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1. Motivation and introduction

When planning experiments in behavioral, medical or psychological sciences repeated measures designs and split-
plot plans are often preferred because fewer experimental units (subjects) are required to obtain ‘sufficient’ numbers of
observations (Stevens, 2012; Howell, 2013; Hedeker and Gibbons, 2006; Davis, 2002). Such data are typically analyzed
by mean-based multivariate analysis-of-variance methods (MANOVA), repeated measures ANOVA or linear mixed models
requiring certain assumptions on the underlying parametric distributions, see e.g. themonographs of Davis (2002), Hedeker
and Gibbons (2006) or Johnson and Wichern (2007). However, as e.g. pointed out by Kherad-Pajouh and Renaud (2015) ‘‘it
is likely that for this kind of data, the parametric assumptions are not satisfied’’ so that the ‘‘result of the methods (. . . ) might not
be reliable’’, see also Xu and Cui (2008), Suo et al. (2013) or Konietschke et al. (2015) for related comments. Furthermore,
parametricmethods usually require a specific covariance structure of the data, e.g., compound symmetry, sphericity or equal
covariance matrices across the different groups. The type of covariance matrix is hard to justify in real applications. If the
assumed covariance matrix is mis-specified, the estimator of the covariance matrix is biased, which results in a liberal or
conservative behavior of the test. In particular, Oberfeld and Franke (2013) point out that the ‘‘covariance structure of the data
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is important for the validity of the tests’’, see also Keselman et al. (2001) and the references cited therein. Therefore plenty of
robustifications and/or approximations for more general mean-based analysis in various repeated measures designs have
been proposed, see Huynh and Feldt (1976), Huynh (1978), Lecoutre (1991), Kenward and Roger (1997), Keselman et al.
(2000), Pesarin (2001), Vallejo and Ato (2006), Xu and Cui (2008), Kenward and Roger (2009), Arnau et al. (2012), Chi et al.
(2012), Pesarin and Salmaso (2012), Brombin et al. (2013), Konietschke et al. (2015), Pauly et al. (2015) or Friedrich et al.
(2015), among others.

If count, ordinal, ordered categorial or score data are present, however, these approaches show their limits since
means are neither meaningful nor adequate measures of deviations between groups or treatments. In such a situation,
nonparametric rank-based methods are the preferred choice for making statistical inference. Such methods are robust,
applicable to all kinds of data and the corresponding test results are invariant under monotone transformations of the
data. In particular, Akritas and Arnold (1994), Akritas and Brunner (1997), Brunner et al. (1999), Brunner (2001), Brunner
et al. (2002) and Akritas (2011) propose rank-based methods for testing nonparametric hypotheses formulated in terms of
distribution functions for factorial longitudinal data. The procedures are valid for the analysis of metric, count, ordinal, score
or even ordered categorial data in a unified way. The two proposed statistics therein, however, have drawbacks: The Wald-
type statistic provides an asymptotically valid test, but very large sample sizes are required for accurate test decisions.
The method tends to be very liberal in case of small and moderate numbers of observations, see e.g. Brunner (2001).
Moreover, it is only applicable in case of regular covariance matrices. The latter drawback is not shared by the ANOVA-
type statistic which turns out to be an approximation that is in general not asymptotically correct and results in rather
conservative test decisions for small sample sizes, see Brunner (2001). Since sample sizes are often rather small compared
to the number of time points in practical applications, it is thus the aim of the present paper to (i) enhance the small sample
performances and (ii) the asymptotic properties of these testing procedures. To this end, we adopt a nonparametric wild
bootstrap resampling technique which is already known for leading to the above desired enhancements in mean-based
regression analyses, seeWu (1986), Liu (1988),Mammen (1993b), Flachaire (2005), Davidson and Flachaire (2008), Cameron
et al. (2008) and Cameron and Miller (2015). Here its application to the above described statistics leads to our goals (i) and
(ii) while preserving their general applicability in factorial repeated measures designs.

As amotivating example, we consider the shoulder tip pain trial reported by Lumley (1996). In this trial, the characteristic
pain in the shoulder tip after laparoscopic surgery was observed in N = 41 patients during t = 6 time points. After
randomization, n1 = 22 patients (14 female and 8male) received the active treatment (treatment = ‘Yes’) and n2 = 19 (11
female and 8 male) patients belonged to the control group (treatment = ‘No’). Thus, data was observed in an elaborate
factorial design, with stratifying whole-plot factors Treatment and Gender, and sub-plot factor Time. For every patient
enrolled in the trial, t = 6 possibly correlated repeatedmeasurements were observed. The pain wasmeasured on an ordinal
scale ranging from 1 (low) to 5 (high). The lower the score, the better the clinical record. The observed score distribution is
displayed in Fig. 1.

It can be readily seen from the boxplots displayed in Fig. 1 that the scores given under treatment tend to be lower than
those under control. However, the investigation of statistical interactions between the factors treatment, gender and time are
of major interest in this experiment. Since mean-based approaches are inappropriate for making statistical inference with
ordered categorial data, nonparametric ranking methods are preferred.

The paper is organized as follows: In the next section, we state the statistical model as well as the hypotheses and test
statistics considered. In Section 3 we describe the wild bootstrap procedure. Simulation results are displayed in Section 4
as well as in the supplementary material (see Appendix B) and a detailed analysis of the data example is given in Section 5.
Finally, we discuss the results in Section 6. All proofs are deferred to Appendix A.

Throughout the paper, we will use the following notation. We denote by It the t-dimensional unity matrix and by Jt
the t × t matrix of 1’s, i.e. Jt = 1t1′

t , where 1t = (1, . . . , 1)′ is the t-dimensional column vector of 1’s. Furthermore, let
Pt = It − 1

t Jt denote the t-dimensional centering matrix. By ⊕ and ⊗ we denote the direct sum and the Kronecker product,
respectively.

