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Abstract: (1) Background: Individual PEEP settings (PEEPIND) may improve intraoperative oxygena-
tion and optimize lung mechanics. However, there is uncertainty concerning the optimal procedure
to determine PEEPIND. In this secondary analysis of a randomized controlled clinical trial, we com-
pared different methods for PEEPIND determination. (2) Methods: Offline analysis of decremental
PEEP trials was performed and PEEPIND was retrospectively determined according to five different
methods (EIT-based: RVDI method, Global Inhomogeneity Index [GI], distribution of tidal ventilation
[EIT VT]; global dynamic and quasi-static compliance). (3) Results: In the 45 obese and non-obese
patients included, PEEPIND using the RVDI method (PEEPRVD) was 16.3 ± 4.5 cm H2O. Determi-
nation of PEEPIND using the GI and EIT VT resulted in a mean difference of −2.4 cm H2O (95%CI:
−1.2;−3.6 cm H2O, p = 0.01) and −2.3 cm H2O (95% CI: −0.9;3.7 cm H2O, p = 0.01) to PEEPRVD,
respectively. PEEPIND selection according to quasi-static compliance showed the highest agreement
with PEEPRVD (p = 0.67), with deviations > 4 cm H2O in 3/42 patients. PEEPRVD and PEEPIND

according to dynamic compliance also showed a high level of agreement, with deviations > 4 cm H2O
in 5/42 patients (p = 0.57). (4) Conclusions: High agreement of PEEPIND determined by the RVDI

method and compliance-based methods suggests that, for routine clinical practice, PEEP selection
based on best quasi-static or dynamic compliance is favorable.

Keywords: mechanical ventilation; positive end-expiratory pressure; general anesthesia; electrical
impedance tomography

1. Introduction

Positive end-expiratory pressure (PEEP) during mechanical ventilation for general
anesthesia is used to prevent both the formation of atelectasis as well as cyclic alveolar re-
cruitment and de-recruitment as risk factors for ventilator-induced lung injury [1,2]. Large
multi-center trials in surgical patients with an increased risk of developing postoperative
pulmonary complications, however, found no difference in the primary outcome postoper-
ative pulmonary complications in non-obese and obese patients, if constant PEEP levels of
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≤5 cm H2O or 12 cm H2O were compared [3]. Individually titrated PEEP levels aiming at
avoiding atelectasis and cyclic recruitment have been shown to vary significantly due to
patient factors such as respiratory system mechanics, obesity, distribution of fat tissue, and
procedural factors. The latter include, for example, laparoscopic abdominal surgery and
patient positioning, which may vary between reverse Trendelenburg position, e.g., during
bariatric surgery, or steep Trendelenburg position, e.g., during prostatic surgery [4,5].

We have recently shown that an individualized PEEP (PEEPIND) titration using electric
impedance tomography (EIT) in obese patients resulted in a PEEP range of 10–26 cm H2O
with a median of 18 cm H2O when selecting PEEP according to the lowest temporal
inhomogeneity determined by the regional ventilatory delay (RVDI method) [6]. The
comparison with a subgroup of patients of the large PROBESE trial comparing standard
higher PEEP of 12 cm H2O vs. PEEP of 4 cm H2O suggested that lung recruitment was
incomplete in both arms of the PROBESE trial [7]. Likewise, even in non-obese patients,
the PEEPIND determined by EIT was found as high as median of 14 cm H2O (median,
range of 8–20 cm H2O) [4]. While these and other results [8,9] may favor the concept
of an individualized ventilation strategy in interventions with high risk of pulmonary
complications, there is uncertainty concerning the optimal procedure to determine PEEPIND.
Regardless of the method chosen, a decremental PEEP trial preceded by a recruitment
maneuver to reopen the lung is usually performed for the determination of PEEPIND [8–10].

Due to its simplicity and the lack of need for additional equipment, identification of
the optimal individual PEEP level based on dynamic or static compliance is widely used in
the OR and ICU [10–14]. However, it remains unclear how high the agreement between the
different methods used to identify PEEPIND is.

In this secondary analysis, we therefore compared different methods for the determina-
tion of PEEPIND, including both parameters assessing global parameters of the respiratory
system and EIT-based parameters. Accordingly, we included patients from the intervention
group of a two-part, prospective, randomized controlled trial in obese and non-obese
patients [4,6].

