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A method is developed which allows the calculation of tunneling frequencies for 
coupled methyl groups in strong or weak orientational potentials to any desired 
accuracy. The method is applied to two coupled methyl groups and the results of the 
calculation are compared with a recent experiment. The comparison allows conclusions 
on the strength and symmetry of the potential. A further important point is the 
prediction of coupling effects in rotational tunneling also in the limit of strong poten- 
tials. 

Rotational tunneling has been observed in systems 
containing methane molecules, ammonium ions or 
methyl side groups [1]. Tunneling transitions occur 
between the energy levels of the librational ground 
state multiplet of the molecules performing small 
angular oscillations around the minima of the orien- 
tational potential. For the majority of the experi- 
mental results a single particle description seems to 
be sufficient for a complete understanding of the low 
temperature spectra. Exceptions are methane [2] 
where the line width has been explained in terms of 
coupled tunneling, lithium acetate [3] where the 
coupling is responsible for a splitting of the tunnel- 
ing lines, manganese acetate [4], lead tetramethyl 
[5] and (NH4)2PF 6 [6] where certain features of the 
spectrum are not yet fully understood, but may well 
turn out to be a consequence of intermolecular cou- 
plings. 
It has been presumed [7] that coupling effects are 
unobservable for strong single particle potentials. In 
the following we develop a method that allows to 
calculate tunneling frequencies for coupled methyl 
groups. For shallow potentials it repeats the calcu- 
lations of Clough et al. [3]. We have, however, ex- 
tended the range of parameters to the frustrated 
regime where single particle potential and interac- 
tions tend to counteract. Our method, furthermore, 
allows to include relatively strong potentials. Con- 
trary to earlier statements we have found that the 
former presumption about this limit is not true. F o r  

strong potentials the relative splitting caused by cou- 
pling effects does not go to zero when single particle 
potential and interactions are increased propor- 
tionally - it tends towards a constant. 
For the purpose of clarifying the method of o u r  
calculation we start with a single rotor in a threefold 
cosine potential of strength V 3. The Schr6dinger 
equation for this problem reads: 

~2 V3 31~ [ 0~2 ~(e + e-3i~)-E] ~/(~) =0. (1) 

w h e r e  all energies are measured in units of B = h2/20 
and 0 is the moment of inertia. The equation is 
solved by the ansatz: 

(c~) = ~ a~ e i(3 ~ + k)~. (2) 
n 

If k=0,  O(a) is a symmetric A-type function. For k=  
+ 1 it is one of the two degenerate E-type solutions. 
The symmetry label A, E, or E b is denoted by s. On 
inserting (2) into (1) one obtains an infinite series of 
equations for the coefficients aS,: 

V a a~+, + 2 [ E - ( 3 n + k ) 2 ] a ~ +  V 3 a~_ 1 =0. (3) 

F o r  finite values of the potential strength parameter 
V 3 the coefficients a~ have appreciable values only in 
a small region around n = 0, say for - N  < n < N  and 
N depends on the value of I/3. For Inl > N  the a~ are 
insignificantly small. Putting these coefficients to 
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zero, there remain 2 N + 1 equations for 2 N + 1 coef- 
ficients which together with the eigenvalue E could 
be found by the diagonalization of the ( 2 N + l )  
•  matrix. It is much easier, however, to 