2. Statistical model, hypotheses and statistics

2.1. Statistical model and hypotheses

To establish the general nonparametric repeated measures model with a different groups and t different time points, let

Xik = (Xik1, . . . , Xikt)
′, i = 1, . . . , a, k = 1, . . . , ni,

denote the random vector belonging to the kth subject in group i. The N =
a

i=1 ni random vectors are assumed to be
independent with marginals

Xiks ∼ Fis, i = 1, . . . , a, k = 1, . . . , ni, s = 1, . . . , t.

For convenience, we collect the observations Xik in larger vectors

Xi = (X ′

i1, . . . ,X
′

ini)
′, and X = (X ′

1, . . . ,X
′

a)
′, (2.1)

containing all the information of group i (i = 1, . . . , a) and the pooled sample, respectively.
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Fig. 1. Frequencies of the pain scores observed in the shoulder pain trial (Lumley, 1996).

In this set-up, null hypotheses are formulated by HF
0 : CF = 0, where F = (F11, . . . , Fat)′ denotes the vector of the

distribution functions Fis, i = 1, . . . , a, s = 1, . . . , t and C is a suitable hypothesis matrix. Rank-statistics for testing these
hypotheses are derived by considering estimates of the relative marginal effects p = (p11, . . . , pat)′, where pis =


HNdFis.

Here, HN(x) =
1
t·N

a
i=1
t

s=1 niFis(x) denotes the (weighted) mean distribution function of the whole experiment. If
pis < pis′ for some s ≠ s′, then the (random) measurements in group i at time s tend to result in smaller values than
those at time s′. If pis = pis′ , no data tend to be smaller or larger. The effects pis are estimated by

pis =
1
tN

Ri·s −
1
2

,

where Riks denotes the (mid-)rank of Xiks among all tN observations and Ri·s =
1
ni

ni
k=1 Riks. A more detailed theoretical

derivation of the relative treatment effects is given in the Appendix A. For convenience, the estimators are collected in the
vectorp = (p11, . . . ,pat)′. Assuming the usual sample size condition

ni

N
→ κi ∈ (0, 1), for all i = 1, . . . , a, (2.2)

Akritas and Brunner (1997) have shown that
√
NC(p − p) follows, asymptotically, as N → ∞, a multivariate normal

distribution with expectation 0 and covariance matrix C6C ′ under the hypothesis HF
0 . Here, the matrix

6 =

a
i=1

κ−1
i Vi (2.3)

is the weighted block diagonal matrix of the covariance matrices Vi = Cov(Yik) of the random vectors Yik = (H(Xik1),
. . . ,H(Xikt))

′ and H =
1
t

a
i=1
t

s=1 κiFis is the limit distribution function of HN under (2.2).
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2.2. Statistics and asymptotics

In this section, suitable test statistics for testing the null hypothesis HF
0 : CF = 0will be introduced. First, the Wald-type

statistic (WTS) of Akritas and Arnold (1994) and Brunner and Puri (2001)

QN = Np′C ′(C6C ′)+Cp (2.4)

is considered, where M+ denotes the Moore–Penrose inverse of a matrix M . Here,6 = N
a

i=1
1
ni
Vi denotes the weighted

direct sum of the empirical covariance matrices

Vi =
1

(tN)2(ni − 1)

ni
k=1

(Rik − R i·)(Rik − R i·)
′, i = 1, . . . , a,

which is a consistent estimator of the limiting covariance matrix Vi. The asymptotic distribution of the WTS is provided in
the next theorem:

Theorem 2.1. Assume (2.2) and Vi > 0 for all i = 1, . . . , a. Under the hypothesis HF
0 : CF = 0, the WTS in (2.4) has,

asymptotically as N → ∞, a central χ2
f -distribution with f = rank(C) degrees of freedom, i.e.,

QN
d

→ Q ∼ χ2
rank(C). (2.5)

Due to the weak performance of the WTS for small sample sizes and its restriction to non-singular covariance matrices,
Brunner et al. (1997) and Brunner and Langer (2000) propose the so-called ANOVA-type test statistic (ATS). The idea is to
first drop the estimated covariance matrix in (2.4), resulting in the following statistic:

AN = Np′C ′(CC ′)+Cp =: Np′Tp. (2.6)

The asymptotic distribution of AN is given in the next theorem (Brunner and Puri, 2001, Theorem 2.7):

Theorem 2.2. Under the hypothesis HF
0 : CF = 0 and assumption (2.2), the statistic AN has, asymptotically as N → ∞, the

same distribution as a weighted sum of χ2
1 -distributed random variables, i.e.,

AN
d

→ A ∼

a
i=1

t
s=1

λisξis, (2.7)

where ξis
i.i.d.
∼ χ2

1 and the weights λis are the eigenvalues of T6, where 6 is defined in (2.3).

Since the eigenvalues λis are unknown, the limiting distribution is approximated by aweighted g ·χ2
f distribution, where

g and f are estimated from the data such that the first twomoments of the limiting distribution of the ATS and g ·χ2
f coincide

(Box, 1954). Finally, the distribution of the ANOVA-type statistic

FN =
N

tr(T6)
p′Tp

can be approximated by a central F(f̂ , ∞)-distribution with f̂ =
(tr(T6))

2

tr(T6T6)
degrees of freedom under the null hypothesis HF

0 ,
see Brunner et al. (1999). For testing the main effects of the whole-plot factors or interactions involving only whole-plot
factors, the distribution of the ATS can be further approximated by an F(f̂ , f̂0) distribution with f̂0 as in Brunner et al. (1997).
Compared to the WTS the corresponding ATS has the advantage of being applicable in case of a singular covariance matrix
6. The ATS is implemented in the R-package nparLD (Noguchi et al., 2012) for the analysis of factorial repeated measures
designs. Furthermore, the rank-based ATS can be computed using SAS (SAS Institute Inc., 2003), e.g. SAS PROC MIXED
using the option ANOVAF. Note that the ranks of the data are obtained via PROC RANK and usedwithin themodel statement.