2. Materials and Methods

We retrospectively analyzed the data of the intervention groups (obese and non-obese
patients) of a randomized controlled study dealing with individual PEEP titration using
EIT in obese and non-obese patients [4,6]. The study (German clinical trials register No.
DRKS00004199, www.who.int/ictrp/network/drks2/en/ accessed in 25 June 2022) was
conducted at the University Hospital of Leipzig Medical Center. Approval for the trial
was granted by the Leipzig University Ethics Committee (No. 196-11-ff-8042011) and all
patients gave written informed consent prior to inclusion. Detailed description of the
methods are published [4,6].

2.1. Patients

Between November 2012 and August 2017, non-obese patients with a body mass
index (BMI) between ≥18.5 and <30 kg/m2, and obese patients with a BMI ≥ 35 kg/m2,
age ≥ 18 years, and with a medium or high risk of postoperative pulmonary complications
(“Assess Respiratory RIsk in Surgical patients in CATalonia, ARISCAT score” ≥ 26 [15,16])
scheduled for elective laparoscopic surgery were previously included. All patients included
in the present secondary analysis were assigned to the intervention group of the original
two-part study and received intraoperative mechanical ventilation with an individualized
PEEP after an initial recruitment maneuver.

2.2. PEEP Titration and Determination of PEEPRVD

After induction of anesthesia and intubation, all patients were ventilated at a PEEP
of 5 cm H2O for ten minutes before baseline measurements were performed. All patients
were ventilated with a standard intensive care unit respirator (Evita-XL, Dräger Medical
AG, Lübeck, Germany).

www.who.int/ictrp/network/drks2/en/


J. Clin. Med. 2022, 11, 3707 3 of 13

Before the start of surgery and before insufflation of pneumoperitoneum, all patients re-
ceived an initial recruitment maneuver (RM). The RM was performed in pressure-controlled
mode, by gradually increasing PEEP and peak inspiratory pressure (PIP) until 30 cm H2O
and 50 cm H2O, respectively, for the obese group (20 cm H2O and 40 cm H2O for the non-
obese group). These settings were then maintained for ten respiratory cycles at a respiratory
rate of 6/min with an inspiratory to expiratory ratio of 1:2. The RM was followed by a
decremental PEEP trial for determination of PEEPIND [17]. The decremental PEEP trial was
performed in volume-controlled mode with a respiratory rate of 12/min. Inspiratory to
expiratory ratio of 1:2 and a tidal volume of 8 mL/kg predicted body weight. Inspiratory
time was set to achieve an inspiratory pause > 0.2 s to reduce the influence of resistance on
compliance calculation. The decremental PEEP trial started with a PEEP of 26 cm H2O in
obese patients or 20 cm H2O in non-obese patients, and was decreased stepwise by 2 cm
H2O until a PEEP level of 4 cm H2O was reached, with an interval of 3 min at each PEEP
step [4,6]. PEEP titration was performed using a 20◦ head-elevated ramped position in
obese patients and a 30◦ Trendelenburg position in non-obese patients. At the end of each
PEEP step, a single low-flow inflation maneuver was performed (tidal volume 12 mL/kg
PBW, inspiratory flow 4 L/min). The Regional Ventilatory Delay Index (RVDI) during each
low-flow maneuver was subsequently calculated offline using customized software.

As described in a previous publication [18], the Regional Ventilatory Delay (RVD) [19]
for each pixel in the EIT image was determined during the low-flow maneuver. In brief,
the RVD describes the delay (given in [%] of inflation time of the LFM) until each single
pixel’s regional impedance change exceeds 40% of its respective impedance maximum in
the impedance–time curve (Formula (1)). The RVDI is then defined as the SD for all pixels’
regional ventilatory delay [18]. An example is given in Figure 1. The PEEP corresponding to
the lowest RVDI was identified as the individual PEEP as determined by the RVD method
(PEEPRVD) [18].

RVD =
∆ti40%

tmax − tmin
× 100% (1)

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 3 of 14 
 

 

2.2. PEEP Titration and Determination of PEEPRVD 
After induction of anesthesia and intubation, all patients were ventilated at a PEEP 

of 5 cm H2O for ten minutes before baseline measurements were performed. All patients 
were ventilated with a standard intensive care unit respirator (Evita-XL, Dräger Medical 
AG, Lübeck, Germany). 

