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The orientational coupling of methyl groups leads to a split rotational tunneling line. We study the 
dependence of this splitting on the type and strength of the interaction. Two types .of pair potentials 
are considered (Ml) cos 3'Pi cos 3'Pj and (M2) cos 3('Pi+ 'Pj). The tunneling spectra are calculated 
numerically exact for N=2 and N=3 rotors by using a sparse matrix method (SMM). For model M1 
we also probe the molecular field approximation (MFA). For both, N=2 and N=3, not even 
qualitative agreement is found between MFA and SMM. But a trend can be seen towards MFA-like 
behavior; with increasing N, the dependence of the splitting on the coupling strength qualitatively 
resembles the MFA prediction. However, by our SMM results, we are led to the conjecture, that for 
moderate coordination numbers a considerable splitting should occur within a much broader range 
of coupling strengths than predicted by MFA. 

I. INTRODUCTION 

The classically forbidden tunneling through potential 
barriers is one of the most striking features of quantum me-
chanics. For single particles and rigid potentials this phe-
nomenon is well understood and there exist powerful nu-
merical or Wentzel-Kramers-Brillouin (WKB) methods to 
approximate the tunneling rates. However, a coupling be-
tween various degrees of freedom may strongly influence the 
tunneling behavior. One example is the coupling to lattice 
vibrations, cf. Ref. 1, which establishes a microscopic de-
scription of dissipation and temperature dependence. In the 
present paper we concentrate on the effect of coupling be-
tween different tunneling coordinates on the tunneling spec-
tra. We will consider coordinates confined to finite regions in 
space. 

Due to tunneling multiply degenerated classical ground 
state energies split and the corresponding levels determine 
the lowest excitation energies of the system. In absence of 
even the slightest differences in the depth of the potential 
minima this splitting decreases exponentially to arbitrarily 
small values with increasing height of the potential barriers 
separating the classical ground state configurations. This dis-
tinguishes physical systems, where some internal symmetry 
assures equivalence between the various potential minima; 
they can exhibit extremely small tunneling energies. Out-
standing examples are the rotational tunneling systems, 
where tunneling between the minima are accompanied by an 
exchange of identical particles. The hydrogen molecule Hz is 
famous for its ortho and para symmetry species being stable 
over times many orders of magnitude longer than the inverse 
energy difference between the two eigen energies. There, a 
rotation of 180° corresponds to an (odd) permutation of iden-
tical atoms. 

Let us focus our attention onto systems like CH3 and 
CH4 • The CH3 molecule is a one-dimensional symmetrical 
rotor. Due to its invariance under 120° rotations, any nonva-

nishing rotational potential must have at least three equiva-
lent minima. The tetrahedral symmetry of the three-
dimensional symmetrical rotor CH4 enforces that its 
orientational potential has at least 12 equivalent minima. In 
molecular crystals containing these types of rotors, tunneling 
energies in the f.Le V range or below can be found 
experimentally? 

Suppose that the environment has no symmetry at all. 
Then the symmetry group of the CHrHamiltonian is the 
point group C 3' and the eigenfunctions can be classified ac-
cording to the irreducible representations rE{A,Ea,Eb} of 
that group. For CH4 the eigenfunctions are classified with 
respect to the irreducible representations of the tetrahedral 
group T, whence rE{A,T,Ea,Eb}. 

The equivalence of the potential minima in rotational 
tunneling systems is not destroyed by coupling the rotational 
degree(s) of freedom to any set {Xk} of other spatial coordi-
nates, including rotations. For a single methyl rotor with 
angle coordinate cp the total potential energy V always has 
the periodicity property 

(1) 

Therefore, r remains a good quantum number, e.g., even in 
presence of dissipation. An immediate physical consequence 
is the sharpness of the tunneling line(s) in rotational systems 
at temperatures many orders of magnitude higher than the 
tunneling energy itself. z This is a profound dissimilarity to 
translational tunneling systems. For hydrogen atoms, which 
tunnel to a crystallographically equivalent and empty neigh-
boring site,3 the tunneling lines are only observable at tem-
peratures below the tunneling energy.4 Only operators that 
can change the nuclear spin state of the symmetrical rotor are 
able to induce rotational tunneling transitions, thereby 
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changing r. An example is the neutron scattering operator. 
Hence, rotational tunneling energies are directly observable 
by inelastic neutron scattering. 