choose a fixed value, say e.g. 1, for one of the coef- 
ficients so that the system of 2 N + l  homogeneous 
equations for 2 N +  1 coefficients is transformed into 
an inhomogeneous system of 2 N + l  equations for 
2N coefficients. We discard one of the equations for 
the moment. The 2 N remaining coefficients can now 
be obtained from an inversion of the matrix rather 
than by its diagonalization. Of course, the discarded 
equation is not fulfilled, but if we choose E such that 
it is, we obtain an excellent solution. This way, the 
problem represented by (1) can be solved on a pock- 
et calculator. One choose a ~_~r iterates 
Eq.(3)2N times to calculate a)  and then adjusts E 
such that a~v+z=0 follows from the next iteration. 
For  larger and larger N the accuracy with which the 
eigenvalue E can be determined becomes better and 
better until it reaches the accuracy of the calculator. 
For  V 3 = 30 (a value which corresponds to a tunnel- 
ing splitting of 0.005 B or 3~teV) and a 10 digit 
calculator this happens for N = 6 .  A comparison 
with tabulated eigenvalues shows full agreement 
within the accuracy of these tables. 
The main advantage of the method is the replace- 
ment of a matrix diagonalization by a matrix in- 
version which is much quicker. Also the matrix to 
be inverted is a sparse matrix. In fact, in the one- 
dimensional example of this paragraph the matrix 
contains nonvanishing elements only in the diagonal 
and in two adjacent parallels. The inversion is there- 
fore trivial and can be performed on pocket calcu- 
lator. In cases of practical interest to be presented in 
the following, more than 90 ~ of the elements may 
be zero which greatly reduces the number of oper- 
ations to be performed. As inversions are so easy to 
perform there are almost no limits to the number of 
coefficients included, whereas a diagonalization pro- 
cedure comes to the limits of capability of a com- 
puter fairly quickly. A disadvantage of the method is 
that one has to iterate the inversion process several 
times to find the energy eigenvalue and the wave 
function, but with 20 iterations one is able to reduce 
the distance between the upper and the lower limit 
of an energy eigenvalue by 6 orders of magnitude. A 
further disadvantage is that only one eigenvalue to- 
gether with the corresponding wave function is cal- 
culated at one time whereas a set of eigenvalues 
comes out of a single diagonalization. 
The method can be generalized to problems with 
more than one degree of freedom. The field of appli- 
cations would include the rotational tunneling of 
tetrahedral molecules where the Hamiltonian, if 

written in terms of quaternions, acts on functions 
depending on the 4 coordinates z l ,z2, r3 ,  and %. A 
suitable expansion would be 

m l ~ m 2 , m 3 , m 4  

where the mi run over non-negative integers only. 
L=(ml+m2+m3+m4) /2  has the property of an 
angular momentum and thus only integer values of 
L are allowed and for a given orientational potential 
only terms up to a maximum value of L will con- 
tribute appreciably. 
The potential is a polynomial in the quaternions 
itself, the kinetic energy contains only differen- 
tiations w.r.t, the quaternions and multiplications 
with them. Therefore application of the Hamiltonian 
only couples a finite number of polynomials and 
Schr6dinger's equation can be written as a recursion 
relation between the coefficients am~ . . . . .  3,,~" 
Interactions of a finite number of particles as e.g. the 
four methyl groups in Pb(CH3) 4 or two methyl 
groups in lithium acetate or manganese acetate are 
examples which can also be treated using the meth- 
od outlined above. The interaction of many tunnel- 
ling molecules which manifests itself in very interest- 
ing phenomena in solid methane [2] is a quantum 
manybody problem for which we only expect ap- 
proximate solutions. This is beyond the reach of our 
method which provides solutions which, in principle, 
are exact. 
In this paper we will concentrate on two interacting 
methyl groups with the Hamiltonian: 

02 02 

We immediately specialize the potential to the form 

V(el, c~2) = - 1/3 (cos 3 ~ 1 - cos 3 ~2) 
- W 3 cos(3 cq - 3 c~2). (6) 

This amounts to the following simplifications: 
(i) The single particle potential for the two groups 