Before the start of surgery and before insufflation of pneumoperitoneum, all patients 
received an initial recruitment maneuver (RM). The RM was performed in pressure-con-
trolled mode, by gradually increasing PEEP and peak inspiratory pressure (PIP) until 30 
cm H2O and 50 cm H2O, respectively, for the obese group (20 cm H2O and 40 cm H2O for 
the non-obese group). These settings were then maintained for ten respiratory cycles at a 
respiratory rate of 6/min with an inspiratory to expiratory ratio of 1:2. The RM was fol-
lowed by a decremental PEEP trial for determination of PEEPIND [17]. The decremental 
PEEP trial was performed in volume-controlled mode with a respiratory rate of 12/min. 
Inspiratory to expiratory ratio of 1:2 and a tidal volume of 8 mL/kg predicted body weight. 
Inspiratory time was set to achieve an inspiratory pause >0.2 s to reduce the influence of 
resistance on compliance calculation. The decremental PEEP trial started with a PEEP of 
26 cm H2O in obese patients or 20 cm H2O in non-obese patients, and was decreased step-
wise by 2 cm H2O until a PEEP level of 4 cm H2O was reached, with an interval of 3 min 
at each PEEP step [4,6]. PEEP titration was performed using a 20° head-elevated ramped 
position in obese patients and a 30° Trendelenburg position in non-obese patients. At the 
end of each PEEP step, a single low-flow inflation maneuver was performed (tidal volume 
12 mL/kg PBW, inspiratory flow 4 L/min). The Regional Ventilatory Delay Index (RVDI) 
during each low-flow maneuver was subsequently calculated offline using customized 
software. 

As described in a previous publication [18], the Regional Ventilatory Delay (RVD) 
[19] for each pixel in the EIT image was determined during the low-flow maneuver. In 
brief, the RVD describes the delay (given in [%] of inflation time of the LFM) until each 
single pixel’s regional impedance change exceeds 40% of its respective impedance maxi-
mum in the impedance–time curve (Formula (1)). The RVDI is then defined as the SD for 
all pixels’ regional ventilatory delay [18]. An example is given in Figure 1. The PEEP cor-
responding to the lowest RVDI was identified as the individual PEEP as determined by 
the RVD method (PEEPRVD) [18]. 

40%

100%
i

max min

t
RVD

t - t
Δ= ×   (1)

 
Figure 1. Example of a decremental PEEP trial and identification of PEEPIND using the RVDI method, 
illustrating the PEEP steps 20–6 cm H2O. Distribution of tidal ventilation significantly shifts to 

Figure 1. Example of a decremental PEEP trial and identification of PEEPIND using the RVDI method,
illustrating the PEEP steps 20–6 cm H2O. Distribution of tidal ventilation significantly shifts to
nondependent (ventral) lung areas with decreasing PEEP levels (top row). RVDI reaches its minimum
at a PEEP level of 14 cm H2O (third row of images from top, line graph at the bottom). Likewise,
Global Inhomogeneity Index (second row of images from top significantly increases below PEEP
levels of 14 cm H2O. Maximum dynamic compliance was reached at a PEEP level of 16 cm H2O and
was 152 mL/cm H2O.
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During the decremental PEEP trial, ventilation and respiratory parameters at every
PEEP level were measured after the equilibration phase and before the low-flow maneuver,
transferred to a PC, and stored for offline analysis. Likewise, quasi-static compliance in the
inspiration and expiratory phase of the low-flow maneuver was recorded. Ventilation dis-
tribution images were obtained with a commercially available EIT system (PulmoVistaTM,
Dräger Medical AG, Lübeck, Germany). In addition, regional ventilation distribution and
homogeneity using the global inhomogeneity index (GI) [20], and the percentage of tidal
volume distributed to the non-dependent lung areas (relative amount of ventilated pixels in
dorsal half compared with all ventilated pixels in the EIT-image) were quantified at every
PEEP step.

2.3. Comparative Analysis of Different Methods to Determine PEEPIND
2.3.1. EIT Derived Parameters (PEEPGI, PEEP EIT VT)

The Global Inhomogeneity Index was developed to quantify the tidal volume distribu-
tion within the lung [20]. For calculation of GI, the median value of impedance differences
between end-inspiration and end-expiration is determined. Thereafter, the sum of the
absolute difference between median value and every pixel value is calculated and divided
by the sum of impedance values within the lung (Formula (2)). The GI was automatically
calculated at each PEEP step by our customized software and PEEPGI was defined as the
PEEP level with the lowest GI.

GI =
∑

x,y ∈ lung

∣∣∣DIxy −Median(DIlung)
∣∣∣

∑
x,y ∈ lung

DIxy
(2)

DI: value of the differential impedance in the tidal images, DIxy: the pixel in the
identified lung area, DIlung: all pixels representing the lung area, and ∈: element of the
ventilated part of the lung [20].

