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Abstract. The influence of orientational coupling between rotational tunnelling 
molecular goups on the tunnelling spectrum is studied in the limit of strong coupling. 
In previous work contradicting results were obtained depending on the calculation 
methods: e-t numerical computations for two or three rotors find an increasing 
dative splitting of the tunnelling lines (i.e. meas& on the scale of the tunnelling 
energy it&) with incrras* coupling strength, whe- Hartree approximations 
always yield a vanishing splitting in this limit. H order to clarify this point, a 
model of N equivalently coupled XHQ pups  is investigated. The relative splitting 
is calculated for two types of tunnelling matrix elements prevailing in the strong 
coupling limit. One of the matrix elements is connected with the motion of only 
one rotor and is shown to lead to unsplit tunnelling lines. The other matrix element 
involves the collective motion of all mtms and it is demonstrated that it causes 
the relative splittings of the tunnelling lines. Within a WKB-type argument the 
importance of these two matrix elements for the tunnelling spectrum are compared; 
for N < 3 a dominance of the coupling iduence, and for N 3 5 a dominance of the 
single-particle iduence is found. The case N = 4 tuns out to be marginal. insofar 
as neither the contributions from the dassical paths nor the contributions from the 
quadratic fluctuations around the classical paths distinguish between both matrix 
elements. Therefore even in the stmng coupling Umit a finite relative splitting of the 
tunnelling line should remain okrvable for N = 4. 

1. Introduction 

Since it was discovered that tunnelling lines may split due to the orientational coupling 
between near-lying rotational tunnelling molecular groups [l], as was found by means 
of inelastic neutron scattering in lithium acetate [Z] (attributed to the interaction 
between neighbouring pairs of CH, groups), the question arose of how this splitting 
would behave in the case of more than two rotors. Experimentally, split tunnelling 
lines could only be observed unambiguously when the coupling strength between two 
rotors dominates over the coupling between different pairs of rotors [3]; one exception 
is the almost freely rotating hexamine systems [4]. Solid methane for example, where 
the single particle potential contribution can be neglected, compared to the octupol- 
octupol interaction between neighbouring CH, rotors, is very suitably described by an 
eflective single particle potential due to the quantum mechanically averaged octupol 
moments of all neighbouring rotors [5]; a description that results in unsplit tunnelling 
lines, in accordance with the observation [SI. On the other hand, it is found from 
numerical calculations, performed at systems containing two [7l, three [8,9], or four 
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[lo] rotors, that an increasing coupling strength always yields an increasing relative 
splitting of the tunnelling line. 

The very suggestive Hartree picture [ll] is often used to  explain tunnelling split- 
tings: the effective orientational potential of a given rotor depends on the molecular 
field of the neighbouring rotors, which itself depends on the symmetry state of the 
neighbours; this results in an effective potential contribution depending on the given 
symmetry species distribution of the surroundings. This distribution varies between 
different sites, resulting in different effective potentials, and hence split tunnelling 
lines. This picture, when taken seriously for self-consistent numerical calculations of, 
for example, two rotors, leads to completely wrong relative splittings [SI. Moreover, 
the Hartree picture is inherently incapable of reproducing E' H Eb splittings, because 
complex-conjugate wavefunctions produce equal molecular fields. A salient prediction 
of Hartree calculations is the vanishing of the relative splittings in the strong coupling 
limit, independent on the number of coupled rotors; insofar as the Hartree result is 
capable of explaining the observations on CH, [5,6]. 

One aim of the present paper is to illuminate the origin of the splitting of the 
tunnelling line and the role of the particle number. An estimate should be given 
for the possible range of reliability of Hartree-type calculations. As representatives 
for rotational tunnelling systems methyl groups are considered, assuming a certain 
model for the pair potential. Orientational coupling in more complicated systems, like 
diluted CH, [12], is not yet observed unambiguously and computations are of course 
much more complicated [13]. The relevant tunnelling matrix elements, depending on 
the particle number, are calculated approximately in section 3. Using these matrix 
elements, the tunnelling spectrum of N rotow will be calculated in section 4. 

2. The model 

The following model Hamiltonian for N equivalently coupled methyl groups is consid- 
ered: 

B = 650 peV is the rotational constant and W the strength of the methyl-methyl 
coupling. H has threefold symmetry with respect to all angle operators +;, due to the 
identity of the hydrogen atoms. The factor 1/(N - 1) ensures an extensive ground- 
state energy. This model may describe experimental situations for N = 2 (coupled 
pairs), N = 3 and N = 4 (e.g. tetrahedral hle(CH,)4 compounds, as they are studied 
in tin or lead tetra methyl [14]). Note, however, that for infinite N it does not 
represent lattices of coupled rotational tunnelling groups, like one-dimensional chains, 
two-dimensional planes (as in SnF,(CH,), [15]) or three-dimensional lattices (such 
as methane), all being characterized by a finite coordination of every rotor. Some 
tentative conclusions even for these systems will be drawn in section 5. 

