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1. Motivation and introduction

In many experiments in the life, social or psychological sciences the experimental units (e.g., subjects) are repeatedly
observed at different occasions (e.g., at different time points) or under different treatment conditions. This leads to certain
dependencies between observations from the sameunit and results in amore complicated statistical analysis of such studies.
In the context of experimental designs, the repeatedmeasures are considered as levels of the sub-plot factor. If several groups
are observed, these are considered as levels of the whole-plot factor.

Typical questions in repeated measures and profile analysis concern the investigation of a group effect, a non-constant
effect of time or different time profiles in the groups; see, e.g., the monographs of Davis [14, Section 4.3] or Johnson and
Wichern [25, Section 6.8]. Classical repeated measures models, where hypotheses are tested with Hotelling’s T 2 [19] or
Wilks’sΛ [45], assume normally distributed observation vectors and a common covariancematrix for all groups; see e.g., the
monograph of Davis [14]. In medical and biological research, however, the assumptions of equal covariance matrices and
multivariate normally distributed outcomes are often not met and a violation of themmay inflate the type-I error rates; see
the comments in Xu and Cui [46], Suo et al. [40] or Konietschke et al. [28].

Therefore, other procedures have been developed for repeated measures which are based on certain approximation
techniques [1,7–10,17,18,21,26,27,30,35,41,44]. However, these papersmainly assume themultivariate normal distribution
and only discuss methods for specific models which are also asymptotically only approximations, i.e., they do not even lead
to asymptotic exact tests. Another possibility is to apply a specific mixed model in the GEE context, see, e.g., the text books
by Verbeke and Molenberghs [42,43]. These methods require that the data stem from a specific exponential family. An
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Table 1
Means and empirical standard deviations of oxygen consumption of leukocytes in the
presence and absence of inactivated staphylococci.

O2-Consumption [µℓ]

Staphylococci
With Without
Time (min) Time (min)
6 12 18 6 12 18

Placebo
(n = 12)

Mean 1.618 2.434 3.527 1.322 2.430 3.425
Sd 0.157 0.303 0.285 0.193 0.263 0.339

Verum
(n = 12)

Mean 1.656 2.799 4.029 1.394 2.57 3.677
Sd 0.207 0.336 0.256 0.218 0.242 0.340

exception is given by the multivariate Wald-type test statistic (WTS), which is asymptotically exact. However, it is well
known that it requires large sample sizes to keep the pre-assigned type-I error level; see, e.g., [6,28,34].

To improve the small-sample behavior of the WTS in a MANOVA setting, Konietschke et al. [28] proposed different
bootstrap techniques. Another possibilitywould be to apply permutation procedures. It iswell known that permutation tests
are finitely exact under the assumption of exchangeability; see, e.g., [5,31,36] or [37–39] as well as [2,3,12] for examples. In
most of these examples, however, permutation tests are only applied in situations where the null distribution is invariant
under the corresponding randomization group.

A modified permutation procedure may also be applied in situations where this invariance does not hold; see, e.g.,
[11,23,24,33,34]. Themain idea in these papers is to apply a studentized test statistic and to use its permutation distribution
(based on permuting the pooled sample) for calculating critical values. This leads to particularly good finite-sample
properties even in case of general factorial designs with fixed factors [34]. It is the aim of the present paper to extend the
concept of permuting all data to the context of longitudinal data in general (not necessarily normal and homoscedastic) split
plot designs. Applied to the WTS this generalizes the results of Pauly et al. [34] and leads to astonishingly accurate results
despite the dependencies in repeated measurements data.

The methodology derived in the present paper is motivated by the following data example on the O2 consumption of
leukocytes. To examine the breathability of leukocytes, an experiment with 44 HSD-rats was conducted. A group of 22
rats was treated with a placebo, while the other 22 rats were treated with a substance supposed to enhance the humoral
immunity. 18 h prior to the opening of the abdominal cavity, all animals received 2.4 g sodium-caseinate for the production
of a peritoneal exudate rich on leukocytes. In order to obtain a sufficient amount of material the peritoneal liquid of 3–4
animals was mixed and the leukocytes therein were rehashed in an experimental batch. One half of the experimental batch
wasmixedwith inactivated staphylococci in a ratio of 100:1, the other half remained untreated and served as a control. Then,
the oxygen consumption of the leukocyteswasmeasuredwith a polarographic electrode after 6, 12 and 18min, respectively.
For each group separately, 12 experimental batcheswere carried out. Some descriptive statistics of the experimental batches
in both treatment groups are listed in Table 1.