PEEP EIT VT was defined as the PEEP level where ventilation distribution between the
two ventral and the two dorsal regions of interest in the EIT-image was balanced.

2.3.2. Global Parameters of the Respiratory System (PEEP Cdyn, PEEP CQstat)

Dynamic compliance (Cdyn) was determined during the last five breaths of each PEEP
level of the decremental PEEP trial. Additionally, quasi-static compliance (CQstat) was
determined during the initial part of the inspiratory phase of the low-flow maneuver (from
start until a volume equal to VT was reached) at each PEEP step. Both Cdyn and CQstat
were calculated offline from airflow (F), airways pressure (P), and respiratory volume (V)
waveforms using the least squares method to estimate compliance (C) and resistance (R),
according to the equation of motion (P = R*F + V/C + PEEP). PEEP Cdyn was defined as
the PEEP level showing the highest dynamic compliance and PEEP CQstat as the PEEP
level showing the highest quasi-static compliance. Instead of calculating compliance of the
respiratory system offline, the compliance values estimated by the ventilator are often used
in clinical routines for PEEP titration. We therefore also compared the compliance values
determined offline with the values read from the respirator.

While the RVD is determined using a low-flow maneuver and is therefore linked to
quasi-static compliance, the GI is determined during tidal ventilation and is therefore more
linked to dynamic compliance. For the sake of clarity, we therefore limited ourselves to
comparing the PEEPRVD with the PEEP CQstat and PEEPGI with PEEP Cdyn. Furthermore,
the two most popular EIT-based methods (PEEPGI and PEEPRVD) were each compared
separately with the PEEPEIT VT.

2.4. Statistical Analysis

The data are presented as mean with standard deviation or median with range, except
for sex, where the number is given. The comparison of the PEEPIND obtained with different
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methods compared to the PEEPIND used according to RVDI was performed according to
the method by Bland–Altman [21]. Clinically significant diverging results of PEEP selection
among the measures were defined as differences > 2 PEEP steps (i.e., >4 cm H2O). The
statistical significance between the methods was determined with the Student’s t-test if
normally distributed. Otherwise, the Wilcoxon signed-rank test was used. Regression
analyses were performed by fitting a linear model. Normal distribution was tested by the
Shapiro–Wilk test and by plotting QQ plots. All statistical analyses were performed using R
Version 3.6.1 (R Foundation for Statistical Computing, Vienna, www.r-project.org accessed
on 25 June 2022, and RStudio, Version 1.2.1335). All tests were two-tailed and p < 0.05 was
considered to be statistically significant.

3. Results

A total of 45 patients were included in this secondary analysis (20 patients with a BMI
≥18.5 and <30 kg/m2, and 25 patients with a BMI ≥ 35 kg/m2). Based on the surgical
interventions, intraoperative positioning was 30◦ Trendelenburg in non-obese patients and
in reverse Trendelenburg position in obese patients. Baseline characteristics of the study
group are presented in Table 1. Mean PEEPIND according to the RVDI method did not
statistically differ between obese and non-obese patients (p = 0.09, Table 1). Data of the
decremental PEEP trial concerning RVDI were available for all patients assigned to the
intervention group in the primary trials (n = 45), whereas data concerning the quasi-static
compliance during the inspiratory or expiratory limb of the low flow maneuver and data
for analysis of dynamic compliance were unavailable in n = 3 patients. The mean PEEPIND
values according to the different methods are summarized in Figure 2.

Table 1. Patient characteristics and PEEPIND according to the RVDI method. Entries are mean
(standard deviation) or numbers. * p < 0.05.

All Patients Non-Obese Obese p-Value

Number 45 20 25

Age (years) 52.8 (12.7) 62.6 (7.5) 44.9 (10.3) <0.001 *

Sex (male/female) 28/17 20/0 8/17 <0.001 *

Height (cm) 177 (11) 182 (9) 173 (11) 0.004 *

Weight (kg) 118.0 (36.4) 84.4 (12.2) 145.0 (24.6) <0.001 *

BMI (kg m2) 38.1 (12.7) 25.4 (2.3) 48.2 (7.0) <0.001 *

PEEPIND RVDI (cm H2O) 16.3 (4.5) 14.9 (3.1) 17.4 (5.2) 0.047 *

3.1. Determination of PEEPIND Using EIT-Based Parameters

As presented in Table 2 and Figure 2, determination of PEEPIND using the Global
Inhomogeneity Index and the ventral-to-dorsal distribution of tidal ventilation (EIT VT) led
to significantly higher PEEP values compared to the RVDI method, with a mean difference
of −2.4 cm H2O (95% CI: −1.2; −3.6 cm H2O, p = 0.01) for the GI method and −2.3 cm H2O
(95% CI: −0.9;3.7 cm H2O, p = 0.01) for the EIT VT method. Potentially relevant diverging
PEEPIND values compared to the RVDI method with an absolute deviation of >4 cm H2O
were evident in 10 patients (22%, GI method) vs. 13 patients (29%, EIT VT method).