Orientational coupling by interatomic forces between 
closely situated rotors complicates the rotational tunneling 
spectrum, because the tunneling lines split. This has been 
found experimentally5,6 and theoretically5,7 for coupled pairs 
of rotors. On the other hand in solid methane yet no clear 
evidence is found for a splitting of the tunneling lines caused 
by interactions between adjacent CH4 molecules,8 which are 
expected to dominate by far all other potential contributions. 
This system seems to be very well described within an ef-
fective single particle description which takes into account 
nothing but the molecular field of the surrounding rotors.2,9 

This molecular field approximation (MFA) provides the sim-
plest way for treating many body effects. For the reasons 
given below, we have been interested in the question, for 
which cases MFA is really applicable. Our most sensitive 
probe to quantify correlations will be the splittings of tunnel-
ing lines, i.e., the differences of the differences between the 
lowest few eigenValues of the Hamiltonian. 

The vanishing of the relative splittings of the tunneling 
lines (on the scale of the tunneling energy itself) in the strong 
coupling limit turns out to be a salient property of the MFA, 
independent of the number of coupled rotors. And the reli-
ability of MFA is expected to grow with increasing coordi-
nation number. On the other hand it is known from numerical 
calculations, performed for systems containing two/ three, 10 

or fourll ,12 rotors, that increasing coupling strengths usually 
lead to an increase of the relative splitting of the tunneling 
line. The question arises, which scenario will be the correct 
one for a system of strongly coupled rotors with moderate to 
large coordination number. 

We analyze the situation in terms of more precise nu-
merical data and a considerably extended range of coupling 
strengths for up to three equivalently coupled rotors. The 
numerical results are also very useful to test the reliability of 
simpler calculational schemes, e.g. Ref. 12, which, in tum, 
allow us to calculate the spectra of more than three coupled 
rotors. 

Only the one-dimensional CH3 rotors are examined to 
study the influence of orientational interactions on the tun-
neling spectra. Rotors of higher dimensionality, like CH4, 
would require a much larger Hilbert subspace.13,14 

We have investigated two types of pair potentials be-
tween the ith and the jth methyl group (MI) cos 3CPi cos 3cpj 
and (M2) cos 3( cP i + cp). Only the second model is capable 
of different eigenvalues for states which differ only by sub-
stitution of some Ea by Eb symmetry lables or vice versa. 
MFA cannot, in principle, reproduce this Ea +-+ Eb splitting 
and therefore MFA is not applied to model M2. 

The organization of the paper is as follows: In Sec. II, 
the two models are explained. Within the pocket state picture 
(Sec. ill) the splitting of the tunneling lines can be under-
stood qualitatively. The calculational scheme of the self-
consistent molecular field approximation is explained in Sec. 
IV A. Numerically exact eigenvalues are obtained by the 
sparse matrix method (SMM)/,15 which is described in Sec. 

IV B. The various results are presented in Sec. V. In Sec. VI 
the conclusion is drawn. 

II. MODELS 

From Eq. (1) it can be seen that orientational coupling of 
N different rotors (enumerated by i) does not mix their sym-
metries riE{A,Ea,Eb}. Therefore, the full Hilbert space can 
be conceived as the direct sum of 3N irreducible subspaces 
named by the N -tuples {r 1 ... r N} of symmetry labels. Within 
each irreducible subspace there exists a unique eigenstate 
having the respectively lowest eigenvalue; all together these 
"ground states" of different symmetry form the tunneling 
multiplet into which we are interested here. 

Two model Hamiltonians for N coupled methyl rotors 
are investigated, 

and 

N W/2 N 
H(!};;: 2: BL~+-- 2: cos 3CPi cos 3cpj (2) 

i=1 I N-l i,j=l 
i'Fj 

N 

H(2)=2: (BL~+Vcos3cpi) 
i=1 

(3) 

Here, Li is the angular momentum of the ith rotor, CPi is its 
angUlar coordinate, and B =650 p.e V is the rotational con-
stant. 

The term ~cos 3CPi cos 3cpj in Eq. (2) dominates in the 
Fourier expansion of the interaction, if the six protons of two 
methyl groups i and j are rotating in a common plane around 
parallel axes. On the other hand, the coupling between two 
methyl groups rotating around a common axis is 
~cos 3( cP i + cp) in lowest nontrivial order and is described 
by Eq. (3). 