Note that in contrast to the WTS, the corresponding ATS test provides in general no asymptotic level α test, which is a
severe drawback of this procedure. The finite sample distributions of both the WTS and the ATS can be approximated by a
wild bootstrap procedure, thus leading to more accurate statistical tests. This will be explained in the next section.

3. The wild bootstrap procedure

Resampling techniques arewidely known to induce robust inference procedures, even for small sample sizes, see e.g. their
extensive treatment in Davison andHinkley (1997), Davison et al. (2003), Good (2006) orManly (2006). Typically, the idea of
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themethods is as follows: Instead of computing the p-value (or critical value) from an approximate distribution of a statistic,
the p-value is computed from a resampling distribution of the statistic. Thus, the resampling test can only be consistent, if
both the distribution of the test statistic and its (conditional) resampling distribution coincide, at least asymptotically. In
order to achieve this goal, several different resampling techniques have been explored in the literature: nonparametric
bootstrap (randomly drawing with replacement), parametric bootstrap, permutation and randomization methods, cross
validation andmanymore. Simulation studies indicate that the use of Efron’s nonparametric bootstrap (Efron, 1979) results
in liberal conclusions in the present setup. Therefore, we did not further investigate the conventional bootstrap. This result
is in concordance with recent results for general MANOVA (Konietschke et al., 2015) in a semiparametric framework.
For nonparametric bivariate data, Konietschke and Pauly (2012) investigated a studentized permutation approach based
on rank statistics. Their bivariate model is included in ours by setting a = 1 and t = 2. Simulation results indicated
that the resampling version greatly improves the classical rank-test for small sample sizes. The permutation method is
based on randomly permuting the observed components X1k1 and X1k2 from subject k. Now, computing the differences
Dk = X1k1 − X1k2, it follows that their permutation approach is distributional identical to multiplying the differences with
random signs ϵk, with P(ϵik = 1) = P(ϵik = −1) =

1
2 . This perception led to generalizing their method to our setting with

general nonparametric factorial longitudinal data. Such resamplingmethods,which are based onmultiplying the (fixed) data
with random signs, i.e., using Rademacher distributed random weights (Davidson and Flachaire, 2008), are a specific wild
bootstrap technique. Note that earlier wild bootstrap versions used different weights satisfying differentmoment conditions,
see e.g. Wu (1986), Liu (1988) or Mammen (1993a). Typically, the choice of weights depends on the specific situation. In
our nonparametric setting we found a specific preference for Rademacher weights in our simulation study. They have the
additional advantage of leading to a finitely exact test if the multiplied random variables (Zik below) are 0-symmetric under
the null, see e.g. Janssen (1999) or Lehmann and Romano (2005).

Furthermore, these resamplingmethods aremotivated by the residual bootstrap commonly applied in regression analysis
(Wu, 1986; Mammen, 1993b; Janssen, 1999; Flachaire, 2005; Davidson and Flachaire, 2008; Cameron et al., 2008), and in
time-series testing problems (Kreiss and Paparoditis, 2011). It is also proposed in the context of survival analysis (Lin, 1997;
Martinussen and Scheike, 2007; Pauly, 2011; Beyersmann et al., 2013; Dobler and Pauly, 2014; Dobler et al., 2015), and
recently for the selection of biomarkers in early diagnostic trials (Zapf et al., 2015). The approach will be explained in the
following.

Let Zik =

Rik − R i·


, i = 1, . . . , a; k = 1, . . . , ni denote the centered rank vectors and let ϵik denote independent and

identically distributed random signs; thus fulfilling E(ϵ11) = 0 and Var(ϵ11) = 1. We restrict ourselves to this specific kind
of weights since they showed the best finite sample performance in the scenarios considered here (see also Davidson and
Flachaire, 2008 for a similar observation in regression models). However, the subsequent results can easily be extended to
other choices of weights fulfilling E(ϵ11) = 0 and Var(ϵ11) = 1. Now, consider the resampling vectors

Z∗

ik = ϵik · Zik, i = 1, . . . , a; k = 1, . . . , ni,

which depict a conditional distribution of the centered rank vectors Zik around zero. The shape of the distribution depends on
Zik and particularly on the shape of the distribution of the randomweights. Since the ϵ′

iks are random signs, the distribution
of Z∗

ik is a symmetrization of the fixed vectors Zik. Now, let

p̂ϵ
i =

1
ni

ni
k=1

ik

tN


Rik − R i·


=

1
ni

ni
k=1

1
tN

Z∗

ik

denote the resampling equivalent of the relative effect estimatorspi; and let 6 = N
a

i=1
1
ni
V ϵ
i denote the direct sum of

the empirical covariance matrices

V ϵ
i =

1
(tN)2(ni − 1)

ni
k=1

Z∗

ik − Z
∗

i· Zik − Z
∗

i·

′

, i = 1, . . . , a,

of the vectors Z∗

ik, respectively. For convenience, the vectors p̂ϵ
i are collected in the vector p̂ϵ

= (p̂ϵ
1, . . . , p̂

ϵ
a)

′. This bootstrap
method corresponds to the wild cluster bootstrap proposed by Cameron et al. (2008) for semiparametric regression
problems. In this sensewemay also call our approachmore specifically nonparametric wild cluster bootstrap of the individual
rank vectors Rik. In the next theorem, the conditional multivariate distribution of

√
N p̂ϵ will be examined.

Theorem 3.1. The conditional distribution of
√
N p̂ϵ , given the data X , is, asymptotically, as N → ∞, the multivariate N(0, 6)

distribution, in probability.

Theorem 3.1 implies that both the distributions of
√
NCp̂ϵ and

√
NC(p − p) are asymptotically identical under the

hypothesis HF
0 . Furthermore, the asymptotic distribution of

√
NCp̂ϵ is independent from the distribution of the data X .