Questions of interest in this example concern the effect of the whole-plot factor ‘treatment’, the effect of the sub-plot
factors ‘staphylococci’ and ‘time’ as well as interactions between these effects. We note that the empirical 6 × 6 covariance
matrices of the two groups appear to be quite different (see the supplement (see Appendix A) for details). This alsomotivates
the inclusion of unequal covariance matrices in our model. For such experimental designs, procedures are derived in this
paper that lead to good small-sample control of the type-I error while being asymptotically exact.

The paper is organized as follows. The underlying statistical model is described in Section 2, where we also introduce the
Wald-type (WTS) aswell as the ANOVA-type statistic (ATS) and state their asymptotic behavior. In Section 3, we describe the
novel permutation procedure used to improve the small sample behavior of the WTS. Afterwards, we present the results of
extensive simulation studies in Section 4, analyzing the behavior of the permuted test statistic in different simulation designs
with certain competitors. Additional simulation results have also been run for several other resampling schemes. They did
not show a better performance than the permutation procedure and are only reported in the supplementarymaterial, where
also various power simulations can be found. Themotivating data example is analyzed in detail in Section 5. The paper closes
with a brief discussion of our results in Section 6. All proofs are given in the supplementary material (see Appendix A).

2. Statistical model, hypotheses and statistics

2.1. Statistical model and hypotheses

To establish the general model, let

Yik = (Yik1, . . . , Yikti)
⊤, i = 1, . . . , a; k = 1, . . . , ni (2.1)

denote independent random vectors with distribution Fi and expectationµi = (µi1, . . . , µiti)
⊤

= E(Yi1) in treatment group
i. The underlying dependency structure is regulated by pairwise correlations. In particular, we do not assume any special



                                                              257

structure of the group-specific covariance matrix Vi = cov(Yi1) > 0 which may even differ between groups i ∈ {1, . . . , a}.
Note that we also allow the number of time points ti to differ between groups. The most common case where ti = t for all
i ∈ {1, . . . , a} is thus a special case of model (2.1). Here the time points ti ∈ N are fixed. For convenience, we collect the
observation vectors Yik in

Y = (Y⊤

1 , . . . , Y⊤

a )⊤, Yi = (Y⊤

i1 , . . . , Y⊤

ini)
⊤. (2.2)

In this set-up, hypotheses are formulated asH
µ

0 : Hµ = 0, whereµ = (µ⊤

1 , . . . ,µ⊤
a )⊤ denotes the vector of all expectations

µis = E(Yi1s), i ∈ {1, . . . , a}, s ∈ {1, . . . , ti} and H is a suitable contrast matrix, i.e., its rows sum up to zero. Examples of H
are presented in Section 4.

Throughout the paper, we will use the following notation. We denote by It the t-dimensional unit matrix and by Jt the
t × t matrix of 1’s, i.e., Jt = 1t1⊤

t , where 1t = (1, . . . , 1)⊤ is the t-dimensional column vector of 1’s. Furthermore, let
Pt = It − 1/t · Jt denote the t-dimensional centering matrix. By ⊕ and ⊗ we denote the direct sum and the Kronecker
product, respectively.

An estimator of µ is given by Y • = (Y
⊤

1•, . . . , Y
⊤

a•)
⊤, where, for each i ∈ {1, . . . , a} and s ∈ {1, . . . , ti},

Y i• = (Yi·1, . . . , Yi·ti)
⊤, Y i·s =

1
ni

ni
k=1

Yiks,

and the covariance matrix Vi in treatment group i is estimated by the sample covariance matrix

Vi =
1

ni − 1

ni
k=1

(Yik − Y i•)(Yik − Y i•)
⊤.

Let N = n1 + · · · + na denote the total number of subjects in the trial, T = t1 + · · · + ta the total number of time points
and Ñ = n1t1 + · · · + nata the total number of observations. Then the asymptotic results are derived under the following
two assumptions:

(1) ni/N → κi ∈ (0, 1) as min(n1, . . . , na) → ∞,
(2) supi E(∥Yi1∥

4) < ∞.

2.2. Statistics and asymptotics

We consider two commonly used test statistics for repeatedmeasures andmultivariate data. First, the so-called ANOVA-
type statistic (ATS), introduced in [6], is given as:

QN = NY
⊤

•
H⊤(HH⊤)−HY • = NY

⊤

•
TY •, (2.3)

where (·)− denotes some generalized inverse. Note that the test statistic does not depend on the special choice of the
generalized inverse. Its asymptotic distribution is established in the next theorem.