www.r-project.org
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Figure 2. PEEPIND values according to different methods for identification of PEEPIND. Median
PEEP values did not differ between the RVDI method and quasi-static compliance measured during
the inspiratory limb of the LFM. However, median PEEPIND values according to the minimal Global
Inhomogeneity Index (GI) were around 2 cm H2O higher than according to the other methods.

Table 2. Comparison of different methods for PEEPIND determination during a decremental PEEP
trial compared to the regional ventilation delay index method (RVDI) using Electrical Impedance
Tomography (EIT); data are shown as mean with 95% CI or number (percent). * p < 0.05.

Method n Mean PEEPIND
(95% CI)

n with Difference to
PEEP RVDI max. 4 cm

H2O

Mean Difference to
PEEP RVDI (95% CI) p-Value

RVDI 45 16.3 (14.9–17.6) – – –

EIT GIT 45 18.7 (17.4–20.0) 35 (78%) −2.4 (−1.2; −3.6) 0.010 *

EIT VT 45 18.6 (17.3–19.9) 32 (71%) −2.3 (−0.9; −3.7) 0.014 *

Cdyn 42 16.8 (15.6–18.0) 37 (88%) −0.4 (0.7; −1.5) 0.57

CQstat 42 16.0 (14.8–17.1) 39 (93%) 0.5 (1.5; −0.5) 0.67

3.2. Compliance-Based Parameters

Overall, the mean resulting PEEPIND values derived from the different methods
searching for the highest dynamic compliance of the respiratory system (Cdyn) or the highest
quasi-static compliance estimated during a standardized low-flow breath of 12 mL/kg
PBW (CQstat) did not significantly differ from the mean PEEPIND values determined with
the RVDI method (Table 2 and Figure 2).

PEEPIND determination according to the maximum dynamic compliance during nor-
mal tidal ventilation at the decremental PEEP trial resulted in PEEP values with a divergence
of >4 cm H2O in 5/42 patients (12%, two obese patients and three non-obese patients).

Potentially relevant deviations in PEEPIND > 4 cm H2O were found in three patients
when comparing the RVDI method and the CQstat method (Figure 3). One of these pa-
tients had a BMI of 65 kg/m2, which was the highest of the entire study population. In
the other two patients, re-examination of the PEEP titration curve revealed a partially
erroneous recording.
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(CQstat). Bias was 0.5 ± 3.18 cm H2O and did not differ between obese and non-obese patients
(0.7 ± 2.7 cm H2O vs. 0.2 ± 3.7 cm H2O, p = 0.99). Additional Bland-Altman plots comparing RVDI,
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Calculated dynamic compliance during tidal ventilation at each PEEP step using the
least squares method showed a strong correlation to the inspiratory compliance during the
standardized low-flow inspiratory breath (r2 = 0.767, p < 0.001, Figure 4). Bland–Altman
statistics showed a bias of 11.0 ± 13.4 mL/cm H2O with a precision (or CI) of 1.28 mL/cm
H2O. Concerning the resulting levels of PEEPIND, bias was −0.9 ± 2.4 cm H2O with a
precision of 0.74 cm H2O.
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Figure 5 depicts the course of mean Regional Ventilatory Delay Index (A), mean Global
Inhomogeneity Index and mean distribution of tidal ventilation to dependent (dorsal) lung
areas in obese (red) and normal weighted patients (green) during the decremental PEEP
trial, which show a homogeneous course of both the GI and VT values in both groups. Mean
PEEPIND values using the GI were 20.1± 4.6 cm H2O (obese patients) vs. 17.0± 3.3 cm H2O
(normal weighted patients), while mean PEEPIND values of the VT distribution method
were 20.4 ± 4.4 cm H2O (obese patients) vs. 16.4 ± 3.6 cm H2O (normal weighted patients).