is the same (ii) only one Fourier component has 
been included (iii) also the interaction is reduced to 
a single Fourier component (iv) the relative phase 
between the single particle potential and the in- 
teraction can only have two values depending on the 
sign of W~. As the substitution V 3 ~ - V  3 corre- 
sponds to an exchange of the two groups, only 
1/3>0 will be considered. We distinguish two cases: 
A) If the angles ~ and c~ 2 are measured relative to 
the same direction in the crystal, then the minima of 
the single particle potentials are rr/3 apart, and the 
two groups tend to localize in staggered orien- 
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tations. Negative values of W 3 enhance this ten- 
dency, Positive values reduce it. For  W3>0 the in- 
teraction counteracts the single particle potential - 
this will be called the frustrated case. B) If the 
origin of the scale for measuring the second angle is 
shifted by 2rc/3 such that c~: is replaced by gz+u/3  
then the single particle potential tends to orient the 
two groups parallel. Now the interaction prefers the 
staggered orientation for positive W3. Thus W~>0 
again corresponds to the frustrated case. 
The direct interaction between two groups rotating 
around a common axis as it is in Li-acetate certainly 
prefers the staggered orientation. This is true for 
electrostatic multipole-multipole forces as well as for 
the shortrange repulsion of the two groups. The 
following analysis shows that the frustrated case 
cannot be reconciled with the experimental data - it 
therefore seems that case A) with W 3<0 is realized 
where the interaction and the single particle poten- 
tial cooperate to localize the two groups in the stag- 
gered orientation. 
- V3(cos 3 ~ - c o s  3c~z) represents the potential en- 
ergy of the two methyl groups with all the other 
atoms fixed at their equilibrium positions. In lithium 
acetate the two methyl groups rotate around a com- 
mon axis which lies in two mirror planes. Therefore 
the single particle potential should have a sixfold 
symmetry. Following Clough et al. [3] we assume 
that this sixfold symmetry is lifted by the polaron 
effect, i.e. by local lattice relaxations which remove 
one of the mirror planes and thus permit the ap- 
pearance of the threefold term which then dominates 
the tunneling. In principle the distortion is different 
for the different quantum states of the methyl groups 
under consideration. For  the states within the 
ground state tunneling multiplet, however, the pro- 
ton distribution function is almost the same leading 
to similar distortions of the lattice. As long as we 
deal with the states in the ground state multiplett 
and with transitions between them we may therefore 
consider the displacements as rigid. Two cases are 
conceivable: 

I) The two closely spaced groups create a common 
long range distortion field which would tend to 
orient them parallel. 2) The direct interaction forces 
the two groups into the staggered orientation and 
each of them creates a corresponding distortion field 
in its own backyard which supports the staggered 
orientation. Anticipating our later discussion of the 
experimental data it seems that the second alter- 
native is realized in Li-acetate. An independent 
check of the assertion that the two methyl groups 
are in staggered orientations by coherent elastic neu- 
tron diffraction on deuterated Li-acetate would be 
very desirable. 
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Fig. 1. The "lattice" of coefficients a~S. Full lines denote "in- 
teractions" due to the single particle potential V3, broken lines 
denote "interactions" due to the two particle potential W 3

The Schr6dinger equation ( H - E ) ~ ( ~ I , ~ 2 ) = 0  with 
the Hamiltonian (5) is solved by the Ansatz: 

rs e i ( 3 n + k l ) 7 l  e i (3m+k2)T2  ~(~1, ~21 = ~ am, (7) 
l t l ,  r l  

k 1 and k 2 assume the values 0, + 1, and - 1  for the 
A, E o, and E b symmetry species respectively, r and s 
denote the symmetry labels. The coefficients a~ ~. ful- 
fill the recursion relation: 

a~[(3m+kl)Z +(3n+kz)2-E)] 

/3 rs rs -t- a rs rs 
+ 2 , % - 1 , , + % + t , , - - - (  . . . .  1 +am,,+l) 

+W~:  rs 1)=0 (8) ~-(am+ l,,-1 + a~_ l,,+ 

which is represented graphically on the "lattice" of 
coefficients in Fig. 1. The potentials V 3 and W3 in- 
troduce "interactions" between the lattice points. 
The single particle potential couples coefficients 
along rows or along columns only. Restriction to 
one Fourier component in the potential means near- 
est neighbours interaction only. A cos 6~ potential 
would induce next nearest neighbour interactions 
and so on. A sin 3n ~ term would make interactions 
to right and left (up and down) neighbours different. 
The two particle potential introduces interactions 
along one of the diagonals. A contribution of the 
type cos(3cq+3c%) would be found on the other 
diagonal and again higher Fourier coefficients would 
introduce "interactions" of longer range. 
Now we truncate (8) by demanding that all coef- 
ficients with n2+m2>K 2 are zero. The size K of the 
field of nonzero coefficients is determined by the 
strengh of the potentials V 3 and W 3. This leaves us 
with a number of nonzero coefficients. Call that 
number N. There are N homogeneous linear equa- 
tions between them: 