These results can now be used to derive the wild bootstrap versions of both the Wald-type statistic (WWTS)

Q ϵ
N = N(p̂ϵ)′C ′(C6ϵC ′)+Cp̂ϵ, (3.8)
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and the ANOVA-type statistic (WATS)

F ϵ
N =

N

tr(T6 )
(p̂ϵ)′T p̂ϵ . (3.9)

It will be shown in the subsequent theorems that both the conditional distributions of the statistics Q ϵ
N and F ϵ

N mimic the
asymptotic null distributions of the WTS and the ATS given in Theorems 2.1 and 2.2, respectively.

Theorem 3.2. Under Assumption (2.2) and Vi > 0 for all i = 1, . . . , a, the conditional distribution of Q ϵ
N converges weakly to

the central χ2
f -distribution with f = rank(C) degrees of freedom in probability for any underlying value p ∈ Rat , i.e. we have

sup
x∈R

|Pp(Q ϵ
N ≤ x|X) − PH0(QN ≤ x)|

P
→ 0, (3.10)

where PH0(QN ≤ x) denotes the unconditional null distribution function of QN under H0.

Theorem 3.3. Under Assumption (2.2) the conditional distribution of F ϵ
N converges weakly to the null distribution of FN in

probability for any underlying value p ∈ Rat , i.e. we have

sup
x∈R

|Pp(F ϵ
N ≤ x|X) − PH0(FN ≤ x)|

P
→ 0. (3.11)

Remark 3.1. The corresponding wild bootstrap tests are given by ϕϵ
WTS = 1{QN > cϵ

WTS} and ϕϵ
ATS = 1{FN > cϵ

ATS},
where cϵ

WTS and cϵ
ATS denote the conditional (1 − α)-quantile of the wild bootstrap distribution of Q ϵ

N and F ϵ
N given the

data, respectively. Properties (3.10) and (3.11) ensure that the wild bootstrap tests are of asymptotic level α under the null
hypothesis and consistent for any fixed alternative. Moreover, it follows from Janssen and Pauls (2003) that they possess
the same local power under contiguous alternatives as the original tests ϕWTS and ϕATS , respectively.

4. Simulations

In the previous sections, nonparametric rank-based inference methods for the analysis of general factorial longitudinal
data have been derived. The procedures are based on the asymptotic joint distribution of the vector

√
NCp under the

hypothesis HF
0 : CF = 0. As an approximate solution, wild bootstrap methods are proposed. All of the proposed approaches,

however, are valid for large sample sizes. In order to investigate the accuracies of the procedures in terms of (i) controlling
the pre-assigned type-1 error level under the null hypothesis, and (ii) their power to detect certain alternatives, extensive
simulation studies were conducted. All simulationswere performedwith R environment, version 3.2.2. (R Core Team, 2010),
each with 100,000 simulation and 999 bootstrap repetitions (Dufour and Khalaf, 2001; Racine and MacKinnon, 2007),
respectively. Due to abundance of possible factorial longitudinal designs, we restrict the analysis to one-way designs with
a = 2 independent groups of subjects, different numbers of time points t ∈ {4, 8}, underlying discrete and continuous data
distributions (ordinal data, normal, and lognormal), and varying sample sizes ni ∈ {10, 20}. Discrete data were simulated in
order to investigate the impact of tied observations on the wild bootstrap tests. Both the WTS, ATS and their wild bootstrap
versions are investigated to test the null hypothesis of ‘‘no main effect’’ (A), ‘‘no time effect’’ (T), as well as ‘‘no interaction’’
(A:T) between the main and time effect, respectively. The nominal type-1 error rate was set to 5%. More simulation results
for different α levels (α = 1% and α = 10%) can be found in the supplementary material (see Appendix B). The results
and conclusions obtained are similar to the ones presented below. Throughout the simulations, random signs were used as
weights for both thewild bootstrapmethods. Results for standard normal, uniform orMammen (1993a) weights lead to less
accurate test decisions, and are therefore omitted.

4.1. Ordinal data

In order to imitate the underlying distributions of the grading scores given in the shoulder tip pain trial, a split-plot design
with a = 2 groups, ni subjects in group i and t repeated measures Xiks was simulated. The observations

Xiks =
5(Ziks + cYik)

c + 1
+ 1

were generated from independent observations Yik ∼ U[0, 1] and Ziks ∼ U[0, 1], i = 1, 2, k = 1, . . . , ni and s = 1, . . . , t .
The random variables Xiks take values between 1 and 5 as in the shoulder tip pain trial. The correlation between Xiks and Xiks′

can be regulated by choosing the constant c between 0 and ∞. Here, c = 1 has been chosen. Thus, the generated scores
have a compound symmetric covariance structure. The type-1 error simulation results are displayed in Table 1.

It can be readily seen from Table 1 that the classicalWald-type test (WTS) tends to liberal conclusions. Roughly speaking,
the liberality of the WTS can be explained by the non-consideration of the variability of the empirical covariance matrix by
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Table 1
Simulation results (α = 5%) of the WTS, ATS and their wild bootstrap versions for testing the three different hypotheses (A,
T, A:T) with ordinal data and varying sample sizes.