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 4. Correlation between dynamic compliance and quasi-static compliance of the respiratory 
system during the inspiratory limb of the low-flow maneuver (LFM)-based on the data calculated 
using the least squares method. Dynamic compliance and quasi-static compliance during the LFM 
highly correlated in both obese and non-obese patients. 

Figure 5 depicts the course of mean Regional Ventilatory Delay Index (A), mean 
Global Inhomogeneity Index and mean distribution of tidal ventilation to dependent (dor-
sal) lung areas in obese (red) and normal weighted patients (green) during the decremen-
tal PEEP trial, which show a homogeneous course of both the GI and VT values in both 
groups. Mean PEEPIND values using the GI were 20.1 ± 4.6 cm H2O (obese patients) vs. 17.0 
± 3.3 cm H2O (normal weighted patients), while mean PEEPIND values of the VT distribu-
tion method were 20.4 ± 4.4 cm H2O (obese patients) vs. 16.4 ± 3.6 cm H2O (normal 
weighted patients). 

 
Figure 5. Course of mean Regional Ventilatory Delay Index (A), mean Global Inhomogeneity Index 
and mean distribution of tidal ventilation to dependent (dorsal) lung areas in obese (red) and non-
obese patients (green) during the decremental PEEP trial. While RVD shows considerable interindi-
vidual variation at each PEEP step (A), GI (B) is minimal at a PEEP of 18 cm H2O in normal weighted 
patients and at 20 cm H2O in obese patients. Likewise, best PEEP values according to the TV distri-
bution method show best PEEP values at 20 cm H2O for obese patients and 16 cm H2O for non-obese 
patients (C). 

4. Discussion 
The main result of the present study comparing global parameters of the respiratory 

system and parameters derived by EIT is that PEEPIND values derived by the two EIT-
based methods (Global Inhomogeneity Index and Distribution of Tidal Ventilation) 
tended to be slightly higher than PEEPIND values derived by compliance-based methods 
and the RVDI method. However, mean PEEP values ranged from 16.0 cm H2O to 18.7 cm 

Figure 5. Course of mean Regional Ventilatory Delay Index (A), mean Global Inhomogeneity Index
and mean distribution of tidal ventilation to dependent (dorsal) lung areas in obese (red) and
non-obese patients (green) during the decremental PEEP trial. While RVD shows considerable
interindividual variation at each PEEP step (A), GI (B) is minimal at a PEEP of 18 cm H2O in normal
weighted patients and at 20 cm H2O in obese patients. Likewise, best PEEP values according to the
TV distribution method show best PEEP values at 20 cm H2O for obese patients and 16 cm H2O for
non-obese patients (C).

4. Discussion

The main result of the present study comparing global parameters of the respiratory
system and parameters derived by EIT is that PEEPIND values derived by the two EIT-based
methods (Global Inhomogeneity Index and Distribution of Tidal Ventilation) tended to
be slightly higher than PEEPIND values derived by compliance-based methods and the
RVDI method. However, mean PEEP values ranged from 16.0 cm H2O to 18.7 cm H2O,
all determined with different methods, and were thus significantly higher than the PEEP
values usually applied during the surgical interventions examined, both in obese and
normal weighted patients and in different body positions with pneumoperitoneum [22,23].

Pneumoperitoneum during laparoscopic surgery leads to a cephalad shift of the
diaphragm and decreases transpulmonary pressure, and therefore leads to airway clo-
sure and formation of atelectasis in dependent lung areas, especially when combined
with a Trendelenburg position [24–28]. Intraoperative mechanical ventilation with a lung-
protective strategy consisting of adequate PEEP—possibly adapted to the pressure of the
pneumoperitoneum—and repeated recruitment maneuvers can counterbalance these ef-
fects [26,27,29,30]. This leads to lower elastance of the respiratory system and consecutively
improves oxygenation during surgery [28,30,31]. Many authors have advocated the in-
dividualization of PEEP in the operating room [32,33], and there is recent evidence that
individualized PEEP is superior to a standardized “one PEEP fits all” strategy, even if
higher PEEP levels are routinely used [7]. The optimal method for the choice of best PEEP
during mechanical ventilation in the operating room is, however, less clear [34].