The single-particle potential is not included in H(l) in 
order to pronounce the influence of coupling, and because 
the type of interaction in H(l) cannot show frustration. On the 
other hand, the influence of cooperative or noncooperative 
relationship between interaction and single-particle potential 
can be studied for the type of interaction in H(2) (see Sec. 
V B). In the above sense, the Hamiltonian H(l) describes a 
maximally coupled system, which is well suited to test the 
reliability of the MFA results. 

The use of equivalent neighbor models may appear un-
realistic. Physically, a large number of coupled rotors can 
only be realized by arrays of rotors, each interacting with 
only a few nearest neighbors; examples are one-dimensional 
chains (e.g., Garnma-picolineI6), two-dimensional planes 
[e.g., SnF2( CH3)2 (Ref. 17)], or even a three-dimensional 
network (e.g. solid methane18,9). However, knowing the 
properties of equivalent neighbor models (2) and (3) for vari-
ous N, conclusions can be drawn about infinite lattices of 
coupled rotors with finite coordination and with equal cou-
pling strengths.19 
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for not too strong coupling is shown in Fig. 2. Note that the 
matrix elements t,a, ... ,d' are negative due to the kinetic en-
ergy contribution. 

For strong potential we can well neglect the primed ele-
ments, i.e., (ijj) for i=l= j, of the overlap matrix (Gram ma-
trix) in Eqs. (5) as compared to the normalization (111)=1.21 
A qualitatively simple picture of the level scheme arises. The 
t matrix element appears to be the main contribution to the 
tunneling energy and all splittings of the tunneling line (Fig. 
2) are given by linear combinations of a, b, c, and d, 

wo"'" -3t-6(a+b)-9c-3d, 

WI"'" -3t-3b+3(c+d), 

W2"'" - 3t- 3a + 6c, 

W3"'" - 3t+ 3(a + b) - 3d, 

w4""'-3t+6a-3c, 

w5""'-3t+6b-6c+3d, 

,0,1 = -3(a-b)+3(c-d), 

O 2= -6(a-b) -3(c-d). 

(6) 

In Eqs. (6) only those energy differences are listed, which are 
observable in an inelastic neutron scattering experiment, 
where the symmetry of a single rotor can be changed, only. 

For small c and d, corresponding to high single particle 
potentials, an approximative ratio of 'o'zl'o'1 =2 is found for 
the Ea+->Eb splittings. In the case of c=d and comparatively 
small t,a,b, which corresponds to a strong cos 3CPi cos 3cpj 
interaction, the tunneling spectrum can be characterized by 
Iwol:lw11:lw31=4:2:1 and ,0,1=,0,2=0, obtained from Eq. (6). 
Both properties are found in the exact calculations of Sec. 
VB. 

IV. CALCULATIONAL METHODS 

The tunneling energies are the differences of the eigen-
values of the eigenstates in the lowest librational multiplet. 
The basic difficulty in their numerical determination is the 
extreme precision required. The eigenvalues have to be ac-
curate on a scale several orders of magnitude below the 
smallest differences of the librational energies, i.e., the 
smallest differences of the eigenvalues for each fixed set 
(f 1 , ... ,r N) of symmetries. Moreover, every additional inter-
acting rotor drastically extends the amount of numerical 
work to be done. Here, these problems are further enhanced, 
because we need to calculate small differences of the already 
very tiny tunneling energies to get the splitting of tunneling 
lines. 

The molecular field approximation (MFA) is an effective 
single particle description. It offers an intuitive understand-
ing for the occurrence of the splitting of tunneling lines (Sec. 
IV A) and its applicability would simplify the task enor-
mously. However, with respect to the extreme precision re-
quired, the question is: For which cases does MFA yield 
sufficiently precise quantitative results? This will be studied 
in Sec. V as a function of both the number of interacting 
rotors (coordination number) and the coupling strength. 

A. Molecular field approximation 

Within the MFA, the effective orientational potential for 
a given rotor depends on the molecular field generated by all 
neighboring rotors. Note that E-symmetric neighbors are 
stronger localized and thus cause higher effective fields than 
A -symmetric neighbors. Consequently, neighborhoods with 
unlike symmetry yield different effective potentials and the 
tunneling line splits. 