Theorem 1. Under the null hypothesis H
µ

0 : Hµ = 0, the ATS in (2.3) has, asymptotically, the same distribution as the random
variable

X =

a
i=1

ti
s=1

λisXis,

where Xis
i.i.d.
∼ χ2

1 and the weights λis are the eigenvalues of T6 for 6 =
a

i=1 κ−1
i Vi. Moreover, for local alternatives

Tµ = 1/
√
N · Tν, ν ∈ RT , the ATS has, asymptotically, the same distribution as Z⊤TZ , where Z ∼ N (ν, 6). If additionally

6 > 0, the ATS has the same distribution as a weighted sum of χ2
1 (δ) distributed random variables, where the weights are again

the eigenvalues λis and δ = ν⊤6−1ν.

Since the λis are unknown, the result cannot be applied directly. Nevertheless, Brunner [6] proposed to approximate the
distribution of X by the distribution of a scaled χ2-distribution, i.e., by gX̃ν , where X̃ν ∼ χ2

ν . The constants g and ν are
estimated from the data such that the first two moments of X and gX̃ν coincide; see [4]. This leads to approximating the
statistic

FN =
N

tr(T6)
Y

⊤

•
TY • (2.4)

by an F (ν, ∞)-distribution with estimated degree of freedom ν̂ = tr2(T6)/tr(T6)2, where 6 = N
a

i=1 1/niVi. The
corresponding ATS test ϕATS = 1{QN > Fα(ν, ∞)}, where Fα(ν, ∞) denotes the (1 − α)-quantile of the F (ν, ∞)-
distribution, leads to consistent test decisions for fixed alternatives. However, it is in general no asymptotic level α test
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Table 2
Simulated type-I error rates (10000 simulations) in a repeatedmeasures design with
n = 10, 20, 50, 100 individuals and t = 4, 8 repeatedmeasures. TheATS is compared
to the upper 5% quantile of the F (ν̂, ∞)-distribution, the WTS to the upper 5%
quantile of the χ2

t−1-distribution.

n Type-I error rates (α = 0.05)
ATS: F-quantile WTS: χ2-quantile
t = 4 t = 8 t = 4 t = 8

10 0.025 0.012 0.223 0.776
20 0.026 0.014 0.126 0.388
50 0.030 0.021 0.081 0.166

100 0.035 0.025 0.067 0.111

under the null hypothesis, which is a severe drawback of this procedure. Thus, we discuss a second statistic, the so-called
Wald-type statistic (WTS) given as

QN = NY
⊤

•
H⊤(H6H⊤)+HY •. (2.5)

Here (H6H⊤)+ denotes theMoore–Penrose inverse of (H6H⊤). In order to test the general linear hypothesesH
µ

0 : Hµ = 0
critical values are taken from the asymptotic distribution of QN under the null hypothesis stated below.

Theorem 2. Under the null hypothesis H
µ

0 : Hµ = 0, the WTS in (2.5) has, asymptotically, a central χ2
f -distribution with

f = rank (H). The corresponding test is given by ϕWTS = 1{QN > χ2
f ,1−α}, where χ2

f ,1−α denotes the (1 − α)-quantile of the
χ2
f distribution. This test is an asymptotic level α test and is consistent for general fixed alternatives Hµ ≠ 0. Moreover, for local

alternatives Hµ = 1/
√
N ν, ν ∈ RT ,QN has asymptotically a non-central χ2

f (δ̃) distribution where δ̃ = (Hν)⊤(H6H⊤)+Hν.
This implies that EH1(ϕWTS) → Pr(Z > χ2

f ,1−α) with Z ∼ χ2
f (δ̃).

Although ϕWTS possesses these nice asymptotic properties, it is well-known that very large sample sizes ni are necessary to
maintain the pre-assigned level α using quantiles of the limiting χ2-distribution; see [6,28,34] as well as Table 2. This leads
to a limited applicability of the WTS in practice.

To accept the need for a novel procedure, we investigate the accuracy of the two test statistics in a one-sample repeated
measures design with n subjects and t repeated measures Yks. The null hypothesis H

µ

0 : {µ1 = · · · = µt} = {Ptµ =

0}, µ = (µ1, . . . , µt)
⊤ is considered and the components of Yk are selected as standardized log-normally distributed

random variables, i.e.,

Yks =
ks − E(ϵks)
√
var(ϵks)

for i.i.d. log-normally distributed ϵks for all k ∈ {1, . . . , n} and s ∈ {1, . . . , t}. The results are displayed in Table 2, where
the simulated type-I error rates of the WTS and ATS are given. It is readily seen that the test based on theWTS considerably
exceeds the nominal level of 5%, while the ATS leads to rather conservative decisions.