Today, several methods to determine individual PEEP levels based on a decremental
PEEP trial have been proposed. Advanced methods aim to optimize lung mechanics, gas
exchange or the regional distribution and homogeneity of pulmonary ventilation, which
can be directly measured by Electrical Impedance Tomography (EIT). EIT-based regional-
ventilation-delay inhomogeneity has shown to be well correlated with the amount of tidal
recruitment [18] and mechanical ventilation, with a PEEPIND identified using the Regional
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Ventilatory Delay Index (RVDI) resulting in better intraoperative oxygenation in patients
undergoing high risk surgery for postoperative pulmonary complications [4,6].

The various methods investigated in the present study can be divided into those
aimed at optimizing the mechanics of the entire respiratory system and those seeking to
homogenize pulmonary ventilation to the greatest extent possible. Our reference method,
and at the same time the method used in the original two-part study [4,6], is to minimize
the RVDI measured by EIT during a standardized, low flow breath. This enables the
quantification of the delayed aeration of (mainly dependent) lung areas if PEEP is set
below the closing pressure of those lung units [19]. In this situation, the opening pressure
of lung units that are collapsed in the end-expiratory state is exceeded by inspiratory
pressure during the low flow breath, which then presents as a regional delayed change in
impedance in electrical impedance tomography. Minimizing this temporal inhomogeneity
of regional ventilation by setting PEEP according to the lowest RVDI [3,4,6,19] should thus
result in the lowest PEEP that minimizes tidal alveolar collapse, consequently helping to
prevent atelectrauma in dependent lung areas and volutrauma in non-dependent lung
areas. In contrast, methods based on finding maximum compliance—either during tidal
ventilation or during a standardized LFM of the decremental PEEP trial—only allow global
assessment of the respiratory system and do not directly pay attention to regional pulmonal
heterogeneity. Atelectasis and overdistension may occur simultaneously and may only be
detected when regional information is available. To prevent overdistension and consecutive
volutrauma in non-dependent lung areas, additional regional information is thus necessary.
Although the RVDI method is validated by computed tomography [19], it is has been rarely
used so far for determination of PEEPIND. Blankman et al. [35] also compared different
methods for determination of PEEPIND, but were not successful in defining an optimal
PEEP level during a four-step decremental PEEP trial using the GI and the RVDI method
in a cohort of 12 post-cardiac surgery patients. However, the highest PEEP applied in the
study from Blankman et al. was only 15 cm H2O, which was 1.3 cm H2O lower than the
mean PEEPIND determined by the RVDI method in our patient cohort, so the optimal PEEP
level might have been missed. Moreover, the RVDI was calculated during tidal ventilation
instead of performing a low-flow maneuver, which may have contributed to these negative
results. Muders et al. recently found that the tidal volume for low-flow breathing can be
reduced down to 6 mL/kg PBW, avoiding possible overdistension at higher PEEP levels
during the decremental PEEP trial. However, EIT-based selection of PEEPIND was not
possible on the basis of RVDI values derived from regular tidal ventilation [36], which
could additionally explain the differing results of the Blankman study.

Due to its ability to assess regional ventilation changes during a decremental PEEP
trial, EIT has become increasingly interesting for determination of an individualized PEEP.
Alternative methods used in addition to the RVDI method include the Global Inhomogene-
ity Index (GI) [11,20,37] and homogenization of ventilation distribution between dependent
and non-dependent lung areas [37]. In our patient cohort, both methods led to slightly
but significantly higher PEEPIND values compared to the RVDI method, and we observed
differences in PEEPIND up to 14 cm H2O. Zhao et al. also observed large differences con-
cerning PEEPIND in 10% of patients with ARDS undergoing a decremental PEEP trial when
using different methods [11]. However, they used a less restrictive definition of signifi-
cantly differing PEEP values and tolerated deviations up to 8 cm H2O. Heterogeneous
resistance of the respiratory tract and non-recruitable lung areas were discussed as causes
for the large deviations. In line with our results, the PEEPIND values based on the GI were
approximately 2 cm H2O higher than the PEEPIND values based on global parameters
(quasi-static or dynamic compliance). The GI might therefore slightly overestimate the
optimal individual PEEP level, which could be due to the GI not taking into account the
presence of atelectasis and overdistension [35]. Likewise, assessing the ventral-to-dorsal
distribution of tidal ventilation is similarly insensitive for overdistension, and PEEP selec-
tion based on ventral-to-dorsal distribution of tidal ventilation resulted in similar mean
PEEPIND values compared to the GI method in our patient cohort (Figure 2).
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The main advantage of best PEEP selection based on respiratory system compliance is
that it does not require additional equipment. In our patient cohort, we found a sufficient
agreement between PEEPIND based on best dynamic compliance and PEEPIND based on the
RVDI method in 88% of the patients. When PEEPIND was selected based on the best quasi-
static compliance, there was a sufficient agreement with PEEPRVD in 93% of the patients
in our study cohort. PEEPIND selection based on quasi-static compliance is therefore the
preferred method if regional information (EIT) is not available. In addition, in patients with
healthy lungs, a compliance-based estimation of PEEPIND seems to provide sufficiently
accurate results according to our data and can be more easily performed than EIT in the
routine operative setting. However, while determination of PEEPIND based on compliance
may be reasonably accurate in patients with healthy lungs, the data published by Zhao
and colleagues also indicate that EIT provides valuable regional information in patients
with diseased lungs and significant inhomogeneity of ventilation distribution [11], or, more
generally, information for answering scientific questions.