Hypothesis n Method t = 4 t = 8
ATS WTS ATS WTS

A
n1 = n2 = 10 Classic 0.066 0.066 0.066 0.066

Wild bootstrap 0.051 0.051 0.051 0.051

n1 = 10, n2 = 20 Classic 0.067 0.067 0.066 0.066
Wild bootstrap 0.054 0.054 0.053 0.053

T
n1 = n2 = 10 Classic 0.054 0.118 0.038 0.314

Wild bootstrap 0.051 0.052 0.048 0.049

n1 = 10, n2 = 20 Classic 0.053 0.111 0.039 0.277
Wild bootstrap 0.051 0.055 0.049 0.059

A:T
n1 = n2 = 10 Classic 0.053 0.115 0.038 0.312

Wild bootstrap 0.051 0.050 0.048 0.049

n1 = 10, n2 = 20 Classic 0.055 0.113 0.038 0.274
Wild bootstrap 0.052 0.055 0.049 0.058

its limiting χ2 distribution. Its wild bootstrap version, however, greatly improves the type-1 error rate control of the WTS.
This occurs, because the wild bootstrap distribution takes the variability of the empirical covariance matrix into account.
Therefore, the actual sampling distribution of theWTS and itswild bootstrap version are similarwhen sample sizes are small.
The same behavior can be seen for the ATS. The classical ATS is less liberal than theWTS, however, its empirical type-1 error
rate is ≈7% when testing for the main effect. In the other situations (T and A : T ), the method tends to be conservative in
case of larger numbers of time points. Its wild bootstrap version, however, improves this behavior and tends to an accurate
type-1 error rate control. Furthermore, it can be seen that unbalanced designs seem to not affect the accuracy of the wild
bootstrap tests. Altogether, rejection rates for the wild bootstrap procedure vary between 0.048 and 0.059, with usually
larger values for the WTS wild bootstrap test.

Next, continuous distributions and the impact of different covariance structures on the quality of the approximations
will be investigated.

4.2. Continuous data

For the empirical investigation of the type-1 error rate control of the proposed methods, balanced and unbalanced split-
plot design with a = 2 groups, sample sizes ni ∈ {10, 20}, and t = {4, 8} repeated measures Xiks was simulated. Data was
generated by:

Xik = 6
1/2
i
Xik,

where 6i either has an autoregressive structure (Setting 1) or a compound symmetric pattern (Setting 2):
Setting 1 (AR): 6i =


ρ |l−j|


l,j≤t , ρ = 0.6 for i = 1, 2.

Setting 2 (CS): 6i = It + Jt for i = 1, 2.

The independent and identically distributed random vectorsXik = (Xik1, . . . ,Xikt) were generated either from a standard
normal distribution or from a standardized log-normal distribution.

The type-1 error simulation results for testing the hypotheses of no main effect A, no time effect T and no main × time
interaction A : T are displayed in Tables 2 and 3 for the normal and log-normal distribution, respectively.

It can be seen from Tables 2 and 3 that the shape of the underlying data distribution does not affect the type-1 error
rate control of all four methods, and are similar for all three investigated distributions (ordinal, normal, and lognormal).
Furthermore, the chosen dependency structures of the data do not impact the quality of the approximations. All of the
investigated methods allow for an arbitrary covariance matrix. From Tables 2 and 3 it further follows that both the WTS
and ATS show a liberal and conservative to slightly liberal behavior depending on the hypothesis and number of time
points, respectively. Both the wild bootstrap methods show an accurate type-1 error rate control with rejection rates
varying from 0.047 to 0.058 for the normal distribution and 0.044 to 0.068 for the log-normal distribution, and are therefore
recommended for practical applications. Note, however, that the rejection frequencies of the wild bootstrap version of the
WTS are sometimes statistically different from 5% for t = 8 time points and unequal sample sizes, e.g. 0.068 for testing
T with compound symmetry in Table 3. Next, the power of the methods for the detection of certain alternatives will be
investigated.

4.3. Power

To investigate the power of the tests a separate simulation study was performed in a one-sample repeated measures
design utilizing multivariate normal distributions with expectation µ = (µ1, µ2, µ3, µ4)

′, autoregressive covariance
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Table 2
Type-1 error simulation results for normally distributed data with sample sizes n(1)

= (10, 10) and n(2)
= (10, 20).

Cov. setting n Method t = 4 t = 8
ATS WTS ATS WTS

A

AR
n(1) Classic 0.064 0.066 0.066 0.067

Wild bootstrap 0.050 0.050 0.052 0.052

n(2) Classic 0.063 0.065 0.067 0.068
Wild bootstrap 0.052 0.052 0.054 0.054

CS
n(1) Classic 0.064 0.066 0.067 0.067

Wild bootstrap 0.050 0.050 0.052 0.052

n(2) Classic 0.064 0.066 0.067 0.067
Wild bootstrap 0.052 0.052 0.054 0.054

T

AR
n(1) Classic 0.055 0.114 0.050 0.314

Wild bootstrap 0.050 0.049 0.053 0.049

n(2) Classic 0.056 0.109 0.050 0.273
Wild bootstrap 0.053 0.053 0.053 0.058

CS
n(1) Classic 0.052 0.115 0.037 0.314

Wild bootstrap 0.049 0.050 0.047 0.048

n(2) Classic 0.052 0.108 0.037 0.270
Wild bootstrap 0.051 0.053 0.048 0.056

A:T

AR
n(1) Classic 0.055 0.115 0.049 0.315

Wild bootstrap 0.051 0.050 0.052 0.049

n(2) Classic 0.057 0.109 0.049 0.273
Wild bootstrap 0.053 0.053 0.053 0.058

CS
n(1) Classic 0.052 0.114 0.037 0.315

Wild bootstrap 0.049 0.050 0.048 0.047

n(2) Classic 0.052 0.108 0.036 0.268
Wild bootstrap 0.050 0.053 0.047 0.057

Table 3
Simulation results for log-normally distributed data with sample sizes n(1)

= (10, 10) and n(2)
= (10, 20).