MFA is applied only to model Ml Eq. (2). The Ea+->Eb 

splitting, only present in model M2 Eq. (3), cannot be ob-
tained from MFA (see below), hence the MFA results for 
model M2 are necessarily worse than those for model Ml. 
Model Ml is an equivalent neighbour model, therefore the 
eigenvalues of Eq. (2) depend only on the number n of 
A-symmetric rotors (O~n~N) but not on their sites i. The 
ground state energy of H(!) in molecular field approximation 
can be written as 

nE~+(N-n)Eg , (7) 

where E~ and E5 are the lowest eigenvalues of the 
n-dependent effective single-particle Hamiltonians H~ff' 

A _ 2 ( n - 1 A N - n E) A 
Heff=BL +W N-l C +N-l C (cos 3cp-c 12), 

E _ 2 (n A N - n - 1 E) E 
HerBL + W N-l C + N-l C (cos 3cp-c 12), 

cr=(orjcos 3cp10r) with fE{A,E}. 

For a given number n of A -symmetric rotors, the lowest 
eigenstates lor> have to be determined self consistently for all 
symmetries r, 

H~ffIOr)=E~IOr). 

The MFA-ground state is the product state formed from the 
single-rotor ground states lor>. In MFA, the splitting of the 
tunneling line results merely from the inequality icE I;3: I cA I, 
which is due to the different shape of the eigenfunctions of 
A- and E-symmetry. Since the states 10Ea) and lOEb) are 
complex conjugate to each other, it holds that cEa = eEb

• Con-
sequently there cannot be any Ea +-> Eb splitting within MFA. 

B. Sparse matrix method 

Let Iii) denote the eigenstates of the kinetic energy op-
erator L~ of the ith rotor 

Lllli)=lllli) (liE{ ... ,-2,-1,O,1,2, ... },1~i~N). (8) 

In the basis {\11)112) ... IIN)} of products of free rotor states, 
the Hamiltonian matrix has only a few nonvanishing ele-
ments per row; it is a sparse matrix. Because of the ladder 
operator structure of all potential operators (ei3 'P± e - i3 'P) in 
the models (2) and (3), we find 

(I' le±i3'PII) = 01' ,1±3' 

Hence, the number of nonvanishing elements per row is in-
dependent of the size of the basis considered; it is equal to 
1 - 2N + 2N2 for H(ll, and for H(2) it is 1 + N + N 2• 
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On first view, the free rotor basis may look inconvenient 
and, in particular for model (3), the eigenfunctions of the 
single-methyl Hamiltonian BLz+ V cos 3"1' (Mathieu basis) 
might appear to be better adapted. However, for strong cou-
pling it turns out that the number of required basis functions 
does not differ much if the Mathieu- or the free rotor basis is 
taken. The reason lies in the high accuracy which is needed 
for the determination of the eigenvalues; it necessitates to 
take into account highly excited states, whose energies are 
much above the top of the potential barriers. But the Mathieu 
eigenstates with high eigenvalues are almost equal to free 
rotor eigenstates. 

The eigenstates I 'J.ikl ,k2 ,k3) with quasimomentum 
(k l ,kz ,k3), k i E{-I,O,I}, correspond to a certain symmetry 
(rl ,r2,r3)· We expand them into products of free rotor states 
(8), for which li=3Pi+ki andpiEc5, i.e., Pi being a whole 
number, 

Inserting this into the stationary Schrodinger equation yields 
a recursion relation for the expansion coefficients 
C kl ,k2,k3 

PI,P2,P3 ' 

w + C k !.k2.k3 + C k !.k2.k3 ) +_ (Ck !.k2 .k3 · 
P!,P2,P3- 1 P!,P2,P3+ 1 4 P!,P2-l.P3- 1 

+ C k !.k2 .k3 + C k !.k2 .k3 + C k \.k2 .k3 
P!~2+1~3+' P!-'~2~3-' P!+'~2~3+' 

(9) 

Together with the normalizability requirement 

Eq. (9) can only be satisfied, if the energy parameter E is 
equal to an eigenvalue of the Schrodinger equation. The low-
est eigenvalue E k !.k2 .k3 for each quasimomentum belongs to 
the tunneling multiplet. Numerically, the eigenenergy is 
found by recasting the homogeneous linear system of Eqs. 
(9) into a truncated inhomogeneous system (one coefficient 
C can be fixed to 1) which is treated by matrix inversion. 
And E must be adjusted such that the truncated equation is 
fulfilled (cf. Ref. 7). 