Thus, to enhance the small-sample properties of the above tests we have compared different resampling approaches
in an extensive simulation study, presented in Section 9 of the supplementary material [15]. The resampling approaches
considered there are a nonparametric and a parametric bootstrap approach (described in detail in the supplementary
material) as well as a permutation procedure. Surprisingly, the best procedure in terms of type-I error control turned out
to be a permutation technique that randomly permutes the pooled univariate observations without taking into account
the existing dependencies for calculating critical values. Motivation for this seemingly counter-intuitive method stems
from [29], where a similar approach has been applied in the paired two-sample case. Moreover, the current procedure
generalizes the permutation test on independent observations by Pauly et al. [34] and implemented in the R package
GFD [16] to the case of repeated measures and multivariate data. The details are explained in the next section.

3. The permutation procedure

Let Y π
= π(Y111, . . . , Yanata)

⊤
= (Yπ

111, . . . , Y
π
anata)

⊤ denote a fixed but arbitrary permutation of all Ñ elements of Y in
(2.2), i.e.,π ∈ SÑ . In this notation, Yπ

iks denotes the (i, k, s)-component of the permuted vector Y . Furthermore, let Y
π

•
denote

the vector of the means under this permutation and 6π
=

a
i=1 N/ni V π

i the empirical covariance matrix of the permuted
observations.

It is obvious, that Y and Y π only have the same distribution whenever the components of Y are exchangeable. However,
this is not the case in general two- and higher way layouts, even in the case of independent observations; see, e.g., [20].
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Following the approach of [11,22,23,32–34] in the case of independent observations, the idea is to studentize the statistic
√
NY

π

·
and consider its projection into the hypothesis space, resulting in the WTS of the permuted observations, namely

Q π
N = N(Y

π

•
)⊤H⊤(H6πH⊤)+HY

π

•
. (3.1)

In the sequel we will denote Q π
N as the WTPS. Note that the question of how to permute is more involved here than in

the case of independent univariate observations. A heuristic reason why the above approach might work is as follows:
Unconditionally, all permuted components possess the same mean. Thus, when multiplied by a contrast matrix the
permuted means vector always mimics the null situation, i.e., HE(Y

π

•
) = 0 always holds. In particular, it can be shown that

the conditional distribution of the WTPS Q π
N in (3.1) always approximates the null distribution of QN in (2.5) in the general

repeated measures design under study; thus leading to an asymptotically valid permutation test. This result is formulated
in the following theorem.

Theorem 3. The studentized permutation distribution of Q π
N in (3.1) conditioned on the observed data Y weakly converges to

the central χ2
f distribution in probability, where f = rank (H).

Remark 3.1. Theorem 3 states that the permutation distribution asymptotically provides a valid approximation of the null
distribution of the test statistic QN in (2.5). To be concrete, this means that for any underlying parameters µ ∈ RT and
µ0 ∈ H0(H) with Hµ0 = 0we have convergence in probability, viz.

sup
x∈R

Prµ(Q π
N ≤ x|Y ) − Prµ0(QN ≤ x)

 → 0. (3.2)

Here, Prµ(QN ≤ x) and Prµ(Q π
N ≤ x|Y ) denote the unconditional and conditional distribution function of QN and Q π

N ,
respectively, under the assumption that µ is the true underlying parameter.

Remark 3.2. AWald-type permutation test is obtained by comparing the original test statistic QN with the (1−α)-quantile
c∗

1−α of the conditional distribution of theWTPSQ π
N given the observed data Y , i.e., ϕWTPS = 1{QN > c∗

1−α}. More specifically,
the numerical algorithm for computation of the p-value is as follows:
1. Given the data Y , calculate the original Wald-type statistic QN for the null hypothesis of interest.
2. Randomly permute the pooled sample Y (i.e., all univariate observations from each group and each subject) and save

them in Y π,1.
3. Calculate the studentized Wald-type statistic Q π

N from Eq. (3.1) with the randomly permuted pooled observations Y π,1.
Save its value in A1.

4. Repeat steps 2 and 3 a large number J (e.g., J = 1000) times and obtain values A1, . . . , AJ .
5. Compute the p-value by the (approximative) conditional permutation distribution (i.e., the empirical distribution of

A1, . . . , AJ ) as

p-value =
1
J

J
j=1

1{QN ≥ Aj}.