The pair interaction, chosen here, differs from the one considered in other papers 
[ 2 , 1  dealing with orientational coupling, even though it represents quite well, for ex- 
ample, the situation of methyl groups rotating in a common plane with parallel axes. 
A coupling - ~os3r ,&~ cos3Gj guarantees the degeneracy of all Ea- and Eb-symmetric 
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eigen-energies and is therefore most consistent with a Hartree calculation. All eigen- 
values of (1) are just determined by the number of rotors being in E-symmetric states. 
As already mentioned, the Hartree approximation predicts, for W/B -+ CO, a zero 
relative splitting (i.e. when measured on the scale of the mean tunnelling frequency) 
of the tunnelling line, independently of the particle number N .  

3. Dominant tunnelling matrix elements 

In the limit W/B -+ 8, the probability amplitudes of the ground states are well 
localized at the positions of the potential minima, forming pocket states 116,171 at 
every minimum. For high potential barriers and a suitable choice for the pocket 
states, the matrix elements of the Hamiltonian between adjacent pocket states allow 
the tunnelling energy to be determined quite well. With increasing W, all overlaps 
die out exponentially so that finally one type of matrix element t will dominate the 
tunnelling energy. 

S.1. The potential 

Before estimating the tunnelling integrals 1 ,  a short discussion of the potential should 
he given. For all N there are two minima per unit cell of volume ( 2 ~ / 3 ) ~ :  they cor- 
respond to cos3pi = +1 and cos3pi = -1 for all 1 < i < N .  These 2 x 3N equivalent 
minima form a body-centred cubic lattice (of dimension N), as illustrated in figure 1 
for N = 3. Every minimum is surrounded by two types of next-neighbouring minima: 
(U) along the 2N edges of the ( 2 ~ / 3 ) ~  unit cell and (b) along the half length of its Z N  
space diagonals. The distances of the neighbours are 2 ~ / 3  and f l ~ / 3 .  The (h) 
potential maxima (only for N = 3, the maxima form a continuous net over the unit 
cell) have a height of W / 2  for odd numbers N or $ for even numbers N .  The 
maxima are located at the centres of all (N + 1)/2 or N/2-dimensional hypersquares, 
surrounding the unit cell. In consequence, for both types of neighbourhoods (i) and 
(ii), a straight line in configuration space, connecting two adjacent potential minima, 
crosses a saddle point of the potential (with the exception of N = 2); the structure 
of the potential is such that just the straight lines are the classical paths of minimal 
action, that start and end in adjacent minima. The barrier heights are (i) 2W and 
(ii) NW/2 respectively. 

The curvatures of the potential are characterized by the eigenvalues of the Hesse 
matrix (also in case (ii) the Heme matrix can be diagonalized easily, as it is a cyclic 
matrix). These eigenvalues along the straight lines (i) and (ii) are given by: 

9W(1 - w) in all orthogonal directions, 

SW(1 - -1) in all orthogonal directions. 

(i) 9Wcos3p, in the direction of a path (here along pl) of type (i) and 

(ii) 9Wcos6a0, with a,, := (l/N)xclpi, along a path of type (ii) and 

Note, that in both cases the eigenvalues related to directions orthogonal to the 
paths and are non-negative for N 2 3 and that all curvatures are equal for N = 4 
(n E [O, 2~/31  and E Io, ~/31) .  
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Figure 1. Structure of the potential in cam of three partides N = 3; a suitable 
choice lor the enumeration of the 2 x 3N minim is indicated. D and b denote the 
two relevant types of next-neighbouring potential minima, which are connected along 
paths (i) i.e. the edges or dong path (ii) i.e. the space diagonals of every ( 2 ~ / 3 ) ~  
unit cell. 