Cov. setting n Method t = 4 t = 8
ATS WTS ATS WTS

A

AR
n(1) Classic 0.065 0.066 0.066 0.066

Wild bootstrap 0.051 0.051 0.052 0.052

n(2) Classic 0.064 0.065 0.067 0.068
Wild bootstrap 0.052 0.052 0.055 0.055

CS
n(1) Classic 0.065 0.066 0.067 0.067

Wild bootstrap 0.051 0.051 0.052 0.052

n(2) Classic 0.064 0.065 0.068 0.068
Wild bootstrap 0.052 0.052 0.054 0.054

T

AR
n(1) Classic 0.059 0.121 0.055 0.324

Wild bootstrap 0.053 0.055 0.054 0.054

n(2) Classic 0.060 0.118 0.056 0.281
Wild bootstrap 0.056 0.058 0.055 0.062

CS
n(1) Classic 0.051 0.122 0.034 0.334

Wild bootstrap 0.048 0.056 0.044 0.059

n(2) Classic 0.051 0.116 0.035 0.283
Wild bootstrap 0.049 0.059 0.046 0.068

A:T

AR
n(1) Classic 0.057 0.116 0.054 0.316

Wild bootstrap 0.051 0.050 0.053 0.048

n(2) Classic 0.058 0.111 0.054 0.275
Wild bootstrap 0.054 0.055 0.054 0.059

CS
n(1) Classic 0.052 0.115 0.036 0.314

Wild bootstrap 0.049 0.049 0.047 0.045

n(2) Classic 0.052 0.111 0.036 0.268
Wild bootstrap 0.050 0.056 0.046 0.054
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Fig. 2. Power simulation results (type-1 error level α = 5%) of the four investigated methods to detect the Alternatives 1–3 defined above with varying
sample sizes n = 10 and n = 15, respectively.

structure Vij = (0.6)|i−j|, t = 4 dimensions and sample size n ∈ {10, 15}. The aim of the simulation study is to investigate
and compare the empirical power of the tests to detect the three chosen alternatives

Alternative 1: µ(1)
= (0, 0, 0, δ) for varying δ ∈ {0, 0.5, 1, 1.5, 2},

Alternative 2: µ(2)
= (0, 0, δ, δ) for varying δ ∈ {0, 0.5, 1, 1.5, 2},

Alternative 3: µ(3)
= δ · (1/4, 1/2, 3/4, 1) for varying δ ∈ {0, 0.5, 1, 1.5, 2}.

They are chosen to represent frequently appearing alternatives in practical applications. The Alternatives 1–3 represent a
1-point, 2-point and a trend alternative, respectively. The power simulation results are displayed in Fig. 2.

Although the Wald-type statistic QN tends to be highly liberal when small sample sizes like n = 10 or 15 are present,
the statistic has been included in Fig. 2 for illustration purposes. However, because of these issues, the method will not
be viewed as a competitor to the other three methods. It can be seen from Fig. 2 that the ATS has the highest power to
detect all three chosen alternatives when sample size is very small (n = 10). However, this method is slightly liberal when
n = 10, and therefore the conclusion that the ATS is head and shoulders above the rest is questionable. In particular, with
increasing sample sizes (n = 15) both the power of the ATS and its wild bootstrap version are similar while the latter
keeps the prescribed α level more accurate. The wild bootstrap version of the WTS has the lowest power to detect all of the
three alternatives. It has a slightly lower power than the wild bootstrap version of the ATS in the first two scenarios while a
considerable power loss (compared to the ATS and its wild bootstrap version) to detect trend alternatives is apparent.

5. Application: analysis of the data example

We now re-analyze the data of the shoulder tip pain trial (Lumley, 1996). It turns out that the given scores for the treated
male patients given under time point 5 and 6 are identical, thus, the estimated covariance matrix6 is singular. Therefore,
theWTS cannot be used for data analysis, and only the ATSwill be used formaking inference. First, data will be descriptively
analyzed. Since data was observed in an elaborate factorial design, the relativemarginal effects are computed for each factor
combination separately. The results for the joint analysis of all possible treatment× gender× time combinations alongwith
95% point-wise confidence intervals are displayed in Fig. 3, which was generated using the R-package nparLD.

It can be readily seen from Fig. 3 that the time responses between the treated and non-treated patients differ. This is
most apparent at time point t = 3, where the confidence intervals between the treatment groups do not overlap. At all time
points, the estimated effects are smaller under treatment than under control. Thus, the scores seemingly tend to be smaller
under treatment. Over time, the effects of the treated male patients tend to decrease until time t = 4 before they slightly
increase and stabilize at the end. For the non-treated male patients the time profile is contrary: The effects rise until t = 3
and decline thereafter. Compared to the male patients, the time profile of the female patients show a similar behavior in
both groups with slightly larger effects at the beginning. The ATS as well as its wild bootstrap version can now be used to
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Fig. 3. Joint analysis of the data example: Treatment specific plots of the relative effects with 95%-confidence intervals—Gender: Male (left) and Female
(right).

Table 4
Analysis of the shoulder tip pain trial using the ATS as given in (2.6) as well as the wild bootstrap ATS defined
in (3.9).

Effect Statistic df p-value (ATS) p-value (WATS)

Treatment 16.401 1.000 <0.001 <0.001
Gender 0.046 1.000 0.832 0.827
Time 3.382 2.701 0.021 0.021
Treatment:gender 0.036 1.000 0.852 0.847
Treatment:time 3.711 2.701 0.014 0.013
Gender:time 1.144 2.701 0.327 0.325
Treatment:gender:time 0.438 2.701 0.705 0.736

Table 5
Treatment specific results for the shoulder tip pain trial using the ATS as given in (2.6) as well as the wild bootstrap ATS defined in (3.9).

Effect Treatment = Yes Treatment = No
Statistic df p-value (ATS) p-value (WATS) Statistic df p-value (ATS) p-value (WATS)

Gender 0.007 1.000 0.932 0.931 0.046 1.000 0.834 0.828
Time 1.893 2.663 0.136 0.151 5.580 2.696 0.001 <0.001
Gender:time 0.959 2.663 0.403 0.432 0.926 2.696 0.419 0.424

test if significantmain effects and interactions among the three factors treatment, gender and time are apparent. The results
are presented in Tables 4 and 5. Here, the values of the test statistics, degrees of freedom of the classical F-approximation
of the ATS and p-values for both the ATS and its wild bootstrap version (WATS) introduced in Section 3 are displayed. For
the wild bootstrap 10,000 bootstraps were conducted.

