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ABSTRACT

In their recent articlie Chang et al. [Chang, Y., Troung, T. K., Reed, 1. S. (2001).
Normal bases over GF(q). J. Algebra 241:89-101] have determined all those
extensions of Galois fields for which the normal basis generators are characterized
by the (obviously necessary) property of having nonzero trace. In the present
article, we present a simpler proof of a generalization of that result and
discuss an application concerning the existence of trace-compatible sequences
of primitive normal bases for certain primary closures of Galois fields.
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1. INTRODUCTION

For a finite Galois extension E/F it is well-known that the trace of a normai
(or free) element (that is a generator of a normal basis of E/F) is nonzero. In their
recent article Chang et al. (2001), have characterized those extensions IF../IF, of
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coset u+ My, from which we conciude that

@) M) = | w+ M) = M} + M.
uEMJ’,

Now, M, =J,sM, and M{+ M, C M, by Lemma 2.2 (where alh). Conversely,
if xéM with ord(x)= fa, where f and a are relatively prime, then x can be
decomposed into x; + x, with ord(xl) f and ord(x,)=a (see Hachenberger 1997,
Theorem 7.3). Thus M} + M, = M/, for all ajh and the assertion foliows. J

Combining Proposition 2.3 and Proposition 2.4 (including the argument of the
proof) with the transitivity (2.2) yields:

Theorem 2.5. Let f, g be divisors of p with f|g. Write ngg where g and f are
relatively prime, while v{(f)=v(f). Then

@) =M, = M + M

alg -

nvue ML there orrctc an element w & M/ cuch
anyu & My lnere exists an elemeni wc M g SUCh

With f and g as in Theorem 2.5, we call f the closure of f in g. In view of
the problem to be addressed in Sec. 3, we note some immediate consequences of

Theorem 2.5.

(r‘;) (M})= M, if and only if v(f) = 1/(g) (Whence f=g).
(t3)” l( M,)ﬂM ¢ 1s either empty or equal to M/ +; the latter holds if and only

f

lff f (whence f and g/f are relatively prlme)
o If v(f)#v(g), then (rf) "(M)\M ;=M if and only if g/f is a prime (or
irreducible).

3. CHARACTERIZING NORMALITY VIA TRACES

We start this section by recalling some basic facts on the F{xJ-module structure
of a cyclic Galois extension E/F (see Hachenberger, 1997, Sec. 8, for details).

Let n be the degree of £/F and ¢ a generator of the (cyclic) Galois group of E/F.
To each polynomial g € F[x] there 1s associated the F-vector-space endomorphism
g(t’)‘) of £.B DYy ucui‘uﬁg W = g((‘f)(pv; \wuei’t’:‘ We L} } the additive group of Eis 6(‘1‘\iipp€u
with an F[x]-module structure. As ¢"(w)=w for all w € E, the polynomial y=x"—1
annihilates £, whence E is a torsion module. The monic polynomial % of least degree
such that w” =0 is usually called the F-order of w (and denoted by Ordz(w)). By the

famous Normal BRasis Theorem fnpnr}ng 1933 Hensel 1888 Noether 1932) there

ALRIIANV GO L NULILIAL 1FGSIS A lIVVULING Al

exists an element u € £ such that Ordg(u) =x" — 1 (this is equivalent to the fact that
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E is cyclic as F[x}-module and generated by u, or that u, o(u),...,¢" '(u) is an
F-basis of E, i.e., a normal basis of E/F); u is called normal (or free) in E/F.

We may therefore apply the results from Sec. 2 to the present situation (retaining
some of the notation introduced there); in particular, the F[x]-submodules of £ are -
precisely the sets M, where g € F[x] is a monic divisor of x” — 1. Here, the generalized
trace-mappings are always surjective; thus, if f and g are monic divisors of x" — 1
such that f|g, then for any u€ My there exists a w€ Mg such that tf(w)=u
(by Theorem 2.5).