Theorem3 implies that this test asymptotically keeps the pre-assigned levelα under the null hypothesis and is consistent
for any fixed alternative Hµ ≠ 0, i.e., it has asymptotically power 1. Moreover, it has the same asymptotic power as the
WTS for local alternatives Hµ = 1/

√
N · ν, i.e., EH1(ϕWTPS) → Pr(Z > χ2

f ,1−α) with Z ∼ χ2
f (δ̃) as in Theorem 2.

It follows that the permutation test and the classical Wald-type test are asymptotically equivalent and that both have
the same local power under contiguous alternatives. In particular the asymptotic relative efficiency of the WTPS compared
to the classical WTS is 1. Moreover, the permutation test based on Q π

N is finitely exact if the pooled data Y are exchangeable
under the null hypothesis. In comparison, the ATS also leads to a consistent test for fixed alternatives but does not provide
an asymptotic level α test since it is only an approximation.

We note that the proof given in the supplement (see Appendix A) to this paper indicates that the given permutation
technique does notwork in the case of the ATS. In particular, a permutation version of the ATSwould also possess aweighted
χ2-limit distribution but with different weights, say λ̃is, due to an incorrect covariance structure.

Remark 3.3. Our general framework (2.1) allows for the treatment of different important factorial designs in the context
of multivariate repeated measures data analysis. As in [34] the idea is to accordingly split the indices in subindices and
to choose an appropriate hypothesis matrix H . Examples of different cross-classified and hierarchically nested designs are
discussed in Section 4 of [28]. For repeated measures, examples are given in Sections 4 and 5 as well as in [6].

4. Simulations

In order to investigate the small sample behavior of the WTPS, we present extensive simulation results for different
designs and covariance structures. The procedure is analyzed in different settings with regard to maintaining the pre-
assigned type-I error rate (α = 5%). The results for the WTPS are compared to the asymptotic quantiles of the ATS (F -
quantile) and the WTS (χ2-quantile).
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4.1. Data generation

For our simulation studies, we simulated a split plot design which, in the context of longitudinal data, is a design with a
groups, ni subjects in group i and ti = t repeated measures Yiks for all s ∈ {1, . . . , t}. Let

Yik = (Yik1, . . . , Yikt)
⊤

= µi + Bik1t + V 1/2
i ϵik,

with µi = E(Yi1) for all i ∈ {1, . . . , a} and let Bik ∼ N (0, σ 2
i ) denote independent additive subject effects. The i.i.d. random

vectors ϵik = (ϵik1, . . . , ϵikt) were generated from different standardized distributions by

iks =
˜iks − E(ϵ̃iks)

var(ϵ̃iks)
,

where ϵ̃iks denote i.i.d. normal, exponential or log-normal random variables.
A simulation settingwith a = 3 groups and t = 4, 8 repeatedmeasureswas considered. The null hypotheses investigated

are
(1) The hypothesis of no time effect T

H
µ

0 (T ) : µ·1 = · · · = µ·t or equivalently HTµ = 0.
(2) The hypothesis of no group × time interaction effect GT

H
µ

0 (GT ) : HGTµ =

µ11 − µ1· − µ·1 + µ··

...
µat − µa· − µ·t + µ··

 = 0,

where HT = 1/a 1⊤
a ⊗ Pt and HGT = Pa ⊗ Pt .

We considered balanced as well as unbalanced designs for the n = (n1, n2, n3) subjects in group 1–3, respectively. The
simulated numbers of subjects were n(1)

= (30, 20, 10), n(2)
= (10, 20, 30) and n(3)

= (15, 15, 15). Furthermore, we
simulated three different covariance structures Vi

Setting 1: Vi = It for i ∈ {1, 2, 3}
Setting 2: Vi = diag(σ 2

1 , . . . , σ 2
t ) with σ 2

s = s for t = 4 and σ 2
s =

√
s for t = 8

Setting 3: Vi = ρ
|ℓ−j|
i

ℓ,j≤t
, (ρ1, ρ2, ρ3) = (0.6, 0.5, 0.4) for i ∈ {1, 2, 3}.

In Setting 1 and 2 the covariance structures are the same for all groups, whereas in Setting 3 we have an autoregressive
covariance structure with different parameters for the different groups. Moreover, we simulated block effects with different
variances σ 2

i ∈ {0, 1, 2}. However, since the results were almost identical, we here only report the case σ 2
i = 0. All

simulations were conducted with 10,000 simulation and 1000 permutation runs.

4.2. Type-I error rates

The resulting type-I error rates for the hypotheses of no time effect T and no group × time interaction GT are displayed in
Tables 3 and 4, respectively.

