Since the empirical covariancematrix is computationally singular in
this example (reciprocal condition number 1.7e−16), we cannot apply theWald-type test. Thus, we consider the parametric
bootstrap approach of the MATS which yielded the best results in the simulation study. Computation of the MATS results
in a value of QN = 393.927 and the parametric bootstrap routine with 1000 bootstrap runs gives a p-value smaller than
0.0001, implying that there is indeed a significant difference between the states with respect to the seven demographic
measurements.

A confidence region for this effect can be constructed as described in Section 4. The analysis of this example, including
the calculation of the confidence region, can be conducted using the R package MANOVA.RM.

http://www.kaggle.com/joelwilson/2012-2016-presidential-elections
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Fig. 3. Boxplots of the percentage of white citizens across the different states.

7. Conclusions and discussion

We have investigated a test statistic for multivariate data (MATS) which is based on a modified Dempster statistic.
Contrary to classical MANOVA models, we incorporate general heteroscedastic designs and allow for singular covariance
matrices while postulating their existence as solely distributional assumption. Moreover, our proposed MATS statistic is
invariant under linear transformations of the response variables.

In order to improve the small-sample behavior of the test statistic, we have investigated different bootstrap approaches,
namely a parametric bootstrap, a wild bootstrap and a nonparametric bootstrap procedure. We have rigorously proven that
they lead to asymptotically exact and consistent tests and even analyzed their local power behavior.

In a large simulation study, the parametric bootstrap turned out to perform best inmost scenarios, evenwith skewed data
and heteroscedastic variances. Although the type-I error control is still not ideal in the latter case, the method performed
advantageously over the parametric bootstrap of the WTS proposed in [21] and has the additional advantage of being
applicable to situations with singular covariancematrices. In situations with skewed distributions, the parametric bootstrap
of theMATS yieldedmore robust results than theWTS. Thewild bootstrap approach, in contrast, turned out to be very liberal
in all scenarios, while the nonparametric bootstrap was mostly slightly more conservative than the parametric bootstrap.
Power simulations showed a clear advantage of the parametric bootstrap MATS compared to the WTS (PBS) as well as the
nonparametric bootstrap. All in all, we therefore recommend the parametric bootstrap based on the MATS for practical
applications in a multivariate setting.

Furthermore, we have constructed confidence regions and simultaneous confidence intervals for contrasts h⊤µ based on
the bootstrap quantiles. These confidence regions provide an additional benefit for the analysis of multivariate data since
they allow for more detailed insight into the nature of the estimates.

In order to facilitate application of the proposedmethods, the parametric bootstrap test and the calculation of confidence
regions are implemented in the R package MANOVA.RM.

Following the idea of [36] we plan to extend our concepts to the high-dimensional setting, i.e., where the sample size
N may be less than the dimension d. This approach looks promising, since we have seen in the simulation study that the
MATS with the parametric bootstrap approach exhibited an improved type-I error control with increasing d. However, the
extension to high-dimensional data requires different techniques and will be part of future research.
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