9.2. Classical action 
The tunnelling integrals t may be approximated by 

t,,,, - A ~ P ( - S E / & )  (2) 
where SE is the Euclidian action along a classical one instanton path [IS] between two 
adjacent minima, say a and b of type (i) or (ii) (cf figure 1) and A is the prefactor, 
which is determined by the quadratic fluctuations around the classical paths. This 
relation can be derived from the long-time behaviour of the matrix elements of the time 
evolution operator in (Wick-rotated) imaginary time representation between position 
eigenstates, which are localized at a and b respectively, as is shown for example in 
[18,19] for one-dimensional systems. As the prefactor generally depends only weakly 
on the potential barrier height (according to a power law only), the part which is 
exponentially dependent on W (2), determines which matrix element dominates in 
the large W limit. The Euclidian action is given by 

where h2/2B is the moment of inertia of one rotor, @ 2 {pl , .  . . , p N } ,  the dot denotes 
the derivative with respect to T and 

is the potential energy (the additive constant fixes the ground state energy to zero). 
dC1(r)  obeys the classical equation of motion in the inverted potential -U 

(fi2/2S)$c'(r) = +grad(U($cl(~))}.  
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The boundary conditions are ip"'(T = -m) = a, $"(T = +CO) = 6 and it is required 
that $"(+) should monotonously approach 6, i.e. that they are the one-instanton 
solutions corresponding to the potential -U. According to the previous section, the 
classical paths are just straight lines in configuration space connecting the minima a 
and 6.  For the two types of path the multi-dimensional instanton solution is therefore 
given by giC'(T) = {p:'(~),0,. . . ,0} and gF'(T) = {os'(.), . . . , m $ ' ( r ) } ,  py'(~)  
and os'(r) being one-dimensional instantons. 

After substitution of the integration variable, the lunnelling matrix elements b e  
come 

tii - exp -i1n/3 h do, /- = e - ( N / 3 ) m .  (46) 

In the case of (40) the result just corresponds to the W K B  integral of a one-dimensional 
threefold Mathieu problem -BL$+W(l-cos3(5). The N-dependence in (46) is firstly 
due to the increasing mass of N rotors moving simultaneously along the space diagonal 
of the unit cube. A second contribution comes from the height of the barrier being 
proportional to N. 

For N = 4, no exponential difference between t, and tii appears; the much weaker 
W-dependence of one of the two prefactors A in (3) should determine which of the 
two tunnelling-matrix elements dominates. The prefactor is given by the determinant 
of some operator, which depends solely on the second derivatives of the potential 
along the classical path. But all the curvatures along both types of path are found 
in section 3.1 to  be equal in the case of N = 4 and therefore even the contributions 
from the quadratic fluctuations around the classical paths to the tunnelling-matrix 
element are equal for (i) and (ii). The considered approximation up to second-order 
in the fluctuations around the classical paths is known [20] to be sufficient for a 
quantitative determination of tunnelling frequencies of the threefold Mathieu problem 
in the W/B - CO limit, i.e. just on the energy scale on which the splitting of tunnelling 
lines are characterized here. 

For the other particle numbers a dominant coupling behaviour is found if N 6 3, 
and a dominant single-particle behaviour if N > 5. The important prediction is 
therefore a vanishing relative splitting of the tunnelling line according to model (1) if 
the particle number exceeds 4. 

4. Energy spectra resulting from ti and tii 

The Hamiltonian matrix may be written in the basis of 2 x  3N pocket states, each corre- 
sponding to  a highly localized probability amplitude at a certain potential minimum 
[16,17]. Symmetrized linear combinations of good representatives of pocket states, 
with respect to the symmetry group of the rotor, approximate to the eigenstates of 
H quite well in cases of high potential barriers. These pocket states define a finite- 
dimensional basis of the most relevant part of the Hilbert space. Accordingly, the 
eigenvalues of the corresponding Hamiltonian matrix approximate to the vibrational 
ground state energies, the differences being the tunnelling energies. 
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For a given number n of A-symmetric rotors (1 < n < N ,  the number of E- 
symmetric rotors is N - n), the eigenvalues are given by 
r 

+ rj,rj2+ C r j , r j ~ r j ~ + . . . + ~ r j t  ii. (5) 
I.G,<jr<N l S h < j 4 r S N  j=1  ” I  

Here rj := (ei2n/3)k~, {k,, . . . , k N }  characterizing the symmetry state of the corre- 
sponding eigenvector (i.e. kj = 0 if the j th rotor is in an A-symmetric state and 
kj = -I1 for an Et-symmetric state respectively). Equation (5) may be interpreted as 
follows: all eigenvectors of H are Bloch states (the {k,, . . . , kN} form the reciprocal 
lattice corresponding to the (2r/3)” unit cells) which gain a phase factor of (ei2n/3)lr~ 
when pj is increased by 2r/3.  In ordet to find the eigenvalue corresponding to a given 
{ k l , .  . . , k N } ,  we have to sum up all next-neighbour phase contributions starting from 
a certain potential minimum say, for example, of number 1, for 2N neighbours of 
type (i) and 2” neighbours of type (ii), The phase relation to neighbours of the first 
type is simply (ei*2r/s)kJ depending on the Bloch phase exponent kj along the cor- 
responding edge. The relation to the minima of the second type is found as follows: 
minimum number 1 and minimum number 2 x 3” (the one lying across the half-space 
diagonal) are related by a phase factor rj)-’l2; this phase factor is common 
to all the 2N corners of the cube surrounding minimum number 1. Now the phase 
relation between the corner 2 x 3N and all other corners is determined by the number 
of edges which have to be passed in order to reach them respectively, starting from the 
corner 2 x 3”, e.g. the minimum on the space diagonally opposite side to 1 (which is 
1+3”) ,  is reached after passing N edges. Different sums in the second square brackets 
of (5) classify different types of corners, 