For every divisor k of n, we denote by E; the unique intermediate field of E/F
with degree k over F (whence E = E,). Then Ey = M_,, and the mapping 1% 7 where
f=x*—1and g=x"—1is the (E,, Ei)-trace mapping (which throughout is simply
denoted by tr}), ie,

a1

tr; E, = Ey, w HZakj(w).
=0

Recall that M.._; is the set of normal elements of E/F, while M._; is the set of
normal elements for E;/F. By Theorem 2.5 we know that every normal element of
E,/F is the trace of some normal element of E,/F. The aim of the present section
is to characterize those triples (F, Ey, E,), where (essentially) the converse of the
latter holds. This leads to a generalization of the main result of Chang et al.
(2001) (which concerns the case k=1 for finite fields).

We let G, denote the set of v e E, satisfying trj(v) € Mu_; and E(v)=E,,.

Theorem 3.1. Let E/F be a cyclic Galois extension (with generator ¢ as above) of
degree n > 1 and k a proper divisor of n. Then the following three assertions are

equivalent.

1. M:n.._l - Gn’k.
2 Moo= (7)) (Ma)\Ee

3. One of the following two cases occurs:

o F has positive characterlsnc p. and } is a power of p.
—1 ¥ . . e
e n=rand k=r""'whererisa przme different from the characteristic
of F; moreover, the Fth cyclotomic polynomial ®,.is irreducible over F.

Proof. By definition, Mi._, C G, C (tr})” (Myu_1)\Ex, and therefore (2) implies (1).

Suppose next that (3) holds. If n/k is a power of the characteristic p, say =, then
x" —1=(x*—1)", whence v(x* —1)=v(x" — 1), and thus (2) follows from Proposi-
tion 2.3. If n =+ and k = ¥~ (with r being a prime different from the characteristic),
then v(x" —1)#uv(x*—1) and (x" — 1)/(x* — 1) is equal to ®,, the rth cyclotomic
polynomial. The latter is assumed to be irreducible over F, whence (2) follows trom
Proposition 2.4. Altogether, this establishes (3) = (2).

We finally prove (1)=>(3). For the case where the characteristic p of F is
positive, we write n = nn(n) where n(n) is a power of p and 7 is not divisible by p;
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similarly write k=kn(k), and finally let 7n=mn(n)/n(k).
X—tinx"—1is

(xk . l)n — (JCE _ l)rc(n).

Furthermore, x" — 1 = (x* — 1)"- I'(x), where

I(x):=[]oi™.
g | (3.1)
dlk

An application of Theorem 2.5 shows that

ety —1 7 4 as _ i IV
() (M) = (UM 1y g = Mua + Mr. (3.2)
a|l
Observe that n/k is a power of p (i.e., k=n) if and only if I'=1 in which case
A (4~ g Thic ic roncictant with accrmmntion (1) and leade ta the firct
IVL xn_ ] —\U.k) \l"xk l} 41110 1O LULIDLD 1L vviiul uDOULlllJ\JUIJ 1) dliu Jvaly LU v 111 ot

case in (3).
We may therefore assume that n/k has a prime divisor r which is dlstmct from p.
Consider the set M (yn_1yp, (Which according to (3.2) is a subset of (try) (M u_y)).

The smallest m € N* such that x™ — 1 is divisible by (rk” — H(T) 1S Pqua] to n, whence

£ 24T DALITIAVOL f7F T 4N SubIL uian S I ViISiULe

E;(v)=E, for all v having F-order (x* — 1)" D, and this means that M(Xl: o, Is a
subset of G, ;. As G,;=M,._; by assumption, we obtain x" —1 =(x*— I)"(Dﬁ,
and therefore I'(x)=®; (because of (3.1)). This in turn implies n(n)=1 (whence
n(k)=1=mn, k=k and 1= n) and thus n/k=:ris a prime.