It turns out that the ATS as well as its wild bootstrap version tend to result in similar conclusions. Overall, p-values
obtained by the ATS, however, are slightly larger than those by the WATS (except for the threefold interaction). It turns
out that the interaction between treatment and time is significant at 5% level of significance. Therefore, data is further split
by the factor treatment and the above analysis is repeated for each treatment group separately. We note that this changes
the estimates and confidence intervals since ranks are no longer calculated from the pooled sample but separately for both
(independent) groups. The results are given in Table 5.

It can be seen fromTable 5 that in both treatment groups data do not provide the evidence for a gender× time interaction.
Similarly, a significant gender effect does not seem to exist at 5% level in both groups. However, under treatment, the scores
do not change significantly over time (WATS p-value of 0.151), while a significant time effect is apparent under placebo. The
corresponding relative effect estimators with 95%-confidence intervals are displayed in Fig. 4. The significant time effect
under control can be readily seen from Fig. 4. For both the male and female patients, the pain score is significantly smaller
at time point 6 compared to time point 3.

5.1. Sensitivity analysis

In the data example, the WTS cannot be used due to the singularity of the covariance matrix. In order to apply both ATS
andWTS,we have dropped time point 6 from the following analysis, yielding a non-singular covariancematrix. The resulting
p-values of this analysis are displayed in Tables 6 and 7. It can be seen that all methods still detect a significant effect of the
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Fig. 4. Separate analysis of the data example per treatment: Plots of the relative effectswith 95%-confidence intervals—Treatment: No (left) and Yes (right).

Table 6
Analysis of the shoulder tip pain trial (without time point 6) using the ATS,WTS as well as the wild bootstrap
ATS and WTS.

Effect p-value (ATS) p-value (WATS) p-value (WTS) p-value (WWTS)

Treatment <0.001 <0.001 <0.001 <0.001
Gender 0.8006 0.8033 0.8006 0.8033
Time 0.1356 0.1398 0.0344 0.0755
Treatment:gender 0.9151 0.9137 0.9151 0.9137
Treatment:time 0.0168 0.0189 0.0102 0.0338
Gender:time 0.2409 0.2419 0.0227 0.0591
Treatment:gender:time 0.6721 0.7028 0.3022 0.3867

Table 7
Treatment specific results for the shoulder tip pain trial using the ATS and the WTS as well as their wild bootstrap versions.

Effect Treatment = Yes Treatment = No
p-value
(ATS)

p-value
(WATS)

p-value
(WTS)

p-value
(WWTS)

p-value
(ATS)

p-value
(WATS)

p-value
(WTS)

p-value
(WWTS)

Gender 0.9314 0.9311 0.9314 0.9311 0.8306 0.8250 0.8306 0.8250
Time 0.1356 0.1413 0.0763 0.2400 0.0013 0.0006 <0.0001 0.0043
Gender:time 0.4032 0.4215 0.0237 0.1444 0.4193 0.4346 0.0520 0.2251

treatment as well as a significant interaction between treatment and time. The WTS furthermore detects a significant time
effect aswell as a significant interaction between gender and time. These findings are not supported by the other procedures
(theWWTS finds borderline significance in both cases) and are probably due to the liberality of theWTS. To further analyze
the results, we again consider the two treatment groups separately (see Table 7). Here, only the WTS detects a significant
gender × time interaction in both treatment groups (borderline significant for the placebo group). All other procedures do
not provide evidence for such an interaction. Furthermore, a significant gender effect does not seem to exist in both groups.
However, a significant time effect seems to be present only in the placebo group, a finding shared by all four procedures
again.

Overall, these findings are similar to the ones obtained above with the exception of the significant results only detected
by the WTS, which are consistent with the liberal behavior of the WTS seen in the simulation studies in Section 4.

6. Conclusions and discussion

Ranking methods for the analysis of factorial longitudinal data provide a robust and powerful tool for making statistical
inference. The consideredWald- and ANOVA-type statistic of Akritas and Brunner (1997) can be seen as the current state of
the art. It turns out, however, that the Wald-type statistic tends to be quite liberal, while the ANOVA-type statistic tends to
rather conservative or even liberal conclusionswhen small sample sizes are apparent. In this paper, awild bootstrapmethod
has been introduced. It was shown that the conditional distributions of the wild bootstrap statistics mimic the (asymptotic)
distributions of the corresponding test statistics in both cases. Thus, the resampling versions are (at least) asymptotically
valid, a desirable property that is not shared by the classical ATS. The empirical type-1 error rate control of the methods has
been investigated for ordinal, symmetric as well as skewed continuous distributions with different covariance matrices in
different balanced and unbalanced designs. The studies show that the wild bootstrap approximations of both the WTS and
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ATS improve their finite sample behavior. Both resampling tests improve the type-1 error control of their non-bootstrap
versions in all considered scenarios, whereof the wild bootstrap version of the ATS is more accurate in most instances.
Regarding the power of the resampling tests, it could be seen that the wild bootstrap version of the ATS has higher power to
detect the chosen alternatives when sample sizes are small (n = 10, 15). The power simulations have further shown, that
the power of the ATS and its resampling version are asymptotically equivalent, i.e., both tests have the same power to detect
certain alternatives when sample sizes are large. The findings via the simulation study give rise to recommend the wild
bootstrap version of the ATS for practical applications. Different to both WTS procedures, this method is further applicable
when the estimated variance covariance matrix is singular as in the presented data example.