The eigenvalues (5) are real; for the terms - ti; this is because every single term is 
a complex number of modulus 1 and, together with the common factor (n,”,, rj)-Il2, 
the first and the last, the second and the second last terms etc. form mutually recip- 
rocal complex values. 

The eigenvalues (5) can be calculated for given numbers n of A-symmetric rotors 
as is shown in the appendix. They are 

E { ~ ~ ~ . - ~ N I  = (3n - ~ ) t ,  + 2 y i  .

This energy spectrum is illustrated io figure 2 
Three cases must be distinguished: 
(i) t i  is the dominant matrix element; then the resulting tunnelling spectrum is 

equidistant with tunnelling energy 31til and the rotors behave as being effectively 
uncoupled. This was shown in section 3.2  to be the  case^ if the particle number N 
exceeds 4. The case of a vanishing splitting of the tunnelling line agrees at least 
qualitatively with the result of a Hartree-type calculation; the wavefunction can be 
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b.'..l..l ,.I Figure 2. Energy level scheme for N mupled 
rotors according to model (1) in the large W 
Limit. (a) chows the spectrum for dominant 
tunnelling-matrix element tj and ( 6 )  for domi- 
nant ti<. The equidistant spectrum of (a) cor- 
responds to an eflective singlepartide problem 
with potential WcasSy. The negative sign of 
the t i j i  is due to the kinetic energy part of the 
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(4 (a) Hamiltonian, 

represented by a suitable product of single-particle wavefunctions and the correlations 
become unimportant in the strong coupling limit. I t  would be worthwhile to check 
the quantitative validity of the Hartree approximation for weaker coupling strengths 
a n d N Z 5 .  

(ii) lii is the dominant matrix element; then the spectrum may be characterized 
by the following relative splittings of the tunnelling line, measured on the scale of the 
mean tunnelling frequency 

(6) -1 (EEAAA ... - EAAAA ... ) - (EEEEE ... - EAEEE ... 
~[(EEAAA ... - EAAAA ...)+( EEEEE ... - EAEEE 

N-1 

f 

if complete A- and complete Esymmetric surroundings are compared, or 

(EEAAA ... - EAAAA ... ) - (EEEAA ... - EEAAA ... 
1 [(EEAA.~ ... - EAAAA ...) + (EEEAA ... - EEA.4A.., ) = 2  (7) 11 3 s 

if the second tunnelling line is compared with the first one. 
Both relations are also found in exact numerical calculations for N = 2 and N = 3 

in the strong-coupling limit [SI. They can also be found in figure 5 of [9] for interme- 
diate values of the coupling strength within the numerical accuracy. 

(iii) ti and ti, are of comparable size; then at  least the energy difference between 
the lowest tunnelling states is dominated by tii and therefore a split tunnelling line 
should be observable. For the quantity (7) one now obtains $. This was estimated to  
be the case for N = 4. 

5. Conclusion 

The tunnelling spectrum for a system of N coupled XH, rotors has been calculated 
for an equivalent-neighbour model (1) in the limit of strong coupling, when only two 
possible types of tunnelling integral dominate. No single-particle potential has been 
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taken into account for the rotors, because such a potential would not modify any 
result for W -+ CO and, for finite W ,  it would lead to reduced values for the relative 
splittings of the tunnelling line. 

Within a WKB-type argument it turns out, that a split tunnelling line is only 
expected if less than 5 rotors are mutually coupled. Otherwise the matrix element 
t , ,  corresponding to uncoupled 2 r / 3  rotations of a single rotor, dominates and the 
wavehnction approaches a product of single-particle states. This suggests strongly 
that  for N 2 5, Hartree-type calculations should become reliable, eventually also for 
weaker coupling strengths. One consequence would be that split tunnelling lines in 
coupled N 2 5 systems should occur only within a certain limited range of (relatively 
large) tunnelling frequencies [SI. The observed splitting of the tunnelling lines in the 
hexamine systems would fall into this category. Note that the reason for the vanishing 
of the relative splitting of the tunnelling line for N 2 5 is not the decreasing of 
the relative fluctuation in the probability distribution of the surrounding rotors with 
respect to a given rotor; the funnelling frequency should not even vary as the symmetry 
of the surrounding is changed from complete E-symmetry into complete A-symmetry. 