M~ ~, ,~,, m, a,~,, ~, = 0 (9) 
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which could  be solved by a d i agona l i za t ion  pro-  
cedure. W e  have again  chosen a fixed value for one 
of the a~, .  Then we have  N inhomogeneous  equa-  
t ions for N - 1  coefficients. W e  solve N - 1  of them 
by inversion and then  adjus t  the energy such that  
the  remain ing  equa t ion  is also fulfilled. There  are 
the same advantages  as in the one d imens iona l  ex- 
ample.  W i t h  " in t e rac t ions"  to six ne ighbour  coef- 
ficients only,  seven elements  in each row and co lumn 
of M are nonzero.  In a typica l  example  with K = 8 
there  are 200 coefficients a~,  to be de te rmined .  M is 
a 200 x 200 mat r ix  with 40,000 e lements  of which 
only 1,300 are nonzero.  This  cor responds  to a spar-  
sity of 97 %. A further reduc t ion  of the p r o b l e m  is 
achieved by cons ide ra t ion  of  the symmetr ies  of the 
coefficients ~s am~i, 

E~ E a E 3 

Eo E b E 2 
/ 

AE - - ~  c 1 

"hto~o 

AA E o 
Fig. 2. The energy levels of two coupled methyl groups in the 
librational groundstate tunneling multiplet together with the sym- 
metry labels and the transition frequencies 

The  g round  state mul t ip le t  conta ins  four levels:  The  
non  degenera te  AA level wi th  energy Eo, the  four- 
fold AE level wi th  energy E j ,  the twofold  EaE b level 
wi th  energy E 2 and the twofold  E~E a level with 
energy E 3. F o u r  t rans i t ions  are  poss ible  wi th  en- 
ergies hco lo = E1 - E0, h0)21 = E 2 -  E l ,  h0)31 - -  E 3  - E l ,  
and  h0)32=Ea-E2.  This is shown in Fig. 2. 
Our  ma in  results  are shown in Figs.  3, 4, and  5. All  
three figures show the same region of the pa rame te r  
space (1/3, W3). Posi t ive  and negat ive  V 3 are physi-  
cal ly ident ical  so the pic tures  are rest r ic ted to 
V3>O. 
F igure  3 represents  the bas ic  tunel l ing energy h0)10, 
W h e n  W 3 is negat ive  the single par t ic le  po ten t ia l  
and  the in te rac t ion  coope ra t e :  much  smal ler  values 
of V 3 are needed for more  negat ive  W 3 to p roduce  a 
given tunnel  split t ing. On the side of posi t ive  W 3 the 
con t ra ry  is the case. F igure  4 is a plot  of the ra t io  
v=c02~/0)1o. The  energy h0)~o is a b s o r b e d  when bo th  
groups  are in the A-s ta te  and one of them is lifted 
into the E-state,  h0)21 is a b s o r b e d  when the second 
group  is lifted up, too. W i t h  no in te rac t ion  the two 
energies are, of course, equal.  So the dev ia t ion  of v 
from 1 is a measure  of the  i m p o r t a n c e  of the  in- 
teract ion.  F o r  very s t rong in terac t ions  it makes  a 
difference if the  two groups  end up  in different E- 
states (EaEb) or in the same (E ,E , )  state. F igu re  5 is 
a p lo t  of A =o932/O)1o which is a d imensionless  mea-  
sure of  this splitt ing. 

V31B V3/B 
e gh  i 
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u b c c d e g kl rn 
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40 / 40 f 
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20 20 

' -16o ' , , & &%/ B  o . . . . . . . .  ' -160 -100 60 W3/B 
Fig.& Lines of equal tunneling energy h~ot0 in the (V3, W3) para- Fig. 4. Contours of v=co2t/e)lo in the same region of parameter 
meter space. Negative values of V3 only correspond to a shift of the space as Fig. 3, In the limit W 3 ~ 0  the two groups are inde- 
origin of al and c~2 by ~/3. Negative W3 amplify the influence of pendent, leading to v = 1. 
V3, positive W3 diminish it (all energies in units of B) 

a: 1-10 _7 g: 2.10 .3 a: v=0.5 g: v=0.995 
b: 1.10 -6 h:  5 . 1 0  -3  b: v=0.75 h: v=l.005 
c: 5.10 -6 i: 2.10 -2 c: v=0.909 i: v=1.020 
d: 2.10 -5 k: 1.10 -1 d: v=0.952 k: v=1.053 
e: 1.10 -4 1 : 5 - 1 0  -1 e: v=0.980 1: v = l . l l l  
f: 5.10 -4 f: v=0.990 m: v=1.429 
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Fig.& Same as Fig. 4, but contours of A=co32/O)1o are plotted. 
With the contours approximately parallel to those of Fig. 4 they 
can only be used for a consistency check, but not as an inde- 
pendent information to determine the potential parameters. 