The considered nonparametric hypotheses are formulated in terms of the distribution functions. The interpretation of
the hypotheses can be challenging, particularly in factorial designs. The extension of the methods for testing hypotheses
formulated in terms of the relative marginal effects by Hp

0 : Cp = 0will be part of future research.
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Appendix A

In a nonparametric setting as described in Section 2, the relative treatment effects are defined as

pis =


HNdFis, i = 1, . . . , a, s = 1, . . . , t, (A.12)

where again HN(x) =
1
tN

a
i=1
t

s=1 niFis(x) denotes the weighted average of all marginal distribution functions.
Estimators of HN(x) and pis are derived by replacing the distribution functions in (A.12) with the empirical distribution

functions

Fis(x) =
1
ni

ni
k=1

1
2
[1(x > Xiks) + 1(x ≥ Xiks)] , (A.13)

resulting inH(x) =
1
tN

a
i=1
t

s=1 niFis(x) and a rank estimator of the relative effects

pis =

 HdFis =
1
ni

ni
k=1

H(Xiks). (A.14)

For each summand on the right hand side of (A.14) we write Yiks = H(Xiks) =
Riks−

1
2

tN and set its limit variable to
Yiks := H(Xiks). It follows from the Asymptotic Equivalence Theorem (Akritas and Brunner, 1997) that under HF

0 ,
√
NCY · and√

NCp asymptotically have the same distribution. Since Y i· are means of independent random vectors and Cp = 0 under
HF

0 , it is easily established that
√
NCY ·

d
−→ N(0, C6C ′) under the null hypothesis. Thus, we even have

√
NC(p − p) d

−→ N(0, C6C ′) (A.15)

under HF
0 . Here, 6 = ⊕

a
i=1

1
κi
Vi and Vi = Cov(Yi1). Note that the covariance matrices Vi may not be equal, even if a

homoscedastic model is assumed for X , since H(·) is a nonlinear transformation.

Proof of Theorem 2.1. The result is also stated in Section 1.5.1 of Brunner and Puri (2001). For completeness we shortly
present its proof here: From (A.15) it follows that

Q̃N = Np′C ′(C6C ′)+Cp
has asymptotically a central χ2

rank(C) distribution under HF
0 . Finally, the result follows by replacing 6 with 6 by applying

the multivariate Slutsky Theorem and noting that the involved Moore–Penrose inverse is continuous since 6 > 0 by
assumption.

Proof of Theorem 2.2. The proof can be found in Brunner and Puri (2001, THEOREM 1.8).

Proof of Theorem 3.1. Due to conditional independence of the random variables p̂ϵ
i , i = 1, . . . , a, we can study them

separately. Applying Theorem A.1 in Beyersmann et al. (2013), see also Theorem 4.1 in Pauly (2011), it remains to show the
following convergences in probability

max
1≤i≤a

√
N∥Yik −Yi·∥

ni

P
−→ 0, N → ∞, (A.16)
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as well as

N
n2
i

ni
k=1

(Yik −Yi·)(Yik −Yi·)
′ P
−→

1
κi
Vi, (A.17)

whereYi· =
1
ni

ni
k=1

Yik. The first convergence (A.16) follows due to |Yiks| ≤ 1 and the second one (A.17) from

N
n2
i

ni
k=1

(Yik −Yi·)(Yik −Yi·)
′

=
(ni − 1)N

ni

1
ni(ni − 1)

ni
k=1

(Yik −Yi·)(Yik −Yi·)
′

P
−→

1
κi
Vi.

Thus, we can conclude convergence in distribution
√
N

ni

ni
k=1

ik(Yik − Y i·)
d

−→ N 0,
1
κi
Vi (i = 1, . . . , a)

given the data X in probability and the stated weak convergence of the conditional distribution of
√
N p̂ϵ to an N(0, 6)-

distributed random variable as well as of
√
NCp̂ϵ to the right hand side of (A.15) in probability follows.

Proof of Theorem 3.2. The statement follows directly from Theorem 3.1 if we prove consistency of6 . Therefore, consider

pϵ
is =

1
ni

ni
k=1

ik

Nt
(Riks − Ri·s) =:

1
ni

ni
k=1

ik

Nt
Ziks.

First, it holds that

E(pϵ
is|X) = E

1
ni

ni
k=1

ik

Nt
Ziks|X


=

1
Ntni

ni
k=1

E(ϵik) · E(Ziks|X) = 0.

Moreover, due to conditional independence of ϵikZiks given X , the corresponding conditional variances also converge to zero
in probability as ni/N → κi:

Var(pϵ
is|X) =

1
(Ntni)2

ni
k=1

Var(ϵik)Z2
iks

=
1

(Ntni)2

ni
k=1

Z2
iks ≤

1
(Ntni)2

ni(N − 1)2 → 0.

Because of Tschebyscheff’s inequality this impliespϵ
is

P
→ 0 for all i = 1, . . . , a and thus the asymptotic equivalence of 6

and6. Since6 is consistent, this completes the proof.

Proof of Theorem 3.3. The result follows from Theorems 2.2 and 3.1 and an application of Lemma 1 in Janssen and Pauls
(2003) by noting that the limit distribution of AN in (2.7) is continuous.

Remark. Note that the relative effects depend on the sample sizes ni. To avoid this dependence onemay replace the function
H(x) by the unweighted mean of the distribution functions G(x) =

1
at

a
i=1
t

s=1 Fis(x). This results in unweighted relative
effects qis =


GdFis, see e.g. Puri andHall (2003). Awild bootstrap version thereofmay be defined analogously to the relative

effects considered above and the asymptotic results follow analogous to p̂ϵ , if we considerZiks =G(Xiks) instead ofYiks, i.e. letqϵ
=

1
ni

ni
k=1 ik(Zik −Zi·) forZi· = n−1

i
ni

k=1
Zik. Given the data X , we have conditional convergence in distribution

√
Nqϵ d

−→ N(0,6)

in probability, where6 = ⊕
1
κi
Vi andVi = Cov(G(Xiks)), analogous to the proof of Theorem 3.1.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2016.06.016.

http://dx.doi.org/10.1016/j.csda.2016.06.016
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