The Hilbert subspace is determined by choosing a sphere 
of radius R around the coefficient C~:O~g·k3 , 

3 

~ PT~R2. 
i=1 

Most of our results were obtained using R =9; only for some 
potential parameters, which lead to very low tunneling ener-
gies, R = 11 has been needed. This method is very well 
adapted to the high sparsity of the problem (more than 99%), 
because it saves computer memory as compared to a diago-
nalization. It therefore allows a substantial enlargement of 
the size of the accessible Hilbert subspace and thus an ex-
tension of the range of potential parameters, in particular 
coupling strengths. A further reduction in required computer 
memory and computation time was achieved by taking ad-
vantage of symmetry relations between the coefficients in 
case of those symmetries (k, ,k2 ,k3) where two or more k; 
are equal; for {A,A,A} symmetry, only about 1116 of the full 
sphere of Cpo.op.o p is relevant. The gain in computer time is 

I' 2' 3 
considerable, particularly for large R. A diagonaIization re-
quires an execution time proportional to R 9, whereas our 
method takes time proportional to R3 only. A minimization of 
the ground state energy still needs time at least proportional 
to R6. This was perhaps the reason why the variational 
approach lO has been restricted to merely R=5. We find, that 
this is not sufficient to correctly determine the differences of 
tunneling energies from the fW V region (in Ref. 10 only 
eigenvalues are given). 

V. RESULTS 

A. cos 3lpf cos 3lpJ type interaction 

Consider the tunneling energy of a given methyl group. 
When the symmetry of i surrounding rotors is changed from 
A to E, the tunneling energy changes ex: 0;, which is defined 
in units of the average tunneling frequency (Fig. 2), e.g., 

(10) 

The relative splitting 8; can be used to quantify the reliability 
of MFA results. For N=oo, we obtain an upper bound ~FA 
for the MFA-variation of the tunneling line caused by a com-
plete switch of the symmetry of the surrounding rotors from 
all-A to all-E. 

Figure 3 compares numerically exact values of 0, for 
N=2 and 3 with MFA results from Eq. (7); the dashed line 
shows ~FA. The following trends can be seen: 

(1) For N=2 and N=3 the exact splittings approach oc-t2/3 
as WIB-too; this limiting value was already obtained in 
the discussion of the pocket state method (Sec. III) and 
can be understood in terms of tunneling matrix 
elements. '9 

(2) On the contrary, MFA predicts a vanishing relative split-
ting of the tunneling line in the strong coupling limit and 
for all particle numbers. 

(3) The 0, splittings at low values of WIB::55 are better 
reproduced by perturbation theory with respect to the 
interaction (starting from the free rotor basis), than by 
self-consistent MFA. Here, both for N=2 and N=3, the 
lowest eigenfunctions are poorly approximated by single 
particle product states. 

(4) The numerically exact calculations reveal slight modifi-
cations with increasing number of rotors, going from 
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8 

W/B 

FIG. 3. Relative splitting 8 of the tunneling line on the scale of the tunneling 
energy according to model Ml Eq. (2). The continuous lines show 0[, as 
defined in Eq. (10) (a) N=2, SMM; (b) N=3, SMM; (c) N=2, MFA; (d) 
N=3, MFA. The dashed line refers to lJJ!A for the infinite system treated in 
MFA. The tunneling energy for a complete E-symmetric surrounding is 
compared with the tunneling energy for complete A -symmetric surrounding. 

N=2 to N=3: reduced 81 splittings at low WIB:520; 
also reduced values at high WIB:2:40; a weak indication 
for the development of a "peak" between WIB=20 and 
30 as compared to the N=2 behavior. 

We tried to improve the MFA approximation by additionally 
using second-order perturbation theory for the calculation of 
the correlation energy, starting from the best self-consistent 
single-rotor states. The only noticeable effect was an im-
provement for the WI B:55 splittings. This again confirmes 
our conjecture that for N=2 and N=3 the correlations are 
the dominant origin for the splitting of the tunneling line. 

On the other hand, for N~5 equivalently coupled rotors, 
8i approaches zero as WIB--"oo for all i.19 Insofar the MFA 
result for the splitting of the tunneling line is becoming exact 
in the limiting cases of WIB=O and WIB=oo. The properties 
of item (4) above can be interpreted as the first hint for the 
evolution of a maximum in 81, as it is obtained in MFA for 
all numbers of rotors. 

If MFA described the splitting of tunneling lines cor-
rectly, the peak structure for the 81-splitting around 
W=10B, would imply 

(i) Split tunneling lines should occur only for coupling 
strengths W roughly ranging from 6B to 30B. This 
corresponds to tunneling energies between 600 and 10 
pey. 