Furthermore, Zhao et al. found in their feasibility study that best PEEP selection
based on the GI was not superior to the compliance-based method in patients with healthy
lungs [37]. This may partly be explained by a high signal-to-noise ratio of EIT in healthy
patients. Overall small absolute values of RVDI and small changes in RVDI with a high
signal-to-noise ratio were also discussed as a reason for a disproportionally high number
of RM in almost completely recruited lungs in a model of experimental ARDS, resulting in
mean SDRVD values of ~5 [38]. Therefore, this may also have affected our results in patients
with healthy lungs, where at higher PEEP steps an almost completely recruited lung may
have affected the discriminatory power of the EIT-based parameters, especially the RVDI
(Figure 5). Nevertheless, this emphasizes the advantage of an RVD-based analysis, which,
in addition to the interpretation of a pure numerical value, allows the visual analysis and
thus the detection of hyperinflation of individual lung segments (Figure 1). However, large
deviations of PEEPIND values derived by the RVDI method and compliance-based methods
should trigger a re-examination of the PEEP titration and the EIT measurements as they
may indicate a faulty measurement. In our study, we detected large deviations of PEEPIND
in three patients. One of these patients had a BMI of 65 kg/m2, which was the highest BMI
in our population. Hence, a reason for the large deviation in this patient could be that the
EIT reconstruction algorithm reaches its limits in this case. Additionally, it could be useful
to check the PEEPIND values determined for plausibility by means of a second method, e.g.,
the quasi-static or dynamic compliance.

Dynamic compliance highly correlated with quasi-static compliance in our patient
cohort (Figure 4). A low-flow maneuver therefore seems dispensable if no RVDI is de-
termined. However, to eliminate the effect of the endotracheal tube and airways on the
calculation of dynamic compliance, care should be taken that there is an inspiratory pause
during mechanical ventilation and to use inspiratory plateau pressure instead of peak
inspiratory pressure for compliance estimation.

The present study was a retrospective analysis of experimental data comparing the
results of different methods for determination of PEEPIND. Although PEEPIND values
were in many cases within the previously defined range of maximum 4 cm H2O deviation,
some patients showed larger deviations of PEEPIND values, depending on the chosen
method. Because we did not prospectively compare the different methods of PEEPIND
determination and patients in the study were always ventilated with the PEEPIND based
on the RVDI method in the primary study, we cannot make a definitive statement as to
whether the results of the primary study would have differed with respect to the achieved
intraoperative PaO2/FiO2 values and pulmonary mechanics if PEEPIND values based on
other methods had been chosen. In particular, regarding the secondary endpoint “driving
pressure”, the difference could be negligible because it did not change significantly over
several PEEP steps in most patients.

As discussed in the original publication [4], practical issues that may still hinder the
application of an EIT-based PEEP strategy in the operating room are the limited availability
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of the method, the need for a time-consuming PEEP trial, and that some anesthesia machines
may not allow setting PEEP values higher than 20 cm H2O. Further research should
therefore also focus on EIT-based methods of PEEPIND findings that do not require a
decremental PEEP trial.

5. Conclusions

We found that, independently of the method used for determination of PEEPIND,
individualized PEEP values are significantly higher than the PEEP values usually applied
during laparoscopic surgery, both in obese and non-obese patients. In most patients,
the different methods show sufficient agreement of the resulting PEEPIND values, and
large deviations between different methods may indicate confounding factors. For clinical
routine practice, PEEP selection based on best quasi-static or dynamic compliance during a
decremental PEEP trial is favorable and showed the highest agreement with the PEEPIND
determined by the RVDI method.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11133707/s1, Figure S1: Bland–Altman plots for comparison
of different methods for PEEPIND determination during a decremental PEEP trial.
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