a: A=0.0005 e: A=0.1 
b: A=0.002 f: A=0.2 
c: A=0.01 g: A=0.6 
d: A=0.05 h: A = I . 0  

S(q,~o) o) V3 = 2.96 W3=-6.58 

I I I  
0 100 200 300 45to/~eV 

S (q,to) b) V3 = 21.3 W3 =24.7 

, II I 
100 260 360 45tol p.eV 

Fig. 6. Tunneling spectrum as expected for positive and negative 
values of I/V3. W3<0: values used by Clough et al. to describe the 
tunneling spectrum of Li-acetate; W3>0: values of (V 3, W3) lead- 
ing to a tunneling lines with a similar mean-energy and width 

a) V3=2.96 W3=-6.58 
I I I I i ' ,  

b) V3 = 21.3 W3= 24.7 
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Fig. 7. Librational spectrum for the same values of V 3 and W 3 as 
in Fig. 6. The plotted lines denote the energy for a transition from 
a librational excited state with specified symmetry to the mean- 
energy of the librational ground state multiplett 

It has been suggested that interaction effects in ro- 
tational tunneling would only be visible for relative- 
ly shallow single-particle potentials. The argument is 
as follows: In a deep potential the modulus of the A 
und E-species wave functions is almost the same, 
therefore the neighboring molecules will not notice 
the difference and their energy levels should not be 
influenced. Our calculations show that this is not the 
case. On the contrary - in the limit of strong poten- 
tials the frequency ratios v and A tend towards func- 
tions of the ratio W3/V 3 only, independent of the 
strength V 3 itself. The flaw in former arguments [7] 
is connected to the extreme sensibility of the tunnel- 
ing frequencies to changes of the potential. It is true 
that the influence of the coupling on the tunneling 
frequencies becomes smaller and smaller with in- 
creasing localization, but as the frequencies them- 
selves become very small the effect on their ratios is 
still noticeable. 
In lithium acetate a group of transitions is found 
around 260 ~tV = 0.4 B with a splitting that suggests a 
frequency ratio a)v=0.85 or b)v=1.30. From 
Figs. 3 and 4 we find the corresponding potential 
parameters (V3, Wa) in units of B: a) (2.96, -6.58) 
and b) (21.3, 24.7). In Fig. 6 we show the calculated 
tunneling spectra for both cases. Case a) is the one 
considered by Clough et al. in their analysis. Com- 
paring both calculated spectra with the experimental 
result [31 we are lead to confirm this choice because 
it describes better the position of the most intensive 
peak within the tunnel line and the position of the 
low energy peak. Figure7 shows the librational 
spectra calculated for the cases a) and b). They both 
do not agree well with the measured spectra [3]. 
This cannot be improved by a different choice of 
(V 3, I/V3) because of the mentioned sensibility of the 
tunneling spectrum with respect to changes of the 
potential in the overlap-region between the equilib- 
rium orientations [8]. On the other hand the li- 
brational spectrum is sensitive to the shape of the 
potential in the region of the minima. Additional 
Fourier components to better characterise the poten- 
tial might improve the calculation. For excited li- 
brational states the proton density distribution de- 
viates from the ground state distribution. Therefore 
also the local lattice distortion, the polaron effect 
and the corresponding threefold potential are dif- 
ferent in excited states. The importance of this effect 
can only be examined in a quantum mechanical 
calculation which takes the lattice degrees of free- 
dom into account. Our calculated tunneling split- 
tings differ slightly from those calculated in [3] for 
the same parameter values. More noticeable de- 
viations occur for the librational spectra. The origin 
of these discrepancies is unknown to us. 
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