Ifk=1,then n=r.If k ;é 1, then z/(k) = v(n), for otherwise ®, and @, are dis-
tinct divisors of (x" — 1)/(x* — 1)=®,, a contradiction. Let » be the maximal power
of r dividing n. Now, v(k) = r, for otherwise there is a prime divisor s 7 r of k, whence
®,,. and @, are distinct divisors of (x" — 1)/(x* — 1)=®,,, again a contradiction. We
conclude that n=r'and k = /'~!. If ®,, admits a proper divisor f# 1 in F[x], then any
element with F-order (x* — 1) - fis a member of G, , and therefore (x* —1)- f=x"—1
by assumption. But this yields f=®,, a further contradiction. This implies the

irreducibility of @, over F and finally establishes (1) = (3). ]

When k=1 and E, F are Galois fields, then the equivalence of (1) and (3)
of Theorem 3.1 reduces to the main result of Chang et al. (2001) (observe that

/=1, then).

4. TOWERS OF PRIMITIVE NORMAL BASES

In the present section, we let F=IF, be the Galois field with g elements and
consider an algebraic closure F of F. For any n € N* there is exactly one intermediate
field E,, of degree n over F (whence E, is isomorphic of IF,.). Moreover, E,/F is
a cyclic Galois extension whose Galois group is generated by the Frobenius
automorphism ‘¢ : u+— u?. We consider F as a torsion module over F[x], where
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(analogously to the last section) w® = g(a)(w) for w € F and g € F[x]. Observe that E,
is contained in E, if and only if k£ divides n.

Although the annihilator ideal of £is the zero-ideal, the results of Sec. 2 apply to
the present situation, when restricting attention to the finite submodules. The finite
F[x]-submodules of F are precisely the sets M,={ve F:v*=0}, where g€ F[x] is
monic and not divisible by x (this is implicit in Hachenberger, 1997, Chapter II).
Moreover, E,=M_.._, for all n e IN*.

In particular, M.y N(tr})™'(M'«_,) is nonempty (whenever k|»). Consequently,
there exists a sequence (4p,)men- such that u,, is normal in E,/F and
tr(m 1i(m) =ty for all m (where m! is the factorial of m). Next, for n € N*, let
m(n) be the least integer such that n divides m(n)!, and define w,, := tr’"(")'(u,,,(,, ))- Then
w, € M',._, for all n, and the transitivity of the trace mappings implies tr} (w,) = w;
whenever & divides n. Due to Scheerhorn (1992), such a sequence (w,,),,eN. 1s called
a trace-compatible normal sequence for F/F, it can in fact be interpreted as a
normal basis for the (infinite) algebraic extension F/F (see Lenstra, 1985). For the
explicit construction of such a sequence, see Hachenberger (1997, Chapter VI).

Recall that a primitive element of a finite field E is a generator of its (cyclic)
multiplicative group. We are now going to discuss an interesting application of
Theorem 3.1, which in fact includes the generation of the multiplicative group as
well, and concerns trace-compatible seuences of primitive normal bases for certain
primary closures of Galois fields (see Theorem 4.2). We start with a result on
primitive normal elements with prescribed trace into an intermediate field.

Theorem 4.1. Let p be the characteristic of the field F=1IF, and r a prime. Let
Sfurther m, € N with m < . Assume that p=r or that q is a primitive root modulo
. Then the following assertion holds for the triple (F, E,n, Epi):

ery ac E,. which is normal over F there exists a primitive element

e For

or

21
€ E,: such that w, is normal over F and tr,m(wa)_a.