It is obvious that the tests based on theWTS considerably exceed the nominal level for small sample sizes. This behavior
becomesworsewith an increasing number of repeatedmeasurements andwhen testing the interaction hypothesis. In some
cases, the WTS reaches an empirical type-I error rate of almost 50% when testing the GT -interaction. This means that its
accuracy is no better than flipping a coin. The ATS, in contrast, keeps the pre-assigned level α pretty well for normally
distributed observations, even for small sample sizes. With an increasing number of repeated measurements and/or non-
normal data, however, the ATS leads to quite conservative decisions. Furthermore, the ATS leads to slightly conservative
decisions when testing the interaction hypothesis, even with normally distributed data. TheWTPS is reasonably close to the
pre-assigned level α in most situations, even under non-normality and for testing the interaction hypothesis. Despite the
dependencies in longitudinal data, the permutation procedure greatly improves the behavior of the WTS in small sample
settings. However, when testing the interaction hypothesis for t = 8 repeated measurements the WTPS shows a more or
less conservative behavior in Setting 3 combined with n(2), and a slightly liberal behavior for Setting 3 with n(1).

The simulations show a clear advantage of the permutation procedure as compared to the χ2- approximation of the
Wald-type statistic. TheWTPS controlled the 5% level in most situations, even under non-normality, i.e., in situations where
the ATS may lead to quite conservative decisions.

4.3. Additional simulation results

We note that additional simulations for the type-I error can be found in the supplementary material (see Appendix A) to
this paper. There we have compared the above methods with other resampling schemes such as the bootstrap procedures
described in [28]. Of all procedures analyzed in the simulations, the permutation procedure produced the best results.
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Table 3
Results of the simulation studies for the hypothesis of no time effect.

T t = 4 t = 8
Cov. setting ATS WTS WTPS ATS WTS WTPS

Normal distribution

1
n(1) 0.046 0.085 0.050 0.040 0.177 0.050
n(2) 0.046 0.086 0.048 0.040 0.177 0.052
n(3) 0.050 0.078 0.051 0.043 0.135 0.052

2
n(1) 0.051 0.085 0.050 0.042 0.177 0.051
n(2) 0.052 0.086 0.051 0.043 0.177 0.052
n(3) 0.053 0.077 0.051 0.041 0.135 0.052

3
n(1) 0.046 0.092 0.052 0.044 0.198 0.062
n(2) 0.051 0.080 0.045 0.048 0.155 0.042
n(3) 0.051 0.078 0.053 0.048 0.136 0.054

Log-normal distribution

1
n(1) 0.032 0.094 0.051 0.021 0.198 0.047
n(2) 0.031 0.090 0.052 0.020 0.198 0.046
n(3) 0.031 0.089 0.051 0.021 0.186 0.048

2
n(1) 0.040 0.110 0.067 0.022 0.207 0.053
n(2) 0.040 0.107 0.067 0.022 0.203 0.051
n(3) 0.042 0.107 0.070 0.024 0.197 0.057

3
n(1) 0.033 0.101 0.057 0.024 0.221 0.064
n(2) 0.037 0.090 0.053 0.033 0.190 0.048
n(3) 0.036 0.092 0.057 0.031 0.191 0.062

Exponential distribution

1
n(1) 0.045 0.090 0.048 0.034 0.194 0.051
n(2) 0.046 0.096 0.053 0.032 0.191 0.048
n(3) 0.046 0.086 0.054 0.034 0.151 0.050

2
n(1) 0.048 0.093 0.054 0.035 0.194 0.052
n(2) 0.050 0.101 0.060 0.034 0.193 0.051
n(3) 0.050 0.088 0.058 0.036 0.154 0.051

3
n(1) 0.049 0.098 0.055 0.042 0.218 0.066
n(2) 0.050 0.090 0.049 0.046 0.173 0.045
n(3) 0.050 0.087 0.055 0.042 0.153 0.056

4.3.1. Quality of the approximation
In the following, we denote by FN the distribution function of QN under H0, by F the distribution function of the limiting

χ2
f -distribution under H0 and by Fπ

N the distribution function of the WTPS under H0. We can now define

KQS = sup
0.9≤t≤0.99

|F−1
N (t) − F−1(t)|

as well as

KQSπ
= sup

0.9≤t≤0.99
|F−1

N (t) − (Fπ
N )−1(t)|

in order to compare the distance between the quantile function F−1
N and the limiting quantile function F−1 (KQS) with the

distance between F−1
N and (Fπ

N )−1, the quantile functions of the test statistic and its permuted version (KQSπ ), respectively.
We have calculated these distances for all simulation settings described above. Detailed results can be found in Section 10.1
of the supplementary material. It turned out that KQSπ is always smaller than KQS, i.e., the approximation provided by the
permutation procedure is considerably better than the asymptotic χ2 approximation for all simulation settings considered.
In our simulations, KQS ranged from 1.991 to 48.11 with a median distance of 9.179, whereas KQSπ ranged from 0.1049 to
7.618 with a median value of 0.8948. Fig. 1 exemplarily shows the plots of the corresponding quantile functions for one of
the simulation scenarios.