The N dependence of the matrix element t,,, corresponding to  simultaneous r/3 
rotations of all rotors, results from the N-dependent mass which is invoIved when mov- 
ing between two adjacent potential minima of type (ii), and from the N-dependent 
height of the barrier to be surmounted; finally, the infinite system will show a spon- 
taneous symmetry-breaking and localize into one half of the minima. 

Real physical sys t em are indeed often infinite, but not all rotors are equivalently 
coupled. In order to also draw conclusions about the relative splittings also for finitely 
coordinated networks with equal coupling strengths between all next neighbours, it is 
suggested that  a cluster expansion is imagined and attention is focused on the lowest- 
order terms. The single-particle contribution corresponds to an averaged Hartree 
result, which reproduces the mean of the tunnelling frequency. The term including the 
next-neighbour sphere of rotors, when the boundary conditions are suitably modified, 
corresponds to the equivalent-neighbour model presented here. This correspondence is 
of course not quantitatively correct, since contributions to the inter-cluster interaction 
are replaced by intra-cluster interactions. The relative splittings of the tunnelling line 
expected from an equivalent-neighbour model are therefore to be considered as upper 
bounds for the splittings in the corresponding infinite network. In consequence, only 
the one-dimensional chains of coupled methyl groups are expected to show a split 
tunnelling line (in the limit of strong coupling), as only they correspond in that sense 
to the case N = 3. This is in qualitative agreement with the result of a recent 
investigation [21], where for chains of mutually strongly coupled methyl groups a 
split tunnelling feature was deduced, albeit in a system allowing a collective free- 
rotor mode (with interaction potential - Wcos 3(pi - pj)). All higher-dimensional 
lattices (with the rather academic exception of a honeycomb lattice in two-dimensions, 
which is related to N = 4) should exhibit unsplit tunnelling lines. In particular, 
solid methane in the low-temperature phase I1 would be considered an N = 9 case, 
which makes the observed single-particle behaviour understandable. Some caution is 
advisable concerning predictions for the diluted rotational tunnelling systems in rare 
gas matrices [ZZ], which contain small, orientationally coupled clusters of various sizes. 
These systems often are almost freely rotating and only if the twc-particle interaction 
is strong enough to reduce the tunnelling frequency severely, the results of this paper 
should be applicable. In the weak coupling limit, it is known from a perturbational 
treatment that those systems should exhibit split tunnelling lines [23]. 
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In order to confirm the results presented here, numerical calculations for particle 
numbers N = 3,4,5 would be desirable. Moreover, exact calculations of tunnelling 
spectra of long chains could test the prediction of a tunnel-split ground state in such 
systems of coordination 2. The hope is that only the small systems escape the relatively 
easy-to-use single-particle description for the orientational coupling phenomenon. 
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Appendix. Evaluation of the eigenvalues 

The expression in the first square brackets of (5) is equal to 3n - N, using eiZr13 +
e-iZz/3 = -1 

In order to prove the identity 

+ rjlrj,rj3 + ...+ nr ,  ” )  = 2” (‘41) 
l<jz <i,<j&N j = 1  

where n denotes the number of A-symmetric rotors and = (eiZs/3)EJ,kj E 
{-l,O,+l},j E {I,.. ., N), it should be recalled that the eigenvalues only depend 
on the number of A-symmetric rotors. The first factor is therefore 

1 .  fl r .  = (eiz-/3 I - ’N n 
j = 1  

The second factor can be written as 

3 

The identity can be seen as follows. Without loss of generality let 

{k,, . . . , k N }  = {O,. . . ,0,1,. . . , I } .  -- n N-” 

Then for a certain I, A of the I j s  may be larger than n (0 < X 4 I ,  1 < < n < 
j1-,+, < N) and the corresponding rj are equal t ~ e ’ ~ “ / ~ .  For fixed X there are (,:,) 
terms with j < n and ( N; n )  terms with j > n. 
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Now i t  remains to calculate the double sum over the binomials: 

The last but one sign of equality is valid because the terms with X > N - n vanish 
due to the properties of the binomial coefficients. Equation ( A l )  follows from (A2) 
and (A3). 
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