Proof. First of all, there exists an element b € E.-: which is normal over F and has
(Eq, E)-trace equal to a (this is an application of Theorem 2.5). Observe next that
for a prime r different from the characteristic of F, the rth cyclotomic polynomial
is irreducible over F if and only if ¢ is a primitive root modulo r.. Therefore, with
k=7"! and n=/, the condition (3) of Theorem 3.1 is satisfied, whence any

L falenaAd mmremnl Avrnan T Dy temnemoitiiteg

W EE,,\Ek with \:_,,,, pk) trace GQu&} to b is \aucauy} normal over F. B DY uaumuvuy,
w has (E,, E,-)-trace equal to a. Now, the assertion follows as Cohen’s Theorem on
Primitive Elements with Prescribed Trace (Cohen, 1990) (applied to the extension
E,/E}) asserts that w can be chosen to be a primitive element of E,,. ]

If r=2 and g is odd, then Theorem 4.1 applies only to the pairs (m, [)=(0, 1) and
(m, I)=(1, 2), where the latter additionally requires that g = 3 modulo 4. However,
for an odd prime r the following three assertions are equivalent by elementary
number theory (see e.g. Hachenberger, 1997, Section 19), and therefore allow an
iterative application of Theorem 4.1:

e g is a primitive root modulo # forall 1>1.
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AN

g is & primitive r lor
e g is a primitive ro ulo rand ¢! — 1 is not divisible by r~.

is a primitive root modulo r2 for all the following primes r < 200:
, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181,

Vily Uiy UJy AU, Losy LUy

For example, 21

q:
2 5§ 11 1’210’)
L7y &7

Ty Jy 11,

197.

Theorem 4.2. Let p be the characteristic of theﬁeld‘F IF, and-r a prime such tha?

r=p, or cur‘h fhnf ris odd nnd q isa prlmrfn)p root mnﬂ'uln 7‘2 Tth fhPrP exists

sl ie sivlas (£ 2444 sl FRROLHIY

a sequence (y)ien in Ex= Ulzo E, (the r-primary closure of F) satisfying the
following two assertions:

isa nnmmve element of E. and normal over F.

g r

the (E,., Ev)-trace of y;, is equal to y,,.

1.

5’

For eve
For all

N

ry |
7

l,
L<h

N\<

N

Proof. The assertion follows from Theorem 4.1 by induction and the transitivity of
the trace-mappings. ]

5. CONCLUDING REMARKS

By Cohen and Hachenberger (1999) the following assertion holds for every
extension E/F of Galois fields (and therefore constitutes an improvement of the
famous Primitive Normal Basis Theorem of Lenstra and Schoof (1987)):

e For every nonzero a€ F there eXists a primitive element w, € E which
is normal over F and has (E, F)-trace equal to a.

The existence of primitive normal elements with prescribed trace into an inter-
mediate field has first been studied in Hachenberger (1999); using character theory
and Gaussian sums it is proved that the conclusion of Theorem 4.2 holds, without
any restriction on g, when r>5 or r=p (see Hachenberger, 1999, Theorem 6.2).
Thus, for r=3 and ¢ being a primitive root modulo 9, Theorem 4.2 complements
(Hachenberger, 1999, Theorem 6.2). The latter holds for all the following prime
powers g<200: 2, 5, 11, 23, 29, 32, 41, 47, 59, 83, 101, 113, 128, 131, 137, 149,
167, 173, 191.

A combination of Theorem 4.2 with Hachenberger, (1999, Theorem 6.2) yields
the following interesting result which includes the binary field as a ground field.

Theorem 5.1. Let g=2" where gcd(t, 6) =1. Let r be any prime. Then there exists
a sequence (y;)1cw in the r-primary closure I ,~ over It such that y, is primitive and
normal in IF . /IF, for all I, and such that the (IF -, F .+ )-trace of y,, is equal to y,,
whenever 1, < b,

A TN y PR | that .1._ IO PR ec. 2 mav also PR, ,1 to L mu 21sieat
vWwco uxa IMAarK tndt ine résuits U Cb Z 11 d._y d 5U dappiic 11 uiul p lVC
groups of ﬁ lte fields, leading in particular to the (relative) norm»mappmgs
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The outcome of Sec. 3 also has consequences for the existence of trace- and norm-
compatible sequences of primitive normal bases introduced in Hachenberger
(2001). We shall develop these lines further in a separate work (see Hachenberger,

2003).
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