4.3.2. Large-sample behavior
In this section, we analyze the large sample behavior of the WTS and WTPS. We considered only normally distributed

random variables with covariance structure Setting 2 for an unbalanced (n(1)
= (30, 20, 10)) as well as a balanced

(n(3)
= (15, 15, 15)) designwith t = 4, 8 time points. The sample sizewas increased by adding b13 to the above sample size

vectors for b = ℓ 20 and all ℓ ∈ {0, . . . , 10}. The results for the type-I error under the null hypothesis of no interaction and
covariance setting 2 are presented in Fig. 2. The behavior of the WTS improves with growing sample size but even for 115
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Table 4
Results of the simulation studies for the hypothesis of no group × time interaction.

GT t = 4 t = 8
Cov. setting ATS WTS WTPS ATS WTS WTPS

Normal distribution

1
n(1) 0.049 0.135 0.046 0.033 0.432 0.051
n(2) 0.053 0.142 0.052 0.034 0.433 0.050
n(3) 0.048 0.126 0.049 0.039 0.366 0.051

2
n(1) 0.053 0.132 0.050 0.038 0.429 0.052
n(2) 0.053 0.141 0.054 0.038 0.431 0.050
n(3) 0.050 0.122 0.052 0.040 0.366 0.050

3
n(1) 0.054 0.141 0.050 0.040 0.465 0.065
n(2) 0.053 0.135 0.045 0.049 0.393 0.037
n(3) 0.051 0.126 0.049 0.045 0.363 0.053

Log-normal distribution

1
n(1) 0.024 0.121 0.047 0.012 0.426 0.053
n(2) 0.022 0.128 0.053 0.013 0.431 0.051
n(3) 0.024 0.118 0.048 0.012 0.406 0.051

2
n(1) 0.025 0.129 0.051 0.014 0.427 0.054
n(2) 0.026 0.130 0.054 0.013 0.432 0.052
n(3) 0.023 0.120 0.050 0.013 0.403 0.052

3
n(1) 0.029 0.133 0.050 0.020 0.457 0.062
n(2) 0.028 0.121 0.045 0.024 0.399 0.036
n(3) 0.028 0.122 0.049 0.020 0.408 0.053

Exponential distribution

1
n(1) 0.043 0.146 0.054 0.024 0.442 0.054
n(2) 0.041 0.148 0.054 0.024 0.443 0.050
n(3) 0.036 0.122 0.047 0.028 0.397 0.054

2
n(1) 0.048 0.151 0.059 0.027 0.444 0.057
n(2) 0.042 0.153 0.059 0.025 0.448 0.052
n(3) 0.034 0.121 0.048 0.029 0.397 0.055

3
n(1) 0.047 0.155 0.061 0.032 0.473 0.068
n(2) 0.043 0.140 0.049 0.042 0.406 0.037
n(3) 0.037 0.122 0.047 0.041 0.402 0.058

Fig. 1. Quantile functions of theWTS, WTPS and the corresponding χ2-distribution in the balanced simulation setting with log-normally distributed data,
t = 8, covariance matrix setting 2 and under the null hypothesis of no interaction.

individuals in all groups, the WTS still exceeds the nominal level. The WTPS, in contrast, is rather close to the pre-assigned
level even for small sample sizes.

4.3.3. Power
The power simulations are explained in detail in Section 11 of the supplementary material to this paper. Since the WTS

turned out to test on different α-levels (see the simulation results under the null hypothesis), we have excluded it from the
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Fig. 2. Type-I error rates under the interaction hypothesis for the WTS and the WTPS, where sample size was increased by adding b13, b = ℓ 20 for all
ℓ ∈ {0, . . . , 10} to the sample size vectors in a balanced (lower panel) and unbalanced (upper panel) design with t = 4 (left panel) and t = 8 (right panel)
time points under covariance setting 2, i.e., Vi = diag(σ 2

1 , . . . , σ 2
t ) with σ 2

s = s for t = 4 and σ 2
s =

√
s for t = 8.

Table 5
Results of the analysis of the O2 consumption data.