(ii) Only for systems within this range of coupling 
strengths (or tunneling energies) a shifting of the tun-
neling line can take place when the concentration of 
rotors of a given symmetry is changed. In 
experiments22,23 the tunneling energies are larger than 
140 peV when such a shifting has been observed for 
the transition into complete A -symmetric samples (by 
cooling below the tunneling energy and waiting suffi-
ciently long compared to the nuclear spin conversion 
time24). For this shifting, 8;!FA in Fig. 3 would be an 
upper bound. 

It is still unknown, whether or not MFA is capable to 
correctly describe .the splitting of tunneling lines over the 
whole range of interaction strengths in case of (moderately) 
large numbers of rotors. However, the exact 81 curves (Fig. 
3) indicate that the peak for N~5 ought to be situated around 
25B and considerable splitting, say 81;;:::0.05, should occur 
within a much broader range of coupling strengths than pre-
dicted by MFA. Therefore, MFA yields only qualitatively 
correct 81 curves. 

B. cos 3( ip j+ ip j) type interaction 

Model M2 Eq. (3) combines a single particle potential 
- V cos 3'Pi (V>O) with a pair-interaction - W cos 3( 'Pi 
+ 'P). Two cases can be distinguished. For the non frustrated 
type of coupling (W<O) the interaction deepens the 27 po-
tential minima of the single particle potential, whereas for 
the frustrated type of coupling (W>O), the interaction weak-
ens these minima. For W> I vI/2>0, 54 equivalent potential 
minima appear at shifted positions. All relative splittings of 
the tunneling lines turn out to be much larger for frustrated 
coupling. 

In this section the quantities 

(ll) 

and 

(12) 

[cf. Eq. (6)] are used to measure the splittings of the tunnel-
ing lines on the scale of the tunneling energy wo. 

In Fig. 4 the results for two and three rotors are pre-
sented; V = 30 B and relatively weak coupling is taken. In the 
case N=3 two possible types of Ea+-+Eb splittings, iiI and 
1i2 (cf. Fig. 2), exist. From Fig. 4(b) it can be seen that their 
ratio is approximately lii1i1=2 for any interaction strength, 
which is in accordance with Sec. m. The general behavior of 
v and Ii looks similar. At any coupling strength, the splitting 
is reduced with increasing number N of particles [this trend 
can be extrapolated to larger numbers of N (Ref. 12)]. For 
N>2 on the nonfrustrated side, W<O, the splitting starts to 
vanish after an extremum, e.g., for V=20B, the extremum in 
v occurs at =-lOB respectively at =-50B in 1i2 (Fig. 5). 
The insets of Fig. 5 show a magnification of the N = 3 data. 

As compared to the N=2 behavior, the appearance of 
extrema of the splittings of the tunneling lines for N=3 is a 
qualitatively new feature. We emphasize the following alter-
ations as compared to the N=2 case: The splittings v and Ii 
(Fig. 5) start to decrease for very large nonfrustrating inter-
actions (W<O). There is a pronounced difference between 
frustrated and nonfrustrated type of coupling; fOJ: N=3, the 
1i2 values for the two types of coupling differ by three orders 
of magnitude [Fig. 5(b)]. Going from N=2 to N=3, 1i2 is 
reduced by two orders of magnitude for W <0, and v by one 
order; for W>O the reduction in the splitting 1i2 is less pro-
nounced. 

Unfortunately it was not possible to clarify, whether or 
not the relative splittings decrease to zero as I wlI B --,,00. If 
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tive splittings of the tunneling lines, we estimate N = 1 + Z to 
be the relevant particle number in the sense of the present 
paper. Tentatively applying our results to three-dimensional 
CH4 rotors, we do understand the success of explaining ro-
tational tunneling in solid methane phase II by means of 
MFA.9 The coordination number among the "ordered" rotors 
in that case is Z=8. This explains qualitatively that single 
particle behaviors is observed, despite the fact that the in-
teraction is by far dominant as compared to the single-rotor 
potential (the latter, originating mainly from the interaction 
between the hydrogens of one rotor with the carbon atom of 
an adjacent rotor, is expected to be weak). This maintains the 
nomenclature to distinguish between "ordered" and "freely 
rotating" molecules. The observed finite linewidth for the 
A f--r T transition is (at least mainly) attributed to the variation 
in the symmetry species distribution among different 
neighborhoods.8 
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