ATS WTS WTPS

A 0.001 0.001 0.003
B <0.001 <0.001 <0.001
T <0.001 <0.001 <0.001
AB 0.110 0.110 0.133
AT 0.009 <0.001 <0.001
BT 0.094 0.115 0.151
ABT 0.117 0.116 0.164

analyses.We additionally considered the approximation described by Lecoutre [30] aswell as Hotelling’s T 2 [19]. It turns out
that the ATS has the highest power for normally distributed data, performing slightly better than theWTPS. For log-normally
distributed data, the WTPS has larger power than the other methods and it is the only method controlling the type-I error
correctly.

5. Application: analysis of the data example

Finally, we analyze the data example on oxygen consumption of leukocytes in the presence and absence of inactivated
staphylococci. In this setting we wish to analyze the effect of the whole-plot factor ‘treatment’ (factor A, Placebo/Verum,
a = 2) as well as the sub-plot factors ‘staphylococci’ (factor B, with/without, b = 2) and ‘time’ (factor T, 6/12/18 min,
t = ti = 3, i = 1, . . . , ab). We are also interested in interactions between the different factors. The mean values and
empirical standard deviations of the data are given in Table 1 in Section 1.

In the analysiswe compared the three tests discussed above: The ATS in (2.4) is compared to the correspondingF (ν̂, ∞)-
quantile, the WTS in (2.5) to the asymptotic χ2

f -quantile as well as the quantile obtained by the permutation procedure
(WTPS). The seven different null hypotheses of interest about main and interaction effects can be tested by choosing the
related hypotheses matrices. Here, we have chosen HA = Pa ⊗ 1/b · 1⊤

b ⊗ 1/t · 1⊤
t ,HB = 1/a 1⊤

a ⊗ Pb ⊗ 1/t 1⊤
t and

HT = 1/a 1⊤
a ⊗ 1/b 1⊤

b ⊗ Pt for testing the main effect of the three factors A, B, and T . For the interaction terms we used
the matrices HAT = Pa ⊗ 1/b 1⊤

b ⊗ Pt ,HAB = Pa ⊗ Pb ⊗ 1/t 1⊤
t and HBT = 1/a 1⊤

a ⊗ Pb ⊗ Pt , and HABT = Pa ⊗ Pb ⊗ Pt . The
resulting p-values of the analysis are presented in Table 5.

For this example all tests under considerations lead to similar conclusions: Each factor (treatment, staphylococci and
time) has a significant influence on the O2 consumption of the leukocytes. Moreover, there is a significant interaction
between treatment and time.
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6. Conclusions and discussion

In this paper, we have generalized the permutation idea of Pauly et al. [34] for independent univariate factorial designs
to the case of repeated measures allowing for a factorial structure. Here, the suggested permutation test is asymptotically
valid and does not require the assumptions of multivariate normality, equal covariance matrices or balanced designs. It
is based on the well-known Wald-type statistic (WTS) which possesses the beneficial property of an asymptotic pivot
while being applicable for general repeated measures designs. Since it is well known for being very liberal for small
and moderate sample sizes, we have considerably improved its small-sample behavior under the null hypothesis by a
studentized permutation technique. For univariate and independent observations the idea of this technique dates back to
Neuhaus [32] and Janssen [22] and has recently been considered for more complex designs in independent observations
by Chung and Romano [11] and Pauly et al. [34]. Extensions of the intriguing methods of Arboretti Giancristofaro et al.
[2,3] and Corain et al. [12,13] to our quite general repeated measures design (not requiring any symmetry or
homoscedasticity assumptions) would be desirable and will be part of future research.

In addition, we have rigorously proven in Theorem 3 that the permutation distribution of the WTS always approximates
the null distribution of the WTS and can thus be applied for calculating data-dependent critical values. In particular, the
result implies that the corresponding Wald-type permutation test is asymptotically exact under the null hypothesis and
consistent for fixed alternatives while providing the same local power as the WTS under contiguous alternatives.

Moreover, our simulation study indicated that the permutation procedure showed a very accurate performance in all
designs under consideration with moderate repeated measures (t = 4) and homoscedastic or slightly heteroscedastic
covariances. Only in the case of a larger number of repeated measurements (t = 8) the WTPS showed a more or less liberal
(conservative) behavior when testing the interaction hypothesis in an unbalanced design. However, all other competing
procedures considered in the paper and the supplementary material (see Appendix A) did not perform better in these
situations.

Roughly speaking, the good performance of the WTPS for finite samples may be explained by a better approximation of
the underlying distribution of the WTS by the permutation distribution as compared to the χ2-distribution. This could be
seen clearly in the distances between the quantile functions.
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